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Abstract—The rapid increase of Internet of Things (IoT) 
applications and services has led to massive amounts of 
heterogeneous data. Hence, we need to re-think how IoT data 
influences the network. In this paper, we study the characteristics 
of IoT data traffic in the context of smart cities. Aiming at 
analyzing the influence of IoT data traffic on the access and core 
network, we generate various IoT data traffic according to the 
characteristics of different IoT applications. Based on the 
analysis of the inherent features of the aggregated IoT data 
traffic, we propose a Long Short-Term Memory (LSTM) model 
combined with autoregressive spectrum analysis to predict the 
IoT data traffic. In this model, the autoregressive spectrum 
analysis is used to estimate the minimum length of the historical 
data needed for predicting the traffic in the future, which 
alleviates LSTM’s performance deterioration with the increase of 
sequence length. A sliding window enables predicting the long-
term tendency of IoT data traffic while keeping the inherent 
features of the data traffic. The evaluation results show that the 
proposed model converges quickly and can predict the variations 
of IoT traffic more accurately than other methods and the 
general LSTM model. 

Keywords—Internet of Things; data traffic prediction; LSTM; 
autoregressive spectrum analysis 

I.  INTRODUCTION  

The massive amount of data from Internet of Things (IoT) 
has a significant influence on network infrastructure and 
applications running on it. Therefore, it is important to predict 
the IoT data traffic at different time lags and intervals in order 
to provide networking performance guarantees for both IoT 
and other applications and to optimize network resources. 
However, the amount of data generated by IoT applications 
varies greatly, from several bits generated by simple sensors to 
several hundred megabytes generated by video cameras. The 
pattern of data generation also varies from periodic to sporadic. 
The same application produces different amount of data on 
different platforms. Thus, the special characteristics of IoT data 
make it difficult to predict IoT traffic and estimate its influence 
on public networks and infrastructure facilities. Especially, 
different platforms and network architecture are used in 
different IoT applications and scenarios [1]. How these 
platforms influence network traffic is still unclear. 

Widely accepted methods for modelling and predicting traffic are 
based on the Internet [2][3]. They cannot be used straightforwardly in 

the IoT environment due to the different behaviour of IoT devices 
and human beings using the Internet. Traffic modelling has been 

studied in the context of machine-to-machine (M2M) and ubiquitous 
sensor networks (USN) [4]-[7]. However, only the traffic model of a 
single application type has been considered, such as telemetry [8], 
video surveillance [9], and YouTube [10]. Although modelling and 
prediction of the aggregated IoT traffic from several applications 

have been studied [11][12] in the context of building smart cities and 
smart homes recently, these work are all based on mathematical 

models. Several data-driven models, such as deep learning [13][14] 
have been proposed in the context of smart transportation. However, 
the focus has been on predicting vehicular traffic congestion, which 

cannot be used straightforwardly for predicting IoT data traffic due to 
the different features of the time sequences of IoT data and vehicular 
traffic. For example, vehicular traffic might have strong dependency 
on the weekday or the time of a day. In this paper, we generate IoT 

data by simulating different types of IoT applications according to the 
models revealed by other researchers [15]-[20], and propose a data-

driven model to predict the aggregated IoT data traffic. 
Regarding data-driven models for time-sequence 

prediction, methods based on Autoregressive Integrated 
Moving Average Model (ARIMA ARMA/ARIMA) [21] and 
the HoltWinters algorithm [22] are the most widely used linear 
prediction methods. Since they cannot capture the nonlinear 
features of data traffic, in general they are only suitable for 
predicting the time sequences whose underlying features are 
dominated by linear functions. Methods based on recurrent 
neural network (RNN) are non-linear methods. Since they can 
learn from experience and can capture both the linear and 
nonlinear features in a dataset, they have been used for data 
prediction. Particularly the Long-Short Term Memory (LSTM) 
algorithm, due to its long and short term memory capabilities, 
has been used widely for predicting network traffic matrix [23] 
and time sequences [24]. However, most of the work has 
focused on real-time prediction, where continuous feeding and 
learning are used. Especially, the performance of LSTM 
deteriorates rapidly as the length of the input sequence 
increases [25]. This makes it difficult to use LSTM to predict 
IoT data traffic, since long sequences of historical data are 
needed because of the long range dependency of IoT data 
traffic, as shown in Table IX. Recently, mechanisms have been 
studied in order to improve LSTM’s lack of learning ability for 
extremely long sequences [14]. However, this work is based on 
the assumption that the vehicular traffic volume of the previous 
day has big impact on the forecast. Our work aims at 



keeping the prediction model as simple as possible, so that it 
can be used for relatively long-term prediction to realize 
network and resource optimization by network operators.  

There are also several hybrid models for predicting time 
sequences [26][27]. These models decompose the time 
sequences into linear and non-linear, or lowly and highly 
volatile components, or add new layers to LSTM. However, if 
the linear component of the time sequences cannot be well 
recognized and predicted, as is the case with aggregated IoT 
traffic, these models do not produce accurate prediction results. 
Our model extracts the basic features from the given long data 
values dynamically and feeds them to LSTM. There is no 
fundamental separation between the linear and non-linear 
components. Therefore, neither the linear nor the non-linear 
prediction errors will be accumulated, and prediction accuracy 
can be kept without using long sequences of historical data.  

The main contributions of our paper are threefold. 

• The aggregated IoT data traffic at different network levels 
is simulated and collected according to the research results 
of other people, and self-similarity and long-range 
dependency characteristics of the traffic are analyzed.  

• A data-driven model is proposed to predict the aggregated 
IoT data traffic. AR spectrum analysis is used to capture the 
basic features of the data traffic, estimating the minimum 
length of the given data needed for predicting future traffic 
dynamically, and LSTM is used to predict the future traffic 
values. This alleviates the problem of LSTM’s performance 
deterioration with the increase of sequence length with 
simple linear computations. 

• The performance of the proposed model is evaluated. The 
predicted value and the actual value, as well as the Mean 
Absolute Percentage Error (MAPE) in different situations 
are compared, which demonstrates that the proposed 
method can well predict the IoT data traffic tendency in a 
simpler way.   

The remainder of the paper is organized as follows: we 
elaborate the simulation of the IoT data traffic and analyze the 
characteristics of the aggregated data in Section II. Then we 
describe the proposed model and give the evaluation results in 
Section III and IV, respectively. We discuss future research and 
conclude the paper in Section V. 

II. IOT TRAFFIC SIMULATION AND ANALYSIS 

A. IoT Applications and Traffic 

IoT traffic is unique due to its independency from human 
behaviour. In particular, the time intervals of the information 
exchange are not defined by humans. Since the Smart City use 
case includes most of the applications whose data traffic 
influences greatly the network infrastructure, we focus on this 
use case. Here, the traffic may include four types of data, 
namely heartbeat, event trigger, payload data, and node update. 
Among them, the heartbeat type is generally triggered by 
devices themselves, and used for exchanging the status 
information of the nodes for staying in the network. The traffic 
pattern is regular with constant size of packets. The event 

trigger type is usually initiated by operators, servers or other 
devices in order to trigger an action of a device, such as 
reporting the temperature or turning on or off lights. Trigger 
processes are irregularly generated by the servers or other 
devices, and the data can be sent in very short packets. Contrast 
to this, the payload data type carries the information exchanged 
between devices and servers through networks. There are no 
strict rules for this type of traffic. Its size can be constant, e.g. 
telemetry, or variable, e.g. images in video surveillance. The 
node update type is used to maintain the devices, e.g., a server 
in a network may push new configurations or firmware to 
devices. Updates may not happen very often, but might 
produce bursts to the network.   

Consisting of different types of data, the aggregated data 
traffic generated by large numbers of heterogeneous IoT 
devices has the following characteristics: 

• The aggregated traffic is heavily dependent on each type of 
application scenario. In the same application scenario, the 
traffic varies also with the number of IoT devices.  

• The traffic pattern of a single device and a single scenario 
might be simple. However, when the amount of scenarios  
and devices sharing a network increases, the aggregated 
traffic pattern becomes complicated. This may result in an 
unknown influence on the network infrastructure.  

• Since new applications and scenarios may emerge 
frequently and new networking technologies may be used 
to provide better services to IoT applications, the total IoT 
traffic may change dynamically in an unexpected way. 

Hence, it is very important to predict the aggregated IoT 
data traffic using a data-driven method. However, the 
restrictions set by network operators prevent collecting IoT 
data from real networks. To the best of our knowledge, there is 
no public IoT dataset generated by a large amount of 
heterogeneous devices. Therefore, we first generate a large set 
of IoT data traffic by simulating different applications 
according to the data patterns revealed by other researchers, 
and then evaluate our model using the generated dataset.    

B. IoT Data Traffic Simulation 

Fig. 1 illustrates the network configuration we use in the 
network simulator NS-3 [28], which is based on the Smart City 
use case [29], where various applications with different traffic 
patterns are involved. To obtain the aggregated traffic at 
different levels, we design eight subnetworks (we refer each of 
them also as a scenario), each with a gateway (we refer a 
gateway at the subnetwork level as a sink). The traffic from 
each sink is aggregated at the gateways (i.e., 1-3) connecting to 
the Internet through Gateway 4. To obtain as realistic IoT data 
as possible, we generate the data of each type of applications 
according to the characteristics revealed by other researchers. 
In addition, we set multiple applications in each scenario, e.g., 
800 applications (i.e., machines) for goods tracking are set in 
scenario (a). Through the configurations described below, we 
obtain the traffic aggregated from a large amount of devices. 



Fig. 1. Network configuration for IoT data traffic simulation.  

(a) Logistics Goods Tracking [5]. The data sent from the 
devices for logistics goods tracking follows the On-Off model, 
where the On and Off time follows Pareto distribution. Packet 
intervals during On time follow the normal distribution with 
parameters of (0.2, 1) (Table I). Data from 800 goods tracking 
are simulated. 

TABLE I.  TRACK PATTERN OF LOGISTICS GOODS TRACKING 

 Pareto distribution Packet size Packet intervals 

On  (0.60, 19.654,4.99) 50 bytes Normal distr.(0.2, 1) 
Off  (0.009,10.026,0.001) N.A. N.A. 

(b) Smart Grid [7]. The data traffic caused by one voltage 
transformer follows On- Off model (Table II). In total, data 
from 6000 transformers are collected. 

TABLE II.  TRACK PATTERN CAUSED BY ONE   VOLTAGE TRANSFORMER 

 Time (min) Packet size(byte) Packet intervals 
On 5 135 Exp. distr. (μ=60s) 
Off 15 N.A. N.A. 

(c) Mobile Payment [15]. The payments from each 
machine follows exponential distribution (Table III). Data from 
2050 payment machines are collected.     

TABLE III.  TRAFFIC PATTERN OF EACH MOBILE PAYMENT 

 Packet size (byte) Packet intervals 
Data type 205 Exp. distribution (μ=2.5s) 

 (d) Intelligent Transport [16]. The data traffic produced 
by each vehicle is illustrated in Table IV. Each vehicle 
produces data at an interval following the normal distribution. 
Altogether data produced by 2000 vehicles with different 
starting times are collected. 

TABLE IV.  TRAFFIC PATTERN OF EACH VEHICLE 

 Packet size (byte) Packet intervals 
Data type 149 Normal distribution (80,8) 

(e) University Campus [17]. Among the five types of 
sensors generally utilized in campuses (Table V), three types 
generate data with fixed length periodically. The surveillance 
video cameras generate data periodically but the packet lengths 
follow the lognormal distribution. The intervals of check-in 
service follow normal distribution. Altogether data from 15 
universities are simulated.  

TABLE V.  IOT DEVICES AND TRAFFIC PATTERN OF EACH UNIVERSITY 

Device type Device No. Packet size (byte) Period (s)/ Intervals
Humidity detector 50 90 1800

Temperature 
sensor

50 80 600 

Smoke detector 60 80 600
Surveillance 

video (security)
45 Lognormal 

distr.(5.9,1.2) 
15 

e-card check-in 1050 205 Normal distr.(20,2)

(f) Smart Hospital [18]. The sensors and traffic patterns of 
equipment in one hospital are illustrated in Table VI. There are 
50 pieces of equipment in each hospital, and data from 10 
hospitals are generated. 

TABLE VI.  SENSORS AND TRAFFIC PATTERN IN EACH HOSPITAL 

Device type Packet size (byte) Period (s)
cardiograph 125 0.2

Blood pressure 125 0.5
Pulse 125 0.2

Body temperature 27 5

(g) Smart Homes [19]. The traffic patterns of each 
household are shown in Table VII. Altogether data from 
100000 households are generated. 

TABLE VII.  IOT DEVICES AND TRAFFIC PATTERN OF EACH HOUSEHOLD 

Device type Device No. Packet size (byte) Period (s)
Humidity detector 5 90 1800

Temperature sensor 4 80 600
Smoke detector 2 80 600

Light switch 5 100 1800
Sensor for sec. system 1 80 600

Electric meter 1 90 600

(h) Smart Shopping Centre [20]. The data intervals of 
payment and retail system follow exponential and Pareto 
distribution respectively (Table VIII). Data of 8 shopping 
centres are simulated. 

TABLE VIII.  DEVICES AND TRAFFIC PATTERN OF EACH SHOPPING CENTRE 

Device type Device 
No. 

Packet size 
(byte)/distr. 

Period (s)/ Intervals

Humidity detector 20 90 1800
Temperature sensor 10 80 600

Smoke detector 25 80 600
Surveillance 

(security)
20 Log normal 

distr.(5.9,1.2) 
15 

Payment 10 205 Exp. distr.  (μ=2.5 sec.)
Retail system 10 72 Pareto distr.(1,10)

Since in practice all devices do not start sending data 
simultaneously, we assume:  

(1) For one scenario (e.g., Logistics Goods Tracking or 
University Campus), all the devices or sensors are randomly 
started within 100 seconds when the whole simulation time is 
10000 seconds. For example, for the logistics goods tracking, 
each of the 800 devices starts with On state, but after a random 
delay within 100 seconds. For the University Campus, the data 
traffic aggregated in one university will be added with another 
after a random delay within 100 seconds.  

(2) Within one scenario, the devices of the same type start 
sending data following Poisson (30, 50) distribution. Data from 
different types of devices are aggregated together, which forms 
the data of one “region” for that scenario. For example, for 



each campus, 50 humidity detectors start to send data following 
the Poisson distribution. All the data from different types of 
devices consist of the data of one university campus.  

C. Simulation Results and Analysis 

Fig. 2 illustrates the collected data during a period of 10000 
seconds. 

   
(a)  Logistics Goods Tracking          (b) Smart Grid 

  
(c) Mobile Payment       (d) Intelligent Transport 

   
(e) University Campus           (f) Smart Hospital 

    
(g)  Smart Homes    (h) Smart Shopping Centre 

   
   (i) Gateway1              (j) Gateway 2 

   
(k) Gateway 3            (l) Gateway 4 

Fig. 2. Aggregated data at sinks and gateways for 10000 seconds.  

From Fig.2, we can observe that the aggregated data do not 
have any particular patterns and may have bursts, although the 
data sent by each device of an application scenario follows 
certain distribution and can be well modelled and predicted.  

In order to investigate the stationary and autocorrelation of 
the data, we performed the Augmented Dickey–Fuller (ADF) 
and Ljung-Box tests on the data. The intuition behind ADF test 
is that if the series is integrated, the lagged level of the series yt-

1 will provide no relevant information in predicting the change 
in yt besides the one obtained in the lagged changes Δyt-k. 
Ljung-Box test is performed to see whether any group of 
autocorrelations of a time series are different from zero. The 
results are shown in Table IX. Moreover, to estimate the long-
range dependence (LRD) of the IoT traffic, we also calculate 
the Hurst exponent of the IoT traffic, which is referred to "the 
index of dependence" or "the index of long-range dependence". 
As shown in Table IX, the value H at all the gateways are 
bigger than 0.5, and all the p-value are very small, which 
means the IoT traffic is a stationary LRD time series. 

TABLE IX.  ADF AND LJUNG-BOX TEST RESULTS 

 Box-Ljung ADF Hurst exponent H 
Gateway1 p-value < 2.2e-16 stationary 0.8233349 
Gateway2 p-value < 2.2e-16 stationary 0.7289894 
Gateway3 p-value < 2.2e-16 stationary 0.7995602 
Gateway4 p-value < 2.2e-16 stationary 0.7344491 

III. LSTM MODEL ENHANCED WITH AR SPECTRUM ANALYSIS 

A. Insights of Long Short-Term Memory and Autoregressive 
Spectrum Analysis 

LSTM [30] mitigates the vanishing gradient problem of 
traditional RNN, which makes LSTM suitable to model the 
long-term dependencies of IoT traffic. The LSTM architecture 
consists of an input layer, a recurrent hidden layer whose basic 
unit is a memory block (instead of a traditional neuron node), 
and an output layer. Memory blocks are a set of recurrently 
connected subnets. Each block contains one or more inter-
connected memory cells and three multiplicative units - the 
input, output and forget gates, which provide the continuous 
analogues of write, read and reset operations on the cells. The 
multiplicative gates allow LSTM memory cells to store and 
access information over long periods of time, which is essential 
for modelling time sequences that is LRD.   

However, due to the chain structure of the memory blocks, 
the performance of LSTM deteriorates rapidly as the length of 
the sequence increases. Yet the aggregated IoT data traffic is 



long-range dependent (i.e., autocorrelated) - the IoT data in the 
long past will influence the traffic in the future. Therefore, 
finding the proper time lag, that is, how long historical traffic 
sequence is needed to predict future traffic, is the key to reduce 
the complexity (i.e., long-term dependency) of LSTM and at 
the same time to maintain prediction accuracy. 

We approach this challenge by augmenting LSTM with 
spectrum analysis. That is, our aim is not to improve LSTM 
itself. Spectrum analysis can be used to estimate the energy 
spectrum of a stationary stochastic process by a given number 
of samples of the process. AR spectrum analysis is one of the 
widely used techniques for spectrum analysis, as it needs only 
to solve the linear equations which can significantly reduce 
computations when compared with methods used for solving 
nonlinear equations.  

We use the AR spectrum analysis to find out the length of 
the historical data (i.e., the order of the time sequence) that 
influences the prediction accuracy of future values. This 
approach is based on the consideration that for stationary time 
sequences, energy spectrums are roughly constant. Thus, the 
length of the historical sequence that needs to be considered 
can be identified based on the spectrum of the time sequence. 
Moreover, the linear computations of AR analysis can decrease 
the computation complexity of the model greatly, which helps 
to realize the relative long-term prediction.    

B. LSTM Model enhanced with AR Spectrum Analysis 

Based on these considerations, our model first uses the AR 
spectrum analysis to estimate how long data sequence from the 
past will mostly affect the traffic in the future for a given time 
series, then uses LSTM to train the neural network by using the 
selected length of the traffic and predict the traffic in the future. 
Fig. 3 illustrates the model. 

Fig. 3. LSTM model based on AR spectrum analysis.  

The ADF and Box-Ljung tests are performed before the AR 
spectrum fitting, in order to check the stationary and self-
similarity (i.e., long-term dependence) of the IoT data traffic.  

The AR model of time series x(n) can be defined as  
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We use Levinson-Durbin algorithm to perform regression 
during the spectrum fitting, thus the autoregressive spectrum of 
x(n) can be estimated directly from ak without generating x(n). 

We use four criteria to determine the optimum order p of 
the AR:  

• Akaike’s FPE (Final Prediction Error):  
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By using the Burg algorithm, the optimum order of AR can 
be selected. 

During the training phase, p values of the collected traffic 
were used as a block one by one to train the parameters of the 
LSTM. There are two common algorithms to train the RNN - 
Back Propagation Through Time (BPTT) and Real Time 
Recurrent Learning (RTRL) [31]. We use BPTT algorithm in 
our study due to its simplicity and efficiency in computation 
time. 

After training, we use m-value sliding window to predict 
the time series, as shown in Fig. 4, in order to realize relatively 
long term prediction.  

Fig. 4. m-value sliding prediction.  

Suppose the length of the collected traffic is n and the 
number of m values of the traffic will be predicted. In this case, 
only the last p of the n values of the obtained traffic series are 
selected during the prediction phase. After p times of prediction, 
the predicated values are used to further predict future values. 



After m times of iterated prediction, all the needed values can 
be predicted. 

IV. PREDICTION RESULTS AND ANALYSIS 

To evaluate the proposed model, we use 8000 values of the 
collected data given in Fig. 2 as the datasets to perform the AR 
spectrum analysis and to train the LSTM model, and to predict 
2000 values of the future, i.e., m=2000 in Fig.4, which is 
relative long-term prediction given the historical values. Then 
we compare the predicted value with the remaining 2000 
values of the collected data (i.e., as the real observed value) to 
show the accuracy of our proposed model. To show the 
advantages of introducing AR spectrum analysis, we train and 
predict the LSTM with different input length too. During the 
evaluation, the commonly used Mean Absolute Percentage 
Error (MAPE) is used, which is defined as follows: 
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where v1 and v2 are the observed and predicted value 
respectively.  

Fig. 5(a)-5(d) illustrates the comparison of the observed 
and the predicted aggregated IoT traffic at Gateway 1 to 4 
shown in Fig. 1. The corresponding MAPE of Fig. 5(a)-  5(d) 
are 0.1211, 0.1680, 0.0158, 0.1243, 0.0613 respectively. Here 
we can see that our model can well locate the burst of the 
traffic, and predict the tendency of the traffic. 

 
(a)  Gateway 1 

(b)  Gateway 2 

 
(c)  Gateway 3 

(d)  Gateway 4 

Fig. 5. Comparison of observed and predicated traffic.  

To compare the results with short-term prediction, we set 
m=1, i.e., in each recurrent step, only one value is predicted.  
Fig. 6 shows the results at Gateway 1. The MAPE of the short-
term and long-term prediction is 0.0141 and 0.1211 
respectively. In other words, long-term prediction is obtained at 
the cost of accuracy. 

 

Fig. 6. Comparison of short and long term prediction.  

Fig. 7 illustrates the spectrum of real traffic (i.e., collected 
traffic) and the estimated AR spectrum for the LSTM training 
and prediction. Due to the space limitation, only the spectrums 
at Gateway 1 and 4 are shown. 



  (a)  Gateway 1               (b)  Gateway 4 

Fig. 7. AR spectrum of Gateway 1 and 4.  

We performed also predictions using different lengths of 
historical data, i.e., p=13 and 53 for Gateway 1, p=14 and 36 
for Gateway 4, in order to compare them with the prediction 
results of using AR spectrum analysis, i.e., p=33 for Gateway 1, 
and p=25 for Gateway 4. We also illustrate the results of using 
the linear prediction method ARIMA [21]. Fig. 8 shows the 
results of the real traffic and the predicted traffic. Due to the 
space limitation, we only illustrate the results of Gateway 1 and 
4. 

(a)  Gateway 1 

(b)  Gateway 4 

Fig. 8. Predictions with different historical data lengths in LSTM and 
ARIMA.  

Fig. 9 shows the MAPE distribution. Here we can see that 
the accuracy of the prediction result does not increase with the 
increase of the historical length used in LSTM. When the 
historical length p is equal to 33 for Gateway 1 and 25 for 
Gateway 4, as calculated by using the AR algorithm, the 
MAPE achieves the smallest value. This is because AR can 
find the average period of long-term dependency hidden in the 
given data. By using the selected historical traffic sequence, the 
accuracy of the LSTM prediction can be improved.  

(a) Gateway 1 

 
(b)  Gateway 4 

Fig. 9. MAPE distribution of LSTM and ARIMA. 

Table X shows the comparison of MAPE and the training 
time by using different p at Gateway 1 and Gateway 4. Here we 
can see that selecting higher p cannot obtain better MAPE but 
the training time will increase remarkably. 

TABLE X.  COMPARISON OF MAPE AND TRAINING TIME 

 MAPE Training time (minutes) 
 smaller p p bigger p smaller p p bigger p 

Gateway 1 0.2119 0.1211 0.1407 61 137.5 216.5 
Gateway 4 0.2535 0.1243 0.1455 68 113 150 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented the results of predicting IoT 
data traffic by combining LSTM with AR spectrum analysis. 
We studied the characteristics of IoT data traffic in the context 
of the Smart City. We designed a network architecture with 
hierarchical gateways and generated the data traffic aggregated 
at different levels of gateways to simulate the IoT traffic in 
different real-world applications. We analyzed the 



characteristics of the traffic. We proposed the LSTM model 
combined with AR spectrum analysis to predict the aggregated 
traffic from different IoT scenarios. The proposed model uses 
AR spectrum analysis to extract the feature of the data traffic, 
estimating the minimum length of the historical data needed for 
predicting the traffic in the future, then uses LSTM to predict 
the traffic in the future. The evaluation results show that the 
proposed model can well predict the relatively long-term 
tendency of the traffic considering the training time, computing 
complexity together with the prediction accuracy.  

As future work, we will analyze the factors affecting the 
prediction accuracy and refine the proposed model. In addition, 
we will evaluate the model with more datasets and more 
configuration parameters of networks. Moreover, we will 
evaluate the proposed model by using the IoT data collected 
from public networks, e.g., 4G/5G base stations. We will also 
investigate the impact of new network technologies, such as 
5G, to the IoT applications.      
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