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Micro/Nanofluidic and lab-on-a-chip devices have been increasingly used in biomedi-
cal research [1]. Because of their adaptability, feasibility, and cost-efficiency, these devices
can revolutionize the future of preclinical technologies. Furthermore, they allow insights
into the performance and toxic effects of responsive drug delivery nanocarriers to be
obtained, which consequently allow the shortcomings of two/three-dimensional static
cultures and animal testing to be overcome and help to reduce drug development costs and
time [2–4]. With the constant advancements in biomedical technology, the development of
enhanced microfluidic devices has accelerated, and numerous models have been reported.

Given the multidisciplinary of this Special Issue (SI), papers on different subjects
were published making a total of 14 contributions, 10 original research papers, and
4 review papers. The review paper of Ko et al. [1] provides a comprehensive overview
of the significant advancements in engineered organ-on-a-chip research in a general way
while in the review presented by Kanabekova and colleagues [2], a thorough analysis
of microphysiological platforms used for modeling liver diseases can be found. To get
a summary of the numerical models of microfluidic organ-on-a-chip devices developed in
recent years, the review presented by Carvalho et al. [5] can be read. On the other hand,
Maia et al. [6] report a systematic review of the diagnosis methods developed for COVID-19,
providing an overview of the advancements made since the start of the pandemic.

In the following, a brief summary of the research papers published in this SI will be pre-
sented, with organs-on-a-chip, microfluidic devices for detection, and device optimization
having been identified as the main topics.

Some researchers focused on the development of advanced microfluidic devices which
are devised to reconstruct the tissue architecture of organs biochemically and biophysically.
For instance, Kuriu and co-workers [4] worked on the development of a microfluidic device
to mimic the small intestine tract with villi to obtain insights into fluid flow by using particle
image velocimetry. Through these experiments, it was possible to verify that microbeads
tend to stick to the side surface of the villi, which can explain the relationship between fluid
flow and the settlement of gut bacteria on the villi. Komen and colleagues [7], on the other
hand, established an alternative to cancer xenografts due to ethical considerations and
a lack of accuracy to predict physiological responses. The authors created a microfluidic
device integrated with a U-shaped well for having a single spheroid and exposed it to
a dynamic environment and to an in vivo-like concentration of oxaliplatin, a medication
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commonly used to treat colorectal cancer, and compared it to an in-vivo cancer xenograft.
The effect of oxaliplatin on growth inhibition, proliferation, and apoptosis markers was
evaluated. In terms of growth inhibition, the on-chip results were comparable to xenograft
studies. Regarding the proliferation and apoptosis markers, a similar response was also
observed which proved the potential of microfluidic devices to reduce the use of cancer
xenografts for cancer research. Meanwhile, Callegari and colleagues [8] investigated the
electrophysiological activity of neuronal populations to electrical stimulation. For this
purpose, cortical and hippocampal neurons were established to reconstruct interconnected
sub-populations. The results showed that cortical assemblies were more reactive than
hippocampal ones. Through these results, the authors showed that the results depend
on neuronal structure when electrical stimulation experiments are conducted. Despite
the previous works presenting interesting results, the fabrication process of advanced
microfluidic devices has constantly evolved, and the use of 3D (bio)printing has increased
over the years. Lutsch et al. [9] presented an alternative to the regularly used PDMS
casting method. The authors investigated different resins by conducting cytotoxicity,
cytocompatibility, and HET CAM assay, but poly-(ethylene glycol)-diacrylate (PEGDA)
stood out. This material provided excellent results and allowed for the acceleration and
improvement of the current fabrication processes.

Other authors have focused on the use of microfluidic devices for detection purposes.
Li et al. [10] designed an ease-of-use portable microfluidic device that combines microar-
ray and microfluidics for point-of-care detection of several protein biomarkers in serum
samples. The results were promising and showed similar outputs to those measured by
the commercial method used at the clinic. Similarly, Sitkov [11] constructed a microfluidic
biosensor system with peptide aptamers for protein biomarker detection of diseases in
biological fluids. Through in silico techniques, the authors simulated the peptide aptamer
for troponin T and its non-fluorescent digital twin and tested the device design. Since the
simulation results were promising, a laboratory sample of the biosensor was designed and
manufactured, but further experiments are needed. In a similar line of research, Zimmers
and co-workers [12] conceived a novel diagnostic platform for the detection of target DNA.
In brief, the target DNA is captured by magnetic beads and then loaded into a microflu-
idic reaction tape with the other reaction solutions. The device was able to detect 5 fM
target DNA as well as Schistosoma mansoni DNA. Despite additional tests being needed,
this technique requires less hands-on time and does not need an additional control reac-
tion like current methods do. A different detection system was proposed by Saha and
co-workers [13], but in this case for lactate quantification using a colorimetric assay. This
can be used for evaluating the welfare of muscles and oxidative stress levels. The authors
developed a wearable patch due to the relationship between sweat and blood lactate levels.
For instance, during rest, the osmotic disc (hydrogel) can extract fluid from the skin via
osmosis and deliver it to the paper, while during exercise, the paper can collect sweat even
in the absence of the hydrogel patch. It was found that the molar concentration of lactate
in sweat is correlated to sweat rate and that the measurements are more viable during
high-intensity exercise. This constitutes an interesting technology that can be used for
athlete monitoring.

The optimization of microfluidic devices has also been explored by some authors.
Grigorev et al. [3] investigated how to achieve adequate flow rates for trapping single
cells in a microfluidic chip. The authors applied a generative design methodology with
an evolutionary algorithm and validated the device with experimental data. The exper-
iments proved the efficiency of the device with 4 out of 4 RBCs trapped. On the other
hand, Tsai and colleagues [14] focused on microfluidic devices for bacterial growth and
how to guarantee microscope stability for long-term imaging of bacterial dynamics. For
this purpose, an optimized integrated multi-level microfluidic chip was developed. The
authors used a stabler microscopy immersion oil, and images were captured with a focally
stable time-lapse for 72 h.
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