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Abstract 304 

Large-scale gene sequencing studies for complex traits have the potential to identify 305 

causal genes with therapeutic implications. We performed gene-based association 306 

testing of blood lipid levels with rare (minor allele frequency<1%) predicted damaging 307 

coding variation using sequence data from >170,000 individuals from multiple 308 

ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 309 

Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes 310 

associated with circulating lipid levels; some of these genes have not been previously 311 

associated with lipid levels when using rare coding variation from population-based 312 

samples. We prioritize 32 genes in array-based genome-wide association study 313 

(GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and 314 

PLIN1) had no prior association of rare coding variants with lipid levels. Most of our 315 

associated genes showed evidence of association among multiple ancestries. 316 

Finally, we observed an enrichment of gene-based associations for low-density 317 

lipoprotein cholesterol drug target genes, and for genes closest to GWAS index 318 

single nucleotide polymorphisms (SNP). Our results demonstrate that gene-based 319 

associations can be beneficial for drug target development and provide evidence that 320 

the gene closest to the array-based GWAS index SNP is often the functional gene for 321 

blood lipid levels.  322 

  323 
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Introduction 324 

Blood lipid levels are heritable complex risk factors for atherosclerotic cardiovascular 325 

diseases.1 Array-based genome-wide association studies (GWAS) have identified 326 

>400 loci as associated with blood lipid levels, explaining 9-12% of the phenotypic 327 

variance of lipid traits.2-8 These studies have identified mostly common (minor allele 328 

frequency (MAF)>1%) noncoding variants with modest effect sizes and have been 329 

instrumental in defining the causal roles of lipid fractions on cardiovascular disease.9-330 

13 Despite these advances, the mechanisms and causal genes for most of the 331 

identified variants and loci can be difficult to determine. 332 

 333 

Genetic association studies testing rare coding variants have potential to directly 334 

implicate causal genes. Advances in next generation sequencing over the last 335 

decade have facilitated increasingly larger studies with improved power to detect 336 

associations of rare variants with complex diseases and traits.14; 15 However, most 337 

exome sequencing studies to date have been insufficiently powered for rare variant 338 

discovery; for example, Flannick et al. estimated that it would require 75,000 to 339 

185,000 sequenced cases of type 2 diabetes (T2D) to detect associations at known 340 

drug target genes at exome-wide significance.15 341 

 342 

Identifying rare variants with impact on protein function has helped elucidate 343 

biological pathways underlying dyslipidemia and atherosclerotic diseases such as 344 

coronary artery disease (CAD).14; 16-25 Successes using this approach have led to the 345 

development of novel therapeutic targets to modify blood lipid levels and lower risk of 346 

atherosclerotic diseases.26; 27  347 

 348 
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The vast majority of participants in previous studies have been of European ancestry, 349 

highlighting the need for more diverse study sample. Such diversity can identify 350 

associated variants absent or present at very low frequencies in European 351 

populations and help implicate new genes with generalizability extending to all 352 

populations. 353 

 354 

We have assembled exome sequence data from >170,000 individuals across 355 

multiple ancestries and systematically tested the association of rare variants in each 356 

gene with six circulating lipid phenotypes: low-density lipoprotein cholesterol (LDL-C), 357 

high density lipoprotein cholesterol (HDL-C), non-HDL-C, total cholesterol (TC), 358 

triglycerides (TG), and the ratio of TG to HDL-C (TG:HDL). We find 35 genes 359 

associated with blood lipid levels, show evidence of gene-based signals in array-360 

based GWAS loci, show enrichment of lipid gene-based associations in LDL-C drug 361 

targets and genes in close proximity with GWAS index variants, and test lipid genes 362 

for association with CAD, T2D, and liver enzymes. 363 

 364 

Subjects and Methods 365 

Study Overview 366 

Our study samples were derived from four major data sources with exome or 367 

genome sequence data and blood lipid levels: CAD case-control studies from the 368 

Myocardial Infarction Genetics Consortium28; 29 (MIGen, n = 44,208) and a UKB 369 

nested case-control study of CAD28 (n = 10,689); T2D cases-control studies from the 370 

AMP-T2D-GENES exomes15 (n = 32,486); population-based studies from the 371 

TOPMed project 30; 31 freeze 6a data (n = 44,101) restricted to the exome, and the 372 

UKB first tranche of exome sequence data32; 33 (n = 40,586) (see Supplemental 373 
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Study Participant Descriptions). Informed consent was obtained from all subjects 374 

and committees approving the studies are available in the supplement.  375 

 376 

Within each data source, individuals were excluded if they failed study-specific 377 

sequencing quality metrics, lacked lipid phenotype data, or were duplicated in other 378 

sources. Sequencing and quality control performed in each study is available in the 379 

Supplemental Methods. We additionally removed first- and second-degree relatives 380 

across data sources while we kept relatives within each data source since we were 381 

able to adjust for relatedness within each data source using kinship matrices in linear 382 

mixed models. If samples from the same study were present in different data 383 

sources, we used the samples in the data source which has the largest sample size 384 

from the study and removed the overlapping set from the other data source. For 385 

instance, samples from the Atherosclerosis Risk in Communities (ARIC) Study were 386 

removed from TOPMed and kept in MIGen which had more sequenced samples from 387 

ARIC. Similarly, samples from the Jackson Heart Study were kept in TOPMed and 388 

removed from MIGen. To obtain duplicate and kinship information across data 389 

sources we used 14,834 common (MAF>1%) and no more than weakly dependent 390 

(r2 < 0.2) variants using the make-king flag in PLINK v2.0.  391 

 392 

Single-variant association analyses were performed within each data source, case-393 

status, and ancestry combination. The data were sequenced and variant calling 394 

performed separately by data source and this allowed us to look for effects by case-395 

status and genetically-inferred and/or reported ancestry groups. We performed gene-396 

based meta-analyses by combining single-variant summary statistics and covariance 397 

matrices generated from RVTESTS.34  We performed ancestry-specific gene-based 398 
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meta-analyses by combining single-variant summary data from five major ancestries 399 

with >10,000 across all data sources: European, South Asian, African, Hispanic, and 400 

East Asian ancestries. 401 

 402 

Phenotypes 403 

We studied six lipid phenotypes; total cholesterol (TC), LDL-C, HDL-C, non-HDL-C, 404 

triglycerides (TG) and TG:HDL. TC was adjusted by dividing the value by 0.8 in 405 

individuals reporting lipid lowering medication use after 1994 or statin use at any time 406 

point. If LDL-C levels were not directly measured, then they were calculated using 407 

Friedewald equation for individuals with TG levels < 400 mg/dl using adjusted TC 408 

levels. If LDL-C levels were directly measured then, their values were divided by 0.7 409 

in individuals reporting lipid lowering medication use after 1994 or statin use at any 410 

time point.5 TG and TG:HDL levels were natural logarithm transformed. Non-HDL-C 411 

was obtained by subtracting HDL-C from adjusted TC levels. Residuals for each trait 412 

in each cohort, ancestry, and case status grouping were created after adjustment for 413 

age, age2, sex, principal components, sequencing platform, and fasting status (when 414 

available) in a linear regression model. Residuals were then inverse-normal 415 

transformed and multiplied by the standard deviation of the trait to scale the effect 416 

sizes to the interpretable units. 417 

 418 

Variant Annotation  419 

We compiled autosomal variants with call rate>95% within each case and ancestry 420 

specific analysis dataset with MAC≥1 (across the combined data). Variants were 421 

annotated using the Ensembl Variant Effect Predictor35 and its associated Loss-of-422 

Function Transcript Effect Estimator (LOFTEE)36 and the dbNSFP37 version 3.5a 423 
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plugins. We limited our annotations to the canonical transcripts. The LOFTEE plugin 424 

assesses stop-gained, frameshift, and splice site disrupting variants. Loss-of-function 425 

variants are classified as either high confidence or low confidence. The dbNSFP is a 426 

database that provides functional prediction data and scores for non-synonymous 427 

variants using multiple algorithms.37 This database was used to classify missense 428 

variants as damaging using two different definitions based on bioinformatic prediction 429 

algorithms. The first is based on MetaSVM38 which is derived from 10 different 430 

component scores (SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERP++, 431 

MutationTaster, Mutation Assessor, FATHMM, LRT, SiPhy, PhyloP). The second is 432 

based on 5 variant prediction algorithms including SIFT, PolyPhen-2 HumVar, 433 

PolyPhen-2 HumDiv, MutationTaster and LRT score. Additionally, we ran a deep 434 

neural network analysis (Splice AI) to predict splice-site altering variants.39  Variant 435 

descriptive analysis was performed using a maximal set of variants that were used to 436 

analyze the lipid phenotype with the largest sample size. The counts and proportions 437 

of variants – annotated according to the different predicted consequences described 438 

above – were obtained out of an overall set of variants. 439 

 440 

Single-Variant Association Analysis 441 

Each data source was sub-categorized based on ancestry and CAD or T2D case 442 

status in the studies ascertained by disease status. Subgrouping data sources 443 

yielded a total of 23 distinct sample sub-categories. As relatives were kept within 444 

each sub-group, we performed generalized linear mixed models to analyze the 445 

association of single autosomal variants with standard-deviation corrected-inverse-446 

normal transformed traits using RVTESTS.34 RVTESTS was used to generate 447 

summary statistics and covariance matrices using 500 kilobase sliding windows. To 448 
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obtain the single-variant associations, we performed a fixed-effects inverse-variance 449 

weighted meta-analysis for multi-ancestry and within each of the five major 450 

ancestries. An exome-wide significance threshold of P<7.2×10-8 (Bonferroni 451 

correction for six traits and using previously recommended threshold for coding 452 

variants P<4.3×10-7)40 was used to determine significant coding variants. 453 

 454 

Gene-Based Association Analysis 455 

We used summary level score statistics and covariance matrices from autosomal 456 

single-variant association results to perform gene-based meta-analyses among all 457 

individuals and within each ancestry using RAREMETALS version 7.2.41 Samoan 458 

individuals only contributed to the overall analysis. Gene-based association testing 459 

aggregates variants within each gene unit using burden tests and SKAT which allows 460 

variable variant effect direction and size.42 The “rareMETALS.range.group” function 461 

was used with MAF<1%, which filters out all variants with combined MAF>1% in all 462 

meta-analytic datasets. All variants with call rates<95% and not annotated as LOF 463 

using LOFTEE, splice-site variants or damaging missense as defined by MetaSVM or 464 

by all SIFT, PolyPhen-2 HumVar, PolyPhen-2 HumDiv, MutationTaster and LRT 465 

prediction algorithms (Damaging 5 out of 5) were excluded in the gene-based meta-466 

analyses.  467 

 468 

We used 6 different variant groupings to determine the set of damaging variants 469 

within each gene, 1) high-confidence LOF using LOFTEE, 2) LOF and predicted 470 

splice-site altering variants, 3) LOF and MetaSVM missense variants, 4) LOF, 471 

MetaSVM missense and predicted splice-site altering variants, 5) LOF and damaging 472 

5 out 5 missense variants, and 6) LOF, damaging 5 out 5 missense and predicted 473 
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splice-site altering variants. An exome-wide significance threshold of P<4.3×10-7, 474 

Bonferroni corrected for the maximum number of annotated genes (n=19,540) and 475 

six lipid traits, was used to determine significant coding variants. Two gene 476 

transcripts, DOCK6 and DOCK7, that overlap with two well-studied lipid genes, 477 

ANGPTL8 and ANGPTL3, respectively, met our exome-wide significance threshold. 478 

After excluding variation observed in ANGPTL8 and ANGPTL3, DOCK6 and DOCK7, 479 

respectively, were no longer significant and have been excluded as associated 480 

genes. 481 

 482 

We performed a series of sensitivity analyses for our results. We repeated the multi-483 

ancestry gene-based analyses using a MAF<0.1%, and compared our exome-wide 484 

significant gene-based results using a MAF<1% to using a MAF<0.1%. We 485 

compared the single variants in our top gene-based associations with respective 486 

traits using GWAS summary data.8 Gene-based tests were repeated excluding 487 

variants identified in GWAS using P<5×10-8. Furthermore, all single variants included 488 

in each of the top gene-based association were analyzed in relation to the respective 489 

trait. For each exome-wide significant gene-based association, we obtained the 490 

association of each single variant within the gene-specific variant groups with the 491 

respective phenotype. Then we determined – out of each gene’s overall set of 492 

variants – those that had p-values at different significance thresholds to identify the 493 

percentages of variants contributing in order to each gene-based signal. To assess 494 

whether the most significant variant within each gene was driving the association, 495 

gene-based analyses were repeated after removing the respective top single variant 496 

from gene-specific variant groups. 497 

 498 
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To understand whether variants contributing to top gene-based signals were similar 499 

or different across different ancestries, we determined the degree of overlap across 500 

ancestries for all variants incorporated and then for those with P<0.05. Finally, we 501 

checked for overlap across the most significant (lowest P value) variant from each of 502 

the gene-based signals. 503 

 504 

Heterogeneity of gene-based estimates in all gene-trait-variant grouping 505 

combinations passing exome-wide significant levels was assessed across the five 506 

main ancestries (European, South Asian, African, Hispanic and East Asian) and 507 

between T2D and CAD cases and controls using Cochran’s Q.  508 

 509 

We performed replication of our top gene-based associations with blood lipid levels in 510 

the Penn Medicine BioBank (PMBB) and UK Biobank samples that did not contribute 511 

to the discovery analysis (see Supplemental Methods). 512 

 513 

Gene-Based Analysis of GWAS Loci and Drug Targets 514 

We obtained variants associated with LDL-C, HDL-C, and TG from a recent GWAS in 515 

the Million Veterans Program8. Then we identified genes within ± 200kb of each 516 

GWAS index variant and performed gene-based analysis for each of those genes 517 

using the six variant groups. In-silico lookup of gene-based associations for 518 

respective lipid traits were then performed for all genes within defined GWAS loci. 519 

Drug target genes were obtained from the drug bank database43 using the following 520 

search categories: “Hypolipidemic Agents, Lipid Regulating Agents, 521 

Anticholesteremic Agents, Lipid Modifying Agents and Hypercholesterolemia”. A 522 

liberal definition for drug targets was used – drugs with any number of targets and 523 
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targets targeted by any number of drugs – and then in-silico lookups were performed 524 

for gene-based associations. 525 

 526 

Gene-set Enrichment Analysis 527 

Gene-set enrichment analyses were performed for sets of Mendelian-, protein-528 

altering- and non-protein altering GWAS, and drug target genes with LDL-C, HDL-C 529 

and TG. 21 Mendelian genes were included based on previous literature2: LDLR, 530 

APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, CETP, LIPC, LIPG, APOC3, ABCA1, 531 

APOA1, LCAT, APOA5, APOE, LPL, APOC2, GPIHBP1, LMF1, ANGPTL3, and 532 

ANGPTL4. We analyzed GWAS gene sets based on their coding status and their 533 

proximity to the most significant signal in the GWAS. Coding variants were defined as 534 

missense, frameshift, or stop gained variants. Gene sets for coding or non-coding 535 

variants were then stratified into three categories based on proximity to the most 536 

significant variant within each locus – closest-, second closest- and greater than 537 

second closest gene. For each gene within each set, we obtained the most 538 

significant association in the multi-ancestry or ancestry specific meta-analysis set 539 

using any of the six different variant groups. Then each gene within each gene set 540 

was matched to 10 other genes based on sample size, total number of variants, 541 

cumulative MAC, and variant grouping nearest neighbors using the matchit R 542 

function. Then we compared the proportions using Fisher’s exact test between the 543 

main and matched gene sets by applying different P-value thresholds. 544 

 545 

Association of Lipid Genes with CAD and T2D data and liver fat/markers 546 

We determined the associations of 40 genes identified in the main and GWAS loci 547 

analyses with CAD, T2D, and glycemic and liver enzyme blood measurements. The 548 
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association with T2D was obtained from the latest gene-based exome association 549 

data from the AMP-T2D-GENES consortium.15 The reported associations were 550 

obtained from different variant groups based on their previous analyses. We 551 

additionally performed gene-based association analyses with CAD using the MIGen 552 

case-control, UKB case-control, and UKB cohort samples using the variant groups 553 

described above. Further, six traits including fasting plasma glucose, HbA1c, alanine 554 

aminotransferase, aspartate aminotransferase, gamma glutamyl transferase and 555 

albumin were analyzed in the UKB dataset. Single variant association analyses were 556 

performed with RVTESTS. Linear mixed models incorporating kinship matrices were 557 

used to adjust for relatedness within each study. Covariance matrices were 558 

generated using 500 kilobase sliding windows. RAREMETALS was used to assess 559 

associations between aggregated variants (MAF<1%) in burden and SKAT tests with 560 

CAD and each of the six quantitative traits. We used 6 different variant groupings to 561 

determine the set of damaging variants within each gene, 1) high-confidence LOF 562 

using LOFTEE, 2) LOF and predicted splice-site altering variants, 3) LOF and 563 

MetaSVM missense variants, 4) LOF, MetaSVM missense and predicted splice-site 564 

altering variants, 5) LOF and damaging 5 out 5 missense variants, and 6) LOF, 565 

damaging 5 out 5 missense and predicted splice-site altering variants. 566 

 567 

Results 568 

Sample and variant characteristics 569 

Individual-level, quality-controlled data were obtained from four sequenced study 570 

sources with circulating lipid data for individuals of multiple ancestries (Figure 1). 571 

Characteristics of the study samples are detailed in Table S1. We analyzed data on 572 

up to 172,000 individuals with LDL-C, non-HDL-C (a calculated measure of TC minus 573 
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HDL-C), TC, HDL-C, TG, and TG:HDL ratio (a proxy for insulin resistance).44; 45  574 

56.7% (n=97,493) of the sample are of European ancestry, 17.4% (n=30,025) South 575 

Asian, 9.6% (n=16,507) African American, 9.6% (n=16,440) Hispanic, 6.1% 576 

(n=10,420) East Asian, and 0.7% (n=1,182) Samoan, based on genetically-estimated 577 

and/or self-reported ancestry. 578 

 579 

After sequencing, we observed 15.6 M variants across all studies; 5.0 M (32.6%) we 580 

classified as transcript-altering coding variants based on an annotation of frameshift, 581 

missense, nonsense, or splice site acceptor/donor using the Variant Effect Predictor 582 

(VEP).35 A total of 340,214 (6.7%) of the coding variants were annotated as high 583 

confidence loss-of-function (LOF) using the LOFTEE VEP plugin,36 238,646 (4.7%) 584 

as splice site altering identified by Splice AI,39 729,098 (14.3%) as damaging 585 

missense as predicted by the MetaSVM algorithm38, and 1,106,309 (21.8%) as 586 

damaging missense as predicted by consensus in all five prediction algorithms (SIFT, 587 

PolyPhen-2 HumVar, PolyPhen-2 HumDiv, MutationTaster and LRT).37 As expected, 588 

we observed a trend of decreasing proportions of putatively deleterious variants with 589 

increasing allele count (Figure S2, Table S3). 590 

 591 

Single-variant association 592 

We performed inverse-variance weighted fixed-effects meta-analyses of single-593 

variant association results of LDL-C, non-HDL-C, TC, HDL-C, TG and TG:HDL ratio 594 

from each consortium and ancestry group. Meta-analysis results were well controlled 595 

with genomic inflation factors ranging between 1.01 and 1.04 (Table S4). Single-596 

variant results were limited to the 425,912 protein-altering coding variants with a total 597 

minor allele count (MAC) > 20 across all 172,000 individuals. We defined significant 598 
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associations by a previously established exome-wide significance threshold for 599 

coding variants (P<4.3×10-7)40 which was additionally corrected for testing six traits 600 

(P=4.3×10-7 divided by 6) within all study samples or within each of the five major 601 

ancestries (Tables S5-S10); this yielded in each analysis a significance threshold of 602 

P<7.2×10-8. A total of 104 rare coding variants in 57 genes were associated with 603 

LDL-C, 95 in 54 genes with non-HDL-C, 109 in 65 genes with TC, 92 in 56 genes 604 

with HDL-C, 61 in 36 genes with TG, and 68 in 42 genes with TG:HDL. We identified 605 

six missense variants in six genes (TRIM5 p.Val112Phe, ADH1B p.His48Arg, CHUK 606 

p.Val268Ile, ERLIN1 p.Ile291Val [rs2862954], TMEM136 p.Gly77Asp, PPARA 607 

p.Val227Ala) >1Mb away from any index variant previously associated with a lipid 608 

phenotype (LDL-C, HDL-C, TC, or TG) in previous genetic discovery efforts (Tables 609 

S5-S10).3; 7; 8 PPARA p.Val227Ala has previously been associated with blood lipids 610 

at a nominal significance level in East Asians (P < 0.05), where it is more common 611 

than in other ancestries.46 Both TRIM5 and ADH1B LDL-C increasing alleles have 612 

been associated with higher risk of CAD in a recent GWAS from CARDIOGRAM 613 

(OR: 1.08, P=2×10-9; OR=1.08, P=4×10-4).47 Single variant associations were further 614 

performed in each of the five main ancestries (Table S11). 615 

 616 

Gene-based association 617 

Next we performed gene-based testing of transcript-altering variants in aggregated 618 

burden and sequence kernel association tests (SKAT)48 tests in all study participants 619 

and within each of the six main ancestries for six lipid traits: LDL-C, HDL-C, non-620 

HDL-C, TC, TG, and TG:HDL. We excluded the Samoans from the single-ancestry 621 

analysis given the small number of individuals. We limited attention to variants with 622 

MAF≤1% for each of six variant groups: 1) LOF, 2) LOF and predicted splice-site 623 
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altering variants using Splice AI, 3) LOF and MetaSVM missense variants, 4) LOF, 624 

MetaSVM missense and predicted splice-site altering variants, 5) LOF and damaging 625 

5 out 5 missense variants, and 6) LOF, damaging 5 out 5 missense and predicted 626 

splice-site altering variants. Meta-analyses results were well controlled (Table S12). 627 

 628 

We identified 35 genes reaching exome-wide significance (P=4.3×10-7) for at least 629 

one of the six variant groupings (Tables S13-S19). Most of the significant results 630 

were from the multi-ancestry analysis, with multiple ancestries contributing to the top 631 

signals (Figure 2A) and most of the 35 genes were associated with more than one 632 

lipid phenotype (Figure 2B). Ten of the 35 genes did not have prior evidence of 633 

gene-based links with blood lipid phenotypes (Table 1), and seven genes, including 634 

ALB, SRSF2, CREB3L3, NR1H3, PLA2G12A, PPARG, and STAB1 have evidence 635 

for a biological connection to circulating lipid levels (Box 1).  636 

 637 

We performed a series of sensitivity analyses on our results. To determine whether 638 

low frequency variants between 0.1%-1% frequency were driving our gene-based 639 

association results, we performed the gene-based multi-ancestry meta-analyses 640 

using a maximum MAF threshold of 0.1% instead of 1%. We observed exome-wide 641 

significant associations (P<4.3×10-7) for 29 genes using a 0.1% MAF threshold, all 642 

observed in our primary analyses using a MAF threshold of 1% (Table S20). We then 643 

intersected our 35 lipid associated genes from 85 gene-based associations observed 644 

in the primary analysis with our results using a MAF threshold of 0.1%. All genes 645 

remained at least nominally significant (P < 0.05) using a 0.1% MAF threshold, 646 

except the A1CF and TMEM136 associations (Table S21). Furthermore, we 647 

determined whether those signals were driven by previously reported GWAS hits. We 648 
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identified a total of 7 HDL-C associated variants in 6 genes, 7 LDL-C variants in 3 649 

genes, 3 TC variants in 1 gene and 7 TG variants in 6 genes that were previously 650 

found to be genome-wide significant in MVP (Table S22).8 Respective gene-based 651 

analyses were repeated without those variants. Gene-based signals at A1CF and 652 

BUD13 were lost after removal of 1 variant in each of those genes (Table S23). 653 

 654 

The JAK2 signal was further investigated after splitting the 136 contributing variants 655 

into those annotated as somatic using the Catalogue Of Somatic Mutations In Cancer 656 

(COSMIC)49 database and not annotated as a somatic variant. We observed an 657 

association only among a set of 26 variants annotated as somatic while no 658 

association was observed using the remaining 110 variants (Table S24). We also 659 

observed that after removal of the most significant variant in JAK2 (p.V617F; 660 

rs77375493), a somatic variant, there is no association between JAK2 and total 661 

cholesterol (p =0.10, Table S13). 662 

 663 

We also determined which of the 35 genes were outside GWAS regions defined as 664 

those within ±200kb flanking regions of GWAS indexed Single nucleotide 665 

polymorphisms (SNPs) for TC (487 SNPs), LDL-C (531 SNPs), HDL-C, and TG (471 666 

SNPs).8 We identified 1,295 unique genes included in these lipid GWAS regions. 667 

Eight out of the 35 associated genes (23%) were not within a GWAS region (Table 668 

S13).  669 

 670 

To understand whether the gene-based signals were driven by variants that could be 671 

identified through single variant analyses, we looked at the proportion of the 35 672 

genes that were associated with each trait that have at least one single contributing 673 
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variant that passed the genome-wide significance threshold of 5×10-8. Seventeen 674 

genes were associated with HDL-C at exome-wide significance (Table S13); eight 675 

genes had at least one variant with P<5×10-8 (Table S8). Similarly, we observed 4/9 676 

for LDL-C, 4/10 non-HDL-C, 4/14 TC, 7/18 TG, and 6/17 TG:HDL genes with at least 677 

one genome-wide significant variant (Tables S5-S10).  678 

 679 

For genes with both gene-based and single variant signals, we determined the 680 

variants were driving these signals, and determined the single variant associations 681 

for all variants contributing to the top 35 genes (Table S25). From a total of 85 gene-682 

based associations, 33 had at least one and 19 had only one single variant with 683 

P<5×10-8 (Tables S25 and S26). All of the 19 had at least 2 variants passing 684 

nominal significance (P<0.05) and 13 had at least 10 variants with P <0.05. Finally, 685 

gene-based associations in A1CF, BUD13, JAK2 and TMEM136 were lost after 686 

removal of the respective most significant single variant from the group of variants 687 

aggregated in each gene-based association (Table S13). 688 

 689 

Comparison of gene-based associations across ancestries 690 

We determined the overlap between single variants included in gene-based signals, 691 

which additionally were nominally significant (P<0.05) in each of the five main 692 

ancestries. A large proportion of variants from each ancestry did not overlap with any 693 

other ancestry (Figure S3). For example, a total of 4 genes (CETP, ABCA1, CD36, 694 

and LCAT) were observed to have significant gene-based associations with HDL-C in 695 

multi-ancestry meta-analyses. A total 68% of variants from European ancestry 696 

samples that contributed to HDL-C gene-based associations did not overlap with any 697 

other ancestry, as was 62% in South Asian-, 44% in African-, 41% in Hispanic- and 698 
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59% in East Asian ancestry. When restricted to variants with P<0.05 in the multi-699 

ancestry meta-analysis, the overlap among ancestries increased (Figure S4). A total 700 

of 61% of variants from European ancestry did not overlap with any other ancestry, 701 

as was 46% in South Asian-, 27% in African-, 27% in Hispanic- and 32% in East 702 

Asian ancestry. Finally, we determined the top single variant contributing to each 703 

gene-based association (Figure S5). Out of the 4 HDL-C or the 3 LDL-C genes, 704 

none of the top variants overlapped among any of the ancestries, and at least 1 out 705 

of 3 variants from the TG genes was shared between 2 ancestries. . 706 

 707 

But, the gene-based associations were mostly consistent across the six ancestry 708 

groupings: European, South Asian, African, Hispanic, and East Asian. Three of the 709 

17 HDL-C genes showed association in at least two different ancestries at exome-710 

wide significance level (P=4.3×10-7). Similarly, 3/9 LDL-C, 4/10 non-HDL-C, 5/14 TC, 711 

2/18 TG and 2/17 TG:HDL genes showed association in at least two difference 712 

ancestries at an exome-wide significance level. Using a less stringent significance 713 

level (P<0.01), across the six lipid traits, 59-89% of associated genes from the joint 714 

analysis were associated in at least two different ancestries.  715 

 716 

We tested the top 35 genes for heterogeneity across all 303 gene-trait-variant 717 

grouping combinations passing the exome-wide significance threshold (P<4.3×10-7). 718 

We observed heterogeneity in effect estimates (PHet<1.7×10-4, accounting for 303 719 

combinations) in 19 (6%) different gene-trait-variant grouping combinations and in six 720 

different genes: LIPC, LPL, LCAT, ANGPTL3, APOB, and LDLR (Table S27). 721 

Although the LOF gene-based effect sizes were largely consistent across ancestries, 722 
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there were differences in the cumulative frequencies of LOF variants for several 723 

genes including PCSK9, NPC1L1, HBB and ABCG5 (Figures S6-S8). 724 

 725 

We observed LOF and predicted damaging variants in the TMEM136 gene 726 

associated with TG and TG:HDL only among individuals of South Asian ancestry 727 

(PSKAT=3×10-9 and 2×10-11, respectively) (Table 1, Figure 2A). With the same variant 728 

grouping and ancestry, we observed associations with reduced TG by burden tests 729 

(𝛃=-15%, P=3×10-4) and TG:HDL (𝛃=-20%, P=6×10-5) (Tables S18 and S19). 730 

Additionally, a single missense variant was associated only among South Asians 731 

(rs760568794,11:120327605-G/A, p.Gly77Asp) with TG (𝛃=-36.9%, P=2×10-8) 732 

(Table S9). This variant was present only among South Asian (MAC=24) and 733 

Hispanics (MAC=8), but showed no association among Hispanics (P=0.86). This 734 

gene encodes a transmembrane protein of unknown function. 735 

 736 

Replication of gene-based associations 737 

We performed replication using the Penn Medicine BioBank (PMBB) and UK Biobank 738 

samples that did not contribute to the initial analysis. In PMBB, we observed 4 out of 739 

10 genes without prior evidence of gene-based links with blood lipid phenotypes to 740 

have a p< 0.005 (Bonferroni correction for testing 10 genes) and in the same 741 

direction as the discovery s (SRSF2, CREB3L3, PLA2G12A, PPARG) with their 742 

respective blood lipids with an additional two genes that met a nominal significance 743 

level (p<0.05; JAK2 and NR1H3). For the gene TMEM136, we found an association 744 

of nominal significance for TG and TG:HDL as well, but with a beta in the opposite 745 

and positive direction. For the other 3 genes, ALB, VARS, and STAB1, we did not 746 

find associations at a nominal significance level for their respective blood lipid traits 747 



 25 

(Table S28). In UK Biobank, we found 6 of the 10 genes were associated at a P 748 

<0.005 and in the same direction of effect as the discovery analysis (ALB, CREB3L3, 749 

NR1H3, PLA2G12A, PPARG, STAB1) (Table S29) with JAK2 reaching a nominal 750 

significance threshold (p<0.05). The only two genes that did not show any evidence 751 

of replication in at least one of the replication studies were TMEM136 and VARS. 752 

This may indicate these associations are false positives or that we lack power for 753 

replication for these associations. Our replication studies did not include individuals 754 

of South Asian ancestry and we observed that our association of TMEM136 with TG 755 

and TG:HDL is driven by individuals of South Asian ancestry. 756 

 757 

Comparison of gene-based associations by case-status 758 

We analyzed heterogeneity by CAD or T2D case status for the top 35 genes. The top 759 

85 signals presented in Table S13 determined in case-status specific meta-analyses 760 

for CAD and T2D. Out of the 85 different gene-based associations, we observed 761 

minimal heterogeneity in the results by case status. LDLR, LCAT and LPL showed 762 

significant heterogeneity by CAD case status and LCAT and ANGPTL4 by T2D 763 

status (PHet < 6×10-4) (Tables S30 and S31). 764 

 765 

Gene-based associations in GWAS loci 766 

We determined whether genes near lipid array-based GWAS signals8 were 767 

associated with the corresponding lipid measure using gene-based tests of rare 768 

variants with the same traits. We obtained genes from 200 Kb flanking regions on 769 

both sides of each GWAS signal; 487 annotated to LDL-C GWAS signals, 531 to 770 

HDL-C signals, and 471 to TG signals. We analyzed genes within these three sets 771 

for gene-based associations with their associated traits. A total of 13, 19, and 13 772 
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genes were associated (P<3.4×10-5, corrected for the number of genes tested for the 773 

three traits) with LDL-C, HDL-C or TG, with 32 unique genes identified in the GWAS 774 

loci (Tables S32-S37). 775 

 776 

Three of the 32 genes had no prior aggregate rare variant evidence of blood lipid 777 

association. Variants annotated as LOF or predicted damaging in EVI5 were 778 

associated with LDL-C (PSKAT=2×10-5). The burden test showed association with 779 

higher LDL-C levels (𝛃=1.9 mg/dL, P=0.008) (Table S32). Variants annotated as 780 

LOF or predicted damaging in SH2B3 were associated with lower HDL-C (𝛃=-2.5 781 

mg/dL, P=1×10-6) among Europeans and variants that were annotated as LOF in 782 

PLIN1 were associated with higher HDL-C (𝛃=3.9 mg/dL, P=1×10-5) (Table S33). 783 

Other genes in the regions of EVI5, SH2B3, and PLIN1 did not show an association 784 

with the corresponding lipid traits (P>0.05) in multi-ancestry analyses. A previous 785 

report implicated two heterozygous frameshift mutations in PLIN1 in three families 786 

with partial lipodystrophy.50 The gene encodes perilipin, the most abundant protein 787 

that coats adipocyte lipid droplets and is critical for optimal TG storage.51 We 788 

observed a nominal associations of PLIN1 with TG (𝛃=-7.0%, P=0.02). Our finding is 789 

contrary to what would be expected with hypertriglyceridemia in a lipodystrophy 790 

phenotype given the association with lower TG. This gene has an additional role 791 

where silencing in cow adipocytes has been shown to inhibit TG synthesis and 792 

promote lipolysis,52 which may explain those contradictions. 793 

 794 

Enrichment of Mendelian-, GWAS-, and drug targets genes 795 

We next sought to test the utility of genes that showed some evidence for association 796 

but did not reach exome-wide significance. Within the genes that reached a sub-797 
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threshold level of significant association in this study using burden or SKAT tests (p < 798 

0.005), we determined the enrichment of i) Mendelian dyslipidemia (N=21 genes)-;2 799 

ii) lipid GWAS (N=487 for LDL-C, N=531 for HDL-C and N=471 for TG)8; and iii) drug 800 

target genes (N=53).43 We stratified genes in GWAS loci according to coding status 801 

of the index SNP and proximity to the index SNP (nearest gene, second nearest 802 

gene, and genes further away). We tested for enrichment of gene-based signals 803 

(P<0.005) in the gene sets compared to matched genes (Figure 3). For each gene 804 

within each gene set, the most significant association in the multi-ancestry or an 805 

ancestry specific analysis was obtained and then matched to 10 genes based on 806 

sample size, total number of variants, cumulative MAC, and variant grouping. The 807 

strongest enrichment was observed for Mendelian dyslipidemia genes within the 808 

genes that reached P < 0.005 in our study. For example, 52% of the HDL-C 809 

Mendelian genes versus 1.4% of the matched set reached P < 0.005 (OR:71, 95% 810 

CI: 16-455). We also observed that 45.5% of the set of genes closest to an HDL-C 811 

protein-altering GWAS variant reached P < 0.005 versus 1.4% in the matched gene 812 

set (OR:57, 95% CI: 13-362). Results were significant but much less striking for 813 

genes at non-coding index variants.  We observed that 8.9% of the set of genes 814 

closest to an HDL-C non-protein altering GWAS variant reached P < 0.005 versus 815 

2.3% in the matched set (OR:4.1, 95% CI: 1.8-8.7).  While 8% of the set of genes in 816 

the second closest to an HDL-C non-protein altering GWAS variant reached P 817 

<0.005 versus 2.6% in the matched set (OR: 3, 95% CI: 1.1-8.3). There was no 818 

significant enrichment in second closest or >= third closest genes to protein altering 819 

GWAS signals and in >= third closest genes to non-protein altering GWAS signals. 820 

Drug target genes were significantly enriched in LDL-C gene-based associations 821 
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(OR: 5.3, 95% CI: 1.4-17.8) but not in TG (OR: 2.2, 95% CI: 0.2-11.2) or HDL-C (OR: 822 

1.0, 95% CI: 0.1-4.3) (Figure 3 and Tables S38-S41). 823 

 824 

Association of lipid genes with CAD, T2D, glycemic traits, and liver enzymes 825 

We tested the genes identified through our main (35 genes) and GWAS loci (32 826 

genes) for associations with CAD or T2D in our gene-based analyses (40 genes 827 

across the two sets). The CAD analyses were restricted to a subset of the overall 828 

exome sequence data with information on CAD status which included the MIGen 829 

CAD case-control, UK Biobank (UKB) CAD nested case-control, and the UKB cohort 830 

with a total of 32,981 cases and 79,879 controls. We observed four genes 831 

significantly associated with CAD (PCAD<0.00125, corrected for 40 genes). The four 832 

genes associated with lipids and CAD were all primarily associated with LDL-C: 833 

LDLR (OR: 2.97, P=7×10-24), APOB (PSKAT=4×10-5), PCSK9 (OR: 0.5, P=2×10-4) and 834 

JAK2 (PSKAT=0.001). Several other known CAD associated genes (NPC1L1, CETP, 835 

APOC3, and LPL) showed nominal significance for association with lipids (P<0.05). 836 

We observed nominal associations with CAD for two of the newly-identified lipid 837 

genes:  PLIN1 (PSKAT=0.002) and EVI5 (OR: 1.29, P=0.002; Table S42). None of the 838 

40 lipid genes reached significance for association with T2D in the latest AMP-T2D 839 

exome sequence results. We observed nominal associations of T2D with STAB1 840 

(OR: 1.05, PT2D=0.002) and APOB (OR: 1.08, PT2D=0.005) (Table S43).15 841 

 842 

We additionally tested the 40 genes for association with six glycemic and liver 843 

biomarkers in the UKB: blood glucose, HbA1c, alanine aminotransferase (ALT), 844 

aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), and albumin 845 

(Tables S44-S49). Using an exome-wide significance threshold of P=0.0012, we 846 
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found associations between PDE3B and elevated blood glucose, JAK2 and SH2B3 847 

and lower HbA1c, and APOC3 and higher HbA1c. However, JAK2 was no longer 848 

associated with Hba1c after removal of the p.V617F missense variant that is known 849 

to frequently occur as a somatic mutation (beta=0.22, se=0.40, p= 0.47). 850 

We found associations between CREB3L3 and lower ALT, ALB, and higher AST, and 851 

between A1CF and higher GGT. ALB and SRSF2 were associated with lower and 852 

higher albumin levels, respectively (Tables S44-S49).  853 

 854 

Discussion 855 

We conducted a large multi-ancestry study to identify genes in which protein-altering 856 

variants demonstrated association with blood lipid levels. First, we confirm previous 857 

associations of genes with blood lipid levels and show that we detect associations 858 

across multiple ancestries. Second, we identified gene-based associations that were 859 

not observed previously. Third, we show that along with Mendelian lipid genes, the 860 

genes closest to both protein altering and non-protein altering GWAS signals, and 861 

LDL-C drug target genes have the highest enrichment of gene-based associations. 862 

Fourth, of the new gene-based lipid associations, PLIN1 and EVI5 showed 863 

suggestive evidence of an association with CAD. 864 

 865 

Our study found that evidence of gene-based associations for the same gene in 866 

multiple ancestries. The heterogeneity in genetic association with common traits and 867 

complex diseases has been discussed extensively. A recent study has shown 868 

significant heterogeneity across different ancestries in the effect sizes of multiple 869 

GWAS identified variants.53 However, our study shows that gene-based signals are 870 

detected in multiple ancestries with limited heterogeneity in the effect sizes. 871 
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Our study highlights enrichment of gene-based associations for Mendelian 872 

dyslipidemia genes, genes with protein-altering variants identified by GWAS, and 873 

genes that are closest to non-protein altering GWAS index variants. A previous 874 

transcriptome-wide Mendelian randomization study of eQTL variants indicated that 875 

most of the genes closest to top GWAS signals (>71%) do not show significant 876 

association with the respective phenotype.54 In contrast, our study provides evidence 877 

from sequence data that the closest gene to each top non-coding GWAS signal is 878 

most likely to be the causal one, indicating an allelic series in associated loci. This 879 

has implications for GWAS results, suggesting the prioritization of the closest genes 880 

for follow-up studies. We also observed enrichment of drug target genes only among 881 

LDL-C gene-based associations and not for HDL-C and TG gene-based 882 

associations, consistent with the fact that most approved therapeutics for 883 

cardiovascular disease targeting LDL-C 884 

 885 

The gene-based analyses of lipid genes with CAD confirmed previously reported and 886 

known associations (LDLR, APOB, and PCSK9). Using a nominal P threshold of 0.05 887 

we also confirmed associations with NPC1L1, CETP, APOC3, and LPL. Of the novel 888 

lipid genes, we observed borderline significant signals with EVI5 and higher risk of 889 

CAD and between PLIN1 and lower risk of CAD. The putative cardio-protective role 890 

of PLIN1 deficiency is supported by previous evidence in mice which has indicated 891 

reduced atherosclerotic lesions with Plin1 deficiency in bone marrow derived cells.55 892 

This suggests PLIN1 as a putative target for CAD prevention; however, replication of 893 

the CAD association would be needed to confirm those signals.  894 

 895 



 31 

There are limitations to our results. First, we had lower sample sizes for the non-896 

European ancestries, limiting our power to detect ancestry-specific associations, and 897 

detect replication for TMEM136 that was driven by a variant in South Asians. 898 

However, we find consistency of results across ancestries, and when we relax our 899 

significance threshold, the majority of associations (59-89%) are observed in more 900 

than one ancestry. Second, it has been reported that there was an issue with the 901 

UKB functionally equivalent WES calling.56 This mapping issue may have resulted in 902 

under-calling alternative alleles and therefore should not increase false positive 903 

findings. Third, we relied on a meta-analysis approach using summary statistics to 904 

perform our gene-based testing due to differences in sequencing platforms and 905 

genotyping calling within the multiple consortia contributing to the results. This 906 

approach has been shown to be equivalent to a pooled approach for continuous 907 

outcomes.41 908 

 909 

In summary, we demonstrated association between rare protein-altering variants with 910 

circulating lipid levels in >170,000 individuals of diverse ancestries. We identified 35 911 

genes associated with blood lipids, including ten genes not previously shown to have 912 

gene-based signals. Our results support the hypothesis that genes closest to a 913 

GWAS index SNP are enriched for evidence of association.  914 
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Figure titles and legends 1230 

Figure 1. Study samples and design 1231 

Flow chart of the different stages of the study. Exome sequence genotypes were 1232 

derived from four major data sources: The Myocardial Infarction Genetics consortium 1233 

(MIGen), the Trans-Omics from Precision Medicine (TOPMed), the UK Biobank and 1234 

the Type 2 Diabetes Genetics (AMP-T2D-GENES) consortium. Single-variant 1235 

association analyses were performed by ancestry and case-status in case-control 1236 

studies and meta-analyzed. Single-variant summary estimates and covariance 1237 

matrices were used in gene-based analyses using 6 different variant groups and in 1238 

multi-ancestry and each of the five main ancestries. AFR=African ancestry, 1239 

EAS=East Asian ancestry, EUR=European ancestry, HIS=Hispanic ancestry, 1240 

SAM=Samoan ancestry, SAS=South Asian ancestry 1241 

 1242 

Figure 2. Exome-wide significant associations with blood lipid phenotypes 1243 

A) Circular plot highlighting the evidence of association between the exome-wide 1244 

significant 35 genes with any of the six different lipid traits (P < 4.3 × 10-7). The most 1245 

significant associations from any of the six different variant groups are plotted. For 1246 

almost all of the genes the most significant associations were obtained from the 1247 

multi-ancestry meta-analysis. B) Strength of association of the 35 exome-wide 1248 

significant genes based on the most significant variant grouping and ancestry across 1249 

the six lipid phenotypes studied. Beta (effect size) is obtained from the corresponding 1250 

burden test for SKAT results. Most of the genes indicated associations with more 1251 

than one phenotype. Sign(beta)*-log10(p) displayed for associations that reached a P 1252 

< 4.3 × 10-7. When the Sign(beta)*-log10(p) > 50, they were trimmed to 50. 1253 

 1254 
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Figure 3. Enrichment of Mendelian, GWAS, and drug target genes in the gene-1255 

based lipid associations 1256 

Enrichment of gene sets of Mendelian genes (n=21), GWAS loci for LDL-C (n=487), 1257 

HDL-C (n=531), and triglycerides (TG) (n=471) genes and drug target genes (n=53). 1258 

  1259 
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Box 1. Genes with biological links to lipid metabolism 
 
ALB 

The association between mutations in the albumin gene and elevated cholesterol levels has been 
previously observed in rare cases of congenital analbuminemia.57 This has been mainly suggested to 
result from compensatory increases in hepatic production of other non-albumin plasma proteins to 
maintain colloid osmotic pressure particularly apolipoprotein B-100 leading to elevations in TC and 
LDL-C but normal HDL-C levels – which is consistent with our findings – although the exact 
mechanisms remain uncertain.58 A lipodystrophy-like phenotype has also been linked to 
analbuminemia which is consistent with the suggestive tendency for increased risk of T2D with LOF 
and predicted damaging variants in albumin in the population (OR=1.85; P=0.007) (Supplementary 
Table 30). 

SRSF2 

The SRSF2 gene encodes a highly conserved serine/arginine-rich splicing factor and has previously 
been linked to acute liver failure in liver-specific knockout in mice with accumulation of TC in the 
mutant liver.59 Thus, this gene could be linked to a non-alcoholic fatty liver phenotype with 
accumulation of lipids in the liver as observed with other genes as PNPLA3 and TM6SF2.7 Therefore, 
we looked at association with liver function markers and we found an association between SRSF2 and 
higher albumin levels (P = 1 × 10-4) and a suggestive tendency for higher gamma glutamyl transferase 
(GGT) (P = 0.05), consistent with potential liver involvement (Supplementary Table 33-36). 

CREB3L3 

The association between CREB3L3 and higher TG supports previous evidence from a single family 
and cohorts with severe hypertriglyceridemia but not sufficient evidence to be classified as a 
Mendelian lipid gene (ref).60-62 This has been additionally supported by functional studies where 
Creb3l3 knockout mice showed hypertriglyceridemia partly due to deficient expression of lipoprotein 
lipase coactivators (Apoc2, Apoa4, and Apoa5) and increased expression of activator Apoc3.61 

NR1H3 

The observed association of NR1H3 with higher HDL-C and lower TG is supported by previous 
evidence of a role in non-alcoholic fatty liver disease in mice.63 This gene encodes a liver X receptor 
alpha (LXR𝛂) which is a nuclear receptor that acts as a cholesterol sensor and protects from 
cholesterol overload.64; 65 It has previously been shown that disrupting the LXR𝛂 phosphorylation at 
Ser196 in mice prevents non-alcoholic fatty liver disease.63 

PLA2G12A  

PLA2G12A is in the secretory phospholipase A2 (sPLA2) family, which liberates fatty acids in the -sn2 
position of phospholipids. This pattern suggests a previously unreported possible lipolytic role of this 
phospholipase in a manner similar to another member of the adipose-specific phospholipases, 
PLA2G16, which has been shown to have a lipolytic role in mice.66; 67 Further studies are needed to 
confirm whether PLA2G12A has a lipolytic role. 

PPARG  

Rare loss of function mutations in PPARG have been previously found to be associated with reduced 
adipocyte differentiation, lipodystrophy and increased risk of T2D.68-70 

STAB1 

The STAB1 gene is a scavenger receptor that has been shown to mediate uptake of oxidized LDL-
C.71; 72 There was a suggestive association between LOF variants and higher LDL-C (𝛃 = 4.3 mg/dL, P 
= 2 × 10-3) consistent with its role in LDL-C uptake. 
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