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Abstract

Complex diseases, as Type 2 Diabetes, are not only affected by environmental factors but also by genetic

factors involving multiple variants and their interactions. Even so, the known risk factors are not suffi-

cient to predict the manifestation of the disease. Some of these can be discovered with Genome-Wide

Association Studies that detect associations between variants, such as Single-Nucleotide Polymorphisms,

and phenotypes, but other approaches, like Machine Learning, are needed to identify their effects and

interactions. Even though these methods can identify important patterns and produce good results, they

are changeling to interpret.

In this project, we developed a predictor for complex diseases that uses datasets from Genome-Wide

Association Studies to help the identification of new genetic markers associated with Type 2 Diabetes. The

pipeline developed integrates gene regions and protein-protein interaction networks in datasets of variants,

extracts new features, and employs machine learning models to predict risk of disease.

This study showed the models can predict the risk of disease and using gene regions and protein-protein

interaction networks improves the models and provides new information about the biology of the disease.

From these models it was possible to identify new genes and pathways of interest which, with further

investigation, could lead to the development of new strategies for diagnosis, prevention and treatment of

Type 2 Diabetes.

Keywords: Complex diseases, Type 2 Diabetes, Genetics, Genome-Wide Association Study, Machine

Learning, Bioinformatics.
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Resumo

Doenças complexas, como Diabetes Tipo 2, são tanto causadas por fatores ambientais como por fatores

genéticos que envolvem múltiplas variantes e as interações entre elas. Mesmo assim, os fatores de risco

conhecidos não são o suficiente para prever a manifestação da doença. Alguns destes fatores podem

ser descobertos em Genome-Wide Association Studies que detetam associações entre variantes, como

polimorfismos num único nucleotídeo, e fenótipos, contudo são necessárias outras abordagens, como

por exemplo Aprendizagem Máquina, para identificar os seus efeitos e interações. Mesmo quando estes

métodos conseguem identificar padrões e obter bons resultados, estes são difíceis de interpretar.

Neste trabalho, desenvolvemos um algoritmo para doenças complexas que utiliza dados obtidos em

Genome-Wide Association Studies para auxiliar na identificação de novos marcadores genéticos as-

sociados à Diabetes Tipo 2. A abordagem desenvolvida combina conjuntos de dados de variantes com

a infomação das regiões de genes e redes de interações entre proteínas, extrai novas características, e

utiliza modelos aprendizagem de máquina para prever o risco de doença.

Este trabalho mostra que os modelos conseguem prever o risco de doença e que o uso de genes e de

redes de interação entre proteínas melhora os seus resultados, assim como também fornecem novas

informações sobre a biologia da doença. Usando esta abordagem é possivel identificar novos genes e

redes metabólicas de interece, que com investigação adicional, podem levar a criação de novas estratégias

de diagnóstico, prevenção e tratamento da Diabetes Tipo 2.

Palavras-Chave: Doenças complexas, Diabetes Tipo 2, Genética, Estudos de Associação no Genoma

Completo, Aprendizagem Máquina, Bioinformática.
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1 Introduction

1.1 Motivation

Nowadays, it is believed that both genetic and environmental factors have a role in nearly every human

disease, though several diseases do not have significant risk factors associated. Those genetic factors can

be a mutation in a single gene that is transmitted to the descendants following Mendelian rules, causing

a Monogenic (or Mendelian) disease. Still, most times, the diseases are Multigenic (or complex) and are

caused by mutations in a group of genes that individually do not have any effect [1].

Since the first time that the whole human genome was sequenced in 2001, new approaches have been

developed that contributed to the discovery of these genetic factors. A Genome-Wide Association Study

(GWAS) is an analysis that identifies which genetic markers across the genome of different individuals,

usually Single-Nucleotide Polymorphism (SNP), are associated with their traits. This approach has shown

important results in the discovery of variants in Monogenic diseases, but in more complex diseases this

contribution is less effective as, not only several variants have a part in the phenotype’s development, but

also the environmental factors can alter these traits [2, 3].

There are models that use SNP to test an individual’s risk of developing a disease. The Polygenic Risk

Score combines the effect sizes of the genetic variants and calculates a score used to predict risk of

disease, and even though it is an easy and effective model, it does not account for complex data and

their interactions [4]. Machine Learning (ML) models identify patterns from data and make predictions

using statistical assumptions and mathematical algorithms. This approach can be supervised, when

the prediction is based on training examples, or unsupervised, if no labels are given [5]. Though these

models account for complex data interactions, they need big datasets to make correct predictions, are

more difficult to apply and the effects of the genetic variants are challenging to interpret [4]. Lately,

some evidence has appeared that introducing biological information into ML models helps to improve the

disease’s risk prediction, identify new genetic variants interactions and learn more about the underlying

biological network [5].

Even with these approaches, the understanding of these diseases is limited, namely, in which specific

genetic factors are involved, how far they interact with themselves and the environment and how they

1



1.2. Goals 2

relate to the phenotypes. Innovative strategies are needed to better explain these diseases, since this can

lead to the discovery of new biomarkers and treatments for a disease.

1.2 Goals

The main goal of this project is to develop a complex disease predictor from Genome-Wide Association

Study datasets, that can identify new genetic variants associated with the phenotype, specifically, Type 2

Diabetes. In more detail, we aim to:

1. Develop a pipeline that can use datasets of genotypes to predict risk of disease;

2. Relate variants with their biological function using several databases, preparing datasets to be used

in the disease predictor;

3. Create ML models that can predict the risk of disease based in the effect of genetic variants.

1.3 Structure

The chapter Biological Data and Disease Biology describes the genome, the flow of genetic information

within a biological system and some of the data provided by these processes. This second chapter also

performs a quick showdown of the available sequencing technologies and, in the end, characterizes a

complex disease, Type 2 Diabetes, that will be a case study for this project.

The chapter Machine Learning explains what are Machine Learning algorithms and their categories, gives

details on multiples models and specify some methods for model evaluation.

The fourth chapter shows a methodology for GWAS data, including preprocessing and association tests

commonly used, and highlights some advantages and challenges of the use of Machine Learning in this

context.

The pipeline of this study is described in the fifth chapter, the Development. Starts with the description of

the datasets used, as well as its processing. Then it explains the integration of the biological information

and the extraction of new features.
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In the sixth chapter, all the results are shown, as well as quick description. Lastly, the Discussion and

Conclusion explain the results taking into account the context of the problem, describes some advantages

and disadvantages and suggest future approaches for these type of studies.



2 Biological Data and Disease Biology

Each organism has a unique genetic sequence essential for the functioning of all cells and respective

processes. The genetic information is carried by DNA molecules named nucleotides and is structured in

chromosomes. The human genome has more than 3 billion nucleotides organized in 23 pairs of chro-

mosomes, 1 of them being the sexual chromosomes, XY for male and XX for female. Every nucleotide is

formed by a sugar, deoxyribose, one of the four nitrogenous bases, adenine (A), thymine (T), cytosine (C)

and guanine(G), and at least one phosphate group. A gene is a sequence of nucleotides that encodes a

final product, generally RNA or a protein [6].

The RNA is composed of nucleotides formed by a different sugar named ribose, and with an uracil base (U)

that substitutes the thymine. Besides being used for the synthesis of proteins, RNA molecules have also

structural, regulatory, and catalytic functions on the cell. Proteins are complex molecules built from amino

acids used for countless processes, for example, catalyzation of reactions, structure, transport, signaling,

storage, gene regulation, among others. All these molecules are involved in many reactions and form

complex pathways [6].

Although organisms of the same species have very similar genomes, there are variants that make each

organism unique. These variants can be Single-Nucleotide Polymorphisms (SNPs), Insertion/Deletions

(INDELs), substitutions, inversions, translocations or Copy Number Variants (CNVs) and are described in

Table 1 [7].

2.1 Omics Data

The cell biology is complex and involves a variety of molecules and interactions. All of these elements

can provide important data to understand the processes within the cell, tissue, organ or even organism.

Omics refers to any biological study field that makes a global and comprehensive analysis of a specific set

of molecules [8].

There are different types of omics data: genomics, epigenomics, transcriptomics, proteomics, metabolomics

and microbiomics [8, 9]. Their characteristics and methods for detection are specified in Table 2.

4



2.1. Omics Data 5

Table 1.: Specific types of variants.

Variant Description Example: Reference Example: Alternative

Single-Nucleotide Polymorphism
Isolated changes in a single
base compared to the refer-
ence genome

TTGACGTA TTGACGTA

Insertion
Addition of a sequence of nu-
cleotides

TTGACGTA TTGATGCGTA

Deletion Loss of a set of nucleotides TTGACGTA TTGGTA

Substitution
Alteration of a set of bases,
maintaining the same length

TTGACGTA TTGTAGTA

Inversion
Reversion of sequences of
DNA compared to the refer-
ence genome

Translocation
Relocation of a region of nu-
cleotide sequence to a new po-
sition

Copy Number Variant
Local repetition of segments of
DNA with an elevated number
of bases

Table 2.: Types of omics data, their characteristics and methods for detection.

Omics Description Technologies

Genomics

It is the study of the whole genome and its main
goal is to identify genetic variants that play an im-
portant role in a disease, a response to a treatment
or a patient prognosis

Microarrays; Whole-Genome Sequencing (WGS);
Whole-Exome Sequencing (WES); Targeted Se-
quencing

Epigenomics
This field studies chemical modifications of the
DNA that are associated with the regulation of gene
transcription

Chromatin Immunoprecipitation Sequencing
(ChIP-Seq)

Transcriptomics
Focuses on detecting, quantifying and examining
RNA transcripts

Microarrays; RNA Sequencing (RNA-Seq)

Proteomics
It is used to identify and quantify peptides encoded
by the genome

Mass Spectrometry (MS); Western Blotting (WB)

Metabolomics
Detects and/or quantifies metabolites to learn
more about a biological system

NMR Spectroscopy and Liquid or Gas Chromatog-
raphy associated with Mass Spectrometry (MS)

Microbiomics
It is a field that analyses a microbial community to
detect environmental alterations

Specific Next Generation Sequencing (NGS)
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2.2 Sequencing Techniques

For many years the most used technique for DNA Sequencing was Sanger sequencing, that is based

on the selective incorporation of labelled dideoxynucleotides (ddNTPs) in DNA chains during in vitro DNA

replication [10, 11]. These ddNTPs are similar to deoxyribonucleotides (dNTPs) but without the 3’ hydroxyl

group. Because the lack of this group, ddNTPs cannot bond with the 5’ phosphatate group of the next

nucleotide, and the DNA chain cannot be extended further. After the amplification of the DNA sample,

Sanger sequencing performs four simultaneous and very similar reactions, each containing a different

ddNTP to be incorporated, producing DNA fragments of different sizes. Theses fragments are ran through

a polyacrylamide gel electrophoresis and the result shows the position of the different nucleotides [12]

(Fig. 1).

(a) (b) (c)

Figure 1.: Sanger sequencing. (a) DNA polymerization reactions, each containing all dNTPs and a different labelled
ddNTP that once incorporated stops the reaction (b) These reactions produce DNA fragments of different
sizes. (c) Polyacrylamide gel electrophoresis shows the order of the nucleotides based in the sizes of the
DNA fragments.
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Currently, Sanger sequencing is only cost-effective for small sequencing studies, and Next Generation Se-

quencing (NGS) technology arose as a cheaper method with a high sample throughput, discovery power

and sensitivity. NGS has several sequencing platforms and all of them need a sequence library prepara-

tion. In most cases, this pre-processing starts with the fragmentation of the DNA molecules into reads

with a specific size, followed by the attachment of adapters to each end of the read. Some of these

technologies require an amplification of the reads [11, 13]. There are four main approaches to sequence

the template: pyrosequencing, sequencing by synthesis, sequencing by ligation and ion semiconductor

sequencing.

Pyrosequencing uses a bioluminescence signal to detect the base and needs an initial amplification be-

cause it is not sensitive enough to detect the light of individual nucleotides [13]. This amplification is made

by attaching one DNA molecule per bead followed by an emulsion PCR. During synthesis, a manipulated

DNA polymerase extends the primer pausing after incorporating each complementary dNTP. When a dNTP

is added, a cascade of enzymatic reactions is catalyzed, generating peaks of light. The record of the time

and intensity of these peaks gives information about the order of the nucleotides [11, 12].

Depending on the technology, sequence by synthesis, may need and initial amplification step [11]. Il-

lumina platform makes use of a solid support with attached primers, promotes hybridization between

these molecules and the DNA fragments and uses bridge amplification to form clusters of repeated DNA

fragments. During a last synthesis, one by one, a fluorescently labelled dNTP with a blocked 3’ end is

incorporated in a growing DNA chain (each base has a different color). With each incorporation, the signal

is recorded, the 3’ end terminator and fluorophore are removed, and the cycle is repeated [11, 12, 13].

Other sequence by synthesis technologies use the same principle, but with some variations, like immobi-

lized DNA templates or DNA polymerase, instead of primers, and one-colour labels instead of four-colour

[11].

Sequence by ligation is a cyclic method that requires amplification of the DNA reads made by emulsion

PCR and uses DNA ligase to hybridize fluorescently labelled two-base-encoded probes to the DNA template.

First, one primer is added to a specific position of the sequence, followed by a set of cycles that consist

in hybridization, visualization of the label and cleavage of the end segment of the probe along with the

fluorophore. Subsequently, primers for minus one position are added and the process repeats. At the end,

the signals are aligned by the positions and with this colour-space map the DNA fragment can be decoded

[11, 13].
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The last approach, ion semiconductor sequencing, also needs emulsion PCR amplification. This method

uses two primers, one is attached to the bead and the other is in the solution, that hybridizes with the DNA

template ensuring an uniform orientation of the molecules. During DNA polymerization, each time a dNTP

is incorporated, a hydrogen ion is released causing changes in the pH. This sequencer has a sensor that

detects these changes. This way, when no dNTP is incorporated, the pH does not change, if one dNTP is

incorporated, a change is detected, and if over one dNTP is incorporated, the change in pH is proportional.

Although, this is a method that sequence by synthesis, because no changes are made in the dNTPs and

no fluorescence is used, turns it in a whole new approach [13].

2.3 Case Study - Type 2 Diabetes

Diabetes mellitus is a disorder characterized by high blood sugar levels (hyperglycemia) caused by a

deficit in the production, or defective usage, of an essential hormone called insulin. Low levels of insulin

for a long period of time cause damages in several organs and lead to life-threatening complications like

cardiovascular diseases, nerve damage, kidney failure and sight impairment [14, 15].

This condition affects 463 million adults worldwide, and is responsible for 4.2 million deaths. Global health

expenditure on diabetes is about USD 760 billion (689 billion euros) annually. There is evidence that the

prevalence of this disorder increases by age, is slightly lower in women than men, and more common in

individuals that live in urban areas than in rural areas. Worldwide, the prevalence changes by regional

distribution, being North America and Caribbean the region with the highest values and Africa with the

lowest [14].

Type 2 Diabetes (T2D) is a subtype of diabetes that accounts for 90% of diabetes worldwide. In this

subtype the hyperglycemia is caused by insulin resistance which means that the cells cannot respond to

the hormone, leading not only to high blood sugar levels but also an increase in insulin production. Typically,

T2D affects adults, however, there is a growth in the number of children and adolescents diagnosed with

this disorder. This condition is very difficult to be diagnosed and in some cases might be completely

symptomless. For this reason, it is estimated that one-third to one-half of the individuals with this disorder

are undiagnosed [14, 16, 17].
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T2D is associated with obesity, physical inactivity and inadequate diet and can be prevented or managed

with better lifestyle and healthier habits such as a controlled diet, regular physical activity, decreasing or

stopping the consumption of alcohol, tobacco and other substances, and the maintenance of a healthy

body weight. Nowadays, the treatments available for this condition are oral medication like metformin,

sulphonylureas, dipeptidyl peptidase 4 inhibitors and glucagon-like peptide 1 analogues or in more extreme

cases, insulin injections [14, 16].

Besides this association with environmental factors, there are evidences that T2D is strongly influenced by

genetic factors [18]. Acording to Stančáková and Laakso [19], until 2016, there were identified more than

80 variants for this condition, but those only explained about 10% of the T2D variability within a population,

thus denoting a problem known as missing heritability.

Missing heritability (𝜋𝑚𝑖𝑠𝑠𝑖𝑛𝑔) (1) is defined as the proportion of heritability of a trait not explained by

the set of known variants. To calculate the missing heritability is necessary to find the ratio of explained

heritability (𝜋𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑) (2).

𝜋𝑚𝑖𝑠𝑠𝑖𝑛𝑔 = 1 − 𝜋𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 (1)

𝜋𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =
ℎ2

𝑘𝑛𝑜𝑤𝑛
ℎ2

𝑎𝑙𝑙
(2)

ℎ2
𝑎𝑙𝑙 is an inferred value for the maximum variance explained by the additive contribution of all the allele

counts, including the discovered and undiscovered, whereas ℎ2
𝑘𝑛𝑜𝑤𝑛 only accounts for the contribution of

known variants. Some explanations for the existent missing heritability suggest that there might be a few

variants not yet found because they are only present in a small percentage of the population or have smaller

effects. Others explore the fact that the calculation of missing heritability is based on an addictive model

and do not account for more complex associations like gene-environment and gene-gene interactions [19,

20].

Although some genetic variants for T2D are known, they produce little information that can be used in a

medical context. To increase the usefulness of this information in predicting the disease risk and in the

development of new strategies for diagnosis, prevention and treatment is necessary to identify new variants

and consider gene-gene and gene-environment interactions [19].



3 Machine Learning

Machine Learning (ML) is a branch of artificial intelligence that, as previously mentioned, extracts knowl-

edge from data using statistical assumptions and mathematical algorithms.

The first step in the development of ML algorithms is the collection, preprocessing and transformation of

the raw data into features. These features are used in the training of the algorithm and posterior testing

of the model, or directly on the testing. Testing the model provides information about the performance,

effectiveness and accuracy of the algorithm, allowing for its improvement. In the end, the ML algorithm is

used to predict feature behavior, help understand underlying structures, among other usages [21].

Supervised learning and Unsupervised learning are two categories of ML used in a variety of studies and

are explained in more detail below. However, there are not the only available categories of ML algo-

rithms.

Semi-supervised learning uses a dataset with labelled samples and, in a higher quantity, unlabelled sam-

ples. The necessity for the development of this type of learning came from the difficulty of obtaining labelled

data, that resulted in smaller datasets and consequently in models with inferior accuracy. With the incor-

poration of unlabelled samples in these datasets, easier to obtain, more information about theproblem is

provided, creating models with higher quality [21, 22, 23].

In reinforcement learning there is an agent that interacts with an environment and tries to reach a goal

related to the state of the environment. Through several steps the agent perceives the current state of

the environment, executes an action. This action triggers a change in the state of the environment and

produces a reward. In the next step the agent perceives the reward and the new state and chooses another

action and so forth. The objective of this type of algorithms is to learn a policy, that is a mapping of the

actions to be executed in the different states of the environment, by maximizing the numerical reward

signal. The agent does not know the best actions to take, instead it must learn by a trial-and-error search.

Depending on the type of problem, the action may not influence the immediate reward but subsequent

rewards [21, 22, 24].

10
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3.1 Supervised Learning

Supervised learning algorithms try to understand the relationship between the independent or “input”

variables (𝑥) and the dependent or “output” variables (𝑦). It is called supervised because the output is

known and used to train the ML model, guiding the recognition of patterns and the prediction of outputs

in other data. Therefore, the dataset used is a set of 𝑁 examples (𝑥(𝑖), 𝑦(𝑖)), 𝑖 = 1, ..., 𝑁; and each

element 𝑥(𝑖) has 𝑛 features that characterizes it: 𝑥(𝑖)
𝑗 , 𝑗 = 1, ..., 𝐷 [22].

This algorithm is used in regression problems when 𝑦 is a continuous value, or in classification problems,

if 𝑦 is a discrete value. The objective in regression is to calculate an output value for each example,

whereas in classification is to assign it a label from a list of two (binary classification) or more possibilities

(multiclass classification) [5, 25, 26].

In this approach, when a model is well-trained it can make predictions with high accuracy, finding hidden

information in data not yet tested, however, the quality of the training data largely influences how well the

model is trained [21].

A few of the most applied supervised learning models are described in the following sub-sections.

3.1.1 Linear models

Linear models try to predict the relationship between the input 𝑥 and output 𝑦 variables using a linear

function and can be used for both regression and classification problems. The training process of these

models aims to find the parameters 𝑤, associated with the features of 𝑥, that help the model make

the most accurate predictions. Some linear models used are linear regression, logistic regression, Ridge

regression and LASSO, which differ on how the model parameters are calculated and how the model

complexity is managed [26].

Linear regression is used to find a linear association between the multiple features and the output. This

is done by finding the optimal values 𝑤 that minimizes the mean squared errors between the predicted

outputs and the real outputs 𝑦 [22, 26, 27]. Although linear regression is a simple model that only fits

some data, it is the basis of many complex learning methods [27].
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Logistic regression is an algorithm used in classification problems and predicts the probability of an input

𝑥(𝑖) having a label 𝑦(𝑖) = 1. This model is based in a sigmoid function that calculates values between 0

(negative label) and 1 (positive label) and the estimation of the parameters 𝑤 is usually done by maximum

likelihood estimation [21, 22, 28].

Ridge regression and LASSO use an additional constraint for regularization, and besides trying to find the

optimal values of 𝑤 for the model, also tries to fit this new factor [26]. The aim of both methods is to correct

the model and avoid overfitting, and they differ from each other in the way they penalize the parameters 𝑤.

Ridge regression uses this constraint to make the parameters 𝑤 close to zero. Hence, each feature will

have the smallest effect possible on the outcome without impair the final prediction [26]. The constraint

used in LASSO can make a parameter 𝑤 = 0 and consequently distinguish between features to ignore

and essential features. One downside is that it can create underfitting. This type of regularization is called

L1 regularization, while the one used in ridge regression is called L2 regularization [22, 26].

3.1.2 Support Vector Machines (SVM)

SVM models could be used in regression problems but is more commonly used for classification. Using

these model as a classifier is based on finding a hyperplane that best separates the data into two classes.

These data have a 𝑝-dimensional space and the corresponding hyperplane is a plane of dimension 𝑝 − 1
that divides it into two parts. From this hyperplane it is easy to determine on which side a sample 𝑥(𝑖) lies

[29].

Another characteristic of these models is the maximization of the margin of the hyperplane. This margin

is the maximum distance between the closest examples of each class and the hyperplane. Finding this

hyperplane with the largest margin is straightforward in cases where the data is separable. However, in

many cases there are outliers that prevent the hyperplane to perfectly separate the data or the data cannot

be separated by a plane [22].

To better fit the model it is necessary to choose the kernel which defines the set of mathematical functions

that quantify the similarity between two samples 𝑥(𝑖) and 𝑥(𝑖′). When the data is linearly separable, the

best results are usually produced by a linear kernel (1) which is the simplest function and faster to train.

However, in many cases, the data cannot be separated by a linear function. The sigmoid kernel (2),
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polynomial kernel (3) and radial basis function kernel (4), are based, respectively, in sigmoid, polynomial

and radial functions, where 𝑔𝑎𝑚𝑚𝑎 is the kernel coefficient, 𝐶 in the constant term and 𝑑 is the polynomial

degree.

𝐾(𝑥(𝑖), 𝑥(𝑖′)) =
𝑝

∑
𝑛=1

𝑥(𝑖)
𝑛 𝑥(𝑖′)

𝑛 (1)

𝐾(𝑥(𝑖), 𝑥(𝑖′)) = 𝑡𝑎𝑛ℎ(𝛾
𝑝

∑
𝑛=1

𝑥(𝑖)
𝑛 𝑥(𝑖′)

𝑛 + 𝐶) (2)

𝐾(𝑥(𝑖), 𝑥(𝑖′)) = (𝛾
𝑝

∑
𝑛=1

𝑥(𝑖)
𝑛 𝑥(𝑖′)

𝑛 + 𝐶)𝑑 (3)

𝐾(𝑥(𝑖), 𝑥(𝑖′)) = 𝑒𝑥𝑝(−𝛾
𝑝

∑
𝑛=1

(𝑥(𝑖)
𝑛 − 𝑥(𝑖′)

𝑛 )2) (4)

3.1.3 Decision Trees

Decision Tree learning constructs a model based in recursive splitting rules (also called tests), with each

node being a test in a feature, each branch connecting the possible decision value and the next feature and

each final node (called leaf) showing the output value. Therefore, the predicted output can be determined

by following the path from the starting node until a leaf is reached [21, 26]. These models can be used in

classification and regression problems [25].

To build this type of model, all tests are explored, using the one that better divides the training data. An

optimal split is the one that separates the different outputs into two regions with most accuracy. With each

division, these regions are becoming purer until each has only one output. However, when this state is

reached, the model already contains too much structure creating a risk of overfitting [25, 26].

To control this risk, some strategies used are pre-pruning, which stops the creation of the tree before this

state of purity is reached, and post-pruning that after the creation of the tree removes or collapses less

informative nodes [26]. The pre-pruning can be done by limiting the size of the tree or number of leaves,

or by stopping the creation in a less pure state while post-pruning requires an analysis of the subtree

and posterior raising or replacement [26, 27]. Although the first approach is more attractive because

facilitates the process of creating a tree, saving time and computational power, some of the important
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relations between nodes can be lost, making the tree less informative. For this reason most trees are build

and then pruned [27].

3.1.4 Ensemble Learning

Ensemble learning integrates various MLmodels with low accuracy to form a newmodel with high accuracy.

Typically, the low accuracy models used are produced with simple algorithms and have difficulty in learning

from complex datasets but when their results are combined, these limitations are surpass [22, 26].

Two methods of ensemble learning are boosting and bagging. Both can be used in classification problems,

by choosing the label with highest averaged probability, or in regression problems simply by averaging the

results from all the used models. The difference relies on the weight of this result.

In boosting, some models have a higher influence and consequently their results have a higher weight.

This happens because a first model is created from the original training data, but the following models

are trained to complement the previous model, focusing on correcting their errors [22, 27]. On the other

end, in bagging all models are build based in different variations of the original training data. All of these

variations have the same size and are created by randomly deleting and copy some samples. This way, all

results have an equal weight [22, 27].

Random forest is a learning algorithm based in the bagging method that compiles multiple decision trees.

The method used to train these models is similar to bagging because it uses variations of the original

training data. However, more randomness is added using different sets of features to create them. This

factor is important because decision trees use the strongest features to split the dataset and by working

with these, all models would be highly correlated and the accuracy would have almost no improvement

[22, 29].

3.1.5 k-Nearest Neighbors

This simple algorithm is applied in classification problems and uses a set of k objects to label the test

sample. It is based on the assumption that close points have the same label, so the distance between the
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unlabeled sample and all labeled examples is calculated to identify the k closest neighbors. In the end,

the label that occurs more often in the group is used to label the test sample [21, 28].

3.1.6 Artificial Neural Networks

This model was inspired in the brain neurons and the way they process information and learn from the

environment. For this reason, Artificial Neural Networks (ANN) have several nodes connected by edges

that receive an input from previous nodes and transmit an output to the next node. The final output is

decided by performing multiple and successive calculations [26]. ANNs are organized in an input layer

that receives all values from 𝑥(𝑖), an output layer 𝑦 and intermediate hidden layers with 𝑀 nodes 𝑏(𝑘),

𝑘 = 1, ..., 𝑀. Each node 𝑦(𝑘) receives as input the corresponding weights 𝑤𝑖𝑘 and calculates the output

with a chosen activation function. The number of layers 𝑙 is given by counting the number of non-output

layers because the input layer is considered the first layer [21, 22, 28].

Figure 2.: Schema of an artificial neural network model.

In binary classification and regression problems, the output layer 𝑦 is composed of one node. If the ANN is

a regression model the activation function is linear, but if it is a classification model the activation function

is a logistic function. Multiple classification problems needs over one node in the output layer [22].
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Deep Learning is a class of ML that uses ANN trained with multiple layers. Although increasing the number

of layers can improve accuracy, too many layers can create overfitting. For this reason, the optimal number

of layers varies according to the type of problem, the quality of the dataset among other reasons [21, 22,

26].

3.2 Unsupervised Learning

Unsupervised learning algorithms are constructed to find structure in datasets with a set of 𝑁 inputs

𝑥(𝑖), 𝑖 = 1, ..., 𝑁 and no output (or label) associated [22]. These models are based in probability

distribution, statistical tests, and other types of measurements and unlike supervised learning algorithms,

there is no distinction between train and test data [21, 28]. Algorithms like this one are used in clustering,

dimensionality reduction, anomaly detection, among others [22].

3.2.1 Clustering

The goal of clustering is to find the subgroups, named clusters, that better separate the data. This way,

similar data is in the same cluster, whereas different data is in distinct clusters. From this partitioning,

it is possible to predict to which group a certain example belongs. Models, like k-means Clustering and

Hierarchical Clustering, differ from each other in their choice of what is similar and what is not, and in the

way they present the output [26, 29].

A hierarchical cluster can be built from the bottom-up (agglomerative), in which the samples are assigned

to an individual cluster and then the clusters are sequentially merged, or from the top-down (divisive), in

which all data is assigned to a general cluster and consecutively separated into different clusters. Both

methods define similarity based in the linkage between clusters. Single, complete and average linkage are

defined as the minimum, maximum and average distance between the data of one cluster and the data of

another cluster, respectively. The output is a dendrogram which is a tree-like visual representation of the

samples and their similarity [25, 29].

The k-means Clustering method splits the dataset in 𝑘 different clusters. This algorithm starts by randomly

placing 𝑘 centroids 𝜇𝑗, 𝑗 = 1, ..., 𝑘 into the feature space. The next step is a loop that assigns each 𝑥(𝑖)
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to its closest 𝜇𝑗, and recalculates the centroid positions. The loop stops when none of the observations

is assigned to a different 𝜇𝑗 and, consequently, its position is unchanged. The output is a list with the

assigned clusters [29, 30].

3.2.2 Reduction of Dimensionality

It is called dimensionality reduction to the process of representing data with a high dimensional space in

a new space with a lower dimensionality. Some advantages of this process is that smaller dimensions

require less computational power, lead to results with higher accuracy and simplifies data visualization

[28]. Even though not all methods of dimensionality reduction use unsupervised learning, there are some

important to refer.

One of these is Principal Component Analysis (PCA). PCA starts by computing new features called Principal

Components (PCs) that are uncorrelated with the original features. These PCs are positioned in the data

and will define a new coordinate system [21, 26]. The first PC is the axis that goes in the direction that

better explains the variability of the data, the second PC is orthogonal to the first and goes in the direction

of the second highest variance in the data, and the same occurs to the other dimensions. To reduce

dimensionality the data is projected in this new coordinate system [22].

t-distributed Stochastic Neighbor Embedding (t-SNE) is another method for dimensionality reduction that

embeds the information from higher dimensions to lower dimensions. This method focuses on preserving

the local structure of the data, in contrast with PCA, that preserves the global structure. This technique

has other advantages, one of them being the better handling of outliers [31, 32].

3.3 Model Evaluation

As previously mentioned the dataset is separated into a training set, to prepare the model for a given

problem, and into a test set, to evaluate the error of the finalized model. The dataset can also be divided

into a validation set that is used to optimize its parameters [27]. All the samples are divided between

these three sets, without repetitions, using a proportion of 70% to 95% for the training set, and an equal

proportion of 2.5% to 15% for both the validation and testing sets [22].
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It is important to recognize if the model is underfitting or overfitting. The first means that the model has

a high bias and maps poorly the trend of the data, having difficulty in predicting the output values of the

training data. It may be caused by an oversimplification of the model or the use of little or uninformative

features. On the other hand, overfitting means that the model has a high variance and does not generalize

well the problem. On these cases, the model is very accurate in the prediction of the output in training

sets but is unsuccessful in predicting outputs in the test set. A model too complex or too many features

can create overfitting problems [22, 26].

One of the methods used to asses and enhance the performance of the model is cross-validation. In this

method the training set is randomly divided in k-folds, or partitions, and sequentially one of the folds is

used as a validation set while the others are used to train the model (Fig. 3). Each model is then evaluated

by a metric of choice and in the end, all metrics are averaged [22, 26].

Figure 3.: Schema of division and sequential interactions within a 5-fold cross-validation.

A confusion matrix is a table used to examine the prediction’s quality of the classification model. It com-

pares the labels predicted with the real labels, organizing the results in four categories: true positives, false

negatives, false positives and true negatives (Fig. 4) [21, 22, 26].

Figure 4.: Confusion matrix for binary classification where True Positive (TP) is the number of outputs correctly
labeled positive, False Negative (FN) is the number of outputs incorrectly labeled negative, False Positive
(FP) is the number of outputs incorrectly labeled positive and True Negative (TN) is the number of outputs
correctly labeled negative.
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In the Table 3 are described some metrics to evaluate the quality of the model for classification problems,

using the values from the confusion matrix. For regression problems, the estimation methods described

in Table 4 are calculated using the arrays of real outputs (𝑦) and the correspondent predicted outputs

( ̂𝑦).

Table 3.: Principal metrics for model evaluation in classification problems where TP is the number of true positives,
FN is the number of false negatives, FP is the number of false positives and TN is the number of true
negatives.

Name Description Formula

Accuracy
Proportion of correct predictions
among all predictions

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

Precision

Proportion of real positives among all
predictions classified as positive, high
values reveal a low number of false pos-
itives

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall or True Positive Rate (TPR)
Proportion of predicted positives
among all real positives, high values
reveal a low number of false negatives

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Specificity or True Negative Rate (TNR)
Proportion of predicted negatives
among all real negatives

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

False Positive Rate (FPR)
Proportion of real negative labels incor-
rectly predicted

𝐹𝑃
𝐹𝑃 + 𝑇𝑁

F1-score
Value that summarizes the relation be-
tween precision and recall 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Receiver Operating Characteristic (ROC) curve is a graphic method for model evaluation that builds a

summary for the classification performance in a range of thresholds using the values of the False Positive

and True Positive rates for the 𝑥 and 𝑦 axis, respectively. If the model makes good predictions, the curve

will be close to the top-left corner. The value of Area Under Curve (AUC) summarizes the results of the

ROC curve. If the model makes perfect predictions, the AUC will be equal to 1. On the other hand, an

AUC of less that 0.5 can be representative of a bad model or might suggest a mistake in the labelling of

data [22, 26].
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Table 4.: Principal estimation methods for model evaluation in regression problems where 𝑦 is the array of real
outputs and ̂𝑦 are the predicted outputs.

Name Description Formula

Mean Squared Error (MSE)
Mean squared error between the real
and predicted values

1
𝑁

𝑁
∑
𝑖=1

(𝑦(𝑖) − ̂𝑦(𝑖))2

Mean Absolute Error (MAE)
Mean absolute error between the real
and predicted values

1
𝑁

𝑁
∑
𝑖=1

|𝑦(𝑖) − ̂𝑦(𝑖)|

Coefficient of Determination (R2)
Measure of the quality of prediction for
unseen samples by calculating the pro-
portion of explained variance

1 −
∑𝑁

𝑖=1(𝑦(𝑖) − ̂𝑦(𝑖))2

∑𝑁
𝑖=1(𝑦(𝑖) − 1

𝑁 ∑𝑁
𝑖=1 𝑦(𝑖))2



4 Methods for detection of SNP associa-
tions

For Mendelian diseases, linkage studies based in the patterns of gene inheritance have been useful to

localize their causal SNPs, but in complex disease these studies do not produce strong results [2].

The research on these diseases rests in two important hypotheses. The first, Common Disease Common

Variant (CDCV), states that complex disease traits are established by common variants (frequency greater

than 1%) in human populations [33, 34]. The second, Common Disease Rare Variant (CDRV), describes

that the additive effect of multiple rare variants (frequency smaller than 1%) determines the complex disease

phenotype [33, 35].

With the arrival of the Genome-Wide Association Study (GWAS), the CDCV hypothesis was proven by the

identification of multiple common variants associated with several complex diseases. However, this asso-

ciation only accounts for a low percentage of the heritable component. The missing heritability could be

accounted by environmental interactions, other types of variability like CNVs or even interactions between

variants. Nevertheless, the CDRV could also be a possible explanation [33].

4.1 Genome-Wide Association Study

Genome-Wide Association Study (GWAS) is an analysis for the detection of associations between genetic

variants, normally focused in SNPs, and phenotypes, inside a population.

GWAS genotyping is based on the principle of Linkage Disequilibrium (LD) [36]. LD quantifies the degree

of nonrandom association between alleles of two or more different loci. This measurement can be affected

by different forces like mutation, recombination, natural selection, population size, among others [3, 37,

38]. Considering two loci with the alleles 𝑀1,𝑚1 and 𝑀2, 𝑚2, the LD between the alleles 𝑚1 and 𝑚2 is

given in (1), being 𝑞1 and 𝑞2 the corresponding allele frequencies and 𝑞12 the frequency of the haplotype

𝑚1𝑚2. If 𝐷 = 0 then 𝑞12 = 𝑞1𝑞2, implying that there is a random association between the two alleles.

Although informative, the 𝐷 value is highly dependent on population allele frequencies and for this reason

there are two other statistics commonly used [2].

21
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𝐷′ (2) is the ratio of 𝐷 to its maximum absolute value and has a range of [0, 1]. If 𝐷′ = 1 then at least

one of the possible haplotypes is absent and no recombination has occurred since the last mutation. The

squared correlation coefficient, 𝑟2 (3), is used to assess linearity within the sample size and also has a

range of [0, 1]. When there is a perfect association between the two alleles, 𝑟2 = 1 [2, 37].

𝐷 = 𝑞12 − 𝑞1𝑞2 (1)

𝐷′ =
⎧{
⎨{⎩

𝐷
𝑚𝑖𝑛[𝑞1𝑞2,(1−𝑞1)(1−𝑞2)] 𝑖𝑓 𝐷 < 0

𝐷
𝑚𝑖𝑛[𝑞1(1−𝑞2),(1−𝑞1)𝑞2] 𝑖𝑓 𝐷 ≥ 0

(2)

𝑟2 = 𝐷2

𝑞1(1 − 𝑞1)𝑞2(1 − 𝑞2) (3)

Looking at these values is possible to find pairs of SNPs that are strongly correlated with each other, forming

LD blocks. From these blocks are selected tag-SNPs that are genotyped in these studies [36]. GWAS use

chip-based microarray technology and there are two principal platforms used in these studies, Affymetrix

and Illumina, that differs in methodology, price and specificity [39].

One objective of these studies is to use these associations to predict the disease risk for a given individual

and produce knowledge about the underlying biological molecules and processes for the development of

new diagnosis, prevention and treatment strategies, However, these relationships are not easy to under-

stand because of their complex pathways and growing number of variables [3, 40]. The use of GWAS in

this type of studies has a few obstacles. Firstly, there is a high correlation between neighboring variants

which hinders the identification of causal SNPs. Also, the large number of variants needs to be reduced

before performing the analysis. These procedures are very prone to discard relevant variants. On top of

that, this type of studies requires an extended quality control to ensure the reliability of the results.

4.2 Quality Control for GWAS Data

To regulate the presence of false positives or false negatives in the analysis of GWAS is necessary to

perform quality control of the data. Some errors like missing data or mistakes in genotype calling can be
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made while performing GWAS and can be specific for the individuals or SNPs [2, 41, 42]. Referring to the

individual-specific quality control problems, there may exist discordant sex information, missing genotypes

or heterozygosity rate, duplicates and relatedness and divergent ancestry. As for SNP-specific, some

common quality control problems are missing genotypes, deviation from the Hardy-Weinberg Equilibrium

(HWE) and low Minor Allele Frequency (MAF) [41, 42].

Missing genotypes are a problem that can be addressed by removing individuals or SNPs with low quality.

To choose the appropriate threshold is necessary to analyze the distribution of the data, making sure that

only a small proportion of data is excluded, and the study is not compromised [41, 42].

The distribution of the mean heterozygosity can be examined to determine the heterozygosity rate across

all individuals and detect whether the genetic data for a given individual is concordant with the HWE or

not. On that regard, the Wright’s inbreeding coefficient 𝐹 relies on the observation of departures to that

equilibrium, either motivated by excess of heterozygotes or homozygotes, and offers an advantage because

it is independent of the MAF [42]. The inbreeding coefficient of an offspring 𝐹𝑂 (4) is calculated from the

inbreeding coefficient of the ancestor 𝐹𝐴 and the number of generations connecting each parent (𝑛 and 𝑛′)

[43]. Taking into account the non-sexual chromosomes and calculating the mean value of heterozygosity,

it is possible to identify outliers. Anomalously high heterozygosity is an indicator of sample contamination

and anomalously low heterozygosity of inbreeding, and for this reason, these outliers are removed from

the data [41].

𝐹𝑂 = ∑[(1
2)𝑛+𝑛′+1(1 + 𝐹𝐴)] (4)

With the data from the X chromosome is possible to check for discordance in sex information. Because

males only have one copy of this chromosome, they do not have heterozygous SNPs associated with the

X chromosome. On the other hand, females have two copies of this chromosome and for this reason a

higher heterozygosity. A discordance in gender is reported when the heterozygosity rate does not match

the reported sex. For males, this ratio should be lower than 0.2, for females should be higher than 0.8

[41, 42]. Although many studies do not account for difference in gender, a discordant sex may suggest an

error during sequencing that will affect the downstream investigation, and for this reason should be taken

into account [2].
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Duplicated or related individuals share some same alleles, so including them in the study creates an over

representation of genotypes and a bias in the allele frequencies of the population [41]. For quality control

of duplicates and relatedness it is necessary to prepare a new dataset, pruned for LD and then calculate

the 𝐼𝐵𝑆 (identity by state) for each pair of individuals by averaging the proportion of shared alleles. The

degree of shared ancestry is called 𝐼𝐵𝐷 (identity by descent) and is calculated from 𝐼𝐵𝑆. 𝐼𝐵𝐷 = 1
represents duplicates or monozygotic twins, 𝐼𝐵𝐷 = 0.5 means a first-degree relation, 𝐼𝐵𝐷 = 0.25 is for

second-degree relatives and an 𝐼𝐵𝐷 = 0.125 describes a third-degree relation. The threshold is normally

set to an 𝐼𝐵𝐷 = 0.1875, an intermediate between second and third-degree relatives [41, 42].

The population structures should be equally distributed in the case and control groups or association

caused by ancestry may be encountered. A graphic representation of a PCA made on these datasets detect

different population stratification, and after identification of these outliers, the corresponding individuals

are removed [41].

The Hardy-Weinberg Equilibrium (HWE) suggests that the allele frequencies are constant across genera-

tions. This law represents the frequencies of the genotypes 𝐴𝐴, 𝐴𝑎 and 𝑎𝑎 as 𝑝2, 2𝑝𝑞 and 𝑞2, being 𝑝
the allele frequency of 𝐴 and 𝑞 = 𝑝−1 the allele frequency of 𝑎 [44]. In GWAS studies, SNPs associations

can create a deviation from the HWE, however, extreme deviations are considered errors in the genotype

calling [2, 42] The threshold for extreme deviation is dependent of the number of SNPs tested [2].

Other filter used as quality control is Minor Allele Frequency (MAF) and when is low implies that rare

genotypes are present in the dataset. Besides reducing the variant call certainty and augmenting the

number of false positives by changing the properties of the statistical tests, an association between these

genotypes is difficult to detect and for these reasons it is better to remove them from the dateset [2, 42].

The threshold used is dependent of the sample size 𝑛 and could be around a MAF= 10/𝑛 [42].

4.3 Single SNP Association Analysis

In single SNP association analysis, an association between each SNPs and the phenotype is tested. In

some cases, the SNPs are treated as independent and the LD structure is ignored. Some of the meth-

ods used are generalized linear models, statistic tests like 𝜒2 test and Cochran-Armitage trend test and

Bayesian approaches [2, 45].
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The generalized linear models estimate a linear relationship between SNPs and phenotypes. If the output

is binary, a logistic regression model is created, but if the output is continuous, a linear regression model

is used. One advantage of using this method is that the formula can be easily changed to account for

additive, dominant and recessive effects or even add other factors [2].

The 𝜒2 (5) tests the null hypothesis (𝐻0) of no association with the disease [46], observing the deviance

between 𝑛 observed samples (𝑂𝑖) and their theoretical values(𝐸𝑖) [47]. In this case, each SNP is con-

sidered independent of the other, but when additive, dominant and recessive models are considered, the

Cochran-Armitage trend test is used [46]. These types of tests need less computational power but with

more complex data do not produce so satisfactory results [2].

𝜒2 =
𝑛

∑
𝑖=1

(𝑂𝑖 + 𝐸𝑖)2

𝐸𝑖
(5)

The goal of the Bayesian method is to compute a p-value for the null hypothesis and uses a frequentist

approach [48]. The accuracy of the results depend on the threshold used for MAF and the size of the

dataset, because this approach uses the Bayes factor (8) that measures the probability not only of the null

hypothesis (𝐻0) but also of the alternative hypothesis (𝐻1). Here the 𝐻0 is the logarithm of the odds

ratios (𝜃) between the heterozygote and the common homozygote 𝜃ℎ𝑒𝑡 and between rare and common

homozygotes 𝜃ℎ𝑜𝑚 are equal to zero (6), and the 𝐻1 is that 𝜃ℎ𝑒𝑡 and 𝜃ℎ𝑜𝑚 are equal to their prior

distribution 𝑡1 and 𝑡2, respectively (7) [48].

𝐻0 ∶ 𝜃ℎ𝑒𝑡 = 𝜃ℎ𝑜𝑚 = 0 (6)

𝐻1 ∶ 𝜃ℎ𝑒𝑡 = 𝑡1, 𝜃ℎ𝑜𝑚 = 𝑡2 (7)

𝐵𝐹 = 𝑃(𝑑𝑎𝑡𝑎|𝐻1)
𝑃(𝑑𝑎𝑡𝑎|𝐻0) (8)
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4.4 Multiple SNP Association Analysis

Multiple SNP association analysis examines the link between the phenotype and the combine effect of

multiple SNPs. Some methods used for single SNP association can be modified and used for multiple

SNP association, like the linear models and the Bayesian approach. Various types of analysis have been

proposed to account for these associations: haplotype-based methods, SNP-SNP interaction models and

tests based in biological knowledge [2].

Often, in these studies, there are too many SNPs to examine, so it is necessary select a subset of features

to analyze [49]. Haplotypes are groups of genes that are inherited together and can be used in associa-

tion studies [38]. These methods test the association between haplotypes and phenotype. One reason

for considering these methods is that proteins and their physical proprieties are determined from linear

sequences of nucleotides, generally haplotypes inherited from the progenitors which gives them a direct

biological relevance[49]. Also, relevant alleles but with a lower frequency might only be identified when

studying whole regions [2].

The definition of epistasis differs according to the area of study considered, and in this context is important

to differentiate between biological epistasis and statistical epistasis. The first occurs in each individual and

accounts for interactions between genetic variants, biological molecules and pathways, and their effects

in the phenotype, as the second involves the interactions between genetic variants that cause a deviation

from the models that consider the independent effects of these variants inside a population [50, 51]. SNP-

SNP interaction models are based in statistical epistasis since biological epistasis alone is very difficult to

study and the connection between the two types is not fully understood [50].

The most direct approach to study these interactions is a thorough analysis of all combinations of SNPs.

Though strategies like dimensionality reduction, data compression, and others, allow for exhaustive search

in two-locus combinations, a higher number of locus needs a computational power not available at the

time, so filtration of variants is required [51]. These variants can be filtered by their independent effects

in which only SNPs above a certain threshold are used [52]. However, SNPs with low independent effect

may have an important effect when combined with other variants [51]. Other method of filtration uses one

nearest neighbor based approach that measure the distance between individuals according to the number



4.5. Correction for Multiple Testing 27

of different genotypes between them and attributes a weight to each SNP. With this method, SNPs with a

higher weight are used in the SNP-SNP interaction models [53].

Another approach for this problem analyzes the association between variants integrating various types

of biological information, namely the genes, exons, proteins and pathways related to them, and their

interactions. Although this method facilitates the interpretation of the biological meaning of these SNPs,

is heavily dependent of the biological information quality, requiring a rigorous control of what information

is used [51].

4.5 Correction for Multiple Testing

To avoid errors in this type of association studies, it is important to make a correction for multiple testing

thus accurately estimate significance thresholds [2, 46].

Bonferroni correction is a simple method that adjusts the significance level 𝛼 to 𝛼/𝑁, being 𝑁 the number

of tested SNPs. This way, any hypothesis with a p-value inferior or equal to 𝛼/𝑁 is rejected. One disad-

vantage of this method is the assumption that all SNPs are independent, being relatively conservative for

GWAS. Another approach is the use of the False Discovery Rate (FDR) to fix an expected proportion of

false positives among the associations considered significant. However, this method is highly dependent

of different factors and do not account for association between variants. Permutation procedures correct

the null hypothesis by comparing the original p-values with the generated empirical distribution of p-values.

This distribution is originated from repeating the original tests in randomly permutated data. This approach

can preserve the LD structure, but is more computationally demanding than Bonferroni correction or FDR

[46, 54].

4.6 Machine Learning Approaches

Machine learning approaches are valuable for processing large datasets, integrate various types of omics

data and can be applied to a variety of problems like identification of binding sites, genes, biomarkers and

prediction of functions, outcomes or phenotypes [55, 56, 57]. One important use for these approaches is

the analysis of SNPs, produced in GWAS that can provide information about the relation between variants
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and phenotypes in complex diseases and be a means to improve diagnosis, treatments and prognosis

accuracy [55].

Some ML models used in this context are Neural Networks, Support Vector Machines and Random Forests

[57]. However, these models face some challenges and limitations in this framework. For starters, the de-

velopment and choice of model needs to take into account the complex relationship between combinations

of SNPs and in some cases, between other genetic variations and environmental factors [58].

Usually the datasets used have a small amount of samples but numerous features and when used, the

models produce misleading results [55]. For this reason the ratio for a robust model should be 5 to 10

features per sample [59]. In case the number of features is excessive, there are algorithms that select

which SNPs are going to be used by the model. Filtering algorithms favour the subset of features with better

quality or more relevance. Wrapper algorithms choose iteratively a subset of features to be classified by

the model using a deterministic or stochastic algorithm. Although filtering methods are faster, wrapper

methods are more powerful because they do not discard any attributes [58].

Some ML models have a complex mathematical basis, and even when the results are very precise, if these

statistical relations cannot be interpreted in a biological context, the underlying mechanism of a complex

disease remains unknown. Without these new insights it is difficult to create alternative strategies for

diagnosis, treatment or prevention of complex diseases [58].



5 Development

The goal of this work is to identify new variants associated with a complex disease, in this case T2D, by

developing a predictor of disease risk that uses SNPs. This predictor will be based in ML classifiers that

would be able to distinguish between healthy individuals (controls) and T2D patients (cases).

Considering that the biology of this problem was very complex, highly variable between individuals and

influenced by many factors, by studying it from a computational perspective, it was essential to specify a

few assumptions. The first one was that during a person’s lifetime the genetic code did not endure many

changes. This assumption is acceptable, although it is known that the DNA undergo some changes, most

of the genome is conserved. Other assumption made was that an individual from the case dataset has

a higher risk of developing T2D and, consequently, an individual from the control dataset has a low risk

of developing the disease. If two individuals had been exposed to the same environment, we could claim

that the outcome had been caused by genetic factors. However, during this study we did not had access

to the physiological data or family history of the patients. Due to this, we could have patients with lower

risk of disease that with an inadequate diet or a sedentary lifestyle developed T2D, or a patient with higher

risk of disease that have not yet developed the disease because of a controlled diet and regular physical

activity. Even so, for the purpose of this study, we assumed that the case individuals had a higher risk of

T2D.

5.1 Initial Datasets

The first step for the realization of this project involved choosing and preparing the datasets that would be

used in the rest of this work. The case dataset originated from a gzip compressed Variant Call Format (VCF)

file with a size of 556.58 Mb (2.01 Gb when uncompressed) that contained information for 71 exomes

from Portuguese patients diagnosed with T2D and 57 142 453 loci. These patients were between the ages

of 48 and 80 years old and had no congenital diseases. Although, medical features as age, sex and body

mass index as well as family history are known risk factors and some of them are strong predictors of T2D,

the focus of this study were the genetic factors and only the genomic data was used hereafter.

29
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An initial filtering restricted the type of variants to SNPs or INDELs, reducing the dataset to 250 869 variants.

The quality control of these data revealed that from the 71 individuals, two of them were related (“Ex41”

and “Ex51”)(Fig. 9). Since using data from related individual can create bias in the allele frequencies,

“Ex51” was removed from the dataset. The criteria relied on the missing information, being the sample

with more missing variants excluded from the study. An analysis of the HWE was also performed and

about 3.9% (9 792) of the variants were removed because they did not follow this theorem (Fig. 10).

Lastly, it was observed that some sites had a low quality score (Fig. 11 and Table 11). This quality score

represents the probability of an incorrect base call. About 12 776 variants (5.3%) were removed by setting

a minimum quality score of 20 that corresponds to a 1 in 100 chance that the SNP call is erroneous.

Other aspects of the dataset were analyzed, however there was no need to perform further filtering at this

point (Fig. 12, 13, 14 and Table 11). After this processing, that selected the variants and samples, the

case dataset had a size of 161.74 Mb (737.62 Mb when uncompressed) and included 228 301 variants,

comprising 225 070 SNPs (98.6%) and 3 231 INDELs (1.4%).

The control dataset resulted from a selection of VCF files collected from the 1000 Genome Project [60]

whose goal was to discover the largest number of genetic variants with frequencies of at least 1% across

different populations. For this study, there was selected data from the Iberian Populations in Spain (IBS)

in the Phase 3 release, being the closest ethnic group to the Portuguese individuals of the case dataset.

This group was chosen to prevent bias that would tend to distinct case and controls based on populational

genetic divergences instead of the disease’s risk prediction. The 1000 Genome Project IBS subpopulation

included 107 samples, all collected in the Spanish territory and are from individuals born in Spain that had

the previous two generations born in the same area [61]. The control data was in gzip compressed files,

divided in chromosomes, with a total size of 16.21 Gb (approximately 600 Gb when uncompressed).

The VCF file is a standard tab delimited text file used to save genotype data because of its scalability,

flexibility and unambiguity allowing the storage of millions of variants and extra information across the

several fields. The first nine columns are used to describe the variant, indicating the chromosome, position,

id, reference (REF) and alternative alleles (ALT), several measures of quality and the format of the subfields

reported for each sample. The remaining columns correspond to the reported information for each sample

including the called genotypes (GT). The GT field encodes the alleles using numbers where 0 is REF, 1 is

the first allele in ALT, 2 is the second allele in ALT, etc. The separator specifies if the alleles are phased

(“|”), which means that it is known from which chromosome the allele came from, or if they are unphased
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(“/”) and the order of chromosome pairs is not taken into account. Regarding the case dataset, the GT

were unphased and represented by “0/0” for homozygous by REF, “0/1” and “1/0” for heterozygous,

and “1/1” for homozygous by ALT.

5.2 Dataset Construction

Up to this point, there were two different VCF files, however, to proceed it was necessary to represent the

data in a simpler format. The first step was to translate these complex GT into numbers that could be

interpreted by the computational methods we intended to use. This way a genotype “0/0” was translated

to 0, “0/1” or “1/0” to 1, and so forth according to Table 5.

Table 5.: Translation of the Genotypes (GT) found in the VCF file for each variant into a numerical format that com-
putational methods can interpret.

Genotype 0/0 0/1 1/1 0/2 1/2 2/2 0/3 1/3 2/3 3/3 0/4 ...

Translation 0 1 2 3 4 5 6 7 8 9 10 ...

Since these two datasets had different dimensions, the merging of these files into one dataset was re-

quired. This was possible by finding the common variants. A variant was considered equal if their location

(chromosome and position) was the same and their REF and ALT were matching. In these datasets were

found 172 629 variants in common. Next, a column named “labels” was added with a number attributed

to each sample, with 1’s being cases and 0’s being controls.

Even though the resulting dataset was in the correct format, there was a portion of missing values that

could impair the subsequent analysis. For this reason all variants with a rate of more than 10% of missing

values were removed from the dataset and the remaining missing values were imputed by the most frequent

value of the column. The final dataset had 177 samples and 168 715 variants.

5.3 Test Variant Significance

The first analysis made was a single SNP association using the 𝜒2 test that measures the probability

of association of each variant with the disease, considering each one of them independent. Before this

statistical test, the data was tested for normality using D’Agostino and Pearson’s test [62] and a p-value of
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0.05. The results showed that of 168 715 variants, only 321 did not follow a normal distribution (Fig. 5).

Therefore we considered that all variants followed a normal distribution.

The 𝜒2 test was performed in all variants with a p-value of 0.05, as in the normality test. From 168 715

variants, 9 427 presented significantly different distributions between cases and controls, which means

that these variants had a statistical association with the phenotype (Fig. 6).

Figure 5.: Manhattan plot of the results from the D’Agostino and Pearson’s normality test according to the posi-
tion of each variant. Only 321 variants of 168 715 do not follow a normal distribuition. The threshold
−log10(p − value) = 1.3 is represented by a line.

5.4 Variant to Gene

The next step of this study was to combine the variants by translating them into genes. For this we used

the package pyensembl, a Python interface that uses GTF and FASTA files from Ensembl. In this study we

used as reference the GTF file from the GRCh37 version, and with a tool from this package we found the

gene ID associated with the position of each variant.

At this point, we had a list of all variants, the associated gene if found, and the p-value from the 𝜒2 test.

The variants were grouped in genes with an associated p-value corresponding to the average of all variants

and when this p-value was less than 0.05 the gene was selected to continue the analysis. In total, 82

genes were selected and were referred henceforth by significant genes (Table 7).
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Figure 6.: Manhattan plot of the results from the 𝜒2 test according to the position of each variant. 9 429 variants
of 168 715 had a significant association with the disease. The threshold −log10(p − value) = 1.3 is
represented by a line.

Although the objective of this research is to identify new markers, we also studied the known risk genes.

For this reason, after the gene grouping, other genes were selected. Using a list of 75 known risk genes

from Type 2 Diabetes Knowledge Portal [63] (filter Prediction: T2D_related and CAUSAL), we selected the

matching genes on our dataset. Since our data was only from the exome, not all risk genes were present,

so at the end we had 67 risk genes to work with (Table 7).

5.5 Network of Protein-Protein Interactions

To research the relationship between these genes, we integrated them in a network of Protein-Protein Inter-

actions (PPIs) that was represented by a graph whose nodes are genes and edges are interactions.

First, we downloaded human PPIs from a database, in this study we use BioGRID [64], a curated reposi-

tory for biomedical interaction. These interactions were represented on a text file, and not only provided

information about the interactors but also the interaction detection methods, confidence metrics, among

others. The file was preprocessed, only selecting interactions with experimental data associated and with

both interactors being human proteins. The final file with PPIs had 366 327 interactions.
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To integrate all this information we uses a R package named dmGWAS. It enables the identification of

subnetworks of highly connected genes, and consequently, the discovery of new candidate genes. Using as

input the human PPIs file and a list of genes and respective p-values from our data, this tool implemented

a dense module searching method and outputted a list of modules associated with the disease, ranked by

significance. The top 50 modules were chosen and combined.

At this point, there was a subnetwork of PPIs significant to our study containing 252 genes. To select new

candidate genes we used the R package igraph, applied three network metrics (Table 6) to each gene of

this subnetwork and choose the genes that were in the top 100 of each metric. At the end, 77 genes were

selected and are referred henceforth by central genes. From these 77 genes, three were in common with

the known risk genes, CAV1, PCBD1 and WFS1 (Table 7).

Table 6.: Brief description of the three network metrics applied to each node of the PPI network.

Degree Number of edges that a node has connected to it, including loop edges.

Betweenness Number of shortest paths going through the node.

Closeness Average length of the shortest path between the node and all other nodes in the graph.

5.6 Dimensionality reduction

At this point, there were 3 sets of genes selected, the 67 known risk genes, the 82 significant genes and

the 77 central genes. To discover whether these sets of genes may be used to predict the disease, they

were used as features in three ML models (SVM, decision tree and logistic regression). Even though thess

sets of genes are a fraction of the original dataset and considerably reduced the number of features, it was

still composed of data from the variants that could overfit the ML models.

For this reason, a dimensionality reduction was applied to the dataset. As explained in a previous chapter,

it transforms the data from a high number of features, some correlated and consequently redundant, into

a reduced number of features (feature reduction) or a representation that maintains the overall properties

of the original data (feature extraction).

First, feature extraction was applied to each gene, using the information present in the corresponding

group of variants. We used two methods of dimensionality reduction, PCA and t-SNE, and, in both these

methods, the first component was chosen to represent the data. Also, two statistics, mean and variance,
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were calculated to complement the information gather in the feature extraction. After this process, each

one of the selected genes had only four features to describe it, so the final datasets, known risk genes,

significant genes and central genes, had 268, 328 and 308 features, respectively.

Because the goal of this study is to identify new variants of interest and the datasets had a high number

of genes, feature reduction was performed in two of these datasets, the significant genes and the central

genes. For this we used Extremely Randomized Trees (Extra-Trees), which is a tree based ensemble

method. This algorithm was trained 1000 times with each dataset, for every train the top 100 most

important features were registered and, at the end, their frequency was calculated. For each dataset we

selected the 25 features with higher frequency. The 25 features from the top 25 significant genes dataset

belonged to 25 different genes, while the ones from the top 25 central genes dataset belonged to 12

different genes (Table 7).
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Table 7.: Known risk genes, significant genes and central genes selected for this study. In the grey boxes are the
genes selected in the dimensionality reduction. In bold are the common genes between the known risk
genes and the central genes lists.
Known Risk Genes Significant Genes Central Genes

ABCC8 PCSK1 AAMDC MAST1 APP MYC
AKT2 PDX1 AKT1S1 MSTN ATXN1 NCL

ANGPTL4 PLCB3 AMMECR1L MYPOP BAG3 NEK6
ANKH PNPLA3 ANP32A NBPF14 BAIAP2 NFKBIA
APOE POC5 B3GALNT1 NBPF4 BTRC NSMF
APPL1 POLD1 BCL2L10 NDUFB6 CALM1 OPTN
BLK PPARG C10orf95 NGLY1 CASP1 PCBD1

BSCL2 PPP1R15B C1orf162 NKX2-1 CASP8 PCNA
CAV1 PTF1A C20orf202 NUFIP2 CAV1 PICK1

CDKN1B QSER1 CDKN2C OLIG1 CDC37 PIK3R1
CEL RFX6 CGB5 OR13J1 CDH1 PIN1

EIF2AK3 RREB1 CHKA OR2T5 CDK2 PLK1
ERAP2 SIX2 CLEC18A P4HTM CDKN1A PPP1CA
GATA4 SIX3 CNOT11 PAGR1 CEP70 PTPN6
GATA6 SLC16A11 CSRP2 PARP11 DEAF1 RAC1
GCG SLC19A2 CXCL13 PNMT DISC1 RPS6KB1
GCK SLC30A8 CXCL5 PNRC2 ENO1 SFN
GCKR SLC5A1 DCAF16 POTED ERBB2 SKP1
GIPR TBC1D4 DDTL PPP1R7 ESR1 SMAD3
GLIS3 TM6SF2 DEXI PRAMEF13 GFAP SPRED1
GLP1R TRMT10A DLEU1 PRDX6 GRB2 STK11
GRB10 WARS DLX6 PRRT2 HLA-B STX1A
HNF1A WFS1 DOK1 PTRF HNRNPC SYK
HNF1B WSCD2 GLIPR1 RAX HSP90AB1 TGFBR2
HNF4A ZFP57 GPR25 RNASE10 HSPA8 TNF
IGF1 ZNF771 HEXIM2 RNF182 HSPD1 TRAF6
IRS2 HFE2 RYBP HTT TRIM54

KCNJ11 HMOX2 S100A16 INCA1 TSC22D1
KLF11 HNRNPAB SCG5 IQUB UBC
LPL HOXB8 SKIL JPH3 UBE2Z

MC4R HSD3B1 SOX21 KANK2 USP2
MNX1 ID2 SYT4 KCTD13 VCP

MTNR1B IFNA13 TADA2B KDR WFS1
NAT2 IL33 TAF11 KIFC3 YWHAE

NEUROD1 IL36RN TEX22 KRT34 YWHAG
NEUROG3 JOSD1 TLX1NB LMO4 YWHAZ
NKX2-2 KCNMB4 TMEM178A LNX1
PAM KRTAP5-1 TMEM60 LNX2
PAX4 LSMEM1 TPST1 MAP3K1
PAX6 MAFA TRAM1L1 MDFI

PCBD1 MAFF WDR45B MEOX2



6 Results

As previously mentioned, this study was a case-control analysis with samples from individuals with and

without T2D which translates to a computational problem of binary classification. The methods employed

were used to detect the differences between the samples and to classify them accordingly. It was also

necessary to analyze the results from a biological perspective. The following sections shown the results

from these methods.

6.1 Classifier Optimization

When using classifiers, it is important to optimize the hyperparameters of the models to best fit the datasets.

Hyperparameters are parameters that control the accuracy of the model but are not chosen when the

algorithm is trained. To optimize these models it was performed a grid search for each algorithm and

dataset. A grid search is an exhaustive search that compares the performance of each combination of

parameters (given by the user) in a training data.

In this study we train the SVM, decision tree and logistic regression models for each dataset with the

parameters shown in Table 8, using the class model_selection.GridSearchCV() from the package scikit-

learn with a 5-fold cross-validation.

Table 8.: Parameters and respective values tested for SVM, decision tree and logistic regression models during grid
search.

SVM Decision Tree Logistic Regression

kernel [’linear’,’poly’,’rbf’,’sigmoid’] n_estimators [20,50,75,100] penalty [’l1’, ’l2’]

C [0.25,0.4,0.5,0.55,0.75,1] criterion [’entropy’,’gini’] C [0.25,0.4,0.5,0.55,0.75,1]

tol [1e-3,1e-4,1e-5] min_samples_leaf [1,2,3,5,10] tol [1e-3,1e-4,1e-5]

gamma [25,50,75,100,150,’auto’] min_samples_split [2,4,5,8,10] solver [’liblinear’,’saga’]

degree [1,2,3,5,10] max_leaf_nodes [2,20,50,75,100] - -

For the SVM model we used the class svm.SVC from the package sklearn and tested different parameters

that highly influence the classifier. The first one is the kernel that define the set of mathematical functions

used by the model. The C parameter is used for regularization, which prevent overfitting. By decreasing C

37
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the regularization is stronger. The stopping criterion is defined by tol, denoting that the algorithm will stop

when the loss or score does not improve by at least the value of this parameter. The parameter gamma

corresponds to a kernel coefficient for the non-linear functions and indicates the extent of the influence of

each training example. Higher values of gamma tend to overfit the model. Lastly, the parameter degree

is the degree of the polynomial kernel function and is ignored by all other kernels.

Referring to the Decision Tree model, it was used the class ensemble.ExtraTreesClassifier from the pack-

age sklearn and we also tested 5 different parameters. This model implements a number of randomized

decision trees, defined by the parameter n_estimators, on various sub-samples of the dataset. In the

end, the average of the results is calculated to improve accuracy and control overfitting. The parameter

criterion measures the quality of the split by gini impurity, if gini is selected, or by information gain, if

entropy is selected. Given that a leaf node is a node of the tree that do not have child nodes, the parameter

min_samples_leaf sets the minimum number of samples required to be in each node when considering a

split point, and the parameter max_leaf_nodes defines total number of leaf nodes in a tree. Finally, to set

the minimum number of samples required to do a split is used the parameter min_samples_split.

The third model used in this study was the Logistic Regression implemented by the class linear_model.

LogisticRegression from the package sklearn. The first parameters tested were penalty and C, both

being used for regularization. In this model, the parameter tol also defines the tolerance for stopping

criterion. The parameter solver sets the algorithm used in the optimization problem. Although there are

more, in this study we only tested the liblinear and saga because they are the recommended for this type

of study.

Although the grid search was performed in all the datasets and, in some cases, produced different results,

the overall best set of parameters was selected and used for the study. The final parameters used are

shown in the Table 9.

6.2 Models Evaluation

After preparing the datasets and the classifiers, it was necessary to assess the models. As previously

mentioned, we prepare 5 different datasets for this study: the known risk genes that had 268 features,

the significant genes with 328 features and the correspondent top 25 selected features, and the central
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Table 9.: Parameters and respective values chosen for SVM, decision tree and logistic regression models after grid
search.

SVM Decision Tree Logistic Regression

kernel linear n_estimators 50 penalty l1

C 0.25 criterion entropy C 0.4

tol 1e-3 min_samples_leaf 3 tol 1e-3

gamma 25 min_samples_split 5 solver liblinear

degree 1 max_leaf_nodes 50 - -

genes with 308 features and the correspondent top 25 selected features. For each dataset, the classifiers

were run 1000 times using a 5-fold cross-validation and for the evaluation of the models we used three

metrics, accuracy, F1-score and AUC. The results are shown in Fig. 7 and the ROC curves for each dataset

and model can be seen in Fig. 15- 17.

Comparing the results obtained for each metric, the values were similar which shows the robustness of the

results. The different models produced results with different accuracies, F1-scores and AUC. SVM models

produced the worst results, followed by the Logistic Regression models. The best results were obtained

using Decision Tree models, with mean values higher than 0.85. The differences between the results of

the various datasets were consistent being the known risk genes dataset the one that produced the lower

values. The best results were from the top 25 central genes dataset.

6.3 Functional Annotation

Previously, the significant genes and central genes dataset were selected, and after observing the results

of the classifiers, we proceed to a functional annotation of the identified genes. Functional annotation is

the process of adding a biological context to, for example, a variant, gene or protein. This information can

be gene functions, known associations to a phenotype, metabolic pathways, among others.

To perform this functional annotation, we submitted three separate lists of genes, the known risk genes, the

significant genes and the central genes, to the online platform Database for Annotation, Visualization and

Integrated Discovery (DAVID) [65, 66]. This tool uses information from several databases to find the most

relevant and over-represented biological terms related with the gene list provided. The annotations cover

different categories as diseases, gene ontology terms, pathways, protein interactions, among others.
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Figure 7.: Average accuracy, F1-score and area under curve, and respective standard deviation, of the SVM, Decision
Tree (Tree) and Logistic Regression (Log) models, for significant genes (black), top 25 significant genes
(dark grey), known risk genes (light grey), central genes (light stripes) and top 25 central genes (dark
stripes).

Although the results from our submissions extend across the different categories and classes, the attention

was focused in the results from the biological processes annotation from Gene Ontology (GO). All the genes

from each list were grouped by the GO terms associated with them. These terms help to understand the

biological activity of the gene but is not equivalent to the pathway. Some of the terms found on this analysis

and the respective number of associated genes from each list can be observer in Fig. 8 (Complete list in

Table 12).

From 29 683 biological process terms, there were found 160 terms in common between the genes of the

lists. Looking at the terms with more associated genes, and knowing that most of the genes are different
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Figure 8.: Number of genes from the known risk genes, significant genes and central genes associated with the top
biological processes found.

across the three lists, its observable that many of the identified genes (either significant or central) share

the same terms as the known risk genes.

DAVID also highlights pathways that integrates two or more genes from the list. Even thought no path-

way was provided for the significant genes, there were some pathways associated with the central genes.

Some of most significant pathways are shown in Table 10, as well as brief description and the associated

genes.
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Table 10.: Top 9 significant pathways associated with the central genes.

Regulation of PLK1 Activity at
G2/M Transition

RHO GTPases activate PKNs
Chk1/Chk2(Cds1) mediated inac-
tivation of Cyclin B:Cdk1 complex

PLK1 is a protein that phosphorylates
several proteins involved in transition
from phase G2 to phase M of mitosis

RHO GTPases is a family of proteins
involved in processes like changes in
morphology and mitosis. They can
bind to a PKN protein. PKN is involved
in the regulation of cell cycle, receptor
trafficking, vesicle transport and apop-
tosis

The kinases Chk1/Chk2(Cds1) are
used as a checkpoint during mitosis, in-
duced when there is DNA damage

YWHAE, CEP70, PLK1, UBC, BTRC,
OPTN, YWHAG, SKP1

YWHAE, SFN, RAC1, YWHAZ, YWHAG YWHAE, SFN, YWHAZ, YWHAG

Activation of BAD and transloca-
tion to mitochondria

CLEC7A (Dectin-1) signaling
Translocation of SLC2A4 (GLUT4)
to the plasma membrane

BAD has an important role in apopto-
sis. Calcineurin activates BAD by de-
phosphorylation. After activation, it is
transported to the external membrane
of the mitochondria, realeasing the cy-
tochrome C that is a factor for apopto-
sis

CLEC7A (or Dectin-1) is a protein in-
volved with the detection of bacteria
and fungal cells. CLEC7A signaling in-
duces the production of cytokines and
interleukins

GLUT4 is a protein encoded by the
gene SLC2A4 and is responsible for
the uptake of glucose from the blood-
stream, when the level of insulin in-
creases. When the insulin binds to the
receptors of the cell it starts the move-
ment of the vesicles containing glucose
towards the plasmamembrane

YWHAE, SFN, YWHAZ, YWHAG
NFKBIA, SYK, TRAF6, UBC, BTRC,
SKP1

YWHAE, SFN, RAC1, CALM1, YWHAZ,
YWHAG

Constitutive Signaling by Ligand-
Responsive EGFR Cancer Vari-
ants

Regulation of signaling by CBL
GPVI-mediated activation cas-
cade

After activation, the EGFR receptor
starts several signaling cascades that
initiates the transcription of gene in-
volved in apoptosis and cellular prolifer-
ation. Over-expression of the wild-type
EGFR or EGFR cancer mutants results
in aberrant activation of these signal-
ing cascades, providing an advantage
to cancer cells

CBL negatively regulates signaling
pathways by targeting proteins with
ubiquitin for proteasomal degradation

GPVI is a receptor of collagen that ini-
tiates a signaling cascate that lead to
platelet activation

CDC37, UBC, GRB2, PIK3R1 SYK, UBC, GRB2, PIK3R1 SYK, PTPN6, GRB2, RAC1, PIK3R1



7 Discussion

The main goal of this study was the discovery of new risk factors for a specific complex disease, in this

case, T2D, using a case-control analysis. Even though it is known that complex diseases have genetic

factors associated to them, as there is evidence of its heritability, the specific genetic factors are unknown.

According to the Human Phenotype Ontology (HPO) website [67], at the moment there are 169 gene

associations with T2D, but they explain a small percentage of the heritability of the disease, meaning that

there is still little information on the disease and its mechanisms.

Can these models predict the disease risk?

From a computational perspective, this problem is defined as the discrimination between a healthy indi-

vidual (control) and an individual with T2D (case) only using the information provided by their genotypes.

Since the two initial datasets were not genotyped by the same methods nor sequenced by the same ma-

chines, it was necessary to prevent a prediction based in these differences. By using a set of variants

that corresponded to a gene, and not independent variants, the weight of a noisy or incorrectly genotyped

variant was reduced, avoiding this bias. Also, when using a classification algorithm we monitor the impor-

tance of the features, detecting genes or variants that overfit the model. Besides these mechanisms, by

performing a quality control on the case dataset, it was assumed that most of the variants were correctly

genotyped and that there was no bias between the case and control groups.

Considering the results obtained in the models’ evaluation, it is possible to observe that most of the

models can successfully predict the disease risk of the samples (Fig. 7). Comparing the results between

the different models, the Decision Tree models produced higher values (≥ 0.87) which shows that it could

better address the complexity of the data. The Logistic Regression models and SVM models provided lower

results. Both used linear functions for the classification, which indicates that these functions have a higher

difficulty in explaining the underlying structure of the data.

When using the known risk genes as input, the models had lower accuracy, F1-score and AUC values. This

was expected because it is known that these gene associations do not account for a high percentage of

the heritability. Comparing the results obtained for the significant genes and for the central genes, the

first, produced for the most part, slightly better values. Since the significant genes dataset had features
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that were extracted directly from the most significant genes of the original dataset, it is not surprising that

it produced good results. When just the top 25 features were used, which had less than 8% of the full

dataset’s size, the three metrics kept relatively good values. It was expected lower values in the results

from the central genes dataset, given that the features were extracted from genes central to a network of

significance and generally not significant themselves. Even though, the values from accuracy, F1-score

and AUC were lower than the values from the significant genes, the results were still good. When using

the top 25 features from the central genes, which had less than 9% of the full dataset’s size, there was

noticeable a rising of the values, being the dataset with the best overall results. With only the 25 features

of this dataset it was possible to predict the risk of disease with a good degree of success.

Does the use of genes and their integration in PPI networks offer an advantage for this type

of studies?

In 2017, Boyle, Li, and Pritchard [68] proposed the omnigenic model to explain the complex diseases.

Their model states that a reduced number of genes or pathways directly affect the traits of the disease,

having specific roles its etiology, introducing the term “core genes”. Furthermore, they state that when

these “core genes” are damaged or lose function they have large effect sizes on the disease risk, since

they play more direct roles.

In this study it is shown that even thought most of the genes identified are not on the lists of gene associa-

tions by HPO or T2D Knowledge Portal, they are involved in biological processes and pathways of interest

for this disease. When looking into the GO terms for biological processes it is noticeable that many of the

genes are grouped by the same terms as the known risk genes (Fig. 8 and Table 12). Even so these genes

share these terms, this does not mean that they share the same pathway or interactors, however, they

can be involved in similar functions.

Looking at the pathways selected from the central genes (Table 10), one of the most interesting is the

Translocation of SLC2A4 (GLUT4) to the plasmamembrane. Since T2D is characterized by an insulin

resistance. This pathway is related with T2D [69] and the identification of the genes in this pathway may

provide important information.
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Is it still advantageous to look into the PPIs networks, if the allele information is lost in the

process?

By grouping the variants into genes, this pipeline loss allele information that is important for more specific

genetic studies. Although it is possible to retrace some of the information, it becomes complex to under-

stand, for instance, which specific mutations have an effect on the disease. This difficulty further increase

when looking to the central genes, since their selection is based not on their genetic information but in

their connection to significant genes.

By looking at the results it is possible to see that using these networks could provide more biological

information into the mechanisms of the disease. According to the omnigenic model, identifying these

“core genes” would lead the investigation to genes that have a higher effect size on disease risk. However,

since these genes are affected by other processes, they might not be directly associated with any mutation,

and for this reason their usefulness in the prediction of the disease risk might be limited.

Can this pipeline identify genetic variants of interest?

The central question of this study is if this disease predictor can identify new genetic markers for a complex

disease, in this case, T2D. Looking at the list of central genes identified from the PPI networks, it is possible

to identify three genes in common with the known risk genes list: CAV1, PCBD1 and WFS1 (Table 7).

Features from two of these three genes were included in the top 25 central genes dataset, the one with

the best results from the models’ evaluation. Although this number of genes is low, this indicates that

this pipeline has correctly selected genes of interest. Also, from the functional analysis of the central gene

was identified a pathway that is directly associated with T2D. All this shows that this pipeline can, at some

degree, identify genes of interest.



8 Conclusion

In this study we developed a T2D risk predictor that identified genes of interest for the disease, using a

case-control analysis of variants’ genotypes.

During the pipeline’s development we faced some challenges. Firstly, there are ethical constrains around

clinical studies which creates difficulties and delays obtaining patient data. For this reason, and because of

the estimated duration of this investigation, we used a dataset shared by UC-BIOTECH which had a small

number of samples from Portuguese patients only. This not only reduced the ratio samples/variants, as

restricted the study to a specific ancestry. Another difficulty in this work was the computational power

needed to perform the analysis. Since the datasets used had a total size of about 600 Gb when uncom-

pressed, processing these files required not only a higher computational power, but an optimization of the

code that handle them.

Nevertheless, in this study were identified 82 significant genes and 77 central genes. After dimensionality

reduction, 25 significant genes and 12 central genes were highlighted and from the functional analysis of

the central genes were identified pathways of interest. The models for risk prediction had good results,

being the set of the top 25 features from the central genes dataset that had the higher values. Both

the significant genes and the central genes selected in this study shared several biological processes’

terms with the known risk genes which shows that the overall functions of the genes may be similar. A

known pathway of interest for the disease, Translocation of SLC2A4 (GLUT4) to the plasmamembrane,

was identified from the list of central genes provided. Lastly, from the PPI network were identified three

genes that are already known risk genes.

All these results demonstrated that important biological information could be revealed when using gene

regions and even more by integrating them in PPIs networks. Even though much of the allele information

is lost by using this approach, gaining insight into the biology of the disease can be essential to developed

new treatments and strategies for diagnosis and prevention.

From this point on, it would be necessary to validate the risk predictor using bigger datasets, from other

complex diseases or even from not only GWAS studies, but, for example, Whole-Genome Sequencing (WGS).

Another way this pipeline could be improved is by using clinical data from the patients, which would improve

the risk variants’ selection by taking into account the environmental factors. Also, using not only genomics,
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but other omics’ data, for instance, transcriptomics and epigenomics, would increase the risk’s prediction

power of this pipeline. The results obtained also highlighted central genes from interesting pathways,

so further investigation into this genes and pathways could reveal more information into the biology of

T2D.
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A Support material

A.1 Initial Datasets: Quality Control Results

Figure 9.: Heatmap that represents the relatedness (𝐴𝑗𝑘) between all individuals of case’s dataset, where 𝐴𝑗𝑘 = 1
means duplicates and 𝐴𝑗𝑘 = 0 means not related. The pair Ex41-Ex51 had 𝐴𝑗𝑘 = 0.342 and those
individuals were considered related.
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Figure 10.: Manhattan plot of the results from the Hardy-Weinberg Equilibrium according to the position of each
variant. 9 792 variants of 250 869 did not follow the Hardy-Weinberg Equilibrium. The threshold
−log10(0.01) = 2 is represented by a line.

Table 11.: Summary of the phred quality control, missingness and allele frequency statistics for the case dataset,
calculated during quality control.

Statistic Minimum 1st Quadrant Median Mean 3rd Quadrant Maximum

Quality score 10.0 99.6 244.1 333.8 449.1 4003.3

Missingness 0.00000 0.00000 0.00000 0.03835 0.02899 0.97222

Allele Frequency 0.000000 0.007246 0.021127 0.093787 0.129630 0.500000



A.1. Initial Datasets: Quality Control Results 54

Figure 11.: Phred quality score of the variants in the
case dataset, using a window from 0 to 100.

Figure 12.: Percentage of missing genotypes in the case
dataset. Most variants have a lower number
of missing genotypes.

Figure 13.: Wright’s inbreeding coefficient for sample in
the case dataset.

Figure 14.: Allele Frequency of variants in the case
dataset.
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A.2 Model Evaluation: ROC Curves Results

(a) Significant Genes (b) Top 25 Significant Genes

(c) Central Genes (d) Top 25 Central Genes

(e) Known Risk Genes

Figure 15.: ROC Curves results of each dataset (a) to (e) for SVM model.
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(a) Significant Genes (b) Top 25 Significant Genes

(c) Central Genes (d) Top 25 Central Genes

(e) Known Risk Genes

Figure 16.: ROC Curves results of each dataset (a) to (e) for Decision Tree model.
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(a) Significant Genes (b) Top 25 Significant Genes

(c) Central Genes (d) Top 25 Central Genes

(e) Known Risk Genes

Figure 17.: ROC Curves results of each dataset (a) to (e) for Logistic Regression model.
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A.3 Functional Annotation: DAVID Results

Table 12.: Number of genes from the known risk genes, significant genes and central genes associated with all
biological processes found.

Name
Known Risk

Genes
Central
Genes

Significant
Genes

Cellular macromolecule biosynthetic process 38 38 28
Regulation of macromolecule biosynthetic process 35 38 26
Regulation of cellular macromolecule biosynthetic process 35 37 26
Regulation of gene expression 33 38 26
Nucleic acid metabolic process 33 38 26
Nucleobase-containing compound biosynthetic process 35 34 26
RNA metabolic process 32 32 26
Regulation of transcription, DNA-templated 30 31 26
Regulation of RNA metabolic process 30 31 26
Regulation of RNA biosynthetic process 30 31 26
Transcription, DNA-templated 30 31 25
Positive regulation of macromolecule metabolic process 28 44
Positive regulation of cellular biosynthetic process 29 28 12
Animal organ development 27 39
Positive regulation of nucleobase-containing compound metabolic process 26 26 12
Regulation of signal transduction 19 45
Positive regulation of macromolecule biosynthetic process 24 25 12
Cell surface receptor signaling pathway 24 36
Apoptotic process 20 37
Positive regulation of gene expression 22 22 12
Positive regulation of RNA metabolic process 21 20 12
Positive regulation of RNA biosynthetic process 21 19 12
Negative regulation of macromolecule metabolic process 20 32
Positive regulation of transcription, DNA-templated 21 19 11
Regulation of phosphate metabolic process 17 34
Phosphorylation 14 36
Protein transport 27 22
Regulation of programmed cell death 17 31
Regulation of apoptotic process 17 30
Positive regulation of cell communication 13 32
Regulation of establishment of protein localization 20 20
Cell development 15 25
Positive regulation of transport 17 21
Negative regulation of cell communication 14 24
Negative regulation of cellular biosynthetic process 19 18
Nervous system development 16 21
Negative regulation of programmed cell death 14 23
Negative regulation of cell death 14 23
Negative regulation of macromolecule biosynthetic process 18 18
Negative regulation of cellular macromolecule biosynthetic process 18 18
Negative regulation of apoptotic process 14 22
Regulation of protein transport 19 16
Negative regulation of gene expression 17 18
Negative regulation of signal transduction 12 23
Positive regulation of phosphorus metabolic process 12 23

Continued on next page
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Table 12 continued from previous page

Name
Known Risk

Genes
Central
Genes

Significant
Genes

Positive regulation of phosphate metabolic process 12 23
Secretion 23 11
Negative regulation of nucleobase-containing compound metabolic process 16 18
Negative regulation of transcription, DNA-templated 16 17
Negative regulation of RNA metabolic process 16 17
Negative regulation of RNA biosynthetic process 16 17
Regulation of kinase activity 7 24
Secretion by cell 21 9
Enzyme linked receptor protein signaling pathway 12 18
Ion transport 17 12
Cellular chemical homeostasis 15 12
Positive regulation of cell death 8 19
Protein secretion 20 6
Cell migration 9 17
Organ morphogenesis 13 12
Gland development 13 12
Positive regulation of establishment of protein localization 11 14
Positive regulation of programmed cell death 6 19
Regulation of protein secretion 18 6
Central nervous system development 12 12
Apoptotic signaling pathway 7 17
Positive regulation of apoptotic process 6 18
Cellular response to organonitrogen compound 12 11
Cardiovascular system development 11 12
Circulatory system development 11 12
Epithelial cell differentiation 14 8
Response to peptide 14 8
Cellular response to hormone stimulus 12 10
Positive regulation of protein transport 11 10
Negative regulation of phosphorus metabolic process 8 13
Negative regulation of phosphate metabolic process 8 13
Response to peptide hormone 13 7
Regulation of cell cycle process 6 14
Cellular response to growth factor stimulus 14 6
Negative regulation of intracellular signal transduction 6 13
Regulation of apoptotic signaling pathway 6 13
Positive regulation of proteolysis 5 14
Cellular response to peptide 11 7
Positive regulation of cell development 8 10
Cellular response to peptide hormone stimulus 10 7
Embryonic morphogenesis 9 8
Brain development 8 9
Regulation of nervous system development 8 9
Cellular ion homeostasis 6 11
Vasculature development 8 8
Regulation of ion transport 8 8
Regulation of neurogenesis 7 9
Embryo development ending in birth or egg hatching 6 10
Response to steroid hormone 6 10
Negative regulation of transferase activity 6 10

Continued on next page
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Table 12 continued from previous page

Name
Known Risk

Genes
Central
Genes

Significant
Genes

Positive regulation of secretion 10 5
Positive regulation of secretion by cell 10 5
Response to insulin 9 6
Negative regulation of transport 8 7
Positive regulation of cellular catabolic process 5 10
Positive regulation of protein secretion 10 4
Regulation of WNT signaling pathway 6 8
Regulation of neuron differentiation 6 8
Embryonic organ development 6 8
Protein import 5 9
Hexose metabolic process 9 4
Reproductive structure development 6 7
Positive regulation of neurogenesis 6 7
Positive regulation of nervous system development 6 7
Reproductive system development 6 7
Protein import into nucleus 4 9
Protein targeting to nucleus 4 9
Single-organism nuclear import 4 9
Regulation of nucleotide metabolic process 8 4
Carbohydrate transport 8 4
Monosaccharide transport 8 4
Angiogenesis 6 6
Regulation of vesicle-mediated transport 6 6
Regulation of metal ion transport 5 7
Intrinsic apoptotic signaling pathway 5 7
Cell cycle arrest 8 4
Regulation of glucose transport 7 4
Positive regulation of nucleotide metabolic process 7 4
Digestive system development 7 4
Second-messenger-mediated signaling 6 5
Positive regulation of homeostatic process 6 5
Response to hypoxia 5 6
Regulation of transmembrane receptor protein serine/threonine kinase signal-
ing pathway

7 4

Energy reserve metabolic process 6 4
Regulation of nucleotide biosynthetic process 6 4
Positive regulation of nucleotide biosynthetic process 6 4
Digestive tract development 6 4
Urogenital system development 5 5
Regulation of myeloid cell differentiation 6 4
Organic hydroxy compound transport 5 4
Mammary gland development 5 4
Positive regulation of ion transport 5 4
Regulation of glucose import 5 4
Epithelial cell development 4 5
Regulation of cell cycle arrest 4 5
Negative regulation of apoptotic signaling pathway 4 5
Glycogen metabolic process 5 3
Cellular glucan metabolic process 5 3
Glucan metabolic process 5 3

Continued on next page
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Table 12 continued from previous page

Name
Known Risk

Genes
Central
Genes

Significant
Genes

Cellular polysaccharide metabolic process 5 3
Liver development 4 4
Glial cell differentiation 4 4
Response to starvation 4 4
Regulation of angiogenesis 4 4
Hepaticobiliary system development 4 4
Regulation of wound healing 3 5
Negative regulation of transmembrane receptor protein serine/threonine ki-
nase signaling pathway

5 3

Neuron fate commitment 4 3
Response to estradiol 3 4
Oligodendrocyte differentiation 3 4
Positive regulation of calcium ion transport 3 4
Negative regulation of hemopoiesis 4 3
Protein import into nucleus, translocation 3 3
Smoothened signaling pathway 3 3
Positive regulation of DNA binding 3 3
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