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ABSTRACT
This paper focuses on the concept of data spaces, which can serve
as a basis for the future data economy. In data spaces, applicable
to various business domains, stakeholders will be able to share
data with each other in a controlled way. First, the paper describes
the real motivations and needs for enabling data spaces. Second,
it highlights the major technical developments in the area of data
spaces in the light of open ecosystems and standards. Lastly, it
focuses on two key challenges for enabling data spaces: 1) Data
interoperability, 2) Data value generation. As a concrete data spaces
solution example, this paper proposes the “Green Twin” use case
that can be developed as a carbon neutrality solution in the domains
of mobility and smart cities.

CCS CONCEPTS
• Computer systems organization → Distributed architectures; •
General and reference → Design; • Information systems →
Data management systems.
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1 INTRODUCTION
Data spaces is a concept that gains increasing attention globally
from industries and research communities. This concept serves as
an abstraction for data management in case where many stakehold-
ers are involved and exchange data with each other. The easy data
exchange between the stakeholders will generate value, especially
in combination with data analytics. New trading mechanisms can
allow stakeholders to cooperate with each other based on the value
of the exchanged data and the analytics services. For instance, in a
city, the public transportation company and local businesses might
participate in a data space in which businesses benefit from a better
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Figure 1: Stakeholders and key layers of the data space.

retail demand prediction, while the transportation company can
optimize traffic management. Thus, data exchanges and analytics
in the data spaces would together create data economy in a smart
city. The concept of data economy is previously discussed for smart
cities [21] from the internet of things perspective.

The efforts toward building data spaces are currently led by
Gaia-X [13] and International Data Spaces Association (IDSA) [3].
The synergies between these two communities [1] receive a broad
attention in Europe [5, 6] and beyond [18, 20]. The data connectors
such as the IDS Connector would provide easy data exchanges.
Furthermore, standard-based open ecosystems such as FIWARE [8]
provide building blocks for data platforms such as data brokering
through standardized data model [14].

The stakeholders in a data space may be data providers and/or
consumers, as well as service providers. The basic concept is illus-
trated in Fig. 1. Various data providers from different domains or
verticals can share their data within the data space. The data space
should be able to manage a plethora of data sources with different
data models or representations. Service providers can operate their
services by accessing the shared data space. For instance, they can
run data analytics services. Lastly, the analytics results from the
service providers are shared with the data consumers. The figure
includes three layers which are considered as the key enablers of
the data spaces. IDSA, Gaia-X, and FIWARE currently work on nec-
essary building blocks for the data connectors and infrastructure.
The above two layers are to be addressed to provide harmonized
and re-usable data for many stakeholders and generate value using
the interoperable data.

This paper focuses on the existing developments and open chal-
lenges for enabling data spaces to support the future of the data
economy. To make the concepts discussed throughout the paper
more clear, an example use case, namely the Green Twin, is consid-
ered. The Green Twin use case regards the goal of carbon neutrality
as a global challenge with many stakeholders in the environment.
The example use case is described in more detail in Section 2. To
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Figure 2: The Green Twin use case for carbon neutrality.

understand the current status of data spaces, Section 3 gives an
overview of the recent advancements from a technical point of
view in Gaia-X, IDSA, and FIWARE, in particular through neces-
sary standardized building blocks such as data connectors and data
brokering. This section includes a technical solution example in
terms of the existing data sovereignty and decentralization, data
models and semantics.

On top of the data connectors and infrastructure, this paper de-
scribes two major challenges: 1) Data interoperability and 2) Data
Value generation. Data interoperability considers the interoperabil-
ity between stakeholders on the higher data layer, as opposed to
the communication layer. Section 4.1 describes the data interoper-
ability based on the automated and semi-automated harmonization
of the data models. Data value generation considers advanced data
processing functions with automated re-use capabilities to generate
value in the data space persistently. Section 4.2 describes the data
value generation through re-usable machine learning models and
easy configuration of prediction models. Both sections include a
technical solution example for the Green Twin use case based on
the data interoperability and data value aspects. Finally, Section 5
concludes the paper, highlighting the key aspects presented.

2 EXAMPLE USE CASE: GREEN TWIN
As an application example of the data space, theGreen Twin use case
is illustrated in Fig. 2. The use case includes services for monitoring
and coordinating infrastructure operations and human activities
aiming at reducing energy consumption, while still enhancing qual-
ity of life. The Green Twin makes use of four categories of digital
twins in urban environments, which are digital representations of
real things: Building twin, vehicle twin, person twin and network
twin.

The Green Twin consists of static (3D models, HVAC datasheets)
and dynamic (smart meters, wearable, in-vehicle sensors) data. Dig-
ital twin instances are related to each other through relationship
links (e.g., vehicleA is parked underneath buildingB). Data analyt-
ics processes, attached to digital twins, work on top of the digital
twin data to infer current status, predict future status, simulate

hypothetical conditions, and decide upon actions. The outcomes of
those processes are part of the digital twins. A digital twin instance
is shared by multiple stakeholders, while each of them holds only
a partial set of information and analytics. Typical data providers
of the Green Twin are system manufacturers (vehicle manufac-
turers, HVAC manufacturers, building constructors) and facility
providers (energy providers, water providers, etc.). Typical data
consumers are building management and policymakers. Often, a
single stakeholder acts as both provider and consumer. For example,
the building management might provide data about the usage of
the building and at the same time use the data in the data space to
optimize their operations.

The Green Twin use case envisages a complexity of the dig-
itally represented reality. For example, it encompasses multiple
buildings, each consisting of multiple rooms, corridors and stair-
cases. Each building is topologically placed in an urban area with
certain relations between each other (e.g., a laboratory building
is complementary to a nearby lecture building of a university. A
similar case are rooms in the same building). Additional examples
of sub-systems of the digital twin use case are parking lots, water
infrastructure and power grid.

3 EXISTING TECHNICAL DEVELOPMENTS
Data exchange is at the core of the data economy, as the main en-
abler of the global digital market. Therefore, a trustworthy frame-
work becomes essential to expand and foster a thriving business
ecosystem around data, that would nurture the data economy. How-
ever, nowadays, the data economy emanates from traditional cen-
tralized data storage solutions. As a consequence, it has become
a fragmented ecosystem, following closed proprietary solutions
that hinder the evolution of new business developments based on
data economy, also due to the lack of well-established interoperable
open solutions. In fact, the dominant market position of a small
set of actors introduces vendor lock-in limitations, forcing users to
yield the control of their data, and creates new entry barriers for
the smaller ones. Besides, its impact also led to a lack of trust, in
which entities cannot exchange data while keeping their control,
specially once data access has been granted to data consumers. In
this sense, data spaces can reduce such limitations due to their open
decentralized approach.

During the last years, several initiatives have appeared that foster
the data ecosystem through the provision of novel interoperable
open solutions for the creation of data spaces. They enable data
producers to keep the control over their data while creating the basis
for interoperable data exchange. The goal is that data consumers
are able to access different data sources without the limitations
stemming from their heterogeneity, either related to their semantics
or their technical access requirements.

This section introduces the data space initiatives and the key
aspects they address. It describes the existing technical develop-
ments in data spaces and presents their adoption required for the
realisation of the Green Twin use case.

3.1 Data sovereignty and decentralization
As aforementioned, one of the key issues that hinders the data
economy is that data providers typically have to trust big operators
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of data infrastructures and do not retain any control over their data,
once it has been exposed to a consumer. Thus, many potential data
providers are reluctant to share and exchange their data. To address
this issue, the concept of data space has been introduced. The key
idea of a data space is that data providers keep control of their
data, i.e. typically store it on their own premises. Potential data
consumers directly interact with data providers, negotiating the
conditions under which data can be accessed and used. Only once
agreement on the conditions has been confirmed, data consumers
get access to the data for the agreed use. This staying in control of
the data is also referred to as data sovereignty. As a foundation, it
requires a trustworthy framework with clear rules that participants
of the data space have to comply with.

The International Data Spaces Association (IDSA) [3] has pro-
moted the concept of data spaces and developed the IDS Reference
Architecture Model (IDS-RAM) [2]. IDS-RAM defines the required
standards, control and enforcement rules for data exchange among
different participants in a data space, specifying their components
and mechanisms. The technical definition of the IDS-RAM compo-
nents and standards is released as part of the International Data
Spaces Global (IDS-G) set of specifications [4].

The key element of IDS data spaces is the IDS connector. It acts
as the entry point to an IDS data space. Any transaction within
an IDS data space has to be carried out through a certified IDS
Connector, where specific usage control rules can be applied to
any type of data. Thus, any data transaction between two parties
requires an explicit agreement made through their corresponding
IDS Connectors. This way, the restrictions pertaining to the access
and usage of data imposed by the data owners can be technically
enforced. This is particularly important as traditional systems only
consider access control policies, which do not enforce data usage
policies after the data have been accessed. Moreover, IDS Connector
can also host certified apps, accessible from a central IDS App Store
component, increasing the trust on sensitive data exchange.

Furthermore, an IDS data space has the following components:

• Identity Provider - named as Dynamic Attribute Provisioning
Service (DAPS), which implements OAuth2 authentication.

• Clearing House - logs any transaction carried out within the
IDS data space, enabling the auditing of data transactions
within the data space.

• Metadata Broker - stores themetadata related to data providers
that belong to the data space, enabling data discovery. The
metadata is described based on a common ontology called
Information Model [24], which also describes the actors and
their interactions within a data space.

• Vocabulary Hub - enables the storage of known ontologies
that can be linked to describe the data being exchanged.

To enable trust, certification plays a key role in IDS data spaces. In
particular, the IDS Connectors have to be certified for the processes
of participants related to exchanging and using data.

In 2019, the Gaia-X association was created with the goal of
defining a framework with related policies and rules to enable the
creation of federation cloud services across cloud-based service
providers [16]. As in IDSA, the concepts of data sovereignty and
trust are of key importance. Gaia-X not only enables the decen-
tralization of data-related services, but also most infrastructure

services, e.g. it builds on the concept of self-sovereign identities
based on the W3C Decentralized Identifiers (DIDs) [25].

Furthermore, all services and all participants in the ecosystem
have self-descriptions based on verifiable credentials (VC) [26],
which can be combined to verifiable presentations (VP). The verifi-
able credentials are signed by trusted parties attesting the validity of
the included claims. To create a trusted environment, there are Gaia-
X trust anchors and chains of trust are founded on these. The focus
of Gaia-X is on digitizing the description of all aspects required for
cloud services and data exchange in particular, standardizing the
vocabulary and the required elements of the self-description. The
goal is to give back control to the participants and create a more
level playing field for cloud service providers. In Gaia-X, the focus
is clearly on the meta level, i.e. on describing services, participants
and data to be exchanged, whereas the data exchange itself is out-
of-scope, e.g. a container as defined by IDSA is considered to be
one possible implementation technology.

In short, Gaia-X and IDSA provide rules and framework compo-
nents for enabling trusted data exchange, but they do not define
the data models and the detailed interactions required to achieve
interoperable data exchange between participants.

3.2 Interfacing and data modelling
Heterogeneity in the access to data is one of the most important
factors that limit the expansion of the data economy, as it hinders
the applicability of solutions that would require data coming from
different sources. Therefore, data interoperability, both with respect
to data access and to data modelling, needs to be guaranteed within
data spaces to ease the development of portable and replicable solu-
tions. To achieve data interoperability, the technological interfacing
as well as the data modelling employed in the data exchange needs
to be agreed.

However, as shown in Section 3.1, the existing initiatives aiming
at defining the technical soft infrastructure of future data spaces
are not dealing with the data modelling. They restrict their specifi-
cations to exchange of metadata related to the transaction, but not
to the actual data exchanged, or simply specifies the data represen-
tation formats, without defining any recommendation/specification
in terms of actual data semantics. Besides, data distribution speci-
fications are not standardized, nor even harmonized, among data
providing platforms. Hence, they can use their own proprietary
solutions that need to be employed by consumers willing to access
data from the same data space but different providers.

In this regard, the Next Generation Service Interfaces Linked
Data (NGSI-LD) standard [9] can be highlighted as a candidate to
harmonize the specifications of data access and enable the data
interoperability among different data providers and consumers
within data spaces. NGSI-LD is an ETSI standard that provides a
fully-fledged specification to enable context data management. In
this sense, NGSI-LD can facilitate the access to context information
by defining the Application Programming Interfaces (API) and
the data models to be used by the different participants within a
data space. This standard is the core interface of the FIWARE open
source ecosystem and is already being employed inmany real-world
pilots [7, 22] providing a flexible and reliable way to overcome the
limitations of data interoperability in scenarios where it is necessary
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to harmonize the access to data coming from heterogeneous data
sources. FIWARE provides a set of open-source components that can
be used for building data platforms. A central FIWARE component
is the Context Broker [14] implementing the NGSI-LD API.

The NGSI-LD API is based on an abstract information model
based on the concept of entity, where entities have types, properties
and relationships. There are already some existing initiatives that
are targeting the definition of a corpus of NGSI-LD compatible data
models that can be used as a reference for semantically modelling
the data to be exchanged within the future data spaces. Among
them, it is worth mentioning the Smart Data Models program [15],
which is meant to underpin the semantic interoperability of context
information in data spaces. The catalogue of data models that are
being created leverages the linked-data nature of NGSI-LD infor-
mation model and, through the creation or mapping of existing
ontologies, provides a common semantic description of terms that
can be used by any data provider, ensuring their semantic interop-
erability.

All in all, these technical developments complement the ecosys-
tem defined by the IDSA and Gaia-X initiatives, providing the
required tools for the semantically-enabled data interoperability
within data spaces, and fostering the portability of services and
applications that make use of shared data. In particular, Gaia-X,
IDSA, FIWARE and the Big Data Value Association (BDVA) have
created the Data Spaces Business Alliance (DSBA) [11] to converge
on a common approach and create building blocks for the Data
Economy.

3.3 Technical solution for Green Twin
Existing data space technologies are required to realize the Green
Twin use case. Among them, data sovereignty solutions, such as the
ones presented in Section 3.1, enable data providers to exchange
data while keeping their control. This is particularly important for
sensitive information that could result in future business disad-
vantages. For instance, transportation companies that might want
to share fuel consumption information exclusively for research
purposes, while limiting their access for other activities that could
benefit potential competitors.

Similarly, the use of a common interface and data model would
ease the data exchange within the Green Twin use case, enabling
different stakeholders to implement their solutions while reduc-
ing the development efforts. For instance, a building management
service developer could be interested on the combination of data
from different providers, such as the network provider, the urban
mobility manager or the municipality, to train machine learning
models to reduce the building carbon footprint by triggering certain
actions. Further, the semantics built on top of NGSI-LD allow the
transparent blending of information as a single knowledge graph,
and the developer as data consumer could also be subscribed to
such information and receive a continuous data flow thanks to
the subscription functionalities provided by the FIWARE Context
Brokers.

4 OPEN CHALLENGES
As described in the previous sections, there are key technologies
in place for building data spaces. However, in practice, there are
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Figure 3: TrioNet: An interactive data harmonization system.

additional challenges when building a data space and especially
for using the data to get the best value out of it. Previous efforts,
e.g. FIESTA-IoT and SynchroniCity, have shown that value can be
created, e.g. for experimentation [17] and analytics as a service [7],
but further steps are still needed. We ascribe these to two open
challenges:

• Data Interoperability. Although the basis for achieving data
interoperability is already in place in the form of APIs and
data models, the integration effort for legacy systems is still
very high.

• Data Value. Even if the data is integrated and accessible
through a single API, typically additional analytics are needed
to generate valuable insights, e.g., for training a machine
learning model, a data scientist still needs to work on as-
pects such as feature selection, feature engineering, and data
cleaning.

Wewill discuss these two open challenges in the next two subsec-
tions, proposing possible solutions based on cutting-edge research.

4.1 Challenge: Data interoperability
In the past, many systems or platforms were built up individually,
for different application purposes and, very often, each of them
behaved as an isolated data silo. This happens across different
domains and organizations, and even across different departments
and teams within the same organization. In a data space, there is
a strong need to achieve data interoperability between these silos
through an alignment of the underlying data and data models.

Towards full data interoperability, different matching/alignment
problems need to be solved depending on the underlying data [23].
Fig. 3 depicts our approach to address this challenge. TrioNet is an in-
teractive data integration system that utilizes weak-supervision [19]
together with active learning in order to facilitate several data
matching steps in a semi-automated fashion with minimal human
input. TrioNet supports the data integration steps of ontologymatch-
ing, schema matching and entity matching.

In ontology matching, the goal is to find semantic mappings
between the elements from multiple ontologies. A widely used way
to represent ontologies is standardized in the Web Ontology Lan-
guage (OWL). OWL represents machine-readable knowledge about
concepts and their relations to be defined in the unified form of
subject-predicate-object triples. On top of that, OWL adds seman-
tics to the underlying concepts with more general logic relations
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(e.g., equivalence or disjoint relations) and constraints. In the OWL
data model, each ontology O defines a, usually hierarchical, concep-
tualization of a domain with classes (representing domain concepts),
properties (defining relations), individuals (instances of classes),
and data/literal values (e.g., age of a person). Properties can define
relations between classes/instances (object properties), relations
to a literal (data property, defining an attribute) or relations to
metadata (annotation properties) [10].

Not all data is represented in an OWL ontology. In schemamatch-
ing (or schema annotation), we therefore aim to find matches be-
tween a data schema (e.g., derived from a relational database, or
from CSV or JSON data) and a global, “backbone ontology” that is
used to model data in context of the data space. This global ontology
can, for example, be based on an agreed standard (e.g., the Smart
Data Models) or constructed through a previously performed on-
tology matching (interlinking) between related ontologies. TrioNet
can match schema to link data to the backbone ontology and then
automatically transform it to the ontology format.

Last, data originating in different organizations might some-
times refer to the same real-world entity, but use a different entity
representation. For instance, two organizations may use different
languages or have different spelling conventions for the same phys-
ical entity. In entity matching, we aim to solve these problems by
automating the task of finding suchmatching entities. Subsequently,
the user can take a decision in terms of how to merge or link two
matching entities.

4.1.1 Technical solution for Green Twin data interoperability. To
achieve data interoperability in the context of Green Twin, it is
necessary to provide means of data harmonization for the various
sources of data, as shown in Fig. 4. However, the different data
ownership and varying data privacy requirements by the involved
organizations constitute a big obstacle towards achieving data har-
monization. Organizations and companies do not want to share data
without any control mechanisms, due to the competitive advantage
associated with it. Thus, practically, data integration needs to oc-
cur in two steps: (1) Integration on a semantic, ontology/schema
level, without sharing confidential information about the under-
lying data records and (2) full data integration, including entity
matching, based on the identified alignments in (1) and after re-
solving data sovereignty issues (e.g., after the negotiation described
in Section 3.1). Thus, our envisioned solution to this problem is to
integrate data across organizations first at the schema level, using
ontologies, specified in OWL to avoid the immediate sharing of
confidential instance data.

4.2 Challenge: Data value
Data spaces, through capabilities for secure and trustworthy data
sharing as well as interoperability, provide the technical foundation
for the data economy. An additional important building block on top
of the data exchange and interoperability layers will be advanced
data processing functions that have a high level of re-usability and
require minimum manual configuration effort. In a mature data
ecosystem, multiple vendors will offer commercial functions for
data processing, including but not limited to prediction, simulation,

and optimization. We restrict the discussion in this article to ma-
chine learning-based prediction functions, but similar observations
hold for other classes of processing functions as well.

The landscape of today’s readily available functions can be sepa-
rated into (a) vertical solutions for specific tasks in specific domains
and (b) general-purpose machine learning libraries. Vertical solu-
tions come in various flavors, including trained models ready for
application, pre-trained models to be fine-tuned with additional
data, and untrained models whose architecture is specialized to the
prediction target and available input data. General purpose libraries
such as sklearn or TensorFlow can be used to train models for a
wide range of tasks; given a dataset from a specific application, data
scientist have a wide range of possible preprocessing functions and
trainable models available to build accurate data-driven prediction
models. Nowadays, sophisticated methods to even automate the
process of model selection and model configuration (e.g., AutoML)
are available, which reduces the human effort to identification of
the most suitable model input and training data, as well as to final
model verification and deployment.

By leveraging the data space layer of semantic understanding
and data interoperability as described in the preceding section, the
gap between application-specific functions (with a single purpose)
and generic functions (requiring effort and expertise to special-
ize) can be substantially narrowed. Having explicit knowledge of
what the different pieces of data represent, and how they are se-
mantically connected, helps in various ways. One direction is to
start from application-specific models and broaden their reach to
equivalent applications, automatically transferring the knowledge
about required input data sources to the new task. More specifi-
cally, developers can specify the input data of a model (both for
training and for prediction) in terms of its application context. Math-
ematically speaking, the application context can be represented
as a node in a knowledge graph, and the set of input data sources
are determined by a specific graph neighborhood. One realization
of that idea has been provided by the CASTOR platform [12] for
the Internet-of-Things, and validated by provisioning of replicable
prediction models for power networks.

The power of semantic annotations of data sources can be further
exploited by modularization of the process of model creation. In the
absence of ground-truth labels for training a model, the principle
of data programming [19] can help to provide an ensemble of noisy
labels. A catalogue of labeling functions can be made available as a
service, and the quality of each labeling function can be automati-
cally assessed by transfer of knowledge from semantically similar
classification tasks where ground truth is available.

Starting from the side of general-purpose libraries with auto-
matic model selection and configuration (AutoML), the semantic
interoperability layer opens the potential for full automation of
even the data collection process. Given an explicit graph of data
sources, their semantics, and their mutual relationships, the graph
neighborhood of a data source provides an excellent set of candidate
inputs for a machine learning model that predicts related properties.
The capability to build prediction models fully automatically on top
of the existing data space will be a key enabler to make predictions
a basic commodity that can be set up as easily as making a conven-
tional data subscription. This applies to the following categories of
predictions:
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• Predicting future values of attributes. Such predictions can be
commissionedwith a single command that has two prediction-
related parameters: (a) the attribute to predict, and (b) the
future time horizon to predict.

• Predicting the current value of an attribute from other data
sources. Such predictions are useful for dealing with unre-
liable data sources (e.g. sensors) which can stop providing
data at any time.

To summarize the considerations so far, the semantic data in-
teroperability layer of data spaces enables a novel type class of
machine learning functions that are characterized by (a) high re-
usability across similar tasks, and (b) minimum manual effort for
data curation and model selection. Existing concepts like AutoML,
multi-task learning and data programming are key enablers, but a
number of additional challenges need to be solved for the new data
value layer to become a reality:

• Adaptivity of models in face of dynamic data sources: Data spaces
are characterized by ever-changing availability of data sources.
The key principle of data sovereignty has the technical impli-
cation that data access can be granted and revoked at any time.
In addition, Internet-of-Things data sources such as sensors are
likely to become faulty or simply unavailable over time, whereas
new data sources might be added. This dynamicity influences
not only the set of available model inputs at prediction time, but
also the ability to (re-) train the models. Thus, models need to be
created with a great flexibility regarding their inputs, degrading
gracefully as data sources become unavailable.

• Transfer of knowledge across the semantic graph: Amodel that pre-
dicts properties of a specific semantic entity, using information
from the graph neighborhood as model input, can be transferred
to other entities of the same type. The challenge is that there is
no guarantee that the new entity has an equivalent neighbor-
hood of data sources. Some data sources might be missing (e.g.,
due to sensors not installed), or additional data sources might be
available as valuable inputs. The ability for transferring knowl-
edge across models in light of heterogeneous neighborhoods is
an unsolved challenge.

• Explicit handling of limited modeling quality: A consequence of
the volatility of data sources is that the quality of predictions is
never guaranteed. Even with model quality degrading in a grace-
ful manner, the downstream applications need to be aware of new
inaccuracies resulting, e.g., for one or more input data sources
becoming unavailable. Thus, models at any time need to provide
information not only about predicted values, but also about the
certainty of prediction. However, estimating the certainty is a
non-trivial task in the situation of changing availability of data
sources, which comes on top of the common issues such as data
drift and over- or under-fitting.

4.2.1 Technical solution for Green Twin data value. As described
in section 2 the represented reality of the Green Twin use case is
of a large complexity. The knowledge graph of the Green Twin is
composed by multiple entities of the same type, such as multiple
buildings, multiple rooms, multiple streets.

The feature set of a single entity, such as a building, varies with
time (e.g., sensor faults, network faults, mobile sensors). Thus, the
implementation of the analytics function is not trivial. The exploita-
tion of automatic feature selection might help in these cases to
have a reliable set of feature for a long-enough time interval. A
complementary solution is the exploitation of the semantic graph
to reconstruct or substitute the missing features. For example, the
missing information of a room occupancy for a specific room might
be substituted or reconstructed from the room occupancy of an
adjacent room with the same purpose (e.g., lecture room) in the
same building.

Following this approach, we might exploit a similar solution for
the transfer of knowledge of an analytics model from an entity
to another entity. For example, an energy consumption prediction
model of a building might be transferred to another building. Two
buildings might have different feature sets with different data qual-
ity (e.g., granularity). A full time series can be generated through
the prediction of values within a certain time window, and this data
can be used as input for the transferred model.

5 CONCLUSION
This paper describes how to enable the data spaces for the future
data economy. The groundwork for realizing data spaces is currently
ongoing through various research, development, and standard ac-
tivities. This paper highlights the existing assets and technical
developments for data spaces in IDSA, Gaia-X, and FIWARE, as
well as the two key challenges, namely data interoperability and
data value. These open challenges should be addressed to enable
data spaces which can generate value to the stakeholders in various
business domains of the data economy.
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