

Aalborg Universitet

Robustness-by-Construction Synthesis: Adapting to the Environment at Runtime

Nayak, Satya Prakash; Neider, Daniel; Zimmermann, Martin

Published in:
Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles - 11th
International Symposium, ISoLA 2022, Proceedings

DOI (link to publication from Publisher):
10.1007/978-3-031-19849-6_10

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Nayak, S. P., Neider, D., & Zimmermann, M. (2022). Robustness-by-Construction Synthesis: Adapting
to the Environment at Runtime. In T. Margaria, & B. Steffen (Eds.), Leveraging Applications of Formal Methods,
Verification and Validation. Verification Principles - 11th International Symposium, ISoLA 2022, Proceedings (pp.
149-173). Springer Science and Business Media Deutschland GmbH. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 13701
LNCS https://doi.org/10.1007/978-3-031-19849-6_10

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 14, 2022

https://doi.org/10.1007/978-3-031-19849-6_10
https://vbn.aau.dk/en/publications/635f0d7a-2b44-4439-8822-79a5f9023081
https://doi.org/10.1007/978-3-031-19849-6_10

Robustness-by-Construction Synthesis:1

Adapting to the Environment at Runtime2

Satya Prakash Nayak1[0000−0002−4407−8681], Daniel Neider2[0000−0001−9276−6342],3

and Martin Zimmermann3[0000−0002−8038−2453]
4

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany5

sanayak@mpi-sws.org6

2 Safety and Explainability of Learning Systems Group7

Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany8

daniel.neider@uni-oldenburg.de9

3 Aalborg University, Aalborg, Denmark10

mzi@cs.aau.dk11

Abstract. While most of the current synthesis algorithms only focus on12

correctness-by-construction, ensuring robustness has remained a challenge.13

Hence, in this paper, we address the robust-by-construction synthesis14

problem by considering the specifications to be expressed by a robust15

version of Linear Temporal Logic (LTL), called robust LTL (rLTL). rLTL16

has a many-valued semantics to capture different degrees of satisfaction17

of a specification, i.e., satisfaction is a quantitative notion.18

We argue that the current algorithms for rLTL synthesis do not compute19

optimal strategies in a non-antagonistic setting. So, a natural question20

is whether there is a way of satisfying the specification “better” if the21

environment is indeed not antagonistic. We address this question by de-22

veloping two new notions of strategies. The first notion is that of adaptive23

strategies, which, in response to the opponent’s non-antagonistic moves,24

maximize the degree of satisfaction. The idea is to monitor non-optimal25

moves of the opponent at runtime using multiple parity automata and26

adaptively change the system strategy to ensure optimality. The second27

notion is that of strongly adaptive strategies, which is a further refine-28

ment of the first notion. These strategies also maximize the opportunities29

for the opponent to make non-optimal moves. We show that computing30

such strategies for rLTL specifications is not harder than the standard31

synthesis problem, e.g., computing strategies with LTL specifications,32

and takes doubly-exponential time.33

1 Introduction34

Formal methods have focused on the paradigm of correctness-by-construction, i.e.,35

ensuring that systems are guaranteed to meet their design specifications. While36

correctness is necessary, it has widely been acknowledged that this property37

alone is insufficient for a good design when a reactive system interacts with38

an ever-changing, uncontrolled environment. To illustrate this point, consider39

a typical correctness specification ϕ ⇒ ψ of a reactive system, where ϕ is an40

2 S. P. Nayak et al.

environment assumption and ψ the system’s desired guarantee. Thus, if the41

environment violates ϕ, the entire implication becomes vacuously true, regardless42

of whether the system satisfies ψ. In other words, if the assumption about the43

environment is violated, the system may behave arbitrarily. This behavior is44

clearly undesirable as modeling any reasonably complex environment accurately45

and exhaustively is exceptionally challenging, if not impossible.46

The example above shows that reactive systems must not only be correct but47

should also be robust to unexpected environment behavior. The notion of robust-48

ness we use in this paper is inspired by concepts from control theory [19,30,31,33]49

and requires that deviations from the environment assumptions result in at50

most proportional violations of the system guarantee. More precisely, “minor”51

violations of the environment assumption should only cause “minor” violations of52

the system guarantee, while “major” violations of the environment assumption53

allow for “major“ violations of the system guarantee.54

To capture different degrees of violation (or satisfaction) of a specification,55

we rely on a many-valued extension of Linear Temporal Logic (LTL) [26], named56

robust Linear Temporal Logic (rLTL), which has recently been introduced by57

Tabuada and Neider [34]. The basic idea of this logic can best be illustrated58

by considering the prototypical environment assumption ϕ := p (“always p”),59

which demands that the environment ensures that an atomic proposition p holds60

at every step during its interaction with the system. Clearly, ϕ is violated even if p61

does not hold at a single step, which is a “minor” violation. However, the classical62

Boolean semantics of LTL cannot distinguish between this case and the case63

where p does not hold at any position, which is a “major” violation. To distinguish64

these (and more) degrees of violations, rLTL adopts a five-valued semantics with65

truth values B4 = {1111, 0111, 0011, 0001, 0000}. The set B4 is ordered according66

to 1111 > 0111 > 0011 > 0001 > 0000, where 1111 is interpreted as true and all67

other values as increasing shades of false. In case of the formula ϕ, for instance,68

the interpretation of these five truth values is as follows: ϕ evaluates to 1111 if69

the environment ensures p at every step of the interaction, ϕ evaluates to 0111 if70

p holds almost always, ϕ evaluates to 0011 if p holds infinitely often, ϕ evaluates71

to 0001 if p holds at least once, and ϕ evaluates to 0000 if p never holds. The72

semantics of rLTL is then set up so that ϕ⇒ ψ evaluates to 1111 if any violation73

of the environment assumption ϕ causes at most a proportional violation of74

the system guarantee ψ (i.e., if ϕ evaluates to truth value b ∈ B4, then ψ must75

evaluate to a truth value b′ ≥ b).76

Here, we are interested in the synthesis problem for rLTL specifications. As77

usual, we model such a synthesis problem as an infinite-duration two-player game.78

Since we study rLTL synthesis, we consider games with rLTL winning conditions,79

so-called rLTL games.80

rLTL games with a Boolean notion of winning strategy for the system player81

have already been studied by Tabuada and Neider [34]. In their setting, the82

objective for the system player is as follows: given a truth value b ∈ B4, he must83

react to the actions of the environment player in such a way that the specification84

is satisfied with a value of at least b. As for ω-regular games, a winning strategy85

Robustness-by-Construction Synthesis 3

for the system player can immediately be implemented in hardware or software.86

This implementation then results in a reactive system that is guaranteed to87

satisfy the given specification with at least a given truth value b ∈ B4, regardless88

of how the environment acts.89

While rLTL games provide an elegant approach to robustness-by-construction90

synthesis, the Boolean notion of winning strategies that Tabuada and Neider91

adopt has a substantial drawback: it does not incentivize the system player to92

satisfy the specification with a value better than b, even if the environment player93

allows this. Of course, one can (and should) statically search for the largest b ∈ B494

such that the system player can win the game. However, this traditional worst-95

case view does not account for many practical situations where the environment96

is not antagonistic, e.g., in the presence of intermittent disturbances or noise,97

or when the environment cannot be modeled entirely [15,16,22,23,35]. In such98

situations, the system player should exploit the environment’s “bad” moves, i.e.,99

actions that permit the system player to achieve a value greater than b, and100

adapt its strategy at runtime.101

We present two novel synthesis algorithms for rLTL specifications that ensure102

that the resulting systems are robust by construction (in addition to being correct103

by construction). These are based on two refined non-Boolean notions of strategies104

for rLTL games which both optimize the satisfaction of the specification.105

The first notion, named adaptive strategies, uses automata-based runtime106

verification techniques [6] to monitor plays, detect bad moves of the environment,107

and adapt the actions of the system player to optimize the satisfaction of the108

winning condition. The second notion, named strongly adaptive strategies, is109

an extension of the first one that, in addition to being adaptive, also seeks to110

maximize the opportunity for the environment player to make bad moves. We111

show that both types of strategies can be computed using methods from automata112

theory and result in effective synthesis algorithms for reactive systems that are113

robust by construction and adapt to the environment at runtime.114

After recapitulating rLTL in Section 2, we introduce adaptive strategies in115

Section 3 and show that one can compute such strategies in rLTL games in116

doubly-exponential time by reducing the problem to solving parity games [10]. In117

Section 4, we then turn to strongly adaptive strategies. It turns out that this type118

of strategy does not always exist, which we demonstrate through an example.119

Nevertheless, we give a doubly-exponential time algorithm that decides whether120

a strongly adaptive strategy exists, and, if this is the case, computes one. Our121

algorithm is based on reductions to a series of parity and obliging games [14]. As122

the LTL synthesis problem is 2EXPTIME-complete [27], which is a special case123

of the problems we consider here, computing both types of adaptive strategies is124

2EXPTIME-complete as well. Furthermore, the size of the (strongly) adaptive125

strategies our algorithms compute is at most doubly exponential, matching the126

corresponding lower bound for LTL games, demonstrating that this bound is127

tight. Thus, our results show that adaptive robust-by-construction synthesis is128

asymptotically not harder than classical LTL synthesis.129

All proofs omitted due to space restrictions can be found in the appendix.130

4 S. P. Nayak et al.

Related Work. Robustness in reactive synthesis has been addressed in various131

forms. A prominent example is work by Bloem et al. [7], which considers the132

synthesis of robust reactive systems from GR(1)-specifications. In subsequent133

work, Bloem et al. [9] have surveyed a large body of work on robustness in134

reactive synthesis and distilled three general categories: (i) “fulfill the guarantee135

as often as possible even if the environment assumption is violated”, (ii) “if136

it is impossible to fulfill the guarantee, try to fulfill it whenever possible” and137

(iii) “help the environment to fulfill the assumption if possible”. Prototypical138

examples include the work by Topcu et al. [35], Ehlers and Topcu [16], Chatterjee139

and Henzinger [12], Chatterjee et al. [14], and Bloem et al. [8].140

The work of Almagor and Kupferman [1] is very similar to our notion of141

adaptive strategies. They introduced the notion of good-enough synthesis that is142

considered over a multi-valued semantics where the goal is to compute a strategy143

that achieves the highest possible satisfaction value. While some of the methods144

mentioned above do adapt to non-antagonistic behavior of the environment,145

we are not aware of any approach that would additionally optimize for the146

opportunities of the environment to act non-antagonistically, as our notion of147

strongly adaptive strategies does.148

Quantitative objectives in graph-based games (and their combination with149

qualitative ones) have a rich history. Among the most prominent examples are150

mean-payoff parity games [13] and energy parity games [11]. The former type of151

game combines a parity winning condition (as the canonical representation for152

ω-regular properties) with a real-valued payout whose mean is to be maximized,153

while the latter type seeks to satisfy an ω-regular winning condition with the154

quantitative requirement that the level of energy during a play must remain155

positive. However, to the best of our knowledge, research in this field has focused156

on worst-case analyses with antagonistic environments.157

Our notion of (strongly) adaptive strategies relies on central concepts intro-158

duced in the logic rLTL [34], a robust, many-valued extension of Linear Temporal159

Logic [26]. One of rLTL’s key features is its syntactic similarity to LTL, which160

allows for a seamless and transparent transition from specifications expressed161

in LTL to specifications expressed in rLTL. Moreover, it is worth mentioning162

that rLTL has spawned numerous follow-up works, including rLTL model check-163

ing [2,3,4], rLTL runtime monitoring [20], and robust extensions of prompt LTL164

and Linear Dynamic Logic [24,25].165

Finally, let us highlight that preliminary results on adaptive strategies have166

been presented as a poster at the 24th ACM International Conference on Hybrid167

Systems: Computation and Control [21].168

2 Preliminaries169

In this section, we describe the syntax and semantics of Robust LTL and how it170

is different from classical LTL. Moreover, we discuss some important results on171

rLTL and introduce games with rLTL specifications.172

Robustness-by-Construction Synthesis 5

Robust Linear Temporal Logic. We assume that the reader is familiar with Linear173

Temporal Logic [26]. We fix a finite non-empty set P of atomic propositions. The174

syntax of rLTL is similar to that of LTL with the only difference being the use175

of dotted temporal operators in order to distinguish them from LTL operators.176

More precisely, rLTL formulas are inductively defined as follows:177

– each p ∈ P is an rLTL formula, and178

– if ϕ and ψ are rLTL formulas, so are ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ⇒ ψ, ϕ (“next”),179

ϕ (“always”), ϕ (“eventually”), ϕRψ (“release”) and ϕUψ (“until”).180

As already discussed, rLTL uses the set B4 = {1111, 0111, 0011, 0001, 0000}181

of truth values, which are ordered as follows:182

1111 > 0111 > 0011 > 0001 > 0000.183

Intuitively, 1111 corresponds to “true”, and the other four values correspond to184

different degrees of “false”.185

The rLTL semantics is a mapping V, called valuation, that maps an infinite
word α ∈ (2P)ω and an rLTL formula ϕ to an element of B4. Before we define the
semantics, we need to introduce some useful notation. Let α = α0α1 · · · ∈ (2P)ω

be an infinite word. For i ∈ N, let αi... = αiαi+1 · · · be the (infinite) suffix of α
starting at position i. Also, for 1 ≤ k ≤ 4, we let Vk(α,ϕ) denote the k-th entry
of V(α,ϕ), i.e., V(α,ϕ) = V1(α,ϕ)V2(α,ϕ)V3(α,ϕ)V4(α,ϕ). Now, V is defined
inductively as follows, where the semantics of Boolean connectives relies on da
Costa algebras [29]:

V(α, p) =

{
0000 if p 6∈ α0

1111 if p ∈ α0

V(α,¬ϕ) =

{
0000 if V(α,ϕ) = 1111

1111 otherwise

V(α,ϕ ∨ ψ) = max
{
V(α,ϕ),V(α,ψ)

}
V(α,ϕ⇒ ψ) =

{
1111 if V(α,ϕ) ≤ V(α,ψ)

V(α,ψ) otherwise

V(α,ϕ ∧ ψ) = min
{
V(α,ϕ),V(α,ψ)

}
V(α, ϕ) = V(α1..., ϕ)

V(α, ϕ) =

(
inf
i≥0

V1(αi..., ϕ), sup
j≥0

inf
i≥j

V2(αi..., ϕ), inf
j≥0

sup
i≥j

V3(αi..., ϕ), sup
i≥0

V4(αi..., ϕ)

)
V(α, ϕ) =

(
sup
i≥0

V1(αi..., ϕ), sup
i≥0

V2(αi..., ϕ), sup
i≥0

V3(αi..., ϕ), sup
i≥0

V4(αi..., ϕ)

)
The semantics for the temporal operators U and R can be generalized similarly.186

We refer the reader to Tabuada and Neider [34] for more details.187

Example 1. We can see that for the formula p, the valuation V(α, p) can be188

expressed in terms of the LTL valuation function W by189

V(α, p) = W (α, p)W (α, p)W (α, p)W (α, p).190

This evaluates to different values in B4 distinguishing various degrees of violations191

as seen in Section 1.192

6 S. P. Nayak et al.

Example 2. Now let us see how the rLTL semantics for a specification of the193

form ϕ⇒ ψ captures robustness. Consider an instance where the environment194

assumption ϕ is p and the system guarantee ψ is q and assume the specification195

p⇒ q evaluates to 1111 for some infinite word. Let us see how the system196

behaves in response to various degrees of violation of the environment assumption.197

– If p holds at all positions, then p evaluates to 1111. Hence, by the semantics198

of implication, q also evaluates to 1111, which means q holds at all positions.199

Therefore, the desired behavior of the system is retained when the environment200

assumption holds with no violation.201

– If p holds eventually always but not always (a minor violation of p), then202

p evaluates to 0111. Hence, q evaluates to 0111 or higher, meaning that203

q also needs to hold eventually always.204

– Similarly, if p holds at infinitely (finitely) many positions, then q needs to205

hold at infinitely (finitely) many positions.206

Hence, the semantics of p⇒ q captures the robustness property as desired.207

Furthermore, if p⇒ q evaluates to b < 1111, then p evaluates to a higher208

value than b, whereas q evaluates to b. So, the desired system guarantee is209

not satisfied. However, the value of p ⇒ q still describes which weakened210

guarantee follows from the environment assumption.211

From rLTL to Büchi Automata. Given an LTL formula ϕ, a generalized Büchi212

automaton (see [32] for a definition) with O(2|ϕ|) states and O(|ϕ|) accepting213

sets can be constructed that recognizes the infinite words satisfying ϕ [5]. Using214

a similar method, Tabuada and Neider obtained the following result.215

Theorem 1 ([34]). Given an rLTL formula ϕ and a set of truth values B ⊆ B4,216

one can construct a generalized Büchi automaton A with 2O(|ϕ|) states and O(|ϕ|)217

accepting sets that recognizes the infinite words on which the value of ϕ belongs218

to B, i.e., L(A) = {w ∈ (2P)ω | V(α,ϕ) ∈ B}.219

rLTL Games. We consider infinite-duration two-player games over finite graphs220

with rLTL specifications. Here, we assume basic familiarity with games on graphs.221

Formally, an rLTL game G = (A, ϕ) consists of (i) a finite, directed, labelled arena222

A = (V,E, λ) with V = V0 ·∪ V1, an edge relation E ⊆ V × V , and a labelling223

function λ : V → 2P , and (ii) an rLTL formula ϕ over P. The game is played224

by two players, Player 0 and Player 1, who construct a play ρ = v0v1 · · · ∈ V ω225

by moving a token along the edges of the arena. A play ρ = v0v1 · · · induces an226

infinite word λ(ρ) = λ(v0)λ(v1) · · · ∈ (2P)ω, and the value of the play, denoted227

by V(ρ), is the value of the formula ϕ on λ(ρ). Player 0’s objective is to maximize228

this value, while Player 1’s objective is to minimize it.229

Strategies. A play prefix is a finite, nonempty path p ∈ V ∗ in the arena. Then, a230

strategy for Player i, i ∈ {0, 1}, is a function σ : V ∗Vi → V mapping each play231

prefix p ending in a vertex in Vi to one of its successors. Intuitively, a strategy232

prescribes Player i’s next move depending on the play prefix constructed so far.233

Robustness-by-Construction Synthesis 7

A strategy σ is memoryless if it only depends on the last vertex, i.e., for234

any prefix p ending in vertex v, it holds that σ(p) = σ(v). Moreover, we say a235

strategy has memory size m if there exists a finite state machine with output236

with m states computing the strategy (see Grädel et al. [18] for more details).237

Next we define the plays that are consistent with a given strategy for Player i.238

Typically, this means that the token is placed at some initial vertex and then,239

whenever a vertex of Player i is reached, then Player i uses the move prescribed240

by the strategy for the current play prefix to extend this prefix. Note that the241

strategy does not have control over the initial placement of the token.242

Here we will use a more general notion, inspired by previous work in optimal243

strategies for Muller games [17]: the initial prefix over which the strategy does244

not have control over might be longer than just the initial vertex. This means245

strategies are also applicable to prefixes that where not constructed according246

to the strategy. However, crucially, the strategy still gets access to that prefix247

and therefore can base its decisions on the prefix it had no control over. This248

generality will turn out to be useful both when defining adaptive strategies and249

when combining strategies to obtain adaptive strategies.250

Formally, for a play prefix p = v0v1 · · · vn and a strategy σ for Player i, a251

play ρ is a (σ, p)-play if ρ = pvn+1vn+2 · · · with vk+1 = σ(v0v1 · · · vk) for all252

vk ∈ Vi with k ≥ n. Note that the prefix p is arbitrary here, i.e., it might not253

have been constructed following the strategy σ. Moreover, a (σ, p)-play prefix254

pp′ is a prefix of a (σ, p)-play. We say that a play ρ starting in some vertex v is255

consistent with σ, if it is a (σ, v)-play (which is the classical notion of consistency).256

Finally, a play prefix p is consistent with σ if it is the prefix of some play that is257

consistent with σ.258

In the paper introducing rLTL [34], Tabuada and Neider gave a doubly-259

exponential time algorithm that solves the classical rLTL synthesis problem,260

which is equivalent to solving the following problem.261

Problem 1. Given an rLTL game G, an initial vertex v0 and a truth value b ∈ B4,262

compute a strategy σ (if one exists at all) for Player 0 such that every (σ, v0)-play263

has value at least b.264

Note that Tabuada and Neider were interested in strategies for Player 0 that265

enforce the value b from v0, i.e., strategies such that every consistent play starting266

in the given initial vertex has at least value b. In contrast, we will compute267

strategies that are improvements in two dimensions: (i) they enforce the optimal268

value rather than a given one, and (ii) they do so from every possible play prefix,269

even if they did not have control over the prefix.270

3 Adaptive Strategies271

In this section, we start by presenting a motivating example, a game in which272

classical strategies for Player 0 are not necessarily optimal (in an intuitive sense).273

We then formalize this intuition by introducing adaptive strategies and give a274

doubly-exponential time algorithm to compute such strategies.275

8 S. P. Nayak et al.

0

{p}

1

{}

4

{}

5

{p}

2

{p}

3

{}

Fig. 1. First motivating example for adaptive strategies

Motivating Example. Consider the arena given in Figure 1 (where Player 0’s276

vertices are shown as circles and Player 1’s vertices are shown as squares) with277

the rLTL specification ϕ = p.278

Suppose the token is initially placed at vertex 0. Considering Player 1 plays279

optimally, the token would eventually reach vertex 2, from which the best possible280

scenario for Player 0 is to enforce a play where p holds at infinitely many positions.281

As the classical problem only considers the worst-case analysis, a classical strategy282

for Player 0 is to try to visit vertex 2 infinitely often. That can be done by moving283

the token along one of the following edges every time the token reaches Player 0’s284

vertices: {0→ 1; 3→ 2; 4→ 0}. Note that the move 4→ 0 is irrelevant in this285

worst-case analysis, as vertex 4 is never reached if Player 1 plays optimally.286

Suppose Player 1 makes a bad move by moving along 1→ 4. Then, Player 0287

can force the play to eventually just stay at vertex 5, and hence, p holds almost288

always. However, the above classical strategy for Player 0 moves the play back to289

vertex 0, from which p might not hold almost always. Therefore, a better strategy290

for Player 0 is to move along 4→ 5 if the token reaches vertex 4 to get a play291

where p holds almost always; otherwise, enforce a play where p holds at infinitely292

many positions as earlier by moving along 0→ 1 and then 3→ 2 repeatedly.293

In the worst case, i.e., if Player 1 does not make a bad move by reaching294

vertex 4, both strategies yield value 0011. However, if Player 1 does make a bad295

move by reaching vertex 4, the second strategy achieves value 0111 on some plays,296

while the second one does not. So, in the worst case analysis, both strategies are297

equally good, but if we assume that Player 1 is not necessarily antagonistic, then298

the second strategy is better as it is able to exploit the bad move by Player 1. We299

call such a strategy adaptive as it adapts its moves to achieve the best possible300

outcome after each bad move of the opponent. We will formalize this shortly.301

To illustrate the notion of adaptive strategies, consider another game with the302

arena shown in Figure 2 and with rLTL specification ϕ′ = (¬q ⇒ p)∧ (q ⇒303

0

{r}

1

{q, r}

2

{r}

3

{p, r}

4

{r}

Fig. 2. Second motivating example for adaptive strategies

Robustness-by-Construction Synthesis 9

r). In this example, Player 1 has only two strategies starting from vertex 0:304

one moving the token along 0→ 1 and one moving the token along 0→ 2.305

The best truth value Player 0 can enforce in this game is 0011. This is because306

Player 1 can move along the edge 0→ 2, which satisfies the second implication307

with value 1111 (as q does not occur), but also satisfies the premise of the first308

implication with value 1111. Hence, the value of the whole formula is the value309

of the subformula p. The best value Player 0 can achieve for it is indeed 0011310

by looping between vertices 3 and 2. His only other choice, i.e., to move to 4311

eventually, only results in the value 0001.312

However, if Player 1 does not take the edge 0 → 2 but instead moves to313

vertex 2 via vertex 1, Player 0 can gain from this bad move by instead moving314

to vertex 4. In that case, the formula is satisfied with truth value 1111. Thus,315

a strategy that adapts to the bad move by the opponent can achieve a better316

value than one that does not, if she does make a bad move.317

3.1 Definitions318

Recall that a (σ, p)-play for a strategy σ for Player i and a play prefix p (not319

necessarily consistent with σ) is an extension of p by σ, i.e., Player i uses the320

strategy σ to extend the play prefix p he had not control over, while still taking321

the prefix p into account when making his decisions. We say that a strategy σ for322

Player 0 enforces a truth value of b from a play prefix p, if we have V(ρ) ≥ b for323

every (σ, p)-play ρ. Similarly, we say a strategy τ for Player 1 enforces a truth324

value of b from a play prefix p, if we have V(ρ) ≤ b for every (τ, p)-play ρ. This325

conforms to our intuition that Player 0 tries to maximize the truth value while326

Player 1 tries to minimize it. Moreover, we say Player i can enforce a value b327

from some prefix p if he has a strategy that enforces b from p.328

Remark 1. Let p be a play prefix. If Player 0 can enforce value b0 from p and329

Player 1 can enforce value b1 from p then b0 ≤ b1 .330

For example, consider the game given in Figure 1 with the rLTL specifica-331

tion p. Using the analysis given in Section 3, we can see that Player 0 can332

enforce 0111 and 0011 from prefixes 014 and 012, respectively, by moving the333

token along {0 → 1, 4 → 5, 3 → 2}. It is easy to check that these are the best334

values Player 0 can enforce from those prefixes as Player 1 can enforce the same335

values from these prefixes.336

We are interested in a strategy that enforces the best possible value from337

each play prefix. This is formalized as follows.338

Definition 1 (Adaptive Strategies). In an rLTL game, a strategy σ0 for339

Player 0 is adaptive if from any play prefix p, no strategy for Player 0 enforces340

a better truth value than σ0, that is, if some strategy σ for Player 0 enforces a341

truth value of b from p, then σ0 also enforces the value b from p.342

Note that p is not required to be consistent with σ0 in the above definition,343

i.e., an adaptive strategy achieves the best possible outcome from every possible344

play prefix (even for those it had no control over when they are constructed).345

Also, let us mention that a dual notion can be defined for Player 1.346

10 S. P. Nayak et al.

3.2 Computing Adaptive Strategies347

Now, to synthesize an adaptive strategy, we need to monitor the bad moves of the348

opponent at runtime by keeping track of the best value that can be enforced from349

the current play prefix. To do that, using the idea of automata-based runtime350

verification [6], we construct multiple parity automata to monitor the bad moves351

of the opponent and then we synthesize adaptive strategies by using a reduction352

to parity games (see [18] for definitions).353

Given an rLTL game G = (A, ϕ) with A = (V,E, λ), we proceed as follows:354

1. We construct a generalized (non-deterministic) Büchi automata Ab such that355

L(Ab) = {w ∈ (2P)ω | V(w,ϕ) ≥ b} for all b ∈ B4.356

2. We determinize each Ab to obtain a deterministic parity automaton Cb with357

the same language.358

3. For each b, we construct a parity game Gb by taking the product of the359

arena A and the parity automaton Cb.360

4. We solve the above parity games Gb [10], yielding, for each truth value b, a361

finite-state strategy for the original game G with value b (if one exists).362

5. We combine all these winning strategies for Player 0 computed in the last363

step to obtain an adaptive strategy σ for Player 0.364

Let us now explain each step in more detail.365

Step 1. We construct the generalized non-deterministic Büchi automata Ab such366

that L(Ab) = {w ∈ (2P)ω | V(w,ϕ) ≥ b} for all b ∈ B4. By Theorem 1, the367

automaton Ab has n = 2O(|ϕ|) states and k = O(|ϕ|) accepting sets.368

Step 2. We determinize each Ab to get a deterministic parity automaton Cb =369

(Qb, 2P , qb0, δ
b, Ωb) with O(2O(n logn)) states and 2n colors [32].370

Step 3. We construct the (unlabelled) product arena Ab = (V b, Eb) of the371

arena A = (V,E, λ) and the parity automaton Cb such that V b = V × Qb,372

V bi = Vi ×Qb for i ∈ {0, 1}, and373

((v, q), (v′, q′)) ∈ Eb if and only if (v, v′) ∈ E and δb(q, λ(v)) = q′.374

The function Ω̄b assigns colors to the vertices such that Ω̄b(v, q) = Ωb(q). The375

desired parity games are the Gb = (Ab, Ω̄b) with b ∈ B4.376

It is easy to verify that Player 0 wins a play ρ′ = (v0, q
b
0)(v1, q

b
1) · · · in Gb if377

and only if the value of the play ρ = v0v1 · · · in G is at least b. Furthermore,378

given a path ρ = v0v1 · · · vk in A, there is a unique path of the form ρ′ =379

(v0, q
b
0)(v1, q

b
1) · · · (vk, qbk) in Ab, that is when qbi+1 = δb(qbi , vi) for all 0 ≤ i ≤ k−1.380

Since winning a play in Gb is equivalent to the corresponding play in G381

satisfying ϕ with truth value b or greater, we can characterize the enforcement382

of b in G by the winning region of Player 0 in Gb, i.e., the set of vertices from383

which Player 0 has a winning strategy. This can easily be shown by simulating a384

winning strategy from (v, q) to extend the play prefix p and vice versa.385

Remark 2. Fix a play prefix p in the rLTL game G, and let (v, qb) be the last386

vertex of the corresponding play in the parity game Gb for some b. Then, Player 0387

can enforce b from p if and only if (v, qb) is in his winning region of Gb.388

Robustness-by-Construction Synthesis 11

Step 4. We solve the resulting parity games Gb and determine the winning389

regions Win(Gb) of Player 0 and uniform memoryless winning strategies σb for390

Player 0 that are winning from every vertex in the corresponding winning region.391

The parity games have np = |V | · 2O(n logn) vertices and kp = O(2n) colors. Since392

kp < lg(np), these can be solved in time O(n5p) [10].393

Step 5. Consider the extended rLTL game G′ = (A′, ϕ), where A′ = (V ′, E′, λ′)
with V ′ = V ×Q0000 × · · · ×Q1111,

E′ =
{(

(v1, q
0000
1 , . . . , q11111), (v2, q

0000
2 , . . . , q11112)

)
|

(v1, v2) ∈ E and δb(qb1, λ(v)) = qb2 for all b ∈ B4

}
,

and λ′ such that λ′(v, q0000, . . . , q1111) = λ(v) for all v ∈ V and qb ∈ Qb.394

It is easy to see that there is a one to one correspondence between the plays395

in both games G and G′. Besides that, the rLTL specification is also the same396

in both games. Therefore, computing an adaptive strategy in the game G is397

equivalent to computing one in the game G′. Now using the analysis given in398

Step 3, we have the following in the rLTL game G′:399

• A vertex v′ is in E≥b = {(v, q0000, . . . , q1111) ∈ V ′ | (v, qb) ∈Win(Gb)} if and400

only if Player 0 can enforce b from every play prefix in G′ ending in v′.401

• Using these sets, we now define the set E=b of vertices from which the402

maximum value Player 0 can enforce is b. Formally, this set is given by403

E=b =

{
E≥1111 if b = 1111,

E≥b \ E≥b+1 if b < 1111,
404

where b+ 1 is the smallest value bigger than b < 1111. Note that the sets E=b405

form a partition of the vertex set of G′.406

Furthermore, it is easy to see that if a play ρ satisfies a parity objective407

then every play sharing a suffix with ρ also satisfies the parity objective. Since408

the game G′ is a product of parity games and since we have characterized the409

enforcement of truth values via the membership in the winning regions of the410

parity games (see Remark 2), the next remark follows.411

Remark 3. In the rLTL game G′, for two play prefixes p1, p2 ending in the same412

vertex, the following holds: if a memoryless strategy σ for Player 0 enforces a413

truth value b from p1, then it also enforces the value b from p2.414

Then, we can see that if the token stays in E=b for some b, then Player 0 can415

simulate the strategy σb for Gb to enforce the value b in G′. Therefore, we obtain416

a memoryless adaptive strategy σ for Player 0 in the game G′ as follows: for any417

vertex (v, q0000, . . . , q1111) in E=b, we define σ(v, q0000, . . . , q1111) to be the unique418

successor of (v, q0000, . . . , q1111) in G′ that corresponds to the successor σb(v, qb)419

of (v, qb) in Gb. Thus, σ simulates the strategy σb for the largest b such that420

12 S. P. Nayak et al.

the value b can be enforced (which is exactly what σb does from such a prefix).421

Hence, it is an adaptive strategy for Player 0 in G′.422

Finally, using the strategy σ, one can compute a corresponding strategy in the423

game G with memory Q0000 ×Q0001 × · · · ×Q1111, which is used to simulate the424

positional strategy σ. The resulting finite-state strategy is an adaptive strategy425

for Player 0 in G.426

Note that the adaptive strategy in G is of doubly-exponential size in |V | and427

|ϕ|. This upper bound is tight, since there is a doubly-exponential lower bound428

on the size of winning strategies strategies for LTL games [28], which can be429

lifted to rLTL games.430

Similarly, one can compute an adaptive strategy for Player 1. Hence, an431

adaptive strategy for both players in an rLTL game can be computed in time432

O(n5p), which is doubly-exponential in the size of the formula.433

Theorem 2. Given an rLTL game, an adaptive strategy of a player can be434

computed in doubly-exponential time. Moreover, each player has an adaptive435

strategy with doubly-exponential memory size.436

Note that adaptive strategies enforce the best possible value from the given437

prefix. This value can be obtained at runtime as follows: Given a play prefix p438

ending in some vertex v, let (q0000, . . . , q1111) be the state of the automaton439

implementing the adaptive finite-state strategy computed above is in after the440

prefix p. Note that this state has to be tracked to determine the next move441

the strategy prescribes at prefix p (in case v ∈ V0). Then, there is a unique b442

such that (v, q0000, . . . , q1111) ∈ E=b. Then, the value currently enforced by the443

adaptive strategy is b, which, by construction, is the maximal one that can be444

enforced from p.445

4 Strongly Adaptive Strategies446

In the previous section, we have argued the importance of adaptive strategies447

and proved that in every rLTL game both players have an adaptive strategy.448

Intuitively, such a strategy exploits bad moves of the opponent to always enforce449

the best truth value possible after a given prefix. However, such a strategy does450

not necessarily seek out opportunities for the opponent to make bad moves. We451

argue that this property implies that some adaptive strategies are more desirable452

than others, which leads us to the notion of strongly adaptive strategies.453

In this section, we define strongly adaptive strategies, which are based on a454

fine-grained analysis of the possibilities a strategy gives the opponent to make455

bad moves and the resulting outcomes of such bad moves. We show that strongly456

adaptive strategies do not exist in every rLTL game. This is in stark contrast457

to adaptive strategies, which always exists. Nevertheless, we give a doubly-458

exponential time algorithm that decides whether a strongly adaptive strategy459

exists and, if yes, computes one.460

Robustness-by-Construction Synthesis 13

4.1 Bad Moves461

We already have used the notion of bad moves in Section 3 in an intuitive,462

but informal, way. Formally, we say a play ρ = v0v1 · · · contains a bad move463

of Player i at position j > 0 if the player can enforce some value b from the464

prefix v0 · · · vj−1 but can no longer enforce the value b from the prefix v0 · · · vj .465

Note that the position j is the target of the bad move. Moreover, note that466

moving from v0 · · · vj−1 to vj can only be a bad move for Player i if it is Player i’s467

turn at vj−1. Also, there must be some other edge from vj−1 to a vertex v 6= vj468

so that he can still enforce b from v0 · · · vj−1v.469

For the example given in Figure 1, we know that Player 1 can enforce the470

value 0011 from 01 (by moving the token from 01 to 2). Suppose he moves the471

token from 01 to 4 instead. Then, Player 0 can enforce 0111 by visiting vertex 5.472

Hence Player 1 can no longer enforce 0011 from 014. Therefore, the move from473

prefix 01 to vertex 4 made by Player 1 is bad.474

Note that if Player 1 makes a bad move from a play prefix p to vertex v,475

then the maximum value Player 0 can enforce from pv is strictly larger than the476

maximum value he can enforce from p. Hence, if the maximum value Player 0477

can enforce from a play prefix is 1111, then Player 1 can not make any bad move478

from that prefix. Moreover, since the maximum value Player 0 can enforce from479

any play prefix can increase at most four times, assuming Player 0 does not480

make any bad move. Thus, Player 1 can make at most four bad moves against481

an adaptive strategy because such a strategy does not make any bad moves.482

Remark 4. Let σ be an adaptive strategy and p a play prefix (not necessarily483

consistent with σ). Then, every (σ, p)-play ρ = v0v1 · · · contains at most four484

bad moves of Player 1 after p. Also, if there is no bad move by Player 1 at485

positions j0, j0 + 1, . . . , j1 in ρ, then σ enforces the same truth values from every486

prefix of the form v0 · · · vj with j0 − 1 ≤ j < j1.487

Our next example shows that an adaptive strategy does not actively seek out488

opportunities for the opponent to make bad moves, it just exploits those made.489

4.2 Motivating Example490

Recall the example given in Figure 1. The strategy for Player 0 given by491

{0→ 1; 3 → 2; 4 → 5} is adaptive: if Player 1 makes a bad move by mov-492

ing from 1 to 4, then moving from 4 to 5 improves the value of the play to 0111.493

Such an improvement can only be enforced after the bad move.494

Another adaptive strategy for Player 0 is to move along 0→ 2 directly in his495

first move and then move along 3 → 2 every time. Then, the token can never496

reach vertex 1. Hence, Player 1 can never make a bad move. However, it also497

means that there can not be a play with value 0111. By contrast, if Player 0498

moves along 0→ 1, there is a chance of getting such plays (when Player 1 makes499

a bad move of 1→ 4). Therefore, using the earlier strategy of moving the token500

along 0→ 1, Player 0 might be able to enforce 0111 at some point, but he can501

never achieve the value 0111 when moving directly to vertex 2.502

14 S. P. Nayak et al.

Similarly, in many games, a player may have two (or more) optimal choices to503

move the token from some prefix. In such situations, that player should compare504

the bad moves his opponent can make in both choices and determine the choice505

in which he can enforce the best value after a bad move has been made by506

the opponent. To capture this, we refine the notion of adaptive strategies by507

introducing strongly adaptive strategies, which are, in a sense to be formalized508

below, the best adaptive strategies.509

4.3 Definitions510

In this section, we introduce the necessary machinery to define strongly adaptive511

strategies for Player 0. Throughout this section, we are concerned with ranking512

adaptive strategies according to the number of bad moves they allow the opponent513

to make, and on the effect these moves have. As the number of bad moves in one514

play is bounded by four, this results in at most five truth values, i.e., the one that515

is enforced before the first bad move, and the ones after each bad move. If Player 1516

makes less than four bad moves, we use the symbol ⊥ /∈ B4 to signify this.517

A summary is a five-tuple (b0, . . . , bk,⊥, . . . ,⊥) ∈ (B4 ∪ {⊥})5 such that518

⊥ 6= b0 < b1 < · · · < bk. The set of all summaries is denoted by S.519

Fix an adaptive strategy σ for Player 0, a play prefix p not necessarily520

consistent with σ, and a (σ, p)-play ρ, and let 0 ≤ k ≤ 4 be the number of bad521

moves by Player 1 after p. Define p0 = p and let pj , for 1 ≤ j ≤ k, be the prefix522

of ρ ending at the position of the j-th bad move. Due to Remark 4, these prefixes523

contain information about all possible truth vales that are enforced by Player 0524

from prefixes of ρ. We employ summaries to capture the values a given strategy σ525

enforces from these prefixes. Formally, for 0 ≤ j ≤ k, let bj be the maximal value526

that σ enforces from pj . As σ is adaptive, these values are strictly increasing.527

So, we can define the summary smry(σ, p, ρ) = (b0, . . . , bk,⊥, . . . ,⊥). Intuitively,528

the summary collects all information about which truth values the strategy σ529

enforces after each bad move has been made. If there are less than four bad moves530

in ρ after p, then we fill the summary with ⊥’s to obtain a vector of length five.531

We will use such summaries to compare strategies. To do so, we compare532

summaries in lexicographic order ≤lex with ⊥ being the smallest element. In other533

words, we prefer larger truth values of smaller ones and prefer the opportunity534

for a bad move over the impossibility of a bad move.535

Example 3. Consider again the game in Figure 1. Let σ1 be the memoryless536

Player 0 strategy always making the moves {0→ 1, 3→ 2, 4→ 5}. Then,537

smry(σ1, 0, 0145ω) = smry(σ1, 01, 0145ω) = (0011, 0111,⊥,⊥,⊥)538

and smry(σ1, 014, 0145ω) = (0111,⊥,⊥,⊥,⊥) because the play 0145ω does not539

contain a bad move of Player 1 after 014. In addition, smry(σ1, p, 01(23)ω) =540

(0011,⊥,⊥,⊥,⊥) for every prefix p of 01(23)ω, as the play does not contain any541

bad move of Player 1.542

Let σ2 now be the memoryless Player 0 strategy given by {0→ 2, 3→ 2, 4→ 5}.543

Then, we have smry(σ2, p, 0(23)ω) = (0011,⊥,⊥,⊥,⊥) for every prefix p of 0(23)ω544

because the play does not contain bad moves of Player 1.545

Robustness-by-Construction Synthesis 15

We continue by listing some simple properties of summaries that are useful546

later on. Consider the prefixes 0, 01, 014 of 0145ω in Example 3. The former two547

have the same summary s, while the summary of the latter is obtained by shifting548

s to the left. Note that moving from from 01 to 4 is a bad move of Player 1,549

while moving from 0 to 1 is not. By inspecting the definition of play summaries,550

it is clear that extending plays by bad moves corresponds to a left shift, while551

Remark 4 implies that the absence of bad moves keeps summaries stable.552

To formalize this, we use the following notation: for s = (b0, . . . , bk,⊥, . . . ,⊥) ∈553

S with k > 0 let lft(s) = (b1, . . . , bk,⊥, . . . ,⊥) ∈ S, i.e., we shift s to the left and554

fill the last entry with a ⊥. As entries in summaries are strictly increasing, we555

have lft(s) >lex s for every s with at least two non-⊥ entries.556

Remark 5. Let σ be an adaptive strategy for Player 0, let p be a play prefix, and557

let ρ = v0v1 · · · be a (σ, p)-play. Further, let n = |p|, i.e., vn−1 is the last vertex558

of p, and note that ρ is also a (σ, pvn)-play.559

If ρ has a bad move at position n, then smry(σ, pvn, ρ) = lft(smry(σ, p, ρ))560

(reflecting the fact that ρ has one bad move less after pvn than after p), otherwise561

we have smry(σ, pvn, ρ) = smry(σ, p, ρ). Note that we have kept σ and ρ fixed562

and just added a vertex to the prefix we consider.563

As seen above, a bad move shifts the summary to the left. The following564

remark shows a dual result, allowing us to determine the summary of a play565

prefix of length one from the summary of play prefix up to the first bad move. In566

Example 3, note that the strategy σ1 (using the edges {0 → 1, 3 → 2, 4 → 5})567

enforces value 0011 from 0, i.e., the first entry of smry(σ1, 0, 0145ω) is 0011. The568

play 0145ω has its first bad move of Player 1 at position 2, and the corresponding569

summary is smry(σ1, 014, 0145ω) = (0111,⊥,⊥,⊥,⊥). Hence, smry(σ1, 0, 0145ω)570

must be the “concatenation” (0011, 0111,⊥,⊥,⊥) of 0011 and (0111,⊥,⊥,⊥,⊥)571

(with the last ⊥ removed). In general, we have the following property.572

Remark 6. Let s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S with k > 0 and let v be a vertex.573

Let σ be an adaptive strategy such that b0 is the maximal value that σ enforces574

from v and let ρ be a (σ, v)-play with at least one bad move, and let p be the prefix575

of ρ ending at the position of the first bad move. Then, smry(σ, p, ρ) = lft(s) if576

and only if smry(σ, v, ρ) = s.577

Again, recall Example 3, and consider the plays ρb = 0145ω (with a bad move578

by Player 1) and ρn = 01(23)ω (without a bad move), which are both (σ1, 0)-579

plays. We have smry(σ1, 0, ρb) = (0011, 0111,⊥,⊥,⊥) and smry(σ1, 0, ρn) =580

(0011,⊥,⊥,⊥,⊥). Disregarding the ⊥’s the summary of ρn can be seen as a strict581

prefix of the summary of ρb. Note that (0011,⊥,⊥,⊥,⊥) <lex (0011, 0111,⊥,⊥,⊥).582

In general, fix a strategy σ, a play prefix p, and a (σ, p)-play ρ with smry(σ, p, ρ) =583

(b0, . . . , bk,⊥, . . . ,⊥). Then, for every k′ < k there is a (σ, p)-play ρ′ with584

smry(σ, p, ρ′) = (b0, . . . , bk′ ,⊥, . . . ,⊥), i.e., any play where Player 1 stops making585

bad moves after the first k′ ones (recall that making bad moves is a choice).586

To formalize this, we say that a summary (b0, . . . , bk,⊥, . . . ,⊥) is a strict587

prefix of a summary (b′0, . . . , b
′
k′ ,⊥, . . . ,⊥) if k < k′ and bj = b′j for all 0 ≤ j ≤ k,588

16 S. P. Nayak et al.

i.e., we only consider non-⊥ entries. Now, fix (σ, p)-plays ρ, ρ′. We say that ρ is589

(σ, p)-covered by ρ′ if smry(σ, p, ρ) is a strict prefix of smry(σ, p, ρ′). Also, we say590

that ρ is a (σ, p)-uncovered play if there is no (σ, p)-play ρ′ that covers it. When591

σ and p are clear from context, we drop them and say that a play is uncovered.592

In the example, ρn is (σ1, 0)-covered by ρb, which is (σ1, 0)-uncovered.593

Now, we lift summaries from plays to strategies by defining smry(σ, p) as594

the lexicographical minimum over all smry(σ, p, ρ) where ρ ranges over (σ, p)-595

uncovered plays. Note that if ρ (σ, p)-covers ρ′, then the summary of ρ is a strict596

prefix of the summary of ρ′ and, therefore, strictly smaller. Our definition of597

smry(σ, p) discards such plays when computing the minimum, but the information598

is not lost as it appears as a prefix of a covering play.599

In the running example, we have smry(σ1, 0) = (0011, 0111,⊥,⊥,⊥) and600

smry(σ2, 0) = (0011,⊥,⊥,⊥,⊥).601

Remark 7. Let σ be an adaptive strategy for Player 0 and let p be a play prefix.602

If smry(σ, p) = s for some s ∈ S, then there exists a (σ, p)-uncovered play ρ such603

that smry(σ, p, ρ) = s.604

Finally, we are ready to formalize our intuitive notion of strongly adaptive605

strategies, i.e., adaptive strategies that seek out opportunities for the opponent to606

make bad moves. Recall that summaries record the possibility, and the effect, of607

Player 1 making bad moves. So, we intuitively say a strategy is strongly adaptive608

if it maximizes the summaries globally.609

Recall that a strategy is adaptive if the value it enforces from any possible610

play prefix is as large as the value any other strategy enforces from that prefix.611

Analogously, a strategy is strongly adaptive if its summary for every play prefix612

is as good as the summary from the play prefix for any other strategy.613

Definition 2. An adaptive strategy σ0 is strongly adaptive if smry(σ0, p) ≥lex614

smry(σ, p) for every adaptive strategy σ and every play prefix p.615

For every play prefix p, let smry(p) denote the lexicographical maximum of616

smry(σ, p) over all adaptive strategies σ for Player 0 in the game G, i.e.,617

smry(p) = max
σ

smry(σ, p),618

where σ ranges over all adaptive strategies for Player 0.619

Note that every strongly adaptive strategy is adaptive by definition, and the620

first entry of smry(p) is equal to the maximal value that can be enforced from p.621

However, as argued above, not every adaptive strategy is strongly adaptive.622

4.4 Existence of Strongly Adaptive Strategies623

While strongly adaptive strategies generalize adaptive strategies, there is a catch624

in the definition: The former may not always exist, whereas the latter always625

do. For instance, consider the graph given in Figure 3 with initial vertex 0 and626

the formula ϕ = p. It is clear that Player 0 can enforce 0011 from any play627

Robustness-by-Construction Synthesis 17

0

{}

1

{}

2

{p}

3

{}

4

{p}

Fig. 3. An rLTL game with no strongly adaptive strategy

prefix in 0(10)∗ by eventually moving to vertex 3. And if at some point, Player 1628

makes the bad move 1 → 2, then Player 0 enforces 0111 as the token stays at629

vertex 2 forever. However, any adaptive strategy for Player 0 has to eventually630

visit vertex 3, unless Player 1 makes a bad move prior.631

Note that Player 1 can only make a bad move at vertex 1, so visiting 1 once632

more when at vertex 0 instead of moving to vertex 3 gives her another chance633

to make a bad move. So, to optimize the enforced value under one bad move,634

Player 1 should stay in the loop between 0 and 1 forever. However, this is not635

the optimal behavior if no bad move occurs, as looping yields a value of 0000,636

which is smaller than the value 0011 that is achieved by eventually moving to 3.637

Formally, for n ≥ 0, let σn be the strategy such that σn(0(10)n
′
) = 1 for all638

n′ < n and σn(0(10)n
′
) = 3 for all n′ ≥ n, i.e., σn gives Player 1 n chances to639

make a bad move and then moves to 3, thereby preventing him from making a640

bad move. Note that each of the σn is adaptive, but σn+1 gives Player 0 more641

opportunities to make a bad move than σn, namely for the prefix 0(10)n.642

Fix some n. There are only two (σn+1, 0(10)n)-plays, i.e., 0(10)n10(34)ω643

(Player 1 does not make a bad move) and 0(10)n12ω (Player 1 makes a bad644

move). Then, smry(σn+1, 0(10)n, 0(10)n10(34)ω) = (0011,⊥,⊥,⊥,⊥) as well645

as smry(σn+1, 0(10)n, 0(10)n12ω) = (0011, 0111,⊥,⊥,⊥). Hence, we conclude646

smry(σn+1, 0(10)n) = (0011, 0111,⊥,⊥,⊥), as the former is covered by the latter.647

Towards a contradiction assume there is a strongly adaptive strategy σ. By648

definition, we have649

smry(σ, 0(10)n) ≥lex smry(σn+1, 0(10)n) = (0011, 0111,⊥,⊥,⊥) (1)650

for every n. As we have smry(σ, 0(10)n) <lex (1111,⊥,⊥,⊥,⊥) (p does not hold651

at vertex 0), σ must give Player 1 the chance to make at least one bad move652

after the prefix 0(10)n. So, we must have σ(0(10)n) = 1, as Player 1 can only653

make a bad move at vertex 1.654

Thus, the play (01)ω (with value 0000) is a (σ, 0(10)n)-play for every n, i.e., σ655

only enforces 0000 from every such prefix. Hence, the first entry of smry(σ, 0(10)n)656

is 0000 for every n. This contradicts Inequality (1). Therefore, σ is not strongly657

adaptive, i.e., Player 0 does not have a strongly adaptive strategy in the game.658

As strongly adaptive strategies do not necessarily exist, we are interested in659

the following problem.660

Problem 2. Given an rLTL game, determine whether a strongly adaptive strategy661

for Player 0 exists and, if yes, compute one.662

18 S. P. Nayak et al.

4.5 Computing Strongly Adaptive Strategies663

We solve Problem 2 for an rLTL game G = (A, ϕ) by constructing the parity664

games Gb for each b and the extended game G′ = (A′, ϕ) as in the algorithm665

given in Section 3.2. Recall that Player 0 wins Gb if and only if he can enforce666

b in G and that G′ is the product of the Gb. As we have described in Step 5667

of that algorithm, it is easy to see that solving Problem 2 for the game G is668

equivalent to solving the problem for game G′. Hence, from now on, we only669

consider G′ and show properties for the game G′, which we can use later to670

compute a strongly adaptive strategy in G. This strategy can then be transformed671

into a strongly adaptive strategy for G. In the following, it is often useful to focus672

on one truth value by equipping G′ with the parity condition of Cb for some b:673

a vertex (v, q1111, . . . , q0000) has the color that qb has in Cb. Thus, G′ equipped674

with the parity condition of Gb is equivalent to Gb.675

To decide whether a strongly adaptive strategy exists, we proceed as follows:676

1. We first give a characterization of the vertices v of G′ with smry(v) = s677

that only uses summaries that are larger than s. This allows us to compute678

smry(v) for every vertex v by induction over the summaries.679

2. Using the decomposition of G′ into regions with the same summary and the680

characterization we construct a series of obliging games [14]. In an obliging681

game, Player 0 has a strong winning condition that has to be satisfied on682

every play and a weak winning condition that must be satisfiable if Player 1683

cooperates. In our case, the strong winning condition requires Player 0 to684

always enforce the best value that is currently possible and the weak condition685

requires Player 1 to have a chance to make a bad move (if the summary686

encodes that this is still possible), i.e., whenever possible, Player 1 is given687

the chance to make a bad move.688

3. Finally, if Player 1 has in all obliging games a strategy satisfying both the689

strong and the weak condition, then these can be turned effectively into a690

strongly adaptive strategy, otherwise there is no such strategy.691

We first provide a useful lemma showing that a strategy in G′ is strongly692

adaptive if and only if its summary is history independent, i.e., only depends on693

the last vertex.694

Lemma 1. A strategy σ for Player 0 in G′ is strongly adaptive if and only if for695

every play prefix p ending in vertex v, it holds that smry(σ, p)) = smry(v).696

As computed in Section 3.2, let E=b be the set of vertices in G′ from which697

the maximum value Player 0 can enforce is b. Furthermore, for a summary s ∈ S,698

let V≥s denote the set of vertices v in G′ for which smry(v) ≥lex s. Let V=s, V>s,699

and V<s be defined similarly.700

Remark 8. Let s = (b0, . . . , bk,⊥, . . . ,⊥). Then, V=s ⊆ E=b0 .701

For a vertex set F , let pre(F) denote the set of vertices from which there702

is an edge to F . Maybe surprisingly, we do not distinguish between vertices of703

Player 0 and Player 1, but we will only apply pre(F) when it is Player 1’s turn.704

Robustness-by-Construction Synthesis 19

Next, we characterize the sets V=s in terms of the existence of strategies705

that witness summaries. The key aspects of this characterization is that it only706

refers to summaries s′ >lex s, which will later allow us to compute these sets707

inductively.708

Given a strategy σ for Player 0 in G′ and a play prefix p, let Π(σ, p) denote709

the set of (σ, p)-plays that do not contain a bad move by Player 1 after p.710

Definition 3. Let σ be a strategy for Player 0, p be a play prefix, and s =711

(b0, . . . , bk,⊥, . . . ,⊥) a summary. We say that σ is an s-witness from p if and712

only if it satisfies the following three properties:713

Enforcing Every play in Π(σ, p) satisfies the parity condition of the game Gb0 .714

Thus, a witness has to enforce b0 unless Player 1 makes a bad move.715

Enabling If k ≥ 1, there exists a play in Π(σ, p) that visits pre
(
V=lft(s)

)
. Thus,716

if there is the chance to reach a vertex where Player 1 can make a bad move,717

then a witness has to visit such a vertex. Note that we require that the bad718

move leads to a vertex with summary lft(s), which is the largest summary719

that can be guaranteed to be reached from p after a bad move.720

Evading If k ≥ 1, then let us define Ev(s) to be the set of summaries s′ =721

(b′0, . . . , b
′
k′ ,⊥, . . . ,⊥) with b′0 > b0, s′ <lex lft(s), and such that s′ is not722

a strict prefix of lft(s). Then, no play in Π(σ, p) visits pre
(
V=s′

)
for any723

s′ ∈ Ev(s). Thus, a witness can never reach a vertex where Player 1 can724

make a bad move to reach a summary that is worse than lft(s).725

Recall that lft(s) >lex s and that s′ ∈ Ev(s) implies s′ >lex s.726

Lemma 2. In the game G′, for some summary s and for some vertex v, we have727

v ∈ V=s if and only if v 6∈ V>s and there is an s-witness from v.728

We now give a method to compute V=s for each summary s ∈ S by induc-729

tion from the largest to the smallest summary. Since truth values in a sum-730

mary are strictly increasing, (1111,⊥, . . . ,⊥) is the maximal summary. We have731

V=(1111,⊥,...,⊥) = E=1111, which we can compute using Tabuada and Neider’s732

result for classical rLTL games (see Section 2). For the inductive step, assume that733

for a summary s = (b0, . . . , bk,⊥, . . . ,⊥) the sets V=s′ are already computed for734

every s′ >lex s. The set V=s can then be computed using the following algorithm:735

1. If k = 0, then return E≥b0 \V>s. Here, E≥b0 can again be computed using736

Tabuada and Neider’s result for classical rLTL games.737

2. Now assume k > 0. Let As be the subgraph of A′ restricted to the vertex set738

E≥b0 \
(

V>s ∪
⋃

s′∈Ev(s)
Reach1(V=s′)

)
,739

where Reach1(F) denotes the set of vertices of A′ from which Player 1 can740

force the token to reach F . This set can be computed in linear time (in the741

number of edges of A′) using standard methods to solve reachability games742

(see [18] for more details). In the proof of correctness of the algorithm (see743

Lemma 3) we show that As does not have any terminal vertices.744

Also, the sets V=s′ for s′ ∈ Ev(s) are already computed, because the sum-745

maries s′ ∈ Ev(s) are all greater than s.746

20 S. P. Nayak et al.

3. Let Win(s) be the winning region for Player 0 in the parity game with747

arena As and coloring as in the game Gb0 . Return the set of vertices in748

Player 0’s winning region Win(s) from which pre
(
V=lft(s)

)
is reachable in749

the subgraph of A′ restricted to Win(s).750

Lemma 3. The algorithm described above computes the sets V=s for s ∈ S.751

Now, we give a characterization of strongly adaptive strategies in terms of752

summary witnesses.753

Lemma 4. In the game G′, a strategy σ is strongly adaptive if and only if it is754

a smry(p)-witness from every play prefix p.755

Now, we show how to decide whether a strategy satisfying the condition given756

in Lemma 4 exists, i.e., a strategy that is a smry(p)-witness from every play757

prefix p. Furthermore, if such a strategy exists, we compute one. To do so, we758

present a reduction to another type of game, called obliging games. So, before759

describing the details of the reduction, let us recapitulate the definitions and760

useful results on obliging games.761

Obliging games are two-player games introduced by Chatterjee et al. [14].762

They have two winning conditions, S and W , called strong and weak conditions.763

The objective of Player 0 is to ensure the strong winning condition while allowing764

Player 1 to cooperate with him to additionally fulfil the weak winning condition.765

Formally, a strategy σ for Player 0 is uniformly gracious if it satisfies the following:766

– for every vertex v, every (σ, v)-play is S-winning, and767

– for every play prefix p consistent with σ, there is a W -winning (σ, p)-play.768

We are only interested in parity/Büchi obliging games (i.e., the strong condition769

is a parity condition, and the weak one is a Büchi condition). The next theorem770

follows directly from the results by Chatterjee et al. [14].771

Theorem 3. A parity/Büchi obliging game with n vertices and a parity condition772

with k colors can be reduced to a parity game with O(n) vertices and O(k) colors.773

Moreover, if Player 0 has a uniformly gracious strategy in such an obliging game,774

he has a uniformly gracious strategy with a memory of size at most O(k).775

Now, coming back to our problem, we define obliging games Gs (for each776

s ∈ S), which are subgames of G′, such that a uniformly gracious strategy in777

Gs satisfies the properties of an s-witness locally. In particular, the games are778

defined in way such that the strong condition resembles the Enforcing property,779

the weak condition resembles the Enabling property, and the restricted vertex780

set ensures that the Evading property is satisfied.781

Definition 4. Given a summary s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S, let Gs be the782

obliging game obtained from G′ as follows:783

– The set of vertices V (Gs) is the set V=s ∪{vnew}, where vnew is a new vertex784

that does not belong to V ′.785

Robustness-by-Construction Synthesis 21

– The set of edges E(Gs) contains the following edges:786

• The edges of the game G′ restricted to the vertex set V=s.787

• All edges of the form (v, vnew) where v is a terminal vertex in the game G′788

restricted to V=s.789

• A self loop on vnew.790

– The strong condition Ss is a parity condition such that the color of vnew is 0791

and color of any other vertex is same as in Gb0 .792

– If k = 0, then there is no weak condition, i.e., Ws is a Büchi condition with793

F = V (Gs). If k > 0, then the weak condition Ws is a Büchi condition with794

F = pre(lft(s)) ∪ {vnew}.795

The following lemma formalizes the connection between uniformly gracious796

strategies in the obliging games Gs and strongly adaptive strategies in G′.797

Lemma 5. There exists a strongly adaptive strategy in G′ if and only if there798

exists a uniformly gracious strategy in every obliging game Gs. Given a uniformly799

gracious strategy with finite memory in each obliging game Gs, one can effectively800

combine these into a strongly adaptive strategy with finite memory in G′.801

Since the game G′ has doubly-exponential size, using Theorem 3, the parity/802

Büchi obliging games Gs can be reduced to doubly-exponential-sized parity games.803

Once we computed a strongly adaptive strategy for G′, it can then be reduced to804

a strongly adaptive strategy for the original game G.805

Moreover, note that strongly adaptive strategies also have doubly-exponential806

memory since the obliging games we constructed have doubly-exponential size. By807

Theorem 3, uniformly gracious strategies in such obliging games require memory808

of linear size, leading to the following result.809

Theorem 4. Given an rLTL game, one can decide in doubly-exponential time810

whether Player 0 has a strongly adaptive strategy. If yes, one can compute one811

with doubly-exponential memory in doubly-exponential time.812

Note that by dualizing the definitions and the constructions, an analogous813

result for Player 1 can also be obtained.814

5 Conclusion815

We argued that in a reactive system, in addition to correctness, we also need816

to ensure robustness. To this end, we introduced adaptive strategies for rLTL817

games that satisfy the specification to a higher degree when the environment is818

not antagonistic. We also presented a stronger version of adaptive strategies that819

additionally maximizes the opportunities for the opponent to make bad choices.820

Finally, we showed that both adaptive and strongly adaptive strategies can be821

computed in doubly-exponential time. As we know that the classical LTL and822

rLTL synthesis algorithms also take doubly-exponential time, we conclude that823

adaptive and strongly adaptive strategies are not harder to compute.824

22 S. P. Nayak et al.

References825

1. Almagor, S., Kupferman, O.: Good-enough synthesis. In: Computer Aided Ver-826

ification, CAV 2020, Part II. LLNCS, vol. 12225, pp. 541–563. Springer (2020).827

https://doi.org/10.1007/978-3-030-53291-8 28828

2. Anevlavis, T., Neider, D., Phillipe, M., Tabuada, P.: Evrostos: the rLTL verifier.829

In: ACM International Conference on Hybrid Systems: Computation and Control,830

HSCC 2019. pp. 218–223. ACM (2019). https://doi.org/10.1145/3302504.3311812831

3. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Verifying rLTL formulas: now832

faster than ever before! In: IEEE Conference on Decision and Control, CDC 2018.833

pp. 1556–1561. IEEE (2018). https://doi.org/10.1109/CDC.2018.8619014834

4. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough:835

Efficient verification using Robust Linear Temporal Logic. ACM Trans. Comput.836

Log. 23(2), 8:1–8:39 (2022). https://doi.org/10.1145/3491216837

5. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)838

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL839

and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4) (sep 2011).840

https://doi.org/10.1145/2000799.2000800841

7. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann,842

B., Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Informatica843

51(3-4), 193–220 (2014). https://doi.org/10.1007/s00236-013-0191-5844

8. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in845

synthesis through quantitative objectives. In: Computer Aided Verification, CAV846

2009. LLNCS, vol. 5643, pp. 140–156. Springer (2009). https://doi.org/10.1007/978-847

3-642-02658-4 14848

9. Bloem, R., Ehlers, R., Jacobs, S., Könighofer, R.: How to handle assumptions in849

synthesis. In: Workshop on Synthesis, SYNT 2014. EPTCS, vol. 157, pp. 34–50850

(2014). https://doi.org/10.4204/EPTCS.157.7851

10. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games852

in quasipolynomial time. In: ACM SIGACT Symposium on Theory of Computing,853

STOC 2017. pp. 252–263. ACM (2017). https://doi.org/10.1145/3055399.3055409854

11. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60855

(2012). https://doi.org/10.1016/j.tcs.2012.07.038856

12. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Tools and Algo-857

rithms for the Construction and Analysis of Systems, TACAS 2007, ETAPS 2007.858

LLNCS, vol. 4424, pp. 261–275. Springer (2007). https://doi.org/10.1007/978-3-859

540-71209-1 21860

13. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In:861

IEEE Symposium on Logic in Computer Science (LICS 2005). pp. 178–187. IEEE862

Computer Society (2005). https://doi.org/10.1109/LICS.2005.26863

14. Chatterjee, K., Horn, F., Löding, C.: Obliging games. In: Gastin, P., Laroussinie,864

F. (eds.) Concurrency Theory, CONCUR 2010. LLNCS, vol. 6269, pp. 284–296.865

Springer (2010). https://doi.org/10.1007/978-3-642-15375-4 20866

15. Dallal, E., Neider, D., Tabuada, P.: Synthesis of safety controllers robust to unmod-867

eled intermittent disturbances. In: IEEE Conference on Decision and Control, CDC868

2016. pp. 7425–7430. IEEE (2016). https://doi.org/10.1109/CDC.2016.7799416869

16. Ehlers, R., Topcu, U.: Resilience to intermittent assumption violations in reactive870

synthesis. In: International Conference on Hybrid Systems: Computation and Con-871

trol, HSCC’14. pp. 203–212. ACM (2014). https://doi.org/10.1145/2562059.2562128872

https://doi.org/10.1007/978-3-030-53291-8_28
https://doi.org/10.1145/3302504.3311812
https://doi.org/10.1109/CDC.2018.8619014
https://doi.org/10.1145/3491216
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/s00236-013-0191-5
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.4204/EPTCS.157.7
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.tcs.2012.07.038
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1109/LICS.2005.26
https://doi.org/10.1007/978-3-642-15375-4_20
https://doi.org/10.1109/CDC.2016.7799416
https://doi.org/10.1145/2562059.2562128

Robustness-by-Construction Synthesis 23

17. Fearnley, J., Zimmermann, M.: Playing Muller games in a hurry. Int. J. Found.873

Comput. Sci. 23(3), 649–668 (2012). https://doi.org/10.1142/S0129054112400321874

18. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:875

A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001],876

LLNCS, vol. 2500. Springer (2002). https://doi.org/10.1007/3-540-36387-4877

19. Majumdar, R., Render, E., Tabuada, P.: A theory of robust omega-regular soft-878

ware synthesis. ACM Trans. Embed. Comput. Syst. 13(3), 48:1–48:27 (2013).879

https://doi.org/10.1145/2539036.2539044880

20. Mascle, C., Neider, D., Schwenger, M., Tabuada, P., Weinert, A., Zimmermann, M.:881

From LTL to rLTL monitoring: improved monitorability through robust semantics.882

In: HSCC ’20: 23rd ACM International Conference on Hybrid Systems: Computation883

and Control. pp. 7:1–7:12. ACM (2020). https://doi.org/10.1145/3365365.3382197884

21. Nayak, S.P., Neider, D., Zimmermann, M.: Adaptive strategies for rLTL games. In:885

HSCC ’21: ACM International Conference on Hybrid Systems: Computation and886

Control. pp. 32:1–32:2. ACM (2021). https://doi.org/10.1145/3447928.3457210887

22. Neider, D., Totzke, P., Zimmermann, M.: Optimally resilient strategies888

in pushdown safety games. In: International Symposium on Mathemat-889

ical Foundations of Computer Science, MFCS 2020. LIPIcs, vol. 170,890

pp. 74:1–74:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020).891

https://doi.org/10.4230/LIPIcs.MFCS.2020.74892

23. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient con-893

trollers. In: EACSL Annual Conference on Computer Science Logic, CSL 2018.894

LIPIcs, vol. 119, pp. 34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik895

(2018). https://doi.org/10.4230/LIPIcs.CSL.2018.34896

24. Neider, D., Weinert, A., Zimmermann, M.: Robust, expressive, and quantitative897

linear temporal logics: Pick any two for free. In: International Symposium on Games,898

Automata, Logics, and Formal Verification, GandALF 2019. EPTCS, vol. 305, pp.899

1–16 (2019). https://doi.org/10.4204/EPTCS.305.1900

25. Neider, D., Weinert, A., Zimmermann, M.: Robust, expressive, and quantitative901

linear temporal logics: Pick any two for free. Information and Computation p.902

104810 (2021). https://doi.org/https://doi.org/10.1016/j.ic.2021.104810903

26. Pnueli, A.: The temporal logic of programs. In: Symposium on Founda-904

tions of Computer Science, 1977. pp. 46–57. IEEE Computer Society (1977).905

https://doi.org/10.1109/SFCS.1977.32906

27. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: ACM Symposium907

on Principles of Programming Languages, 1989. pp. 179–190. ACM Press (1989).908

https://doi.org/10.1145/75277.75293909

28. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:910

Automata, Languages and Programming, ICALP89. LLNCS, vol. 372, pp. 652–671.911

Springer (1989). https://doi.org/10.1007/BFb0035790912

29. Priest, G.: Dualising intuitionictic negation. Principia: an international jour-913

nal of epistemology 13(2), 165–184 (2009). https://doi.org/10.5007/1808-914

1711.2009v13n2p165915

30. Samuel, S., Mallik, K., Schmuck, A., Neider, D.: Resilient abstraction-916

based controller design. In: HSCC ’20: ACM International Conference on917

Hybrid Systems: Computation and Control. pp. 33:1–33:2. ACM (2020).918

https://doi.org/10.1145/3365365.3383467919

31. Samuel, S., Mallik, K., Schmuck, A., Neider, D.: Resilient abstraction-based con-920

troller design. In: IEEE Conference on Decision and Control, CDC 2020. pp.921

2123–2129. IEEE (2020). https://doi.org/10.1109/CDC42340.2020.9303932922

https://doi.org/10.1142/S0129054112400321
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/2539036.2539044
https://doi.org/10.1145/3365365.3382197
https://doi.org/10.1145/3447928.3457210
https://doi.org/10.4230/LIPIcs.MFCS.2020.74
https://doi.org/10.4230/LIPIcs.CSL.2018.34
https://doi.org/10.4204/EPTCS.305.1
https://doi.org/https://doi.org/10.1016/j.ic.2021.104810
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.5007/1808-1711.2009v13n2p165
https://doi.org/10.1145/3365365.3383467
https://doi.org/10.1109/CDC42340.2020.9303932

24 S. P. Nayak et al.

32. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complemen-923

tation of generalised Büchi automata. In: Automated Technology for Verifica-924

tion and Analysis, ATVA 2012. LLNCS, vol. 7561, pp. 42–56. Springer (2012).925

https://doi.org/10.1007/978-3-642-33386-6 5926

33. Tabuada, P., Caliskan, S.Y., Rungger, M., Majumdar, R.: Towards robustness for927

cyber-physical systems. IEEE Trans. Autom. Control. 59(12), 3151–3163 (2014).928

https://doi.org/10.1109/TAC.2014.2351632929

34. Tabuada, P., Neider, D.: Robust linear temporal logic. In: Conference on Computer930

Science Logic, CSL 2016. LIPIcs, vol. 62, pp. 10:1–10:21. Schloss Dagstuhl - Leibniz-931

Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.10932

35. Topcu, U., Ozay, N., Liu, J., Murray, R.M.: On synthesizing robust discrete con-933

trollers under modeling uncertainty. In: Hybrid Systems: Computation and Control,934

HSCC’12. pp. 85–94. ACM (2012). https://doi.org/10.1145/2185632.2185648935

https://doi.org/10.1007/978-3-642-33386-6_5
https://doi.org/10.1109/TAC.2014.2351632
https://doi.org/10.4230/LIPIcs.CSL.2016.10
https://doi.org/10.1145/2185632.2185648

Robustness-by-Construction Synthesis 25

In this appendix, we present the proofs omitted in the main part.936

A Combining Adaptive Strategies937

Let us begin by introducing a useful preliminary result: in many of the construc-938

tions presented below, we need to combine several strategies into a new one while939

maintaining adaptiveness. The following lemma will be useful to prove this.940

Lemma 6. Let σ be a strategy for Player 0 in G′ such that for all play prefixes p941

and all (σ, p)-plays ρ, the following are both satisfied:942

– ρ does not contain a bad move of Player 0 after the play prefix p.943

– There is an adaptive strategy σρ such that ρ is a (σρ, p
′)-play for some prefix p′944

of ρ.945

Then, σ is adaptive.946

Proof. Towards a contradiction, suppose σ is a strategy for Player 0 in G′947

satisfying the given properties, but is not adaptive. Then, by definition, for some948

play prefix p, there exists some strategy σ′ that enforces some value b from p,949

but σ does not. That means there exists a (σ, p)-play ρ which has a value strictly950

less than b. By the given properties, there exists an adaptive strategy σρ such951

that ρ is a (σρ, p
′)-play for some prefix p′ of ρ. Since both p and p′ are prefixes952

of ρ, one has to be the prefix of the other. If p′ is a prefix of p, then ρ is also a953

(σρ, p)-play. As σρ is adaptive, it enforces value b from p, i.e., we have derived a954

contradiction to V(ρ) < b.955

Now, assume that p is a prefix of p′. Since σ′ enforces value b from p and
Player 0 does not make a bad move after prefix p in the play ρ, Player 0 can
still enforce value b from p′. Then, by the definition of adaptive strategies, σρ
enforces the value b from p′ (in particular for the (σρ, p

′)-play ρ), i.e., we have
again derived a contradiction to V(ρ) < b. ut

B Proof of Lemma 1956

We use the following properties to simplify the proof.957

Remark 9.958

1. Let σ be an adaptive strategy for Player 0. Then, σ is strongly adaptive if959

and only if smry(σ, p) = smry(p) for every play prefix p.960

2. Let σ be an adaptive strategy for Player 0 and p a play prefix. Then,961

smry(σ, p) = smry(p) if and only if smry(σ, p) ≥lex smry(p).962

3. Let p be a play prefix. Then, there is a strategy σ for Player 0 such that963

smry(σ, p) = smry(p).964

Now, let us prove Lemma 1. Recall that we need to prove that a strategy965

σ for Player 0 in the game G′ is strongly adaptive if and only if for every play966

prefix p ending in vertex v, it holds that smry(σ, p)) = smry(v).967

26 S. P. Nayak et al.

Proof. By Remark 9.1, a strategy σ for Player 0 is strongly adaptive if and only968

if smry(σ, p) = smry(p) for every play prefix p. Hence, it is enough to show969

that for any two prefixes p1 and p2 ending in the same vertex, it holds that970

smry(p1) = smry(p2). The result then follows by picking p1 = p and p2 = v.971

Suppose, towards a contradiction, and without loss of generality, smry(p1) <lex972

smry(p2). Let σi for i ∈ {1, 2} be an adaptive strategy that maximizes the973

summary from pi over all strategies. Then, we define the strategy σ′ for Player 0974

defined as975

σ′(p) =

{
σ2(p2p

′) if p = p1p
′ for some (possibly empty) p′

σ1(p) otherwise.
976

Applying Lemma 6 shows that σ′ is adaptive. Hence, smry(σ′, p1) = smry(σ2, p2)977

in the game G′, as σ′ behaves after the prefix p1 like σ2 does after the prefix p2.978

Thus, it holds that979

smry(σ′, p1) = smry(σ2, p2) = smry(p2) >lex smry(p1) = smry(σ1, p1),980

which contradicts the maximality of σ1. ut

C Proof of Lemma 2981

Recall that we need to prove that in the game G′, for some summary s and for982

some vertex v, we have v ∈ V=s if and only if v 6∈ V>s and there is an s-witness983

from v.984

Proof. Fix some s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S throughout the proof.985

Suppose a vertex v /∈ V>s has an s-witness σ. We show that v is in V=s.986

Observe that v 6∈ V>s implies smry(v) ≤lex s. Furthermore, since σ is enforc-987

ing, every (σ, v)-play containing no bad move of Player 1 has value at least b0.988

Hence, the maximum value Player 0 enforces from v is at least b0. Therefore, we989

obtain990

(b0,⊥,⊥,⊥,⊥) ≤lex smry(v) ≤lex s. (2)991

If k = 0, i.e., s = (b0,⊥, . . . ,⊥) then we are done.992

So, suppose k > 0. For every play prefix p′ ending in v′ ∈ V>s, let σp′ be993

an adaptive strategy such that smry(σp′ , p
′) = smry(p′) = smry(v′) (the second994

equality follows from Lemma 1). By Remark 9.3, such a strategy always exists.995

We combine these σp′ into a strategy σv as follows: for any play prefix p,996

σv(p) = σ(p) if p does not contain any vertex in V>s. Otherwise, σv(p) = σp′(p),997

where p′ is the minimal prefix of p containing a vertex of V>s, i.e., no strict prefix998

of p′ contains a vertex in V>s. Note that the sets V=s and V>s are disjoint, so999

this is well-defined. We call σv the continuation of σ with (σp′)p′ .1000

Note that σv does not make a bad move (of Player 0) in any (σv, v)-play, as1001

σ enforces b0 (the largest value that can be enforced from v due to v /∈ V≥s) and1002

every bad move of Player 1 leading to σv simulating an adaptive strategy, which1003

does not make any bad move either. Hence, σv is also adaptive by Lemma 6.1004

Robustness-by-Construction Synthesis 27

We claim that smry(σv, v) ≥lex s. This equality implies smry(v) ≥lex smry(σv, v) ≥lex1005

s. Then, we have smry(v) = s, as we have already argued smry(v) ≤lex s.1006

So, let us prove smry(σv, v) ≥lex s. To this end, we show that smry(σv, v, ρ) ≥lex1007

s for every (σv, v)-uncovered play ρ. Fix such a play.1008

As k > 0 and due to σ being enabling, there is a (σv, v)-play ρB in which1009

Player 1 makes at least one bad move. Due to Remark 6, we can pick ρB such1010

that smry(σv, v, ρB) = s. Hence, if ρ does not contain any bad moves by Player 11011

(which implies smry(σv, v, ρ) = (b0,⊥, . . . ,⊥)) then ρ is covered by ρB. This1012

contradicts our choice of ρ. Thus, we can assume that ρ contains at least one bad1013

move of Player 1. Now, by definition of σv, the play ρ is consistent with σ up to1014

the first bad move of Player 1.1015

As σ is enforcing, any play ρ′ ∈ Π(σ, p) is winning w.r.t. the parity condition1016

of Gb0 . Hence, the value of ρ′ is at least b0. Thus, ρ′ never visits the vertex1017

set E=b′0
for some truth value b′0 < b0. Note that by Equation (2), v ∈ E=b0 as1018

the maximal value Player 0 can enforce is b0. Hence, ρ starts in E=b0 and it leaves1019

E=b0 only when Player 1 makes a bad move, which leads to E>b0 . More precisely,1020

the first bad move of Player 1 in ρ is a move from some vertex vp in pre(V=s?)1021

for some s? ∈ S such that the first entry of s? is strictly greater than b0.1022

As σ is evading, there are two cases: either s? ≥lex lft(s) or s? is a strict prefix1023

of lft(s). In the second case, by Remark 6, ρ is covered by the play ρB, which1024

again contradicts our choice of ρ. In the first case, after the first bad move, the1025

play reaches a vertex v? in V=s? . Let p? be the prefix of ρ ending in this vertex1026

v?. Thus, ρ is a (σp? , p
?)-play by construction. There are two subcases: either ρ1027

is an (σp? , p
?)-uncovered play and1028

smry(σp? , p
?, ρ) ≥lex smry(σp? , p

?) = smry(v?) = s? ≥lex lft(s)1029

or ρ is a (σp? , p
?)-covered play and smry(σp? , p

?, ρ) is a strict prefix of smry(σp? , p
?, ρ′)1030

for some (σp? , p
?)-play ρ′.1031

In the second subcase, due to Remark 6, ρ is also a (σv, v)-covered play such1032

that smry(σv, v, ρ) is a strict prefix of smry(σv, v, ρ
′), which again contradicts1033

our choice of ρ. In the first subcase, we obtain smry(σv, v, ρ) ≥ s by Remark 6,1034

which completes the first direction of the proof.1035

For the other direction, suppose a vertex v belongs to V=s. By definition,1036

V=s ∩V>s = ∅, which implies v /∈ V>s. By Remark 9.3, there exists a strategy σ1037

such that smry(σ, v) = s.1038

It remains to be shown that there is an s-witness from v. We actually prove a1039

more general result, which will be useful later on: If for some play prefix p, there1040

exists a strategy σ such that smry(σ, p) = s, then σ is an s-witness from p, i.e.,1041

we show the result for arbitrary play prefixes p.1042

So, assume we have a strategy σ such that smry(σ, p) = s. Hence, there is1043

an (σ, p)-uncovered play ρm with smry(σ, p, ρm) = s and smry(σ, p, ρ) ≥lex s for1044

every (σ, p)-uncovered play ρ. We show that the set Π(σ, p) of (σ, p)-plays without1045

bad moves of Player 1 after p satisfies the three properties of an s-witness.1046

The Enforcing property is satisfied by the fact that σ enforces the truth1047

value b0 from p (as it enforces the first entry of s due to smry(σ, p) = s), which1048

implies that the parity condition of Gb0 is satisfied.1049

28 S. P. Nayak et al.

Now, assume k > 0. Then, ρm must contain a bad move by Player 1. Note1050

that the prefix p′ of ρm ending at the position before the first bad move ends in1051

pre
(
V=lft(s)

)
. So, there is also a play in Π(σ, p) that visits this set, but does not1052

contain any bad move by Player 1, i.e., an extension of p′ where Player 0 uses σ1053

and Player 1 uses an adaptive strategy for her (which does not make any bad1054

moves). Thus, σ satisfies the Enabling property.1055

To conclude, assume towards a contradiction, that there is a play in Π(σ, p)1056

that visits pre
(
V=s′

)
for some summary s′ = (b′0, . . . , b

′
k′ ,⊥, . . . ,⊥) ∈ Ev(s), i.e.,1057

σ does not satisfy the Evading property. Then, there is a play prefix p′ extending p1058

and consistent with σ that ends in a vertex v′ such that smry(p′) = smry(v′) = s′1059

(recall Lemma 1).1060

Then, smry(σ, p′) ≤lex s
′. Hence, by Remark 7, there exists a (σ, p′)-uncovered

play ρ′ with smry(σ, p′, ρ′) ≤lex s′. Note that ρ′ is also a (σ, p)-play, as p′

is a (σ, p)-play prefix by construction. Due to Remark 6, smry(σ, p, ρ′) ≤lex

(b0, b
′
0, . . . , b

′
k′ ,⊥, . . . ,⊥) <lex s. This is a contradiction to smry(σ, p, ρ) ≥lex s for

every (σ, p)-uncovered play ρ. ut

D Proof of Lemma 31061

The following remark shows how the maximal summary of a vertex is related to1062

its successor. We use this remark in the next proofs.1063

Remark 10. Let v ∈ V=s for s <lex (1111,⊥, . . . ,⊥). If v ∈ V ′0 then1064

– v has no successor in V>s′ .1065

– v has at least one successor in V=s,1066

If v ∈ V ′1 then:1067

– If v has a successor in V=s′ for some s′ <lex s then s′ is a strict prefix of s.1068

– If v has a successor in V=s′ for some s′ >lex s then neither of s and lft(s) is1069

a strict prefix of s′.1070

– If v does not have a successor in V=s, then it has at least one successor in1071

V=lft(s).1072

Now, we give the proof for Lemma 3. Recall that we need to prove the our1073

algorithm correctly computes the sets V=s.1074

Proof. As argued earlier, the claim is trivially true for the largest summary, as1075

we have V=(1111,⊥,...,⊥) = E=1111.1076

Assuming we already have computed V=s′ for every s′ >lex s, suppose U is1077

the vertex set computed by the algorithm in that situation. We claim U = V=s.1078

First, we show U ⊆ V=s by showing that each vertex v ∈ U satisfies the1079

characterization given in Lemma 2. Suppose v is a vertex in U . Excluding V>s1080

in Step 2 ensures that v 6∈ V>s, the first part of the characterization.1081

If k = 0, then since v ∈ E≥b0 , any adaptive strategy σ for Player 0 enforces1082

b0 from v. Hence, σ is enforcing. Thus, v ∈ V=s, as the other two properties of1083

an s-witness are trivially satisfied in this case.1084

Robustness-by-Construction Synthesis 29

If k > 0, then by Step 3, there is a path v0v1 · · · vk from v = v0 to some
vk ∈ pre

(
V=lft(s)

)
in the arena restricted to Win(s). Let σ(s) be the winning

strategy for Player 0 computed in Step 3 and let σ0 be an adaptive strategy for
Player 0 in the game G′. For v′ ∈ V>s, let σv′ be the adaptive strategy that
maximizes the summary of v′ over all adaptive strategies. Now consider the
strategy σ such that

σ(p) =

vi+1 if p = v0v1 · · · vi ending in a Player 0 vertex,

σ(s)(p) p is a play prefix in Win(s) but not a prefix of v0v1 · · · vk,
σv′(v

′p′′) if p = p′v′p′′ for some play prefix p′ in Win(s),

v′ ∈ V>s, and play prefix p′′,

σ0(p) otherwise.

Note that σ never makes a bad move and eventually follows an adaptive strategy1085

by construction. Hence, it is also adaptive by Lemma 6. Let ρ be a (σ, p)-play1086

from a play prefix p in Win(s). If ρ stays in Win(s) ⊆ E=b0 , then it eventually1087

follows σ(s) and has value at least b0. If not, it follows some strategy σv′ for1088

some v′ ∈ V>s which has value at least b0 by construction. Hence, σ satisfies the1089

Enforcing property.1090

Moreover, the exists a (σ, v)-play v0v1 · · · vk · · · (formed by Player 0 using σ1091

after v0 · · · vk and Player 1 using an adaptive strategy after the prefix) showing1092

that σ satisfies the Enabling property.1093

Furthermore, by removing
⋃
s′∈Ev(s) Reach1(V=s′) in Step 2, it is also ensured1094

that σ satisfies the Evading property. Hence, σ is an s-witness from v, which1095

implies v ∈ V=s.1096

For the other direction, we show that V=s ⊆ U by showing that if a vertex v1097

satisfies the characterization given in Lemma 2, then v ∈ U .1098

Note that since U ⊆ V=s, the subgraph As does not have terminal vertices1099

by Remark 10. Also, we have v 6∈ V>s by the first item of the characterization.1100

Furthermore, there is an s-witness σ from v.1101

Hence, by the Enforcing property, σ enforces b0 from v. Hence, v ∈ E≥b0 . If1102

k = 0, then U = E≥b0 \V>s. Thus, v ∈ U as required.1103

Now suppose k > 0. If v ∈ Reach1(V=s′) for some s′ ∈ Ev(s), then Player 1 has1104

a strategy τ that forces the token to reach V=s′ from v while only visits vertices in1105

E=b0 . Hence, there is a (σ, v)-play ρ that visits pre(V=s′) with s′ ∈ Ev(s). Hence,1106

there also exists a (σ, v)-play containing no bad move of Player 1 that visiting1107

pre(V=s′). This contradicts σ being evading. Hence, v 6∈
⋃
s′∈Ev(s) Reach1(V=s′).1108

Therefore, we obtain v ∈ V=s.1109

Now, as σ is enabling, there exists a (σ, v)-play ρ containing no bad move of
Player 1 that visits pre(V=lft(s)). As σ is evading, ρ does not visit Reach1(V=s′)
for any s′ ∈ Ev(s). Furthermore, by σ being enforcing, since ρ does not contain
any bad move of Player 1, it stays in the vertex set Win(s). Hence, pre(V=lft(s))
is reachable from v in the graph restricted to Win(s). Therefore, v ∈ U . ut

30 S. P. Nayak et al.

E Proof of Lemma 41110

Recall that we need to prove that in the game G′, a strategy σ is strongly adaptive1111

if and only if it is a smry(p)-witness from every play prefix p.1112

Proof. First, consider a strategy σ that is a smry(p)-witness from every play1113

prefix p. Note that σ is adaptive by the Enforcing property. Now we show by1114

induction over summaries s ∈ S, from largest to smallest, that smry(σ, p) ≥lex s1115

for every play prefix p ending in V=s, which implies that σ is strongly adaptive.1116

So, for the induction start, we have to consider s = (1111,⊥, . . . ,⊥), the1117

maximal summary. So, let ρ be a (σ, p)-play such that p ends in V=s. Note that1118

ρ cannot contain a bad move after the prefix p, as 1111 is the maximal truth1119

value, i.e., ρ ∈ Π(σ, p). Hence, ρ satisfies the parity condition of G1111 due to1120

the Enforcing property, i.e., ρ has value 1111. Thus, we have smry(σ, p) = s as1121

required.1122

For the induction step, we consider some s <lex (1111,⊥, . . . ,⊥). The induc-1123

tion hypothesis yields that smry(σ, p) ≥lex s
? for every play prefix p ending in1124

V=s? for some s? >lex s. Hence, we have smry(σ, p′) = smry(p′) = smry(v′) (the1125

last equality follows from Lemma 1) for every play prefix p′, where v′ ∈ V>s is1126

the last vertex of p′.1127

Now, let σp′ = σ for every play prefix p′ ending in V≥s, and let σ′ be the1128

continuation of σ with (σp′)p′ . Then, we have smry(σ′, p) ≥lex s using the same1129

reasoning as in the proof of Lemma 2 (note that σ satisfies exactly the properties1130

required for that reasoning). The desired result follows by noticing that σ′ is1131

equal to σ.1132

For the other direction, let σ be a strongly adaptive strategy. We need to1133

show that σ is a smry(p) witness from every play prefix p.1134

Due to σ being strongly adaptive, we have smry(σ, p) = smry(p) for every
play prefix p. Hence, by the argument presented in the second direction of the
proof of Lemma 2, we conclude that σ is indeed a smry(p)-witness from every p.

ut

F Proof Lemma 51135

We use the following remarks in the proof.1136

Remark 11. Any play in Gs containing vnew is both Ss and Ws-winning.1137

Remark 12. Let s ∈ S and v be a terminal vertex in the game G′ restricted V=s.1138

Then, v satisfies the following:1139

– v ∈ V ′1 .1140

– v has no successor in V=s.1141

– v has a successor in V=lft(s).1142

Robustness-by-Construction Synthesis 31

Remark 13. Suppose σ is a strategy of Player 0 in G′ that never makes a move1143

from a play prefix ending in V=s to a vertex in V<s for some s ∈ S. Let p be a1144

play prefix in G′ ending in V=s and ρ be a (σ, p)-play in G′. If ρ visits a vertex1145

v′ ∈ V=s′ after p for some s′ ∈ S, then one the following holds:1146

– s = s′.1147

– s′ >lex s such that s is not a strict prefix of s′.1148

– s′ is a strict prefix of s.1149

Moreover, since there are only finitely many summaries and ρ can not return to1150

the same set V=s′ after leaving the set, it holds that ρ has a suffix staying in1151

V=s′ forever for some s′ ∈ S satisfying one of the above.1152

Let us now prove the lemma. Recall that we need to show that there exists a1153

strongly adaptive strategy in G′ if and only if there exists a uniformly gracious1154

strategy in every obliging game Gs. Moreover, given a uniformly gracious strategy1155

with finite memory in each obliging game Gs, one can effectively combine these1156

into a strongly adaptive strategy with finite memory in G′.1157

Proof. First, assume there exists a strongly adaptive strategy σ in the game G′.1158

Let s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S. We show that σ is a uniformly gracious1159

strategy in the obliging game Gs.1160

Let ρ be a (σ, p)-play in Gs for some play prefix p ending in V=s. We show1161

that ρ satisfies the strong winning condition and that there is a (σ, p)-play ρ′1162

that satisfies the weak condition. This implies that σ is uniformly gracious.1163

If ρ contains vnew, then it is both Ss and Ws-winning by Remark 11, i.e., we1164

can use ρ′ = ρ to finish the argument.1165

So, now suppose ρ does not contain the vertex vnew. Then, ρ is also a (σ, p)-1166

play in the game G′. Since σ is enforcing, ρ satisfies the parity condition of Gb0 ,1167

which implies it also Ss-winning. If k = 0, then the weak condition is satisfied by1168

every play, i.e., we can again use ρ′ = ρ to finish the argument.1169

Otherwise, i.e., if k > 0, by the Enabling property, there exists a (σ, p)-play ρ′1170

in G′ that visits pre(lft(s)). Let p′ be the minimal prefix of ρ containing a vertex1171

in pre(lft(s)) after p. We claim that all vertices between p to p′ are in V=s. This1172

implies that p′ is also a (σ, p)-play prefix in Gs. Then, by iterating this argument1173

ad infinitum, we obtain a (σ, p)-play in Gs that visits pre(lft(s)) infinitely often.1174

This play satisfies the weak condition.1175

Now, we only need to prove that all vertices between p to p′ are in V=s. Let1176

v be a vertex in p′ after p. First, note that a strongly adaptive strategy does1177

not make a move from a play prefix p1 ending in V=s1 to a vertex v1 in V<s1 .1178

If it would then every (σ, p1)-uncovered play is also a (σ, p1v1)-uncovered play1179

and vice versa. This implies that smry(σ, p1) and smry(σ, p1v1) are equal, as1180

they are obtained by minimizing over the same set of plays. This contradicts the1181

assumption that v1 ∈ V<s. Hence, by Remark 13, v ∈ V=s′ for some s′ ∈ S such1182

that s′ ≥lex s or s′ is a strict prefix of s.1183

Due to Remark 7, p′ can be extended to a (σ, p)-uncovered play ρ? satisfying1184

smry(σ, p, ρ?) = s. Since Player 1 makes k > 0 bad moves after p′ in ρ? (as p′1185

32 S. P. Nayak et al.

is the minimal extension of p visiting a vertex where Player 1 can make a bad1186

move), we also have smry(σ, pv, ρ
?) = s for the prefix pv of p′ ending in v. Recall1187

that either s′ ≥lex s or s′ is a strict prefix of s. We show that both s′ >lex s1188

and s′ being a strict prefix of s lead to a contradiction, leaving us only with the1189

conclusion s′ = s as required.1190

First, assume we have s′ >lex s. Since smry(σ, pv) = s′, every (σ, pv)-1191

uncovered play ρ′′ satisfies smry(σ, pv, ρ
′′) ≥lex s

′. But the (σ, pv)-play ρ? has1192

summary s <lex s
′. We show that ρ? is (σ, pv)-uncovered, which yields the desired1193

contradiction. If ρ? is (σ, pv)-covered by another (σ, pv)-play ρ′′, then ρ? is also1194

(σ, p)-covered by ρ′′, which contradicts the assumption that ρ? is (σ, p)-uncovered.1195

Finally, assume s′ is a strict prefix of s. By definition, smry(σ, pv) = s′ implies1196

that there is some (σ, pv)-uncovered play ρ′′ with smry(σ, pv, ρ
′′) = s′. However,1197

ρ? is also a (σ, pv)-play and it covers ρ′′, as s′, the summary of ρ′′, is a strict1198

prefix of s, the summary of ρ?.1199

For the other direction, assume there is a uniformly gracious strategy σs for1200

every game Gs. Let σ be the strategy obtained by combining all strategies σs1201

as follows: for any play prefix p ending in V=s, we have σ(p) = σs(p
′), where p′1202

is the longest suffix of p which is a σs-play in Gs. It remains to show that, for1203

every play prefix p ending in V=s for some s = (b0, . . . , bk,⊥, . . . ,⊥) ∈ S, σ is1204

an s-witness from p. This implies that σ is strongly adaptive by Lemma 4.1205

First, we show that σ satisfies the Enabling property. If k = 0 then the1206

property is satisfied trivially. If not, then let p′ be the longest suffix of p which1207

is a σs-play in Gs. Then, every (σ, p)-play that stays in V=s follows σs, i.e., it1208

has a suffix that is a (σs, p
′)-play. Since, σs is uniformly gracious, there exists1209

a (σs, p
′)-play ρ? in Gs that is Ws-winning, i.e., ρ? visits pre(lft(s)) ∪ {vnew}1210

infinitely often. Note that by Remark 11, every predecessor of vnew also belongs1211

to pre(lft(s)). Hence, ρ? visits pre(lft(s)) at least once. Let p′p? be a prefix of ρ?1212

ending in pre(lft(s)). Then, there exists a (σ, pp?)-play which is also a (σ, p)-play1213

satisfying the Enabling property, i.e., one in which Player 1 does not make a bad1214

move.1215

Now, given a play ρ ∈ Π(σ, p) containing no bad move of Player 1 after p, we1216

show that ρ satisfies the Enforcing and the Evading property.1217

Note that by construction, σ never makes a move from a play prefix ending1218

in V=s to a vertex in V<s. Hence, by Remark 13, ρ has a suffix that stays in1219

V=s′ forever for some s′ = (b′0, . . . , b
′
k′ ,⊥, . . . ,⊥) ∈ S such that s′ ≥lex s or s′1220

is a strict prefix of s. In any case, b′0 ≥ b0. Furthermore, ρ has a suffix that is1221

a σs′-play which is Ss′-winning. Hence, it has value at least b′0. Therefore, ρ1222

satisfies the Enforcing property.1223

Now, suppose ρ does not satisfy the Evading property and visits some vertex1224

v ∈ pre(V=s?) for some s? = (b?0, . . . , b
?
k? ,⊥, . . . ,⊥) ∈ Ev(s). Suppose v ∈ V=s′1225

for s′ = (b′0, . . . , b
′
k′ ,⊥, . . . ,⊥) ∈ S. We claim that s? ∈ Ev(s′).1226

Step 2 of the algorithm to compute V=s and its proof of correctness imply that1227

Reach1(Vs?) and Vs′ are disjoint. Hence, the facts that v is a vertex of Player 11228

(since there exists a bad move from v to V=s?) and v ∈ pre(V=s?), which implies1229

v ∈ Reach1(V=s?), yield the desired contradiction.1230

Robustness-by-Construction Synthesis 33

Now, we only need to prove s? ∈ Ev(s′) to conclude the proof. First, note1231

that since ρ does not contain a bad move of Player 1 after p, we have b′0 = b0,1232

which implies b?0 > b′0. To prove the other two conditions, we consider two cases1233

derived as follows: By Remark 13, it holds that s′ ≥lex s or s′ is a strict prefix of1234

s.1235

If s′ ≥lex s, then s? <lex lft(s) ≤lex lft(s′) (as b0 = b′0). Furthermore, if s? is a1236

strict prefix of lft(s′) ≥lex lft(s), then either s? ≥lex lft(s) or s? is a strict prefix1237

of lft(s). This contradicts the fact that s? <lex lft(s) and s? not being a strict1238

prefix of lft(s).1239

If s′ is a strict prefix of s, then s? is not a strict prefix of s′ (as it is not a
strict prefix of s). Furthermore, since s? <lex lft(s), either s? <lex lft(s′) or lft(s′)
is a strict prefix of s?. The second case never holds by Remark 10. Therefore, the
claim is proved. ut

	Robustness-by-Construction Synthesis: Adapting to the Environment at Runtime

