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a b s t r a c t 

In proceeding beyond the generic optimal rotation model, forest economic research has 

applied various specifications that aim to circumvent the problems of high dimensional- 

ity. We specify an age- and size-structured mixed-species optimal harvesting model with 

binary variables for harvest timing, stochastic stand growth, and stochastic prices. Rein- 

forcement learning allows solving this high-dimensional model without simplifications. In 

addition to presenting new features in reservation price schedules and effects of stochas- 

ticity, our setup allows evaluating the simplifications in the existing research. We find that 

one- or two-dimensional models lose a high fraction of attainable economic output while 

the commonly applied size-structured matrix model overestimates economic profitability, 

yields deviations in harvest timing, including optimal rotation, and dilutes the effects of 

stochasticity. Reinforcement learning is found to be an efficient and promising method for 

detailed age- and size-structured optimization models in resource economics. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

The classic economic approach to forestry aims to maximize stand value by the choice of rotation periods. This 

Samuelson (1976) interpretation of the Faustmann (1849) forest valuation equation is generic in revealing the economics of 

clear-cut timing. Research has proceeded from this basis, but the development has reached a specific limit; optimal solutions 

become hard or impossible to find after expanding the model details toward a level that appears necessary for emerging 

extensions. Our aim is to show that recent achievements in reinforcement learning (RL) algorithms 1 can be applied when 

extending important model details and realism without forgoing optimization and economically justifiable model structure. 

1.1. Related literature 

The problems of high dimensionality are already present in deterministic models but are most pressing when specifi- 

cations include stochastic factors. This is more or less the reason why a major part of stochastic forest economic literature
E-mail addresses: olli.tahvonen@helsinki.fi (O. Tahvonen), antti.suominen@aalto.fi (A. Suominen), pekka.malo@aalto.fi (P. Malo), 

lauri.viitasaari@math.uu.se (L. Viitasaari), vesa-pekka.parkatti@helsinki.fi (V.-P. Parkatti) . 
1 For economic applications, see Charpentier et al. (2021) ; Maliar and Maliar (2022) ; Maliar et al. (2021) ; Scheidegger and Bilionis (2019) . 
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relies on the unidimensional Samuelson-Faustmann (S-F) setup. Within the ”tree paradigm”, Miller and Voltaire (1983) view 

the rotation choice as a problem of single- or multistage optimal stopping, describe stand cutting value as a linear Brow-

nian process, and show the optimality of a barrier rule on the stand cutting value. Willassen (1998) , Sødal (2002) and

Chang (2005) extend this by assuming a linear, geometric, or logistic Brownian process and obtain explicit barrier rules 

where stochasticity increases the stand cutting value. Their assumptions on Brownian process and a fixed initial level for 

the system state after each cut imply that the origin of stochasticity is in physical growth instead of price. This allows

analytical solutions but leaves open the effects of stochastic wood price. 

In Brazee and Mendelsohn (1988) , empirical data on wood price suggest an independent and identically distributed (i.i.d.) 

price process. The application of numerical dynamic programming (and ignoring stochasticity in growth) produces a result 

where optimal rotation is determined by a reservation price schedule. A similar result is obtained by the implicit finite 

difference method by Insley and Rollins (2005) . Clarke and Reed (1989) and Reed and Clarke (1990) include stochasticity in

both physical growth and price and make a sharp distinction between age- and size-dependent growth. By the former they 

refer to cultivated tree stands and by the latter to untended forests where growth is determined by various density factors.

Their assumption of specifying the price process as the geometric Brownian process and ignoring costs lead to barrier rules 

for age or size depending on the growth specification. Observing that age- and size-dependent growth are extremes of a 

continuum, Reed and Clarke (1990) suggest to simultaneously include these features albeit warn that difficulties will likely 

preclude the extension. 

Ignoring the partial harvest or thinning, which are inherent in almost any actual forestry, is a crucial tractability sim- 

plification in the tree paradigm and closely related models. Helmes and Stockbridge (2011) include one thinning specified 

as a switch from one diffusion process to another and optimize its timing with the rotation period. Saphores (2003) and

Alvarez and Koskela (2007) are earlier extensions with partial harvest, and they apply pure size-dependent growth, which, 

with thinning, brings their models close to the general model of biomass harvesting by Clark (1976) . 

Including simultaneous age- and size-dependencies and both partial harvests and rotation becomes natural after de- 

scribing a forest through stage-, age-, or size-structured specifications 2 . This extension is typically carried out by Markovian 

transition matrix models with predetermined size classes ( Getz and Haight, 1989 ). However, stochastic optimization with 

the resulting 10–50 continuous state and control variables is nontrivial. A well-known approach is to optimize parameters 

for a feedback thinning function that determines the number of harvested trees as a function of stand cutting value ( Haight,

1990; Lu and Gong, 2003 ). This reduces the number of optimized variables to 3–10 and is explained to be in line with

the results on reservation price schedule ( Brazee and Mendelsohn, 1988 ). However, how optimizing the parameters for the 

assumed function deviates from optimizing the genuine decision variables, i.e. the number of trees in various size classes, 

remains open. 

Another approach, initiated in Kaya and Buongiorno (1987) , applies a stochastic (transition) matrix model for computing 

a reduced model with a lower number of discrete states. The reduced model describes the probabilities of entering the next 

state given the present state and a (discrete) harvesting choice. Stochastic prices are specified as discrete realizations with 

associated probabilities leading to a tractable number of stand-market states. In extensive later works, this framework is ex- 

tended by including mixed stands, biodiversity, financial risks, risk aversion, and several other factors ( Buongiorno and Zhou, 

2020; Zhou and Buongiorno, 2006; 2019 ). As the authors emphasize, their approach aims to reduce model dimensionality. 

This leads to asking how well the reduced model with a sparse state structure represents the original problem under study.

Malo et al. (2021) apply a size-structured matrix model with twelve pre-specified size classes, four tree species, and a 

continuous number of trees in each size class. Their matrix model is a direct simplification from a more detailed individual-

tree model obtained by a well-known transformation ( Getz and Haight, 1989 ). Solutions for deterministic price are obtained

by an RL algorithm without further simplifications. The solutions are shown to coincide with those computed by nonlinear 

programming and interior point methods but in only 0.06% of the original computing time. 

All these three branches of research, aiming to proceed beyond the S-F and the tree paradigm approaches, apply the ma-

trix model either as such or under simplifications. Although this model has a long history and is among the most common

tools in specifications of forest growth, it is challenged due to its predefined size classes ( Easterling et al., 20 0 0 ). This feature

may yield ”fast and slow pathways”, i.e. a fraction of trees transits unrealistically rapidly or slowly between the classes. This

is problematic in ecology, and research has proceeded to integral projection models ( Easterling et al., 20 0 0 ) with continu-

ous size structure. In forest models, a similar step is the ”individual-tree model” ( Liang and Picard, 2013 ). In this dominant

model type in present forest ecology, the survival and growth of individual trees (or groups of identical trees) depend on

tree characteristics (e.g. diameter) and interactions with other trees. This setup avoids the problems of the matrix model, 

includes both age and size dependencies 3 , and allows for both thinning and clear-cuts but with a heavy cost of expanding
the model dimensions. 

2 Forest economic models with these extensions have close relationship with age-structured models in vintage capital and economic demography litera- 

ture ( Boucekkine et al., 2011 ). 
3 Age dependencies are implicitly in the growth and mortality processes of individual trees. Both these processes and natural regeneration are density 

dependent, implying size dependencies as defined in Clarke and Reed (1989) 

2 
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1.2. Our setup 

We apply, for the first time, a mixed-species individual-tree model for deterministic and stochastic problems and with 

smooth optimization between regimes relying entirely on partial harvesting or thinning, i.e. continuous cover forestry (CCF) 

and regimes with both thinning and finite rotation, i.e. rotation forestry (RF). Earlier economic studies ( Haight and Monserud,

1990a; Tahvonen, 2011 ) based on individual-tree structure are deterministic, restrict the CCF/RF regime choice, include fixed 

harvest timing, and reduce optimized variables by grouping harvested trees. In our model the revenue formation is based on 

tree diameters and a detailed model for variable and fixed harvesting costs separately on thinning and clear-cuts. Stochas- 

ticity is included in (log-normally distributed) wood prices, in individual-tree diameter growth and in natural regeneration. 

Individual-tree growth and regeneration are based on growth models estimated using empirical data with conditionally 

Gaussian innovations ( Pukkala et al. 2013 ). 

Our Theorem 1 proves that a deterministic stationary harvesting policy can be found that maximizes the objective func- 

tional. The result follows from the general theory on dynamic decision processes by Schäl (1983) . Additionally, our model

can be extended to cover more general price dynamics than the log-normally distributed prices used here. By the exis- 

tence of a deterministic stationary Markov policy, we are able to extend general reinforcement learning algorithms, such as 

proximal policy optimization ( Schulman et al., 2017 ), to solve the stochastic harvesting problem. 

First, we show how the model performs if reduced to the unidimensional tree paradigm/S-F setup. This serves as a 

benchmark for the gains obtained with expanded detailed structure but additionally produces results that are most easily 

comparable with existing research. Our i.i.d. price stochasticity produces one- and two-dimensional reservation price sched- 

ules, but pure growth stochasticity ála the tree paradigm does not cause any effects on optimal rotation. 

Secondly, we compute solutions where the optimal management regime consists of optimized partial harvesting followed 

by clear-cuts. The results reveal the losses and limitations of the S-F setup and that the reservation price schedules become

dependent on both price and multidimensional forest state. The lower-dimensional matrix model in existing literature is 

shown to overestimate growth, the size of felled trees, and the value of the forest, in addition to deviations in harvest

frequency and rotation period length. 

Third, we obtain solutions relying solely on partial harvesting (the CCF regime) and show their properties under stochas- 

tic growth and price and compute reservation price schedules, none of which have been presented in existing studies. We 

find that including a wider range of harvesting alternatives decreases the overall level of economic risk. The inclusion of 

thinning and the CCF regime turns out to be essential for profitability, implying that optimizing rotation timing and clear- 

cuts solely, as in the S-F and tree paradigm models, serves for theoretical purposes but in any wider contexts calls for

expanded dimensions. 

The model with four tree species includes 1900 state and 950 control variables and binary harvest timing choices. Ex- 

tending harvesting alternatives from clear-cuts to thinning and from a single-species setup to mixed species suggest that 

simpler specifications dilute the effects of stochasticity. The lower-dimensional matrix model has a similar effect. Addition- 

ally, it leads to overestimation of stand growth and of the economic outcome compared with the detailed individual-tree 

model. 

Obtaining high-dimensional results based on individual-tree structure is possible by RL despite being beyond reach by 

earlier methods. This allows us to evaluate the accuracy of the feedback thinning function applied in the existing litera- 

ture. This idea to circumvent the curse of dimensionality turns out to be inaccurate but based on our results we suggest a

modification that may more closely mimic optimal harvests. 

The next section specifies the optimization model. This is followed by an existence theorem for the optimal solutions as 

stationary Markov policy. Next, we present the computation results and finally a discussion and conclusions. Proofs, details 

on empirical model properties and the reinforcement algorithm are provided in the appendix. 

2. Stochastic Optimization based on a Mixed Individual-Tree Model 

Let ˜ x j,q,w,t denote the number of trees (per ha) of species j ∈ { 1 , . . . , l} in size classes q ∈ { 1 , . . . , m } and age cohorts

w ∈ { 1 , . . . , n } at the beginning of period t = 0 , 1 , 2 , . . . and h j,q,w,t the number of trees harvested at the end of the periods,

respectively. The variables ˜ d j,q,w,t denote the diameter (centimeters) of size class q of age w trees at the beginning of period

t . To allow any initial stand state and utilization of per-period information on growth stochasticity, we introduce variables 

x j,q,w,t and d j,q,w,t to represent the state variables at the end of the periods before harvesting. The stand state showing the 

number of trees in various species, size, and age classes at the beginning and end of the periods but before harvesting are

then given by ˜ x t ∈ R 

l×m ×n and x t ∈ R 

l×m ×n , respectively. Similarly, we use d t , ˜ d t , and h t to denote the corresponding diameter

data and the number of harvested trees by species, size, and age class. During each period t , the fraction of trees of species j

that survive from age class w to the next age class w + 1 is denoted by 0 ≤ α j ( ̃  x t , ˜ d t ) ≤ 1 . The per-period diameter growth is

I j,q,w 

( ̃  x t , ˜ d t , ε t ) , where the development of ε t is stochastic. Natural regeneration of species j and size class q is given by the

ingrowth function φ j,q ( ̃  x t , ˜ d t , ω t ) ≥ 0 , where ω t is the stochastic variation. The diameters of the new naturally regenerated

trees are ̂ d j,q, 0 . 

Let r be the rate of interest p.a., and γ = 1 / (1 + r) 5 be the discount factor for a 5-year period. Let (p t ) 
∞ 

t=0 
, p t ∈ R 

2 l denote

a species-specific stochastic price process for saw timber and pulp, and let δth ∈ { 0 , 1 } and δcc ∈ { 0 , 1 } denote boolean vari-
t t 

3 
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ables that determine periods when a thinning or a clear-cut take place, respectively. The gross revenues from clear-cutting 

and thinning are R cc (h t , d t , p t ) and R th (h t , d t , p t ) and the clear-cut and thinning costs C cc (h t , d t ) and C th (h t , d t ) , respectively.

When either a thinning or a clear-cut takes place, we include a fixed harvesting cost C f (planning and transporting the

harvester to the site), implying that harvesting may not be carried out at each period. In the case of a clear-cut, the stand

state is always reset to bare land that is immediately artificially regenerated to the state x̄ j,q, 0 , d̄ j,q, 0 , where the former is

the number of seedlings and the latter their initial size. Given that the regeneration cost is C r , the per-period net revenues

are 

π(x t , d t , p t , h t , δ
th 
t , δcc 

t ) = 

{ 

R th (h t , d t , p t ) − C th (h t , d t ) − C f if δth 
t = 1 

R cc (x t , d t , p t ) − C cc (x t , d t ) − C f − C r if δcc 
t = 1 

0 otherwise . 

(1) 

Let the expected present value of net revenues be denoted as J(x 0 , d 0 , p 0 ) , where an initial stand state is x 0 , diameter

data d 0 , and market prices p 0 . The stochastic problem is written as 

J(x 0 , d 0 , p 0 ) = max 
h t ,δth 

t ,δcc 
t 

E 

[ 

∞ ∑ 

t=0 

π(x t , d t , p t , h t , δ
th 
t , δcc 

t ) γ
t 

] 

, (2) 

subject to 

x j,q, 1 ,t = φ j,q ( ̃  x t , ˜ d t , ω t )(1 − δcc 
t−1 ) + δcc 

t−1 ̄x j,q, 0 , j ∈ { 1 , . . . , l} , q ∈ { 1 , . . . , m } , (3) 

˜ x j,q,w +1 ,t+1 = 

(
x j,q,w,t − h j,q,w,t δ

th 
t 

)
( 1 − δcc 

t ) , j ∈ { 1 , . . . , l} , 
q ∈ { 1 , . . . , m } , w ∈ { 1 , . . . , n − 1 } , (4) 

x j,q,w,t = α j,q,w 

( ̃  x t , ˜ d t ) ̃  x j,q,w,t , j ∈ { 1 , . . . , l} , q ∈ { 1 , . . . , m } , 
w ∈ { 2 , . . . , n } , (5) 

˜ d j,q, 1 ,t = 

̂ d j,q, 0 (1 − δcc 
t−1 ) + δcc 

t−1 d̄ j,q, 0 , j ∈ { 1 , . . . , l} , q ∈ { 1 , . . . , m } , (6) 

d j,q,w,t = 

˜ d j,q,w,t + I j,q,w 

( ̃  x t , ˜ d t , ε t ) , j ∈ { 1 , . . . , l} , q ∈ { 1 , . . . , m } , 
w ∈ { 1 , . . . , n } , (7) 

˜ d j,q,w +1 ,t+1 = d j,q,w,t , j ∈ { 1 , . . . , l} , q ∈ { 1 , . . . , m } , w ∈ { 1 , . . . , n − 1 } , (8) 

δth 
t δ

cc 
t = 0 , (9) 

x t , ̃  x t ≥ 0 , 0 ≤ h t ≤ x t , (10) 

where t = 0 , 1 , 2 , . . . . In addition, our existence proof applies a technical assumption x t , d t ≤ K element-wise for some finite

constant K. Thus, the number of trees or the diameter of each size, age, and species class cannot exceed some arbitrarily

large value that never becomes binding and exceeds levels that are biologically attainable in a one-hectare forest. 

In (1)–(10), the problem is to choose the number of harvested trees h t and the timings for thinning and clear-cuts, δth 
t 

and δcc 
t , over the time periods t = 0 , 1 , 2 , . . . . Equation (3) defines the number of trees in new cohorts at the end of each

period before harvesting in the cases with and without clear-cuts. Equation (4) gives the number of trees in various cohorts

at the beginning of the periods. Equation (5) includes the survivability of trees over periods. If any cohort reaches age n ,

it will die naturally. Equation (6) determines the initial tree diameters depending on whether regeneration is natural or 

artificial, and equations (7) - (8) determine their development thereafter. 

One possible solution regime includes only thinning (δcc 
t = 0 , t = 0 , 1 , 2 , . . . ) , i.e. it is the CCF regime. Solutions with a

chain of clear-cuts and possibly thinnings are RF regime solutions. In intermediate cases, clear-cuts only occur occasionally 

(e.g. at the initial state) although thinning is the dominant harvesting method. Empirical details for the stand growth models 

are given in Appendix A including the interaction between tree species in growth, mortality and regeneration as well as the

connection between the matrix and the individual-tree model. The economic parameter values, including the estimated 

model for stochastic prices, are in Appendix B. 
4 
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3. Existence of an optimal solution as a stationary Markov policy 

The forest management problem (1)–(10) can be described as a dynamic discrete-time decision process (S, { D (s ) : s ∈
S} , q, q 0 , π, γ ) , where the components of the tuple are defined as follows: 

(i) S stands for the state space, where s t = (x t , d t , p t ) ∈ S represents the number of trees x t , tree diameters d t , and market

prices p t . 

(ii) A is the action space, where each action a t = (h t , δth 
t , δcc 

t ) ∈ A represents a harvesting decision. We note that δth 
t and

δcc 
t are independent variables and not functions of h t and x t . This ensures that when studying continuity with respect

to δcc 
t and δth 

t , taking the limit ensures that both of these variables remain 1 or 0 throughout the limiting procedure.

We define D (s ) as a non-empty subset of A , representing the set of actions feasible at state S (i.e., the set of imple-

mentable harvesting decisions). Requirement a t ∈ D (s t ) ensures that the number of trees harvested cannot exceed the 

number of trees available. We also denote gph D = { (s, a ) ∈ S × A : a ∈ D (s ) } . 
(iii) The transition probability is q : gph D → P (S) , where P (S) denotes the set of all probability measures on S. In this

notation, the transition probability q is directly defined by the ecological growth model equations presented in Ap- 

pendix A and the price dynamics given in Appendix B. That is, q describes the probability measure of variables x j,k,t+1 

and p t given (s t , a t ) ∈ gph D . 

(iv) q 0 ∈ P(S) is the so-called initial state distribution. 

(v) π : gph D → R is a measurable reward function. 

(vi) γ ∈ (0 , 1) is a discount factor. 

A policy is understood as a mapping from past observations to a distribution over the actions (harvesting decisions). 

Formally, a policy is defined as a sequence μ = (μt ) of transition probabilities, where μt (·| τ ) provide the conditional prob-

abilities of various actions given a history of forest management decisions τ = (s 0 , a 0 , . . . , s t ) . 

We write 
 for the set of all policies and F for the subset representing all deterministic policies (decision functions), i.e.

f ∈ F iff f : S → A is a deterministic function such that a = f (s ) ∈ D (s ) for s ∈ S. A policy is called Markov if the distribution

depends only on the last state. We write 
M 

⊂ 
 for the set of all deterministic Markov policies. Finally, if the policy does

not change over time, we define deterministic stationary policy as a Markov policy ( f t ) , where f t = f is independent of t .

We identify F with the set of all deterministic stationary policies. 

The value of a policy μ is defined as the total expected discounted reward that is encountered while the policy is

executed starting from initial state s : 

V μ(s ) = E μ

[ 

∞ ∑ 

t=0 

γ t π(s t , a t ) | s 0 = s 

] 

, (11) 

where the expectation is taken with respect to the probability measure defined by policy μ. The goal is then to find a policy

μ that maximizes the expected reward, 

V 

� (s ) = sup 

μ∈ 

V μ(s ) 

for any initial state s ∈ S. The optimal policy μ� is related to V � through μ� ∈ argmax 
μ∈ 


T μV , where 

(T μV )(s ) = E a ∼μ(·| s ) 
[ 
π(s, a ) + γ

∫ 
S 

V (y ) q (dy | s, a ) 
] 

(12) 

is the Bellman operator. While μ� ∈ 
 can be a randomized policy, the existence of a corresponding optimal deterministic 

stationary policy means that for each s ∈ S the supremum in 

sup 

a ∈ D (s ) 

{ 

π(s, a ) + γ

∫ 
S 

V 

� (y ) q (dy | s, a ) 
} 

can be achieved by selecting the actions according to a deterministic function f � : S → A , f � ∈ F . The existence of a solution

is guaranteed by the following result: 

Theorem 1. The stochastic optimization problem (1)–(10) corresponds to a dynamic discrete-time decision process (S, { D (s ) : s ∈
S} , q, q 0 , π, γ ) , which has an optimal solution that can be represented as a deterministic stationary Markov policy. That is, there

exists a function f ∈ F such that max μ∈ 
 V μ(s ) = max f∈ F V f (s ) for each s ∈ S. 

The proof of the proposition is given in Appendix C along with a discussion of technical details. The result has a num-

ber of important implications for the solvability of the problem. In particular, this allows us to use efficient reinforcement 

learning (RL) algorithms, such as proximal policy optimization (PPO) ( Schulman et al., 2017 ), that have been popularized in

machine learning literature to solve stochastic optimization problems that can be represented as Markov decision processes. 

In reinforcement learning, the process of finding the optimal policy parameters is conceptualized as an agent that learns 

by interacting with its environment and by gathering experiences that will help the agent evaluate what was successful 

and explore what potentially optimal actions are available in various situations ( Sutton and Barto, 2018 ). The interaction
5 
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Fig. 1. Deterministic Samuelson-Faustmann model for pine and a mixed stand. a) Interest rate 1%, BLV and rotation € 14064, 80 yrs in the individual-tree 

model and 17623 €, 60 yrs in the matrix model. b) Mixed stand, individual-tree model, interest rate 3%, BLV and rotation 65 65 yrs. c) Mixed stand, matrix 

model, interest rate 3%, BLV and rotation 1099 55 yrs. (BLV = bare land value, initial state, Appendix A) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between a learning agent and its environment is defined using the formal framework of Markov decision processes, but in 

contrast to dynamic programming, the transition probabilities do not need to be known in exact form when learning the 

policy parameters. The RL methods also avoid an exhaustive search over the entire state and action spaces, which makes 

them computationally more efficient than classical methods, such as policy and value iteration, for large state and action 

spaces. 

The environment is commonly defined as a large simulation model representing how the actual environment would re- 

spond to the actions taken by the agent. In our case, the environment is essentially represented by the forest growth model.

The agent and the environment interact at discrete time steps t = 0 , 1 , 2 , . . . . At each time step t , the agent receives a de-

scription of the forest stand state s t and, based on the state, selects an action a t = (h t , δth 
t , δcc 

t ) , where the agent chooses

between thinning, clear-cutting, and doing nothing, and how much is thinned. As a consequence of its action, the agent 

receives a reward, i.e. a per-period profit, π(s t , a t ) , and observes a new stand state s t+1 one time step later. The Markov

decision process underlying the environment and agent together thereby give rise to a trajectory of states, forest manage- 

ment decisions, and gross profits: s 0 , a 0 , π0 , s 1 , a 1 , π1 , . . . . In RL, each of these trajectories begins independently of how the

previous one ended. As the objective of the agent is to maximize the expected net present value (NPV) over each trajectory,

the agent can learn from the rewards it has received by pursuing various forest management policies, as represented by the

sequence of actions it has taken. 

To find a policy that maximizes the expected discounted reward, we apply a modified version of proximal policy opti- 

mization (PPO) to sequentially maximize a surrogate objective function that serves as an approximate lower bound for the 

expected reward ( Schulman et al., 2017 ). While the original PPO algorithm treats all actions as continuous, the algorithm

can easily be modified to handle a mixture of discrete and continuous actions, where the continuous actions are viewed

as parameters of the discrete actions ( Fan et al., 2019 ). Therefore, similar to Malo et al. (2021) , we approach the problem

of continuous action and state spaces using the notion of parameterized action spaces, where the choice between thinning, 

clear-cutting, and doing nothing is modeled as discrete actions and the actual harvesting quantities are modeled as their 

continuous parameters. Further details on the algorithm are discussed in Appendix D . 

4. Results 

Model (1)–(10) can be solved under a various number of details. To reveal their role, we proceed from a simple setup

toward more detailed ones. For this purpose, we first remove thinning (but maintain all other model properties) and solve 

the rotation as a single optimized variable in spirit of the Samuelson (1976) interpretation of the Faustmann (1849) land

value analysis and the closely related ”tree paradigm” literature ( Miller and Voltaire, 1983 ). Next, we include optimized 

thinning and finally both thinning and multiple tree species. 

4.1. Samuelson-Faustmann specification 

In purely deterministic solutions for pine ( Fig. 1 a), the maximum sustainable yield rotation is 70 years (not shown), while

the economic rotation is 80 (60) years when interest rate is 1% (3%, not shown). In Fig. 1 a, the matrix model yields a 20-year

shorter rotation and overestimates bare land value (BLV). In Figs. 1 b and c, the interest rate is 3%, the stand consists of four

tree species (which in the S-F setup that ignore partial harvests, are all clear-cut simultaneously), and the individual-tree 

based optimal rotation is 65 years, while it is 10 years shorter in the matrix model and again BLV is overestimated. These

are the first signs of the matrix model tendencies to overestimate volume growth leading to differences in both optimal 

harvests and profitability. 
6 
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Fig. 2. Samuelson-Faustmann model with stochastic price for pine. a) Expected rotations 77.9 and 59.9 years. b) Interest rate 1%, expected cutting value 

€ 18188, SD € 1968, 3% expected cutting value € 11704, SD € 1843. c) Interest rate 1%, optimal policy expected BLV 14597, SD € 326, policy trained in the 

deterministic environment, expected BLV 14089, SD € 424 (BLV = bare land value, SD = standard deviation). 

Fig. 3. Reservation price schedules (pine). a) With equal price deviations, b) Independent saw timber and pulp price deviations, interest rate 3%. 

 

 

 

 

 

 

 

 

 

 

Following the tree paradigm, we next include stochastic growth into the S-F setup. This yields expected clear-cut har- 

vests and BLVs within 0.1% of their deterministic levels with very low standard deviations (SD) ( ∼ 1% ). Additionally, growth

stochasticity is not high enough to produce any deviation from the optimal deterministic rotations. These outcomes follow 

from the low stochasticity in tree diameter growth and from the minor role of stochasticity in natural regeneration in the

S-F solutions, where rotation is rather short. 

In contrast to stochastic stand growth, i.i.d. stochastic pulp and saw timber prices (Appendix B) imply a deviation of up

to 30 years compared with the expected rotation (Fig 2 a). Given 1% and 3% interest rates and 50 0 0 stochastic realizations,

the expected rotations are slightly below their deterministic levels (77.9 and 59.9 years vs. 80 and 60 years). Figs. 2 a,b show

that the optimal cutting is not determined by barrier rule for age or cutting value. The BLV distributions in Fig. 2 c show

that the optimal policies yield higher expected BLVs and lower SDs compared with the policy computed under deterministic 

mean prices. 

The optimal reservation price schedule in Fig. 3 a shows that with a 1% interest rate, a price deviation of ca. +6% is

enough to advance clear-cutting by 15 years and a deviation of ca. -3% causes a postponement of up to 30 years. However,

clear-cut timing is less flexible with a higher interest rate. In Fig. 3 a, the saw timber and pulp price deviations from the

mean are of equal percentage, reflecting the positive covariance of these variables in our price model estimation (Table 4, 

Appendix B). Fig. 3 b relaxes this coupling, implying that the reservation price schedule forms a surface with its diagonal as
7 
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Fig. 4. Deterministic rotation forestry solutions (pine). a) Individual-tree model: optimal rotation 110 (95) years, BLV € 16676 ( € 5437), interest rate 1% 

(2%). b) Matrix model: optimal rotation 95 (100) years, BLV € 21393 ( € 7732), interest rate 1% (2%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the two-dimensional schedule in Fig. 3 a. A closer examination reveals that optimal timing reacts more sensitively to saw 

timber compared with pulp price. 

In the stochastic realizations of Figs. 2 b and c, the optimal stochastic policy produces a higher expected BLV compared

with the policy computed under deterministic mean prices, but the differences are 3.6% (3.2%) with an interest rate of 1%

(3%), i.e. the benefit from a flexible stochastic policy is rather low. Closely related to this, the realized prices at clear-cuts are

€ 61 and € 31.7 for saw and pulp logs, respectively (interest rate 1%), while the expected prices are € 58.6 and € 30.05. The

explanation for the rather low benefit from this flexible policy is the low SD ( ∼ 4% ) of the saw and pulp log prices compared

with expected prices in our estimated price model. To demonstrate these effects, we increased the SD in our price model

to 30%. Given this change, the variation in optimal rotation realizations becomes larger, the benefit from optimizing under 

stochastic prices increases to ca. 40%, and reservation price levels always exceeded the expected price levels. 

4.2. Optimized rotation, management regime choice, and thinning 

Optimized thinning, deterministic setups, and interest rates of 1-2% imply that the RF regime with two or three thinnings 

is optimal for pine ( Figs. 4 a,b). Compared with the S-F model ( Figs. 1 a,b), thinning lengthens the rotation by 30–45 years

and increases BLV by 19–28%. The matrix model overestimates the BLV by 28–42%, yields different numbers and timings of 

thinning, and different rotations compared with the individual-tree model. Volume developments in the models are addi- 

tionally rather different. Similarly as in the S-F setup, stochasticity in stand growth alone does not cause any variations in

harvest timing and only minor changes in cutting value. 

In Fig. 5 a, stochasticity in prices changes both the timing (5–10 years) and intensity of thinnings along with the timing

of clear-cuts. This differs sharply from deterministic growth and no thinning ( Fig. 3 a), where stand state is a deterministic

function of time and reservation price schedule is a priori determined in the time–price plane. In Fig. 5 a, thinning reacts to

stochastic prices, implying that the stand state varies at the moments of clear-cuts. Thus, harvest timing becomes dependent 

on varying stand state in addition to price. To obtain a comparable figure with schedules without thinning, the reservation 

price schedules in Fig. 5 b assume the state from the deterministic solution after the second thinning ( Fig. 5 a) as the initial

state. Comparing with the S-F model ( Fig. 3 a), clear-cut timing is more sensitive to timber price variations with optimized

thinning. With a 1% interest rate, ca. 38% of clear-cuts are expected to deviate by 10 years or more from the deterministic

110-year rotation ( Fig. 5 c). 50 0 0 realizations with simultaneous price and growth stochasticity show an increase from the

deterministic BLV of € 5437 to an expected BLV of € 5569 (SD € 142). Fig. 5 d compares the policy computed under deter-

ministic environment and the policy computed under stochastic prices and growth. Comparing with BLVs in the S-F model 

shows that the share of SD on BLV is lower under thinning: 1.7% vs. 2.2%, with an interest rate of 1% and 2.5% vs. 3.7% with

an interest rate of 3%. Thus, flexibly optimized thinning acts as risk-spreading. 

Including optimized thinning for deterministic Norway spruce implies an infinitely long rotation, i.e. optimality of the 

CCF regime and convergence toward a cyclical steady state ( Fig. 6 ). The differences with solutions without thinning are

remarkable, as the rotations in the S-F solutions are 90 and 70 years and BLVs are 25% and 96% lower (interest rates 1%

and 3%). 

Fig. 6 a shows how the matrix model produces faster initial growth, earlier and more frequent thinning (20 vs. 15 years),

and smoother volume development compared with the individual-tree model. In Fig. 6 b (upper panel), the tree classes in

the individual-tree model are grouped into 5-cm size classes. The matrix model overestimates the number of trees at both 

ends and particularly the size of the largest trees. Together, these differences imply that the matrix model overestimates 

the BLV by a factor of three, although the overestimation is lower for the steady-state mean annual net revenues (26%).
8
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Fig. 5. Optimal stochastic rotation solutions (pine). a) Growth and price stochasticity, interest rate 1%, b) Reservation price schedules, c) Rotation period 

realizations d) Bare land value (BLV) realizations, stochastic price and growth, interest rate 2%, expected BLV under optimal policy € 5569 (SD € 142) and €
5542 (SD € 158) under policy trained in the deterministic environment. 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 6 b (lower panel), the individual-tree size structure before the steady-state harvest is shown by 416 (nonzero) state

variables (tree size classes and diameters). Accordingly, the number of (nonzero) control variables is 208 in addition to the 

binary harvest timing variables. 

Pure growth stochasticity (not shown) causes 10-year deviations from the deterministic 25-year harvesting interval and 

decreases the expected harvest interval to 23 years (interest rate 1%). The SD in harvest levels is 35% (20%) with a 1% (3%)

interest rate. Compared with the S-F model, where growth stochasticity has negligible effects, these variations are high but 

still low compared with stochasticity and SD in natural regeneration, which is ca. 2.8 times the expected value. 

To study price stochasticity in the CCF regime, we first assume an initial state from the deterministic steady-state solution 

five years after the optimal harvest. In Figs. 7 a and b, the mean price would imply a harvesting rate of 25 (20) years with an

interest rate of 1% (3%) but a 15% higher price advances the harvest by 10 years. Similarly as in the RF regime ( Fig. 5 b), the

change in harvest timing is more sensitive to low price realizations (and low interest rate), and prices that remain below

10% of the mean postpone the harvest by 20 years or more. Fig. 7 c is based on 57 500 price realizations and the stand state

after previous harvest varies between realizations, implying that at each date the minimum price with harvest realization 

varies as a consequence of varying stand state. This allows computing both the mean reservation price and SD. In Fig. 7 d,

both price and stand growth are stochastic, implying that the SD from the mean timing is larger (575 0 0 0 realizations).

Thus, thinning and/or including both growth and price stochasticity imply that the reservation prices are dependent on 

stochastically evolving stand growth in contrast to the simplified schedules in Figs. 7 a and 5 b. 

Despite the differences in timing, the size variation in the harvested trees is negligible, i.e. 19.0 cm with an SD of 4 mm

(interest rate 3%) and 19.1 cm with an SD of 1 mm (interest rate of 1%). Instead, the variation occurs in the number of trees

harvested, implying an SD of 31 trees when the expected number of harvested trees per harvest is 273. 

A run with 50 0 0 realizations produces an expected BLV equal to € 622 with an SD of € 41. Mean BLV decreases to €
601 and SD increases to € 43 if the harvesting policy is trained based on deterministic mean prices ( Fig. 7 e). In Fig. 7 f, the

deterministic solution is contrasted to 10 realizations under stochastic price and stand growth. In stochastic solutions, the 

mean steady-state volume 112 m 

3 is above the deterministic average steady-state volume of 107 m 

3 . 
9 
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Fig. 6. Deterministic continuous cover solution (spruce). a) Bare land value (BLV) in the individual-tree (matrix) model € 602 ha-1 ( € 1900 ha-1). b) 

Steady-state stand structures in the matrix and individual-tree models. Interest rate 3%. 

Table 1 

Comparison of matrix and individual-tree deterministic models. 

Species 

composition 

Bare land value € Harvest interval 

years 

Average revenues net 

€ a −1 

Harvest m 

3 a −1 Average volume 

m 

3 

Diameters of felled 

trees cm 

M I M I M I M I M I M I 

spruce 1900 602 15 20 215 171 5.3 4.4 103 107 20–35 19–26 

spruce, birch 2039 595 15 20 236 168 6.1 4.9 104 105 20–35 12–25 

spruce, birch, 

pine, aspen 

2339 653 15 20 225 159 6.3 5.3 105 110 15–35 14–25 

Note: M = matrix model, I = individual-tree model, interest rate 3%. All figures per hectare. Excluding BLV, figures are for a CCF steady-state cycle. 

 

 

 

 

 

 

 

Similarly as with RF solutions for pine, optimized thinning decreases the relative SD of BLVs compared with solutions 

without thinning, i.e. 2.3%, 4.7%, and 7.4% vs. 1.6%, 2.5%, and 6.6% (interest rates 1%, 2%, and 3%). Intuitively, more frequent

fellings and a lower number of trees per felling decrease the overall stand-level risk. 

Price stochasticity increases the BLV in the individual-tree model by 3.3% and by 1.4% in the matrix model. Accordingly, 

the steady-state net revenues increase by 7.3% in the individual-tree model and by 3.5% in the matrix model. In both models,

price stochasticity increases the mean steady-state volume, but the increase is 5% in the individual-tree model and 1% in 

the matrix model. The simpler matrix model thus tends to dilute the effects of stochasticity. 

4.3. Continuous cover forestry for mixed-species stands 

With four tree species, the number of nonzero tree classes in the individual-tree model is 950, implying, along with the

variables for tree diameter, that the number of (nonzero) state variables is 1900 and the number of control variables is 950

in addition to the binary harvest timing variables. Assuming interest rates of 1–3%, the optimal deterministic solution in both 

the matrix and individual-tree models is a spruce-dominated CCF solution ( Fig. 8 a). However, the matrix model solution is

more even over time, and harvesting interval is shorter. Additionally, the matrix model overestimates the number of trees 

in both the small and large size classes ( Fig. 8 b). 

A major difference between the models’ outputs are in their objective values, and the matrix model produces more 

than three times higher BLV compared with the individual-tree model ( Table 1 ). This is caused by differences in harvest

timing and the levels of yield and net revenues. The first harvest is 15 years sooner in the matrix model solution, and

the largest harvested tree is 32.5 cm in the steady-state harvests and 25.6 cm in the individual-tree model. Additionally, 

the matrix model suggests that a mixed-species stand clearly outperforms single-species stands, while a similar outcome 
10 
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Fig. 7. Stochastic continuous cover solutions (spruce). a) A steady-state reservation price schedule under fixed previous harvest state (stochastic price), 

b) Harvest timing distributions as deviations from deterministic timing (stochastic price), c) A steady-state reservation price schedule under stochastic 

previous harvest state (stochastic price), d) A steady-state reservation price schedule under stochastic previous harvest state (stochastic price and growth), 

e) Bare land value (BLV) distributions (stochastic price), f) Deterministic solution and stochastic realizations (stochastic price and growth), interest rate 3% 

in c-f. 

 

 

 

 

 

 

 

 

is less clear in the individual-tree output ( Table 1 ). The models’ differences at the steady-state cycle are less dramatic but

still remarkable: the matrix model net revenues are 25-41% and the timber output is 18-24% higher compared with the 

individual-tree model. 

The main effect of growth stochasticity occurs in natural regeneration, and the SD averages ca. 2.5 times the mean 

number of ingrowth seedlings. This causes variability in steady-state net revenues per harvest with an SD of 22% ( Fig. 9 b).

To a large extent, this high variability is cancelled out in the BLV distribution, where the fraction of SD from the expected

BLV is 6.3% ( Fig. 9 c). Growth stochasticity lengthens the expected harvesting interval from its deterministic 20 years to 21.3

years ( Fig. 9 a). As a consequence, growth stochasticity increases the average stand volume and average annual steady-state 

harvest yield ( Figs 10 ). Given the S-F setup, growth stochasticity does not have any effects on clearcut timing implying that

Fig. 1 b shows the optimal S-F solutions for mixed species forest with and without stochasticity. Thus, the comparison with

Fig. 10 reveals the effects of fully utilizing the model dimensions. 

By comparison, the stochastic matrix model results show lower SDs in BLV (2.2%) while the SD with the individual-tree

model is 6.3%. In the matrix model, stochasticity shortens the expected harvesting interval from 15 to 12.8 years ( Fig. 9 a).

Additionally, the SDs of the steady-state harvest, stand volume, and net revenues are lower in the matrix model, suggesting 

that it dilutes the effects of growth stochasticity, as in the case with single-species spruce CCF solutions. 
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Fig. 8. Mixed-species deterministic solutions. a) and b) Upper (lower) panel matrix (individual-tree) model. Interest rate 3%. 

Fig. 9. Mixed-species model with stochastic stand growth. a) Individual-tree (matrix) model expected harvesting interval 21.3 years (12.8). b) Expected 

revenues € 3425, SD € 737. c) Expected BLV € 628, SD € 41. Interest rate 3% (b,c). 

 

 

 

 

 

5. Discussion and conclusions 

The most commonly applied stochastic approach for forest resources, i.e. the ”tree paradigm”, only optimizes rotation 

length and specifies stand clear-cut value as geometric Brownian motion, with the result that stochasticity increases both 

expected rotation and BLV ( Chang, 2005; Miller and Voltaire, 1983; Willassen, 1998 ). Brownian motion with a fixed initial

state after each harvest implies that stochasticity originates from stand growth. In our empirically detailed model and data, 

including only growth stochasticity into this Samuelsson-Faustmann model (i.e. no partial harvests) does not lead to any 

departures from the deterministic optimal rotation. 

Given the specification with no partial harvests, our results on i.i.d. price stochasticity are qualitatively similar to 

Brazee and Mendelsohn (1988) and Insley and Rollins (2005) , but we find that clear-cut timing reacts more sensitively

to saw timber compared with pulp price, and that timing is more flexible under a low interest rate. In our results, the

stochastic policy increases the expected BLV ca. 3.5% above the outcome of the deterministic policy, while the gain is 42–

88% in Brazee and Mendelsohn (1988) and as high as 550% in Insley and Rollins (2005) . In our setup, the low increase in

expected BLV follows from the low SD in our price data. When the SD in prices is increased to similar levels as in Brazee and

Mendelsohn (1988) , the gain from optimal policy in the expected BLV ( ∼ 40% ) is closer to their results. 
12 
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Fig. 10. The optimal deterministic and 10 stochastic realizations for a mixed-species stand. 

Notes: Interest rate 3%, Expected BLV € 628. 

 

 

 

 

 

 

While Clarke and Reed (1989) and Reed and Clarke (1990) make a sharp distinction between age-dependent and size- 

dependent models, our setup includes these features simultaneously. Steps toward this direction are taken in Helmes and 

Stockbridge (2011) , Sødal (2002) , and Alvarez and Koskela (2007) by the inclusion of thinning (partial harvests) but without

expanding the model dimensions. In our size- and age-structured model, the inclusion of thinning lengthens the rotation 

period, which, depending on tree species, may become infinitely long. In these cases, the solution represents continuous 

cover forestry, i.e. harvesting based entirely on thinning instead of clear-cuts. Additionally, after including thinning, the 

maximized stand value increases (19–900%) and optimal solutions react more sensitively to both stochastic forest growth 

and stochastic wood prices. However, with thinning, SD becomes lower, suggesting that more frequent smaller harvests 

act as risk-spreading. Together these results reveal the clear reason for proceeding from the classic S-F setup and the tree

paradigm to models with extended dimensions. 

The optimization of intermediate harvests or thinning brings out the model dimensions and the curse of dimensional- 

ity. The individual-tree structure applied here (with 20 0–20 0 0 state and control variables) is an exception even without

stochasticity. Haight and Monserud (1990a,b) apply an individual-tree model, solve both RF and CCF solutions but group 

harvested trees into seven size classes, and do not apply flexible optimization of harvest timing. Tahvonen (2011) uses a

fully continuous diameter variable but assumes only one ingrowth tree class per cohort and circumvents the mixed-integer 

control variables by assuming a fixed harvesting interval. Fixed harvest timing is a clear departure from the optimal tim- 

ing/stopping spirit and distorts the solutions when the initial state is far from the CCF steady state and when the question

is CCF/RF optimal choice. 

In previous research with i.i.d. price stochasticity ( Brazee and Mendelsohn, 1988; Insley and Rollins, 2005 ), the reser-

vation price schedules are two-dimensional, decreasing the relations between price and clear-cut age. We show that in- 

cluding partial harvests with price stochasticity or both price and growth stochasticity changes this established result and 

the price/timing combination becomes dependent on the forest state that evolves stochastically. Computation realizations 

suggest that the effects of a stochastically evolving stand state make the guidance of the mean timing schedule inaccurate. 

Optimal timing must be based on observing both stand state and prices. 

Within stochastic Markov decision models, Haight (1990, 1991) include i.i.d. stochastic timber price within the matrix 

model approach and assume a feedback thinning function that maps the stand cutting value with the number of harvested 

trees. The function parameters are optimized by Monte Carlo simulation, and the results suggest no harvest when the stand 
13 
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Fig. 11. Relationship of cutting value - number of harvested trees. Note: Spruce, interest rate 3%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cutting value is low and a positive increasing harvest with a higher value of standing trees. Later, similar methods motivated

by the aim to circumvent the curse of dimensionality are applied in Lu and Gong (20 03, 20 05) and Pukkala (2015) , among

others. 4 

We can analyze the accuracy of the thinning function approximation by running the optimal policy (that depends on 

both stand state and price) with a sufficiently high number of stochastic price realizations and by plotting the stand cutting

value with the number of trees harvested ( Fig. 11 ). The outcomes show that neither the steady-state solutions nor the

solutions for the transient period can be accurately represented in our model by a function starting horizontally from the 

origin and continuing as an increasing concave function after some cutting value of standing trees, as in Haight (1990, 1991) .

This outcome is surely case-specific, but at least in our setup a single function cannot include the feature where waiting

may be optimal, even with a high stand cutting value, if the price realization is (still) low. 

However, in our results, price stochasticity changes the number of harvested trees but the minimum diameter of har- 

vested trees is rather stable (albeit depends on the species and interest rate). Based on this, a feedback function that maps

the cutting value of trees exceeding the typical minimum diameter and the number of trees harvested may produce a rea-

sonable approximation. 

A very different approach to circumventing the curse of dimensionality is developed in Kaya and Buongiorno (1987) , 

where a matrix model is used to compute transition probabilities for a reduced (linear) system with a finite number of dis-

crete stand states. Given 41–64 states and three discrete prices, dynamic programming is used to obtain a feedback harvest 

policy for stochastic problems. This approach is applied widely, and e.g. Buongiorno and Zhou (2015) study mixed-species 

CCF forestry with price and growth stochasticity and under various objectives. The question remains how well the reduced 

model is able to represent the original higher-dimensional nonlinear specification. Compared with the feedback thinning 

function or Buongiorno and his coauthors, we apply a generalization of the matrix model and maintain the relationship 

between the genuine state variables and harvesting control variables. Additionally, our state variables and stochastic prices 

are continuous and the results suggest that reducing the model dimensions is not harmless. 

Getz and Haight (1989) compare a two-species matrix model with an individual-tree model and observe that the ma- 

trix model provides a method for simplifying individual-tree models with minimum loss of biological details. This is in line 

with the still prevailing view ( Liang and Picard, 2013 ) that individual-tree models are not suited for optimization because

of the excessively large number of state and control variables. In contrast, matrix models are written to contain fewer vari-

ables and are computationally suitable for optimization studies. We challenge this view based on optimization output, while 

these earlier comparisons observe deterministic stand development without harvests ( Picard and Liang, 2014 ) or outcomes 

from pre-specified non-optimized harvests and do not compare the maximized objective values produced by the two model 

variants. 

One possibility may be to decrease the size-class width in the matrix model to decrease the differences with the 

individual-tree model. In our model this, however, implies that the fraction of trees moving to the next size class may

exceed one. Preventing this generates non-differentiability in the transition and mortality functions; an unfortunate feature 

for the optimization algorithms typically used with the matrix models. Similar problems occur in a specification without 

the ”Usher property” ( Picard and Liang, 2014 ), i.e. when some fraction of individuals are allowed to move up more than one

class. These problems could perhaps be smaller if the period length in forest growth models were less than the typical 5 or

10 years. 
4 For a similar discussion in another context, see Maliar and Maliar (2022) . 
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The curse of dimensionality is a barrier to model development in many fields of dynamic economics ( Scheidegger and

Bilionis, 2019 ), and optimizing the use of forest resources is not an exception. Specifying our model under a varying degree

of dimensionality reveals that increasing model structure and details changes the optimization solutions both qualitatively 

and quantitatively. Methods developed in reinforcement learning are promising in proceeding beyond the existing bound- 

aries and should have high potential in all sub-fields of resource economics, including the economics of climate change 

( Cai and Lontzek, 2019; Rolnick et al., 2022 ). 

Data availability 

Optimizing high-dimensional stochastic forestry via reinforcement learning 

Appendix A. Forest Growth 

Following Pukkala et al. (2013) , the survivability functions in (5) are given as 

α j,q,w 

( ̃  x t , ˜ d t ) = [1 + exp (−b 0 , j − b 1 , j 

√ 

˜ d j,q,w,t − b 2 , j 
˜ d j,q,w,t − b 3 , j 

√ 

B p,q,w 

( ̃  x t , ˜ d t ) 

− b 4 , j 

√ 

B sp,q,w 

( ̃  x t , ˜ d t ) − b 5 , j 

√ 

B b,q,w 

( ̃  x t , ˜ d t ) + B a,q,w 

( ̃  x t , ˜ d t ) 

− b 6 , j 

√ 

B b,q,w 

( ̃  x t , ˜ d t ) + B a,q,w 

( ̃  x t , ˜ d t ) + B p,q,w 

( ̃  x t , ˜ d t ) − b 7 , j � )] −1 , (A.1) 

where functions B j,q,w 

, j = p, sp, b, a , represent the basal area ( m 

2 ha −1 ) of trees larger than 

˜ d j,q,w,t diameter of Scots pine

(Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), silver birch (Betula pendula Roth), and European aspen (Populus 

tremula L.) trees respectively. Functions B are continuous and bounded. Parameter � denotes the length of period, which is 

5 years. The diameter growth in (7) is given as 

I j,q,w 

( ̃  x t , ˜ d t , ε t ) = exp 

(
b 8 , j + b 9 , j 

√ 

˜ d j,q,w,t + b 10 , j 
˜ d j,q,w,t + b 11 , j ln (T S) + b 12 , j SX + b 13 , j ln (B ( ̃  x t , ˜ d t )) 

+ b 14 , j 

B p,q,w 

( ̃  x t , ˜ d t ) √ 

d j,q,w,t + 1 

+ b 15 , j 

B sp,q,w 

( ̃  x t , ˜ d t ) √ 

d j,q,w,t + 1 

+ b 16 , j 

B b,q,w 

( ̃  x t , ˜ d t ) + B a,q,w 

( ̃  x t , ˜ d t ) √ 

d j,q,w,t + 1 

+ b 17 , j SD + b 18 , j d j,t SD + b 19 , j a 

)
+ ε j,w,t , (A.2) 

where B denotes the total stand basal area ( m 

2 ha −1 ), T S the temperature sum (degree days, dd), SX an indicator variable if

site fertility is ”sub-xeric” instead of the more fertile ”mesic”, and SD is the standard deviation of the diameter (cm). The

last term ε j,w,t denotes the stochastic variation around the expected diameter increment and is obtained by aggregating the 

stochastic tree-level model defined by Pukkala et al. (2013) . For pine, we assume the site to be 1350dd/sub-xeric, and for

spruce and mixed-species stands the site is 1100dd/mesic. 

When the individual-tree model is applied as the matrix model, the right-hand side of (A.2) is divided by the size class

width, implying that the modified (A.2) determines the transition rate ( Liang and Picard, 2013 ). The matrix model we use in

comparison is based on a 50-mm size class depth suggested by Bollandsås et al. (2008) and applied in many studies such

as Malo et al. (2021) . 

Let N in, j and p in, j denote the number of ingrowth trees and the probability of ingrowth, respectively. The stochastic 

ingrowth function in Pukkala et al. (2013) is given by 

φ j ( ̃  x t , ˜ d t , ω t ) = N in, j × p in, j , (A.3) 

N in, j = exp (b 20 , j + b 21 , j 

√ 

B ( ̃  x t , ˜ d t ) + b 22 , j ln (B b ( ̃  x t , ˜ d t )) + b 23 , j B ( ̃  x t , ˜ d t ) + ω j,t ) , 

p in, j = 

1 

1 + exp 

(
− b 24 , j − b 25 , j ln (B j ( ̃  x t , ˜ d t )) − b 26 , j 

√ 

B p ( ̃  x t , ˜ d t ) − b 27 , j B p ( ̃  x t , ˜ d t ) 

− b 28 , j B ( ̃  x t , ˜ d t ) + b 29 , j SX 

)
, 

ω j,t = ˜ ρ j ω j,t−1 + u j,t , u t = (u 1 ,t , . . . , u l,t ) ∼ N(0 , �u ) (A.4) 

where B j denotes the total basal area of trees of species j, and ω j,t denotes the residual variation in ingrowth for species

j and a 5-year period t . The relative growth variation is especially large among small trees and in the ingrowth esti-

mates. The ingrowths of consecutive 5-year periods and the residuals of predicted ingrowths are positively correlated in the 

Pukkala et al. (2013) model. The species-specific temporal autocorrelation coefficient is given by ˜ ρ j . This is largely explained 

by the fact that one good regeneration year tends to generate ingrowth for several years. In addition to autocorrelation, the
15 
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Table A1 

Parameter values for the growth model (Pukkala et al. 2013). 

Spruce Birch Pine Aspen Spruce Birch Pine Aspen 

b 0 , j 5.871 0.433 2.333 0.433 b 15 , j -0.1473 -0.1044 -0.1399 -0.1044 

b 1 , j 1.536 2.284 1.518 2.284 b 16 , j -0.08277 -0.1554 -0.1797 -0.1554 

b 2 , j 0.122 -0.217 -0.083 -0.217 b 17 , j 0 -0.1137 0 -0.1137 

b 3 , j 0.106 0 -0.602 0 b 18 , j 0 0.004857 0 0.004857 

b 4 , j 0.69 -0.483 -0.686 -0.483 b 19 , j 0 0 0 0.2017 

b 5 , j 0.226 0 -0.332 0 b 20 , j 4.378 6.368 6.109 4.829 

b 6 , j 0 -0.266 0 -0.266 b 21 , j -0.0265 0 -0.844 -0.0236 

b 7 , j 0.465 0 0 0 b 22 , j 0 0.496 0 0 

b 8 , j -9.6448 -6.0405 -5.9901 -6.0405 b 23 , j 0 -0.161 0 0 

b 9 , j 0.455 0.9309 0.5057 0.9309 b 24 , j 1.001 1000 -0.375 1.202 

b 10 , j -0.05741 -0.1441 -0.07699 -0.1441 b 25 , j 0.641 0 1.045 0 

b 11 , j 1.4551 0.812 0.987 0.812 b 26 , j 0 0 -0.556 0 

b 12 , j -0.04910 -0.09846 -0.07558 0 b 27 , j 0.046 0 0 0 

b 13 , j -0.3081 -0.1424 -0.3593 -0.1424 b 28 , j -0.0658 0 0 -0.027 

b 14 , j -0.02915 -0.03275 -0.141 -0.03275 b 29 , j 0 -0.301 0.277 -1.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

residuals of predicted ingrowths are cross-correlated across species, which is captured by the random factors u t that are 

assumed to follow a multivariate normal distribution and be independent within time periods t with a constant covariance 

matrix �u . Parameter values are based on values presented in Pukkala et al. (2013) , and the deterministic ingrowth model is

obtained by averaging. The numerical values for regression coefficients b ·, j in (A .1) –(A .3) can be found in Table A1. When the

initial state is bare land, it takes 20 years in mesic sites (25 years in sub-xeric sites) until the stand is artificially regenerated

and the number of trees is 1750 (spruce) and 250 (other species in mixed-stands cases) or 2100 (pure pine stands). At these

states, trees are equally distributed into ten classes with diameters 5.25, 5.75,..., 9.75 (in cm). The number of ingrowth trees

are equally distributed into ten classes with diameters 0.25, 0.75,..., 4.75 (in cm), meaning that the ingrowth for individual 

size classes is φ j,q ( ̃  x t , ˜ d t , ω t ) = φ j ( ̃  x t , ˜ d t , ω t ) / 10 . In the matrix model, the artificially generated state is 1750 spruce trees and

250 other species in the 7.5-cm size class. Naturally regenerated trees enter the 2.5-cm size class. 

Appendix B. Harvesting revenues and costs under stochastic prices 

Harvesting revenues are defined separately for saw logs and pulpwood using species-specific market prices. The gross 

revenue per period is given by 

R (h t , d t , p t ) = 

l ∑ 

j=1 

m ∑ 

q =1 

n ∑ 

w =1 

(p 1 , j,t v 1 , j,w 

(d j,q,w,t ) + p 2 , j,t v 2 , j,w 

(d j,q,w,t )) h j,q,w,t , (B.1)

where p 1 , j,t and p 2 , j,t are the inflation-adjusted real prices of saw timber and pulpwood calculated using 2019 as a base year,

while v 1 , j,w 

(d j,q,w,t ) and v 2 , j,w 

(d j,q,w,t ) are saw timber and pulpwood volumes per tree ( Table B.3 ). Throughout, functions v
are continuous and bounded functions of d. 

The per-period species-specific saw timber and pulpwood prices are modeled as iid. random variables with a multivariate 

log-normal distribution, 

ln (p t ) ∼ N(μp , �p ) , (B.2) 

where μp ∈ R 

2 l represents long-term equilibrium prices and �p ∈ R 

2 l×2 l is the covariance matrix for normally distributed 

random innovations. While the long-term equilibrium prices can be specified as long-term means, we estimate the covari- 

ance structure using historical price data from the last 30 years obtained from the statistics of Natural Resources Institute, 

Finland. Even though the observed annual prices have short-term dependencies, we find them significant only within each 

5-year period. Therefore, when modeling prices in steps of 5-year periods, it is justified to assume that the per-period prices

are independent and identically distributed variables with a finite covariance matrix. To account for short-term effects when 

estimating �p from annual data, we apply a Vector Error Correction Model (VECM) suggested by Engle and Granger (1987) ,

which is essentially a vector autoregression that contains an equilibrium correction term. Recently, similar modeling ap- 

proaches have been applied e.g. by Kuuluvainen et al. (2018) , who studied price integration between domestic and imported

saw logs in Finland. The annual price model is then given by 

ln (p τ ) − ln (p τ−1 ) = �p τ−1 + 

k ∑ 

i =1 

�i ( ln (p τ−1 ) − ln (p τ−2 ) ) + const + ξτ , ξτ ∼ N(0 , ˜ �p ) , (B.3) 

where � ∈ R 

2 l×2 l , �i ∈ R 

2 l×2 l , for all i = 1 , . . . , k , and 

˜ �p ∈ R 

2 l×2 l is the covariance matrix for normally distributed random

innovations. The number of lags k is specified based on information criteria. The remaining parameters can be estimated 

using Johansen’s maximum likelihood procedure ( Johansen, 1995 ). The first term �p τ−1 on the right-hand side of (B.3) is

known as the error correction term. The term can be decomposed as �p τ−1 = ηβ ′ p τ−1 , where η ∈ R 

2 l×2 l and β ∈ R 

2 l×2 l 
16 



O. Tahvonen, A. Suominen, P. Malo et al. Journal of Economic Dynamics & Control 145 (2022) 104553 

Table B1 

Saw timber and pulpwood volumes for spruce, pine, birch, and aspen (Parkatti and Tahvonen 2020). 

Mesic forest type 

Spruce Pine Birch Aspen 

d ν1 , 1 (d) ν2 , 1 (d) ν1 , 2 (d) ν2 , 2 (d) ν1 , 3 (d) ν2 , 3 (d) ν1 , 4 (d) ν2 , 4 (d) 

6.5 0 0 0 0 0 0 0 0 

7.5 0.01374 0 0.03458 0 0.01591 0 0.01591 0 

12.5 0.06664 0 0.06659 0 0.07464 0 0.07464 0 

17.5 0.1669 0 0.10166 0.09764 0.18005 0 0.18005 0 

22.5 0.0808 0.23419 0.03905 0.27034 0.07854 0.25137 0.07854 0.25137 

27.5 0.06482 0.44578 0.03001 0.48515 0.06655 0.45137 0.06655 0.45137 

32.5 0.05975 0.68392 0.0275 0.74205 0.05827 0.69732 0.05827 0.69732 

37.5 0.04978 0.96304 0.02647 1.04106 0.04978 0.96304 0.04978 0.96304 

42.5 0.05039 1.25313 0.02596 1.38216 0.04865 1.24859 0.04865 1.24859 

47.5 0.04324 1.57421 0.02567 1.76537 0.04463 1.55035 0.04463 1.55035 

52.5 0.03925 1.89981 0.02549 2.29067 0.03891 1.86531 0.03891 1.86531 

Sub-xeric forest type 

Spruce Pine Birch Aspen 

d ν1 , 1 (d) ν2 , 1 (d) ν1 , 2 (d) ν2 , 2 (d) ν1 , 3 (d) ν2 , 3 (d) ν1 , 4 (d) ν2 , 4 (d) 

6.5 0 0 0 0 0 0 0 0 

7.5 0.01285 0 0.03342 0 0.01445 0 0.01445 0 

12.5 0.06061 0 0.06370 0 0.06552 0 0.06552 0 

17.5 0.15062 0 0.09685 0.09244 0.15522 0 0.15522 0 

22.5 0.06857 0.21435 0.03738 0.25616 0.07000 0.21483 0.07000 0.21483 

27.5 0.06052 0.39553 0.02917 0.46094 0.05743 0.39299 0.05743 0.39299 

32.5 0.04872 0.61681 0.02690 0.70979 0.04731 0.59908 0.04731 0.59908 

37.5 0.04593 0.85638 0.02597 0.99370 0.04769 0.82020 0.04769 0.82020 

42.5 0.04370 1.11749 0.02551 1.32168 0.04179 1.06492 0.04179 1.06492 

47.5 0.03787 1.40218 0.02525 1.69072 0.03290 1.32770 0.03290 1.32770 

52.5 0.03573 1.68841 0.02509 2.10083 0.03096 1.59244 0.03096 1.59244 

Parameter d is tree diameter at breast height, v 1 , j (d) is the pulpwood volume (m 

3 ) per tree, and v 2 , j (d) 

is the saw timber volume (m 

3 ) per tree. Aspen and birch volumes are assumed to be equal. We use 

linear interpolation to obtain volumes for arbitrary tree diameters. 

Table B2 

The covariance matrix for the logarithms of the wood prices. 

saw log, pine saw log, spruce saw log, birch pulp, pine pulp, spruce pulp, birch 

saw log, pine 0.00145 0.00108 0.00081 0.00126 0.00106 0.00096 

saw log, spruce 0.00094 0.00058 0.00096 0.00080 0.00073 

saw log, birch 0.00062 0.00084 0.00076 0.00062 

pulp, pine 0.00154 0.00125 0.00124 

pulp, spruce 0.00110 0.00099 

pulp, birch 0.00114 

Table B3 

Species-specific mean roadside saw timber and pulpwood prices in euros 

per m 

3 . 

Spruce Pine Birch Aspen a 

saw timber 58.44 58.64 49.73 30.16 

pulpwood 34.07 30.51 30.50 19.74 

a Prices for spruce, pine, and birch are based on data from the Natural Re- 

sources Institute Finland, while prices for aspen are based on personal commu- 

nication with the Central Union of Agricultural Producers and Forest Owners. 

 

 

 

denote the cointegration matrix and the loading matrix, respectively. The cointegration matrix β contains information on 

the equilibrium relationships between the variables in levels. Vector β ′ p τ−1 can be interpreted as the distance of the price 

variables from their equilibrium values. The loading matrix β describes the speed at which the wood prices converge back 

to their equilibrium values. Given that the effects of price shocks vanish already during a 5-year period, we can also use

the error covariance structure, estimated using (B.3) , in the simplified period-level model (B.2) without loss of rigor. The

parameter values used for the stochastic price model are given in Table B.4 . The mean prices are according to Table B.5 . 

Harvesting costs depend on species, tree diameter, and harvested wood quantity. The variable harvesting and hauling 

costs are derived from the detailed empirical model by Nurminen et al. (2006) for both clear-cut z = cl and thinning z = th :
17 
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Table B4 

Species-specific parameters for harvesting-cost functions. 

Species q c j,q, 0 c j,q, 1 c j,q, 2 c j,q, 3 c j, 4 c j, 5 
Spruce th 2.415 0.412 0.758 -0.180 2.272 0.535 

cl 2.100 0.412 0.758 -0.180 1.376 0.393 

Pine th 2.415 0.547 0.196 0.308 2.272 0.535 

cl 2.100 0.532 0.196 0.308 1.376 0.393 

Birch and Aspen th 2.415 0.420 0.797 0.174 2.272 0.535 

cl 2.100 0.430 0.756 0.174 1.376 0.393 

th = thinning, cl = clear-cut. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C z (h t , d t ) = 

l ∑ 

j=1 

c j,z, 0 

m ∑ 

q =1 

n ∑ 

s =1 

h j,z,s,t (c j,z, 1 + c j,z, 2 v j,s (d j,z,s,t ) + c j,z, 3 v j,s (d j,z,s,t ) 
2 ) (B.4) 

+ c z4 

l ∑ 

j=1 

n ∑ 

s =1 

h j,s,t v j,s (d j,z,s,t ) + c z, 5 

l ∑ 

j=1 

n ∑ 

s =1 

h j,z,s,t v j,s (d j,z,s,t ) 
0 . 7 , z = th, cl, (B.5) 

where v j,s (d j,z,s,t ) is the total tree volume, again assumed continuous and bounded, and c j,z,s are parameters given in

Table B.6 . The model defines cutting (B.4) and hauling (B.5) costs separately. According to this model, the variable har-

vesting costs increase with total harvested volume but decrease with tree volume. Only cutting costs have species-specific 

parameters, while hauling and felling costs are determined without separating between tree species. 

Appendix C. Existence of an optimal deterministic Markov policy 

To prove Theorem 1 , we use the general result, Theorem 2 , below, that requires the following assumptions. 

Assumption 1 (Compactness) . The state space S is a non-empty Borel subset of R 

dim (s ) , where each state is defined as a

triplet s = (x, d, p) , and the action space A is a non-empty Borel subset of R 

dim (a ) , where each action is defined as a triplet

a = (h, δth , δcc ) . For each s ∈ S, D (s ) ∈ 2 A , where 2 A denotes the family of all nonempty compact subsets of A . 

Assumption 2 (Continuity) . We assume that the following conditions are satisfied: 

(W1) The set valued mapping s 
→ D (s ) is upper semicontinuous. 

(W2) The reward function π : gph D → R is upper semicontinuous. 

(W3) The transition law q : gph D → P(S) is weakly continuous; that is, 
∫ 

S θ (z) q (dz| s, a ) is a continuous function on gph D

for each bounded continuous function θ : S → R . 

While the continuity and compactness assumptions are sufficient for the existence of a stationary optimal policy in the 

negative case where π ≤ 0 , they are not enough to guarantee the existence of a stationary optimal policy in the positive case

where π ≥ 0 . To guarantee that the total expected rewards are well defined, we will make use of the following additional

convergence assumption: 

Assumption 3 (General convergence condition) . For all s ∈ S, μ ∈ 
, at least one of the numbers V + μ (s ) := E μ

[∑ ∞ 

t=0 π
+ 
t | s 

]
and V −μ (s ) := E μ

[∑ ∞ 

t=0 π
−
t | s 

]
is finite, where πt = π(s t , a t ) γ t is a short-hand for the discounted reward observed at time t

when action a t is taken in state s t . For any πt ∈ R , here π+ 
t = max { πt , 0 } and π−

t = max {−πt , 0 } so that πt = π+ 
t − π−

t . 

Theorem 2 ( Schäl (1983) ) . . Under the compactness and continuity conditions in Assumptions (1) - (2) and the general conver-

gence condition in Assumption (3) , a deterministic stationary optimal policy f ∈ F exists such that sup π∈ 
 V π (s ) = sup f∈ F V f (s )

for each s ∈ S. 

Using the above theorem by Schäl (1983) , we can verify that the stochastic problem defined in Section 2 can be viewed

as a dynamic decision model, where the optimal value of the expected total rewards under all stationary policies is equal

to the optimal value under all (possibly randomized and non-Markovian) policies. 

Proof of Theorem 1 

Theorem 1 follows directly from Theorem 2 once we verify that Assumptions 1 –3 hold. For this, we first note that

Assumption 1 is valid. Indeed, the state and action spaces S and A are obviously non-empty Borel subsets of R 

dim (s ) and

R 

dim (a ) . Moreover, for given s ∈ S, the set D (s ) of possible actions a = (h, δth , δcc ) satisfies h j,q,w 

∈ [0 , x j,q,w 

] (i.e. more trees

cannot be harvested than actually exist). As all intervals [0 , x j,q,w 

] are closed and bounded, so is D (s ) as a direct product of

such intervals. Let us next verify Assumption 2 , i.e. conditions (W 1) − (W 3) . 

Condition (W 1) : Recall that, by the very definition, a set valued mapping s 
→ D (S) ∈ 2 A is upper semicontinuous if the

set 

{ s : D (s ) ∩ M � = ∅} 

18 
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is closed in the state space S for every closed M ⊂ A . For a given state s = (x, d, p) ∈ S, we have x j,q,w 

≥ 0 and for the pos-

sible harvesting decision h ∈ R 

l×m ×n we have h j,q,w 

∈ [0 , x j,q,w 

] , for all 1 ≤ j ≤ l, 1 ≤ q ≤ m and 1 ≤ w ≤ n . We also have

A = [0 , ∞ ) l×m ×n × { 0 , 1 } × { 0 , 1 } . Let M be a closed set in A . Then it can be represented as 

M = M 1 × . . . M l×m ×n × { 0 , 1 } × { 0 , 1 } , 
where each M k ⊂ R + is closed. Consequently, the claim follows directly by considering the one-dimensional case and ob- 

serving that the set { x ∈ R : [0 , x ] ∩ M � = ∅} is closed for every closed M ⊂ [0 , ∞ ) . 

Condition (W 2) : As the cost function C z (h t , d t ) and the reward function R z (h t , d t , p t ) are continuous functions of states

s t and h t , and the reward function can be expressed as the linear combination of these continuous functions given δth 
t and

δcc 
t , the upper semicontinuity follows. 

Condition (W 3) : Let θ : X 
→ R be bounded and continuous. We have to show that the mapping 

(s, a ) 
→ E [ θ (s t+1 ) | (s t , a t ) = (s, a ) ] 

is continuous. Note that now the transition law q is the probability distribution of s t+1 given (s t , a t ) . Moreover, using defining

equations (1) –(10) we observe that s t+1 contains two random innovations ω t and ε t , but otherwise is a deterministic 

continuous transformation of (s t , a t ) . As ω t and ε t are independent of (s t , a t ) , ε t is an independent sequence and ω t is an

AR(1) Gaussian sequence, condition (W 3) is obviously satisfied. 

It remains to verify Assumption 3 . We will show that the negative part V −π (s ) := E μ

[∑ ∞ 

t=0 π
−(s t , a t ) γ t | s ] is finite, allow-

ing to drop the price dynamics p from the considerations. 

Let x t , d t ≤ K elementwise for some finite constant K. That is, the number of trees x t or the diameter d t of each size, age,

and species classes cannot exceed a certain number determined by the area of the forest. Using elementary fact (a − b) − ≤ b

and the definition (1) of π , we see that 

π−(s t , a t ) γ
t ≤

(
C z (x t , d t ) + C f + C r 

)
γ t ≤ (K + C f + C r ) γ

t 

for a constant K as, by assumption, C z (x t , d t ) is a bounded function for z ∈ { th, cc} . Thus 

E μ

[ 

∞ ∑ 

t=0 

π−(s t , a t ) γ
t | s 

] 

≤ (K + C f + C r ) 
∞ ∑ 

t=0 

γ t = 

K + C f + C r 

1 − γ
< ∞ . 

This verifies Assumption 3 . Thus, since Assumptions 1 –3 hold, the statement of Theorem 1 follows from Theorem 2 . This

concludes the proof. 

Appendix D. Finding the Markov policy using proximal policy optimization 

Reinforcement learning algorithms, such as proximal policy optimization, are closely related to dynamic programming. 

Similar to learning methods, many dynamic programming algorithms are iterative and incremental procedures that find the 

correct solution through successive approximations ( Sutton and Barto, 2018 ). Reinforcement learning methods can basically 

be seen as attempts to achieve the same objective as dynamic programming but with less computation and without assum- 

ing a perfect model of the environment. Though the forest environment considered in this study is known, it is still too

complicated because of the large number of states and actions (i.e., the curse of dimensionality) to be solved using classical

dynamic programming techniques. To deal with large state and action spaces, we apply policy gradient methods that learn 

a parameterized policy directly via gradient ascent. 

D1. Proximal policy optimization as a policy gradient algorithm 

Assume that a policy is parameterized by a vector θ , and J(θ ) = V μθ
(s ) is a measure for the performance of the parame-

terized policy μθ . The idea of policy gradient methods is to maximize performance by updating the policy parameters using 

approximate gradient ascent in J: 

θ ← θold + β∇ J(θold ) , 

where β denotes the learning rate parameter for the current update. 

Most of the policy gradient algorithms would approximate the gradient by 

∇ θE μθ

[ 

∞ ∑ 

t=0 

γ t π(s t , a t ) 

] 

≈ ˆ E t 

[∇ θ log μθ (a t | s t ) ̂  A t 

]
, (D.1) 

where the expectation 

ˆ E t denotes the empirical average over a finite batch of sample trajectories, and 

ˆ A t is an estimate for

the advantage function at time t . The trajectories are obtained by interacting with the environment. These trajectories are 

also known as policy rollouts, as they are produced by repeatedly applying the current policy. The advantage for a policy μ
is defined as A μ(s, a ) = Q μ(s, a ) − V (s ) , where Q μ(s, a ) = π(s, a ) + γ

∫ 
V μ(y ) q (dy | s, a ) is the state-action value function for
S 
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Fig. D1. The neural network structure. The stand structure is given as an input. The actor networks output the discrete harvesting decision and the 

continuous harvest levels. The value network is used in the advantage estimation. 

 

 

 

 

 

 

 

 

policy μ. This class of algorithms that use the advantage function while approximating the gradient are known as actor–

critic methods. 

To prevent destructively large parameter updates, the policy gradient algorithms commonly use surrogate objectives in- 

stead of J(θ ) directly. For instance, trust region algorithms have applied a surrogate objective, 

max 
θ

J T R (θ ) = 

ˆ E t 

[
μθ (a t | s t ) 
μθold 

(a t | s t ) 
ˆ A t 

]
(D.2) 

subject to 

ˆ E t 

[
KL 

(
μθold 

(·| s t ) , μθ (·| s t ) 
)]

≤ κ, (D.3) 

where KL denotes Kullback-Leibler divergence and θold is the parameter vector before the update, and κ is a constant that 

limits the size of the policy updates. 

The proximal policy optimization algorithm (PPO) can be seen as a policy gradient algorithm that is based on the well-

known actor–critic architecture ( Schulman et al., 2017 ). Similar to trust region methods, PPO maximizes a surrogate objective 

function that forms a lower bound on the performance of the policy. This corresponds to performing approximate gradient 

ascent in 

J KL (θ ) = 

ˆ E t 

[
μθ (a t | s t ) 
μθold 

(a t | s t ) 
ˆ A t − βKL 

(
μθold 

(·| s t ) , μθ (·| s t ) 
)]

, (D.4) 

where the penalty parameter β is assumed to be updated using a suitable adaptive strategy. Hence, instead of attempting 

to constrain the size of the policy updates using a strict constraint, PPO applies clipped surrogate functions or a soft penalty

that limits the KL divergence of the policy update. Most empirical studies suggest that clipping seems to work at least as

well as PPO with KL penalty, but it is considerably easier to implement. The clipped surrogate objective that is used in most

PPO applications is given by 

J P P O (θ ) = 

ˆ E t 

[
min 

(
μθ (a t | s t ) 
μθold 

(a t | s t ) 
ˆ A t , g(ε, ˆ A t ) 

)]
, (D.5) 

where the clipping function g is defined as 

g(ε, A ) = 

{
(1 + ε) A if A ≥ 0 , 

(1 − ε) A if A < 0 . 
(D.6) 

D2. Proximal policy optimization with parameterized action spaces 

Following Malo et al. (2021) , we use a modified version of PPO known as hybrid proximal policy optimization algo-

rithm ( Fan et al., 2019 ), where the surrogate objective function is extended to include both continuous and discrete actions.

The algorithm is essentially similar to the original PPO, except that the policy is represented by two parallel actor net-

works, one for the discrete actions and one for the continuous actions (see Fig. D.12 ). The implementation leverages the

special hierarchical structure of the action space, where the continuous actions (i.e. harvesting amounts) can be interpreted 

as parameters of the discrete actions (i.e. choice between thinning, clear-cut, and waiting). 
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To avoid the computationally expensive use of KL divergence directly, the policy parameters are updated via a clipped 

PPO objective function 

J H−P P O (θ ) = 

ˆ E t [ L (s t , a t , θold , θ ) ] , (D.7) 

where the policy is parameterized by vector θ = (θc , θd ) , where θc and θd are parameters that correspond to continuous and

discrete decisions, and the surrogate objective L is defined as the sum of losses corresponding to the discrete and continuous

decisions a = (h, δth , δcc ) , i.e. 

L (s, a, θold , θ ) = L c (s, h, θold,c , θc ) + L d (s, δth , δcc , θold,d , θd ) (D.8) 

where 

L c (s, h, θold,c , θc ) = min 

(
μθc 

(h | s ) 
μθold,c 

(h | s ) ˆ A 

GAE(γ ,λ) , g(ε, ˆ A 

GAE(γ ,λ) ) 

)
(D.9) 

L d (s, δth , δcc , θold,d , θd ) = min 

(
μθd 

(δth , δcc | s ) 
μθold,d 

(δth , δcc | s ) ˆ A 

GAE(γ ,λ) , g(ε, ˆ A 

GAE(γ ,λ) ) 

)
(D.10) 

The advantages are approximated using the generalized advantage estimation (GAE) approach proposed by 

Schulman et al. (2015) : 

ˆ A 

GAE(γ ,λ) 
t = (1 − λ) 

(
ˆ A 

(1) 
t + λ ˆ A 

(2) 
t + λ2 ˆ A 

(3) 
t + · · ·

)
, (D.11) 

where the overall advantage is expressed as the sum of 1 to k-step look-ahead functions 

ˆ A 

(1) 
t = −V (s t ) + π(s t , a t ) + γV (s t+1 ) 

ˆ A 

(2) 
t = −V (s t ) + π(s t , a t ) + γV (s t+1 ) + γ 2 V (s t+2 ) 

. . . 

ˆ A 

(k ) 
t = −V (s t ) + π(s t , a t ) + γV (s t+1 ) + · · · + γ k −1 V (s t+ k −1 ) + γ k V (s t+ k ) , 

where λ ∈ [0 , 1] is a hyper-parameter. In practice, the state value function V (i.e. the ”critic”) is approximated using a pa-

rameterized function V φ , which is typically assumed to be a neural network. The pseudo-code of the algorithm is presented

in Algorithm 1 . 

Algorithm 1 PPO with hybrid actions and a clipped objective function. 

procedure PPO-Clip 

Input: initial policy parameters θ0 , initial value function parameters φ0 

for k=0,1,2,… do 

Sample a set of trajectories D k = { τi } each with T time steps by running policy μθk 

in the environment. 

Compute rewards to go ˆ U t = 

∑ T 
t= t π(s t , a t ) γ t . 

Compute advantage estimates ˆ A 

GAE(γ ,λ) 
t based on the current value function V φk 

. 

Update the policy by maximizing the clipped surrogate objective: 

θk +1 = argmax θ
1 

| D k | T 
∑ 

τ∈ D k 

T ∑ 

t=0 

L (s t , a t , θk , θ ) 

using (stochastic) gradient ascent. 

Estimate value function by minimizing mean-squared error: 

φk +1 = argmin φ
1 

| D k | T 
∑ 

τ∈ D k 

T ∑ 

t=0 

(V φ(s t ) − ˆ U t ) 
2 

using gradient descent. 

end for 

end procedure 

The policy function μθ (i.e. the ”actor”) is implemented as two neural networks with two heads, one for discrete ac- 

tions and one for continuous actions, i.e. harvest levels. A softmax-layer is used to compute the action probabilities for each

stochastic policy. The continuous part is implemented as a Gaussian policy, which outputs the harvest levels that are trans- 

formed to relative proportions of trees belonging to predefined bins. The expected values of the Gaussian are the outputs of

the continuous head of the neural network. The standard deviations are treated as additional parameters that are optimized 
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using gradient descent together with the neural network parameters. In our implementation, we used 1-cm bins, with the 

exception of combining the bins with diameters less than 5cm and bins above 35 cm. An accuracy of 1cm is considered

sufficient to approximate the optimal solutions without significant sacrifice in the objective function value. Moreover, har- 

vesting instructions with higher precision in diameter values would hardly be feasible in real-world harvesting. 

The performance of RL algorithms is often sensitive to the state representation. Thus, the actor and critic apply prepro-

cessing to the original state variables before feeding the observations to the neural network inputs. As a preprocessing step, 

we use the tree counts and diameters for each size and age class to compute a histogram with predefined fixed bins for the

diameter distribution of each species. The tree frequencies for each bin are fed to the neural network input nodes. Learning

policy and value functions is considerably more efficient using this alternative state representation compared with feeding 

raw tree count and diameter pairs to the network. As the PPO algorithm is prone to local optima, we run the training mul-

tiple times. The policy with best performance was chosen in the evaluation. Calculations were performed using computer 

resources within the Aalto Science-IT project. For further details considering the PPO algorithm used, see Fan et al. (2019) ;

Schulman et al. (2015) . Our H-PPO implementation follows the details presented in Malo et al. (2021) . 
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