
https://helda.helsinki.fi

Relation of Individual Time Management Practices and Time

Management of Teams

Auvinen, Tapio

IEEE

2020

Auvinen , T , Falkner , N , Hellas , A , Ihantola , P , Karavirta , V & Seppälä , O 2020 ,

Relation of Individual Time Management Practices and Time Management of Teams . in

2020 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE) . Frontiers in Education

Conference , IEEE , IEEE Frontiers in Education Conference (FIE) , Uppsala , Sweden ,

21/10/2020 . https://doi.org/10.1109/FIE44824.2020.9274203

http://hdl.handle.net/10138/351551

https://doi.org/10.1109/FIE44824.2020.9274203

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Relation of Individual Time Management Practices
and Time Management of Teams

Tapio Auvinen∗, Nickolas Falkner†, Arto Hellas‡, Petri Ihantola§, Ville Karavirta¶ and Otto Seppälä‡
∗tapio.auvinen@vxt-research.com, VXT Research, Finland

†nickolas.falkner@adelaide.edu.au, The University of Adelaide, Australia
‡{arto.hellas, otto.seppala}@aalto.fi, Aalto University, Finland
§petri.ihantola@helsinki.fi, University of Helsinki, Finland

¶ville@villekaravirta.com

Abstract—Full research paper—Team configuration, work
practices, and communication have a considerable impact on
the outcomes of student software projects. This study observes
150 college students who first individually solve exercises and
then carry out a class project in teams of three. All projects had
the same requirements. We analyzed how students’ behavior on
individual pre-project exercises predict team project outcomes,
investigated how students’ time management practices affected
other team members, and analyzed how students divided their
work among peers. Our results indicate that teams consisting
of only low-performing students were the most dysfunctional
in terms of workload balance, whereas teams with both low-
and high-performing students performed almost as well as teams
consisting of only high-performing students. This suggests that
teams should combine students of varying skill levels rather than
allowing teams with only low performers or letting students to
form teams without constraints. We also observed that indi-
vidual students’ poor time management practices impair their
teammates’ time management. This underlines the importance
of encouraging good time management practices. Most teams
reported that they divided tasks in a way that is beneficial for
the acquisition of technical skills rather than collaboration and
communication skills. Only a few teams assigned tasks so that
students would have worked only on tasks they already knew
and thus felt most comfortable to work with.

Index Terms—student project, time management, team config-
uration

I. INTRODUCTION

Studies on the skills that recent graduates lack when en-
tering the industry continue to highlight the importance of
teamwork and communication [1]–[4]. While the gap between
industry expectations and university education is often ex-
plained by universities emphasizing knowledge and skills that
stay throughout the careers and act as a foundation to learning
new knowledge [5], many universities seek to bridge the gap
by giving more attention to collaboration skills (see e.g. [6]–
[8]). This need for skills beyond technical expertise has also
been acknowledged on a higher level, which has resulted in
the explicit inclusion of professional skills such as teamwork
and communication to computing curricula [9].

In existing curricula, professional skills are often practiced
in projects that students perform together. These projects are
typically either part of a course, or a separate project course
such as a capstone project, where students get to apply their
knowledge and skills in a real-world setting [10], [11]. As

students’ experiences from teamwork affect their attitudes
toward future projects [12], it is important that the experiences
from the project courses are constructive. When instructors
design and create these opportunities, care needs to be taken
for multiple reasons. To increase students’ motivation, the
projects should be realistic and meaningful [13], the applied
teamwork practices need to be focused to avoid learning of
bad habits [2], and the assessment of the projects needs to
be designed in a fashion that directs the students’ actions
towards the desired goals [14]. In addition, instructors should
pay attention to ensure that the teams are well formed, and
that the students have sufficient knowledge of the tools and
practices needed in the project [6].

While numerous streams of research on student projects
exist, e.g. assessing teamwork [15], [16], factors that influence
project outcomes [17], [18], and practices instructors can use
to improve students’ collaboration skills [7], [8], [19], little
focus has been given to students’ behavior in individual tasks,
i.e. course work, and how that behavior is visible when a
student becomes a part of a team. As research has suggested
that student teams benefit from being balanced skill-wise [6],
and that certain personality traits and their mix influence
project outcomes [20], [21], insight on students’ behavior
and how it affects others can provide guidelines and hints
for instructors constructing student teams. Studies have also
established the different roles that students can occupy within
teams, where these roles are easier to observe and quantify
than subjective measures of personality [22]. Instructors need
concrete guidance to assist them in supporting and developing
teams, leading to a better outcome and experience for students.

While there exists a number of studies that suggest taking
personality and other factors into account when forming
teams, the analyses may require cumbersome arrangements
such as surveys to collect data about student characteristics.
Ironically, self-reported measures of personality traits may also
be affected by a range of self-reporting biases, including those
caused by the same personality traits we wish to identify [23].
Thus, the present study explores potential of building teams
based on only transparently collected data from tools that
students use as a natural part of their coursework. Moreover,
we will look at the ways how student teams behave in terms
of how they distribute work among team-members.



II. RELATED WORK

A. Students in Software Projects

Challenges that students face are not only related to the
challenges that software engineering teams in the industry
face, but include challenges that are related to the life at the
University or College. It is often the case that students are
working on multiple courses, many of the courses typically
strenuous and attention demanding. Thus, allocating sufficient
time to the project is at times an issue.

Some students choose to reduce their own workload and
consequently increase the time that they have at hand by
free riding in group projects [24], [25], i.e. by contributing
little or not at all to the collaborative work, but still acting
outwards as if being a contributing member in the project.
This behavior can lead to poor overall project performance,
and can also result in poor learning experiences even for the
hardworking students, as they may reduce their own effort to
avoid being taken advantage of [19], [26]. Other students cope
with the time-pressure by scheduling their work in various
ways; research suggests that students’ time-management skills
are related to academic performance [27]–[29].

A number of strategies has been suggested to avoid free
riding, including the use of multiple evaluations that start
early in the course with a specific criteria [30], continuous
evaluation and time logging [31], and pair programming [24].
Activities such as time logging can also be beneficial for time-
management skills, as it raises the students’ awareness of their
own time usage. Other approaches include the active rotation
of team roles among the group, to maintain novelty but to
also avoid the ability of students to hide in less active roles.
The roles identified in [22] have a range of categorisations
but a simple division is between those that initiate activity
and those that support - none are truly passive, but the clear
identification of what a given role does can give valuable cues
to students who have formed a belief that teams are made
up of people doing things and people doing nothing. Rotation
of these roles has been shown to increase engagement and
enhance student retention when used in small programming
tasks in the classroom [32].

Students have also been observed to be reluctant to work in
teams and prefer individual work [19]. Waite et al. suggest that
the situation is partly caused by a culture where students are
required to demonstrate proficiency in individual exercises and
collaboration is discouraged. They argue that teamwork skills
cannot be taught simply by introducing team projects but a
wider cultural shift is necessary. Waite et al. propose using
the conversational classroom strategy [33] to demonstrate the
advantages of collaboration to students and to improve their
collaboration skills, introducing group decision making exer-
cises because indecisiveness has been identified as a bottleneck
in student projects, and decreasing the weight of individual
assignments in assessment to avoid teaching students to value
individual work over teamwork.

Another challenge is the variance in technical skills. While
this is also an existing challenge in the industry, one can argue

that it is more challenging in student software engineering
projects, as the skill levels of students are (understandably)
typically lower than those of the graduates working in the
industry. In addition, the timespan of projects is typically
shorter than of the projects in the industry, even weeks instead
of months or years, and thus, little time exists for learn-
ing course- or project-specific tools and technologies. Small
projects also require much shorter, or possibly no, design
phase, reducing the natural group formation that occurs during
discussion and moving more activity to the relatively isolated
activity of programming. While low technical competence can
make it challenging for a student to contribute to a group
project, numerous suggestions to improve the situation exist.
For example, a teacher can provide well-defined small scale
projects that students need to work on before taking on a larger
open-ended project [34], providing first the basic necessary
skills before students start to work on the project themselves.

Wiggberg [35] identifies four key features that are impor-
tant for the success of student collaboration projects. First,
there must exist a mechanism for allocating work among
the students because students themselves are not good at
choosing roles that maximise their learning outcomes. Second,
a connection to an external stakeholder such as an industry
partner creates pressure to finish the project successfully.
Third, whether the assessment is focused on the end result
or the process affects students’ behavior. If the focus is on the
result, students may choose strategies that optimize the quality
of the resulting artifact and thus the grade over strategies
the maximize learning. For example, students may assign
each task to the member with most experience of the task
even though they would learn most from tasks that they are
least experienced with. Fourth, the level of freedom in the
assignment has a substantial impact on its content and aim.
Wiggberg suggests that assessment should be focused on the
process instead of the end result.

B. Mining Student Software Projects and Individual exercises

Our objective of understanding students on a programming
course transparently (in order to facilitate group formamation)
is methodologically related to repository mining and iden-
tifying students’ behavior on individual programming exer-
cises [36]. Repository mining has been used to, e.g., identify
indicators that could be used to predict students’ grades [37]
and for identifying usage patterns and understanding what
types of teams inhibit these explicit patterns [38]. While Mierle
et al. [37] did not find any significant correlation between
version control system behavior and students’ grades, Kay et
al. [38] suggest that good teams are more responsive and react
faster to issues found in their systems.

Behavior on individual programming exercises has been
studied from multiple angles. For example, Jadud proposed
identifying students at risk of dropping out from introduc-
tory programming by quantifying the compilation errors that
students encounter in an IDE [39]. A more recent study by
Edwards et al. investigated the study behaviors of novice
programmers [40]. In their dataset, Edwards et al. found



that students who received both high and low marks from
programming assignments typically received the high marks
from work that they started and ended well before deadline,
while the low marks came typically from assignments that
the same students started relatively close to the deadline.
That is, remaining time to deadline influences results from
programming assignments.

Other studies have also found that starting to work early
correlates with higher success. Fenwick et al. [41] analyzed
students working with the BlueJ programming IDE. Their
analysis showed that students who start working early achieve
better results. Falkner and Falkner [42] analysed over 220,000
student submissions on multiple courses, and concluded that
students who submit their first piece of work late have a higher
risk to be late throughout their career. Submitting early also
correlated positively with the students’ GPA. Further studies
where similar correlation has been found have been carried
out by [43] and [44].

III. RESEARCH QUESTIONS AND DATA COLLECTION

The previous research has highlighted the importance of
temporal factors in understanding learners and their behavior.
The purpose of the present study is to explore the degree
to which team configurations and team members’ working
preferences influence teamwork, and how students divide their
work in the web development projects. The research questions
answered in this study include:

1) How do different configurations of high and low per-
forming students affect project work?

2) How does students’ time management behavior affect
their team members?

3) How do teams divide their work in web development
projects?

A. Context

The study was conducted in a Web Software Development
course (CSE-C3210) at Aalto University university during Fall
2013-Spring 2014 (the course spans two semesters). This 5
ECTS1 course is offered in both the bachelor’s and master’s
level curricula. The course was targeted for students with
good programming experience but no skills related to web
development. The main goal of the course was to teach how
to develop full stack web applications with frameworks such
as Django for back-end and libraries such as JQuery in the
front-end.

Theoretical background is provided during the fist half
of the course, during which the students also work on in-
dividual, automatically assessed programming assignments.
These assignments focus on introducing technologies such as
HTML, CSS and JQuery, and generic principles used in web
frameworks such as routing, ORM and MVC.

In the middle of the course, students take an exam. After
that, during the second half of the course, students work on
a team project where they create a web application in three

1European Credit Transfer System

person teams. In this study, the teams were self-selected. The
topic of the project was a photo album, where a user can
add and edit images, captions and layouts; order and pay
albums through a third party payment service, and various
optional features (e.g. third party authentication and Flickr2

integration). All teams provided a project plan in the very
beginning of the project. At the end of the project, the
teams had to have a production ready system running on the
Heroku3 cloud platform. The project had no other intermediate
deliverables or deadlines. For version control in the project,
all groups were instructed to use a private GitHub repository
accessible also to the course staff. Apart from Django, Github
and Heroku, the students were free to select communication
and development tools of their own liking. Both the individual
assignments and the exam contribute to 20% to the final grade,
while the remaining 60% comes from the project.

B. Participants

Data from a total of 150 students, forming a total of 50
groups, was collected for this study. 180 students registered
to the course, 150 started the course project and gave their
consent, from where 125 passed the project. The students who
attended the course had diverse backgrounds ranging from
seasoned programmers accustomed to teamwork to novices
with only little software engineering and programming expe-
rience. From the respondents, 13% were freshmen, 30% 2nd
or 3rd year students, 35% 4th or 5th year students and the
remaining 20% were at least 6th year students. As illustrated
in Table I, most students felt that they had programming
experience before the project, although their web software
development programming experience was more scattered.
In addition, teamworking skills were equally scattered. The
main reason for having such diverse backgrounds especially
in subject related skills is that at the time of data collection,
the course was new, and thus attracted students at multiple
stages of their studies.

C. Measures

We used multiple sources of data for our analysis: 1) indi-
vidual (pre-project) assignments submitted into an automatic
assessment system which stored all solution attempts, sub-
mission times, and the resulting grades, 2) student interviews
during project demonstrations, 3) course survey sent to all
students after the course, and 4) project repositories in GitHub
version control and collaboration platform, including commits,
issues, and pull requests. The course survey sent out at the end
of the course included questions such as 1) how did you divide
work and why, 2) with whom did you work the most, and 3)
had you worked with your teammates before this project.

IV. ANALYSIS AND RESULTS

The results of this study are presented in three parts. First,
in Section IV-A, we consider team configurations and their
effect on project outcomes, then, in Section IV-B, we discuss

2https://www.flickr.com/
3https://www.heroku.com/



TABLE I
STUDENTS’ SELF-REPORTED PRIOR PROGRAMMING AND TEAMWORK EXPERIENCE. 1=STRONGLY DISAGREE ... 4=STRONGLY AGREE

1 2 3 4
I had programming experience - 1 (3%) 7 (18%) 30 (79%)
I had web software development experience 7 (18%) 11 (29%) 10 (26%) 10(26%)
I had experience from teamwork in software projects 3 (8%) 8 (21%) 9 (24%) 18 (47%)

how students’ time management behavior affects their team
members, and finally in Section IV-C, we discuss how students
divided their work.

A. Team configurations

To answer Research Question 1, i.e. “How do different
configurations of high and low performing students affect
project work?” we analyzed how combinations of students
with different performance levels affect the outcomes of the
project by (1) dividing students into high and low-performing
ones (based on their behavior in the individual assignments),
and then comparing how groups with only high performing,
only low performing, or mixed groups perform in terms of (2)
final marks of the project and (3) how balanced the workload
was between the team members. That is, if a group contains
both high and low performing students, do the high performing
ones carry out all of the work while the low-performing ones
do nothing.

First, to categorize students as high or low performing,
we analyzed their performance in the individual assignments.
Due to the fact that students can resubmit their work in
the automated assessment any number of times, the students’
mean total points from the individual assignments are a poor
indicator of performance and have no correlation with the final
points of the project (Spearman’s ρ=0.02, p=0.909). That is,
students are able to reach high points in the assignments if
they choose to work on them long enough. The number of
attempts could be used as an indicator of how much difficulty
a student is experiencing in the assignments, however, it is
not statistically significantly correlated with the final score
of the project either (Spearman’s ρ=-0.22 p=0.145). On the
other hand, the mean points from the very first attempt for
each assignment has a statistically significant correlation with
the final score of the project (Spearman’s ρ=0.48, p<0.001).
Thus, we use the average points over the first submissions to
all assignments as an indicator of students’ performance.

We assigned students into high- and low-performing cat-
egories based on the median of their average first attempt
scores (66.2 % of the maximum points). Based on students’
categories and the types of students within each team, the
teams were further divided into three categories. Teams in
the low category consist only of low-performing students, the
mixed category has teams with both low and high performing
students, and the high category has only high performing
students.

The project work was investigated from three viewpoints.
First, the quality of the end product of the project was
estimated using the teams’ final project score that was also
used to calculate the project grades. Second, to measure

TABLE II
MEAN PROPERTIES OF TEAMS WITH ONLY LOW-PERFORMING STUDENTS,

MIXED, AND ONLY HIGH-PERFORMING STUDENTS.

low mixed high F p
project points 1161.67 1230.58 1303 2.460 0.098
imbalance (commits) 5.65 2.87 2.45 4.043 0.025
imbalance (loc) 47.04 13.16 16.68 3.019 0.060
earliness (days) 14.98 11.57 10.95 0.949 0.395
N (teams) 9 26 10

how evenly the students divided their workload, we analyzed
the differences between GitHub commit counts of the team
members as well as the differences between the number of
edited lines of code (loc). Workload imbalance (commits) is
defined as the ratio between the highest and lowest number
of commits between the students whereas imbalance (loc) is
defined as the corresponding ratio of code lines. For example
an imbalance of 3.0 would mean that the most active student
made three times more commits than the least active one.
Third, we measured how far the GitHub activities of the
project, i.e. commits, opening of issues, and commenting on
the issues, were from the project deadline on average. This
measure is later referred to as earliness.

Analysis of the relationship between the team configura-
tion and the extracted properties are shown in Table II and
Figure 1. Although the teams with high-performing students
reach the highest points, no statistically significant difference
is observed between the groups’ final project points (one-
way ANOVA, p=0.098). Similarly, no statistically significant
difference exists between the groups’ earliness values (mea-
sured in days from the deadline) (one-way ANOVA, p=0.365).
However, the imbalance of commits differs significantly be-
tween the groups (one-way ANOVA, p=0.025) being the
highest for the low group. A similar phenomenon, although
not statistically significant (p=0.060) can also be observed in
the loc based measure.

B. Effect of Students’ Time Management Behavior on Other
Team Members

To answer Research Question 2, i.e. “How does students’
time management behavior affect their team members?”, we
analyzed how student’s tendency to work early or late affects
teammates’ tendencies when moving from individual assign-
ments to the project.

Figure 2 illustrates the correlation between the difference of
a student’s and his/her teammates’ earliness in the individual
assignments (x-axis, denoted as earliness diff ), vs. the change
in the teammates’ earliness from the individual assignments
to the project (y-axis, denoted as earliness delta). The vari-



Project points Project earliness Project imbalance (commits) Project imbalance (loc)

0
20

40
60

80
10

0
12

0

5
10

15
0

da
ys

-3
0

-2
5

-2
0

-1
5

-1
0

-5

10
00

12
00

14
00

low mixed highlow mixed highlow mixed highlow mixed high

Fig. 1. Properties of teams with only low-performing students, mixed, and only high-performing students.

ables are normalized so that they have zero mean and unit
variance, in order to account for the different time scales of
the individual assignments and the project. A statistically sig-
nificant correlation exists between the variables (Spearman’s
ρ=0.49, p<0.001). This can be interpreted so that if a student
submits individual assignments later than the teammates, the
teammates tend to start committing later when moving on to
the project. Vice versa, an early-submitting student causes the
teammates to start working earlier in the project.

Student submitted individual
exercises earlier than
team mates

earliness_diff
(z-scores)

Student submitted individual
exercises later than

team mates

ea
rli

ne
ss

_d
el

ta
(z

-s
co

re
s)

Te
am

 m
at

es
 w

or
ke

d 
la

te
r

in
 p

ro
je

ct
 th

an
 in

 e
xe

rc
is

es
Te

am
 m

at
es

 w
or

ke
d 

ea
rli

er
in

 p
ro

je
ct

 th
an

 in
 e

xe
rc

is
es

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Fig. 2. The effect of student’s time management practices on teammates.

To analyze whether the effect size is the same in both
opposites, i.e. if a late submitter affects the teammates as much
as an early submitter, we compare the opposite quartiles of the
earliness diff metric. Students in quartile q1 are those whose
relative earliness in the individual assignments are, on average,
in the earliest 25%, and q4 contains those in the latest 25%
(earliness diff thresholds; q1 <=-0.63, q4 >=0.67).

As we are studying whether an early submitter causes an
equally large improvement as a late submitter causes a decline,
we study the absolute values of the earliness delta. In q1,
the mean change in teammate’s earliness when moving from

individual assignments to the project is 0.47, while in q4, the
mean change is 0.91 standard deviations. A Student’s two
tailed t-test confirms that the populations in the quartiles q1 and
q4 are different (t=-2.1571, df=59.781, p=0.03), and thus, late-
submitting students affect their team members more than the
early submitters. This agrees with earlier research regarding
the difficulties in motivating students to engage with group
work: procrastinating members may create roadblocks as well
as decrease the overall motivation.

C. Division of work

To answer Research Question 3, i.e. “How do students
divide their work in web development projects?”, we (1)
analyzed students’ answers to free form text questions in
the survey, and (2) interviewed students during the project
demonstrations. From the students who commented on the task
division, a major proportion (86%) told that in most cases,
students divided the work based on expected features, while
the rest did not point out any particular strategy.

When working on a feature, a student would work on
a vertical slice containing elements from both the backend
and frontend. Some students explained this division of work
from a learning perspective: ”We wanted that everyone would
learn something related to all of the components used”, “It
gives each one a complete view of the architecture”, “Felt
natural and everybody got to work with back and front end”,
while other students had a project management standpoint:
“Organizing work into bitesize features helped to organize
work between group members and enabled several features
to be developed at the same time without major fear of
code conflicts”, “Some tasks must be divided so that people
don’t do the same features unknowingly of each other. Some
features were given completely to one person and some were
shared to some extent, because it seemed to be convenient and
made sense.” A similar, but slightly different reason was that
working feature-wise allowed team members in some teams
to work independently with little inter-team communication:
“There was not much communication between group members.
We mostly worked alone, so dividing tasks like this worked
nicely.” One team also noted that the difference in the difficulty
of the features allowed assigning more complicated tasks to
the more experienced members.



While the majority of the respondents pointed out that they
divided work based on features, a few groups reported on
dividing their work based on whether the required functionality
resided in the backend or the frontend, capitalizing on the
existing knowledge of the team members: “We did what we
knew the best.”

A few groups also pointed out that they did not have
a clear strategy for task division. Based on the comments,
it seems that these groups often worked face-to-face with
everyone working together on one feature or that the more
experienced teammates worked on every feature alongside
their companions. “We always worked all together, so we did
some of the tasks together and then we just did what was
needed to do next.”

V. DISCUSSION

The discussion is structured around the research questions.
We first discuss each research question, and then, discuss the
limitations of our work.

A. RQ1: How do different configurations of high and low
performing students affect project outcomes?

Our results indicate that teams that contain only poorly
performing students tend to work in an imbalanced manner
and perform poorly also as a team. This result replicates an
earlier finding, where the equal participation of team members
has been identified as one of the factors that influence project
scores [6]. It is slightly surprising that mixed groups with both
low and high performing students seem to be more balanced.
It could have been expected that high performing students
would have taken a central role in the groups leading to
imbalance, while homogeneous groups would have a more
balanced workload. However, we may be seeing students
moving into different group roles that are valuable, even if
performed at a lower level, as identified in [22]. This result
implies that it would be beneficial to make sure that there
are no groups with only low performing students. One option
would be to assign students to groups automatically based on
their measured performance in individual assignments. On the
other hand, self-selected groups may be more motivating for
students [10].

Another surprising finding is that teams consisting of only
high performing students tend to start their work later than
mixed or low performing groups. This contradicts earlier
findings where high performance has been linked with starting
to work early [40], [41]. A possible explanation is that the
high-performing students had prior web development experi-
ence, were able to estimate the required workload, and were
confident to start working later. Such rationalizations, although
not linked with performance, have been reported by [19].

B. RQ2: How do students’ time management behaviors affect
their team members?

The results in Section IV-B indicate that students’ time
management behavior affects their teammates’ work. It is not
surprising that there is a correlation between the difference in

teammates’ earliness and the change in the their earliness when
moving to the project, because the time management behavior
must be synchronized at least to some extent. It would be
unusual if in a project one member had finished their part
before another member has started.

The synchronization of time management practices is in
line with Tuckman’s model of group development [45]. The
model states that teams go through four stages of development:
forming, storming, norming and performing. After an initial
conflict due to the team members’ different working practices
(the storming stage), they must come to an agreement of shared
practices (the norming stage) before they can start performing.

An interesting observation is that late submitters seem to
affect their teammates more than early submitters, i.e. bad
habits are apparently more contagious than good habits. The
asymmetry can likely be explained by dependencies between
the features in the software. An early-working student can
finish their tasks before others, giving them freedom to work
at their own pace, thus not forcing them to change their
habits. In contrast, a late-working student forces others to
wait if their tasks are dependent. As stated by Waite [19],
procrastination is harmful for team efforts because starting late
leaves less time for discussion. Important tasks that require
coordination, such as architectural decisions, are likely to
suffer from procrastination. Thus, time management appears
to be a bottleneck in team projects because badly behaving
individuals handicap their team members as well.

It has been consistently shown in the literature that starting
to work early is associated with higher academic achieve-
ment [28], [29]. For one reason or another, the effect is not
visible in the results regarding Research Question 1, where the
high-performing students started to work later. It is, however,
easy to argument that starting to work earlier is a better
practice than starting to work late because it leaves students
with time to overcome unforeseen problems. Furthermore,
there are indications that dividing practice over a longer period
of time rather than cramming in a hurry leads to better learning
outcomes [41], [46]. Our results suggest that students are more
likely to slip into poor time management practices than im-
prove their habits. Thus, it seems that teaching or encouraging
better time management practices would be beneficial for the
success of team projects.

C. RQ3: How do students divide their work in web develop-
ment projects?

While universities emphasize long-term gains such as learn-
ing to learn and skills that remain throughout life, many
companies expect students to have skills that they could apply
directly after graduation [5]. While universities often align
parts of their curricula to match industry expectations, industry
job postings often stress technical skills and fail to highlight
the importance of soft skills [47].

Real life projects4 are often such that teamwork is required.
They are either of a scale that cannot be handled alone in

4With real life projects we refer to project in general and not restricted to
projects used for educational purposes.



a sensible fashion in the given time frame, or, if they could,
having a single developer work on a project creates a situation
where an illness or some other factor that creates an absence
would incapacitate the project. A real life team also has
people with specialized skills. For example, in the context of a
large web development project, there are domain experts, user
experience designers, UI designers, back-end programmers,
front-end experts etc, some of whom may only participate in
the project for a short time.

A university programming project shares some of these
features of real life projects. The workload and time frame of a
course project can be designed so that collaboration becomes
desirable. One key difference to real life projects is that in
a university project the team members are supposed to learn
new things whereas the goal of industry projects is to bring
additional value to the customer. Because of this, the work
division is also likely to be different. Our course being an
introduction to web programming, we want students to gain
experience from all aspects of the project, something less often
seen in real projects.

When using a web framework, the students can work on
individual program features with fairly little co-ordination.
This work is further supported by the intelligence built in
version control tools which can often automatically combine
simultaneous edits from multiple authors. This was clearly
reflected in the students’ answers about work division. Feature-
wise work division that is possible in web software devel-
opment allows both a learning experience where everyone
could work on every layer of the program and a possibility to
work as a team with fairly little conflict management. While
enhancing productivity, the loose coupling and tight cohesion
provided by a framework and the work division adopted by
many teams may, however, work against learning how to
collaborate by reducing the need for communication with other
team members.

The majority of students reported dividing work so that
each student works on a specific feature and implements all
of the necessary parts in the backend and frontend. Waite et
al. [19] observed a similar preference in student projects, but
they reported the main reason to be aversion of teamwork.
Interestingly, many of our students reported learning-related
reasons, such as wanting to give every team member an
opportunity to learn all aspects of the framework. However,
some students also noted that dividing work this way reduced
the need for collaboration.

One way to enforce students to practice all aspects of the
project while forcing them to communicate and collaborate
would be to not allow students to freely choose how to divide
tasks. The teacher might assign one student to work on the
frontend and one on the backend of feature A, and then swap
for feature B. Not allowing students to choose their roles is
also suggested by Barker [48] who argues that students do
not necessarily choose the roles that maximize their learning
outcomes but roles that they are most comfortable with or
have the most prior experience on. Pair programming could
provide another approach that facilitates the acquisition of

collaboration skills while allowing students to practice all
aspects of the project. Pair programming has been observed
to improve students’ satisfaction towards collaboration and in
some cases to lead to better grades when compared to students
programming alone [49]. Only a few groups reported prefer-
ring to work physically together which suggests that changes
in course arrangements are necessary if pair programming is
the desired working method. Luckily, educationally the least
effective working method, each student working on what they
already know best, was rarely reported.

We assume that many of these observations can be gener-
alized even outside of web software development. Regardless
of the field, there are effective practices to divide work so that
individuals are not hampering each others work. As discussed
earlier, these practices have pros and cons for learning as
effective teamwork does not necessarily imply ideal learning
experience.

D. Validity concerns

Two project courses are rarely identical with each other.
There is almost an endless list of factors that can be arranged
differently [10]. Still, replicating our study in another context
with automatically assessed individual assignments followed
by a project work in small teams would be extremely interest-
ing. In this section, we have listed a few obvious limitations
related to the generalizability and validity of our results, as
well as concerns likely to affect future attempts to replicate
the study.

First, as is typical for studies that study educational settings,
it is possible that our results are context dependent. For
example, in the country where this study was conducted, it
is quite typical that many students enter workforce as e.g.
junior software developers already during their studies. Thus,
it is possible that the programming experience of the course
participants is higher than it would be in other contexts
and that there are larger differences between the skills of
the students. Naturally, the chosen pedagogy and teaching
practices in earlier courses play a role here as well, as do
other courses that the students are enrolled in.

Second, the survey related to RQ3 was conducted as a post-
course survey. Thus, the responses are from students who
are asked to recall their own feelings and preferences during
the project, parts of which may have already been forgotten.
Furthermore, as only a subset of students answered the survey
(34% of students that finished the course), it is possible that
an inherent selection bias exists.

Third, in this study, we used the final project scores as a
measure of success. This can cause limitations to our study as
the range in the scores is relatively small. The scores also
depend heavily on the teams’ own goals and target levels
set in internal discussions of each team. Similarly, points
from the automatically assessed assignments are not a perfect
measure of performance because they are affected by multiple
variables such as motivation, carelessness and time spent for
other courses or commitments. Other possible measures of
performance, that we didn’t use in this study, include e.g.



students’ grade average and earned credit points averaged over
study time.

Fourth, when categorizing students into high- and low-
performing, we used a method based on the average of
students’ performance in the individual assignments. As men-
tioned in the previous paragraph, there are a range of reasons
that could affect students’ performance. Thus, there are likely
students who performed well in the group project but were
categorized into low performing, and vice versa.

Fifth, when analyzing students’ version control activity, we
have little information over the code that the students have
written themselves, and what they have copied from elsewhere.
For example, the use of libraries is visible in the source code
commits, which may have distorted some of the results related
to Github activity. Related to this, in a team setting it may
happen that a colleague submits code on behalf of others
(although students were explicitly instructed not to do so),
or students may work as pairs or collectively. Furthermore,
students may have differences in how often they commit
versions to the version control system. The fact that teams
had multiple commits divided to multiple days decreases the
severity of this concern, however. Despite these challenges,
using commits as the measure of code created can be a good
starting point for estimating how much code the student has
written because it shows an active contribution to the project,
regardless of where the code is coming from.

VI. CONCLUSIONS

In this work, we have analyzed how different team con-
figurations influence project work, and how students’ time
management behavior in individual assignments influence their
team members later in the project. This study was based on
data from multiple sources from 50 student teams working
on a task with the same requirements; students’ submissions
to individual programming assignments that were done before
the project, version control system logs, post-course student
survey, and student interviews during project demonstrations.

Our results suggest that teams that consist of poorly per-
forming team members share their work in a more imbalanced
fashion than mixed teams or teams with only high-performing
students. Thus, in team projects it may not be a good practice
to let students form their own groups because it allows
poorly functioning groups to be created. It might be more
beneficial to use data from earlier individual assignments to
form groups that never consist of only low-performing students
and thus have a higher likelihood to succeed. One approach
could be to enhance current automated assessment systems
with the capability of automatically creating suggestions on
student teams. These suggestions could be based e.g. on a
heuristic that would attempt to maximize the overall average
project score. However, future research is needed to verify the
feasibility of these kinds of interventions.

The results indicate that student’s individual time manage-
ment practices prior to the project can have an influence on
the teammates’ time management practices during the project.
It seems that teams are drawn towards the students that work

later rather than those working earlier, which implies that the
issue cannot be mitigated by forming groups that include at
least one early-submitting student. Time management prob-
lems appear to be a pitfall in team projects. Thus, we suggest
that attention is paid to teaching good time management
practices or by other means persuading students to follow
them. Using a version control system gives a window into
the project and could allow possible interventions if we know
how to recognize teams at risk.

Students employ various strategies to divide work among
the team. However, most strategies have shortcomings. Each
student working on a specific feature teaches them a variety
of techniques but allows them to work individually and avoid
collaboration and communication. On the other hand, each
student specializing on a specific technique requires students to
collaborate and communicate but only teaches them a narrow
set of technical skills. Our results indicate that most teams
divide tasks in a way that is beneficial for developing technical
skills instead of collaboration skills. One way to overcome this
issue might be to encourage pair programming, which students
do not often choose to perform spontaneously. In addition, as
students preferred dividing tasks by using the features listed
in the project requirements, it might be worth designing the
features so that they force the student to employ a broad set
of (web software) skills.

REFERENCES

[1] D. Hagan, “Employer satisfaction with ict graduates,” in Proceedings of
the Sixth Australasian Conference on Computing Education - Volume 30,
ser. ACE ’04. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2004, pp. 119–123.

[2] A. Begel and B. Simon, “Struggles of new college graduates in
their first software development job,” in Proceedings of the 39th
Technical Symposium on Computer Science Education. New York,
NY, USA: ACM, March 2008, p. 226–230. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=75113

[3] A. Radermacher and G. Walia, “Gaps between industry expectations and
the abilities of graduates,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’13. New
York, NY, USA: ACM, 2013, pp. 525–530.

[4] M. Exter, “Comparing educational experiences and on-the-job needs
of educational software designers,” in Proceedings of the 45th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’14.
New York, NY, USA: ACM, 2014, pp. 355–360.

[5] E. M. Trauth, D. W. Farwell, and D. Lee, “The is expectation gap:
Industry expectations versus academic preparation,” MIS Q., vol. 17,
no. 3, pp. 293–307, Sep. 1993.

[6] R. Lingard and E. Berry, “Teaching teamwork skills in software en-
gineering based on an understanding of factors affecting group perfor-
mance,” in Frontiers in Education, 2002. FIE 2002. 32nd Annual, vol. 3,
Nov 2002, pp. S3G–1–S3G–6 vol.3.

[7] J. Cushing, K. Cunningham, and G. Freeman, “Towards best practices
in software teamwork,” J. Comput. Sci. Coll., vol. 19, no. 2, pp. 72–81,
Dec. 2003.

[8] V. Pieterse, L. Thompson, L. Marshall, and D. M. Venter, “Participation
patterns in student teams,” in Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’12. New
York, NY, USA: ACM, 2012, pp. 265–270.

[9] A. f. C. M. A. Joint Task Force on Computing Curricula and I. C.
Society, Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. New York, NY,
USA: ACM, 2013.

[10] T. Clear, M. Goldweber, F. H. Young, P. M. Leidig, and K. Scott,
“Resources for instructors of capstone courses in computing,” SIGCSE
Bull., vol. 33, no. 4, pp. 93–113, Dec. 2001.



[11] A. J. Dutson, R. H. Todd, S. P. Magleby, and C. D. Sorensen, “A review
of literature on teaching engineering design through project-oriented
capstone courses,” Journal of Engineering Education, vol. 86, no. 1,
pp. 17–28, 1997.

[12] B. C. R. Ulloa and S. G. Adams, “Attitude toward teamwork and
effective teaming,” Team Performance Management, vol. 10, no. 7/8,
pp. 145–151, 2004.

[13] A. B. Frymier and G. M. Shulman, ““what’s in it for me?”: Increasing
content relevance to enhance students’ motivation,” Communication
Education, vol. 44, no. 1, pp. 40–50, 1995.

[14] J. Biggs and C. Tang, Teaching for quality learning at university.
McGraw-Hill International, 2011.

[15] N. Clark, P. Davies, and R. Skeers, “Self and peer assessment in software
engineering projects,” in Proceedings of the 7th Australasian Conference
on Computing Education - Volume 42, ser. ACE ’05. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2005, pp. 91–
100.

[16] F. Fagerholm and A. Vihavainen, “Peer assessment in experiential
learning assessing tacit and explicit skills in agile software engineering
capstone projects,” 2013 IEEE Frontiers in Education Conference (FIE),
vol. 0, pp. 1723–1729, 2013.

[17] K. J. Chapman, M. Meuter, D. Toy, and L. Wright, “Can’t we pick our
own groups? the influence of group selection method on group dynamics
and outcomes,” Journal of Management Education, vol. 30, no. 4, pp.
557–569, 2006.

[18] M. Ikonen and J. Kurhila, “Discovering high-impact success factors in
capstone software projects,” in Proceedings of the 10th ACM Conference
on SIG-information Technology Education, ser. SIGITE ’09. New York,
NY, USA: ACM, 2009, pp. 235–244.

[19] W. M. Waite, M. H. Jackson, A. Diwan, and P. M. Leonardi, “Student
culture vs group work in computer science,” in Proceedings of the
35th SIGCSE Technical Symposium on Computer Science Education,
ser. SIGCSE ’04. New York, NY, USA: ACM, 2004, pp. 12–16.

[20] N. Gorla and Y. W. Lam, “Who should work with whom?: Building
effective software project teams,” Commun. ACM, vol. 47, no. 6, pp.
79–82, Jun. 2004.

[21] L. Capretz and F. Ahmed, “Making sense of software development and
personality types,” IT Professional, vol. 12, no. 1, pp. 6–13, Jan 2010.

[22] T. L. Dickinson and R. M. McIntyre, “A conceptual framework for team-
work measurement,” in Team performance assessment and measurement.
Psychology Press, 1997, pp. 31–56.

[23] N. M. Dowling, D. M. Bolt, S. Deng, and C. Li, “Measurement and
control of bias in patient reported outcomes using multidimensional item
response theory,” BMC medical research methodology, vol. 16, no. 1,
p. 63, 2016.

[24] O. Hazzan and Y. Dubinsky, “Teaching a software development method-
ology: The case of extreme programming,” in Proceedings of the
16th Conference on Software Engineering Education and Training, ser.
CSEET ’03. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 176–.

[25] D. Smarkusky, R. Dempsey, J. Ludka, and F. de Quillettes, “Enhancing
team knowledge: Instruction vs. experience,” SIGCSE Bull., vol. 37,
no. 1, pp. 460–464, Feb. 2005.

[26] C. Houldsworth and B. P. Mathews, “Group composition, performance
and educational attainment,” Education+ Training, vol. 42, no. 1, pp.
40–53, 2000.

[27] B. K. Britton and A. Tesser, “Effects of time-management practices on
college grades.” Journal of educational psychology, vol. 83, no. 3, p.
405, 1991.

[28] P. Steel, “The nature of procrastination: a meta-analytic and theoretical
review of quintessential self-regulatory failure.” Psychological bulletin,
vol. 133, no. 1, p. 65, 2007.

[29] N. Michinov, S. Brunot, O. L. Bohec, J. Juhel, and M. Delaval,
“Procrastination, participation, and performance in online learning en-
vironments,” Computers & Education, vol. 56, no. 1, pp. 243 – 252,
2011.

[30] C. M. Brooks and J. L. Ammons, “Free riding in group projects and
the effects of timing, frequency, and specificity of criteria in peer
assessments,” Journal of Education for Business, vol. 78, no. 5, pp.
268–272, 2003.

[31] L. van der Duim, J. Andersson, and M. Sinnema, “Good practices for
educational software engineering projects,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 698–707.

[32] K. Falkner and N. J. Falkner, “Supporting and structuring c̈ontributing
student pedagogyı̈n computer science curricula,” Computer Science
Education, vol. 22, no. 4, pp. 413–443, 2012.

[33] W. M. Waite, M. H. Jackson, and A. Diwan, “The conversational
classroom,” in Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education, ser. SIGCSE ’03. New York, NY,
USA: ACM, 2003, pp. 127–131.

[34] H. Mäenpää, S. Tarkoma, S. Varjonen, and A. Vihavainen, “Blending
problem-and project-based learning in internet of things education: Case
greenhouse maintenance,” in Proceedings of the 46th ACM technical
symposium on computer science education. ACM, 2015, pp. 398–403.

[35] M. Wiggberg, “Computer science project courses: Contrasting students’
experiences with teachers’ expectations,” Ph.D. dissertation, Uppsala
University, 2010.

[36] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler, J. Börstler, S. H. Ed-
wards, E. Isohanni, A. Korhonen, A. Petersen, K. Rivers, M. A. Rubio,
J. Sheard, B. Skupas, J. Spacco, C. Szabo, and D. Toll, “Educational
data mining and learning analytics in programming: Literature review
and case studies,” in Proceedings of the 2015 ITiCSE on Working Group
Reports, ser. ITICSE-WGR ’15. New York, NY, USA: ACM, 2015,
pp. 41–63.

[37] K. Mierle, K. Laven, S. Roweis, and G. Wilson, “Mining student cvs
repositories for performance indicators,” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 4, pp. 1–5, May 2005.

[38] J. Kay, N. Maisonneuve, K. Yacef, and O. Zaı̈ane, “Mining patterns
of events in students’ teamwork data,” in Proceedings of the Workshop
on Educational Data Mining at the 8th International Conference on
Intelligent Tutoring Systems (ITS 2006), 2006, pp. 45–52.

[39] M. C. Jadud, “Methods and tools for exploring novice compilation
behaviour,” in Proceedings of the second international workshop on
Computing education research. ACM, 2006, pp. 73–84.

[40] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones, A. Allevato, D. Kim,
and B. Tretola, “Comparing effective and ineffective behaviors of student
programmers,” in Proceedings of the Fifth International Workshop on
Computing Education Research Workshop, ser. ICER ’09. New York,
NY, USA: ACM, 2009, pp. 3–14.

[41] J. B. Fenwick, Jr., C. Norris, F. E. Barry, J. Rountree, C. J. Spicer, and
S. D. Cheek, “Another look at the behaviors of novice programmers,”
in Proceedings of the 40th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’09. New York, NY, USA: ACM,
2009, pp. 296–300.

[42] N. J. Falkner and K. E. Falkner, “A fast measure for identifying
at-risk students in computer science,” in Proceedings of the Ninth
Annual International Conference on International Computing Education
Research, ser. ICER ’12. New York, NY, USA: ACM, 2012, pp. 55–62.

[43] K. Buffardi and S. H. Edwards, “Effective and ineffective software
testing behaviors by novice programmers,” in Proceedings of the Ninth
Annual International ACM Conference on International Computing
Education Research, ser. ICER ’13. New York, NY, USA: ACM, 2013,
pp. 83–90.

[44] J. Spacco, D. Fossati, J. Stamper, and K. Rivers, “Towards improving
programming habits to create better computer science course outcomes,”
in Proceedings of the 18th ACM Conference on Innovation and Tech-
nology in Computer Science Education, ser. ITiCSE ’13. New York,
NY, USA: ACM, 2013, pp. 243–248.

[45] B. W. Tuckman, “Developmental sequence in small groups.” Psycholog-
ical bulletin, vol. 63, no. 6, pp. 384–399, 1965.

[46] J. Dunlosky, K. A. Rawson, E. J. Marsh, M. J. Nathan, and D. T. Willing-
ham, “Improving students’ learning with effective learning techniques:
Promising directions from cognitive and educational psychology,” Psy-
chological Science in the Public Interest, vol. 14, no. 1, pp. 4–58, 2013.

[47] M. Gallivan, D. P. Truex, III, and L. Kvasny, “An analysis of the
changing demand patterns for information technology professionals,”
in Proceedings of the 2002 ACM SIGCPR Conference on Computer
Personnel Research, ser. SIGCPR ’02. New York, NY, USA: ACM,
2002, pp. 1–13.

[48] L. J. Barker, “When do group projects widen the student experience
gap?” in Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, ser. ITiCSE
’05. New York, NY, USA: ACM, 2005, pp. 276–280.

[49] N. Salleh, E. Mendes, and J. Grundy, “Empirical studies of pair pro-
gramming for cs/se teaching in higher education: A systematic literature
review,” Software Engineering, IEEE Transactions on, vol. 37, no. 4, pp.
509–525, July 2011.


