
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Carlos Pinto Pedrosa

HIODS: Hybrid Inline and Offline Deduplication
System

March 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Carlos Pinto Pedrosa

HIODS: Hybrid Inline and Offline Deduplication
System

Master Dissertation
Integrated Master in Informatics Engineering

Dissertation Supervised By
João Tiago Medeiros Paulo
José Orlando Pereira

March 2021

A B S T R A C T

Deduplication is a technique that allows finding and removing duplicate data at storage
systems. With the current exponential growth of digital information, this mechanism is
becoming more and more desirable for reducing the infrastructural costs of persisting such
data. Therefore, deduplication is now being widely applied to several storage appliances
serving applications with different requirements (e.g., archival, backup, primary storage).

However, deduplication requires additional processing logic for each storage request in
order to detect and eliminate duplicate content. Traditionally, this processing is done in
the I/O critical path (inline), thus introducing a performance penalty on the throughput
and latency of requests being served by the storage appliance. An alternative solution is to
do this process as a background task, thus outside of the I/O critical path (offline), at the
cost of requiring additional storage space as duplicate content is not found and eliminated
immediately. However, the choice of what type of strategy to use is typically done manually
and does not take into consideration changes in the applications' workloads.

This dissertation proposes HIODS, a hybrid deduplication solution capable of automati-
cally changing between inline and offline deduplication according to the requirements (e.g.,
desired storage I/O throughput goal) of applications and their dynamic workloads. The
goal is to choose the best strategy that fulfills the targeted I/O performance objectives while
optimizing deduplication space savings.

Finally, a prototype of HIODS is implemented and evaluated extensively with different
storage workloads. Results show that HIODS is able to change its deduplication mode dy-
namically, according to the storage workload being served, while balancing I/O performance
and space savings requirements efficiently.

keywords: deduplication, storage, inline, offline, hybrid

i

R E S U M O

A deduplicação é um técnica que permite encontrar e remover dados duplicados guarda-
dos nos sistemas de armazenamento. Com o crescimento exponencial da informação digital
que vivemos atualmente, este mecanismo está a tornar-se cada vez mais popular para
reduzir os custos das infraestruturas onde esses dados se encontram alojados. De facto,
a deduplicação é, hoje em dia, usada numa grande variedade de serviços de armazena-
mento que servem diferentes aplicações com requisitos particulares (ex.: arquivo, backup,
armazenamento primário).

No entanto, a deduplicação adiciona uma camada de processamento extra a cada pedido
de armazenamento, de modo a conseguir detetar e eliminar o conteúdo redundante. Tradi-
cionalmente, este processo é realizado durante o caminho crı́tico do I/O (inline), causando
perdas de desempenho e aumentos na latência dos pedidos processados. Uma alternativa é
alterar o processamento para segundo plano, aliviando assim os custos no caminho crı́tico
do I/O (offline). Esta solução requer espaço de armazenamento adicional, visto que os
duplicados não são encontrados nem eliminados imediatamente. No entanto, a estratégia a
seguir é escolhida de forma manual, não tendo em consideração qualquer possı́vel mudança
na carga de trabalho das aplicações.

Esta dissertação propõe assim o HIODS, um sistema de deduplicação hı́brido capaz de
alterar entre o modo inline e offline de forma automática considerando os requisitos (ex.:
débito do sistema de armazenamento desejado) das aplicações e das suas cargas de trabalho
dinâmicas.

Por fim, um protótipo do HIODS é implementado e avaliado exaustivamente. Os resulta-
dos mostram que o HIODS é capaz de alterar o modo de deduplicação de forma dinâmica e
de acordo com a carga de trabalho, considerando os requisitos de desempenho e a eliminação
eficiente dos dados duplicados.

palavras-chave: deduplicação, armazenamento, inline, offline, hı́brido

ii

A G R A D E C I M E N T O S

Todo o trabalho desenvolvido durante esta dissertação não seria possı́vel sem o apoio de
algumas pessoas fundamentais. Assim sendo, gostaria de tirar um momento para expressar
o meu mais sincero obrigado para com essas mesmas pessoas.

Ao meu orientador, Doutor João Tiago Medeiros Paulo, um especial agradecimento por
todo o apoio, motivação, assistência e disponibilidade demonstrada durante todo o processo.
Também ao meu co-orientador, Professor José Orlando Pereira, por todo o auxı́lio prestado,
principalmente nas decisões mais complexas.

Aos meus colegas do Grupo de Sistemas Distribuı́dos do HASLab pelo bom ambiente de
trabalho proporcionado e também pela assistência prestada.

Por fim, agradeço aos meus amigos e famı́lia por todo o apoio e motivação, não só durante
a realização desta dissertação, mas sim durante todo o meu percurso académico.

iii

D I R E I T O S D E AU T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e
direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo
indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em
condições não previstas no licenciamento indicado, deverá contactar o autor, através do
RepositóriUM da Universidade do Minho.

iv

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

v

C O N T E N T S

1 introduction 1

1.1 Problem 3

1.2 Goals and Contributions 3

1.3 Dissertation Structure 4

2 background and state of the art 5

2.1 Deduplication 5

2.1.1 Basic Architecture 5

2.1.2 Deduplication Criteria 7

2.1.3 Primary Storage vs Secondary Storage 10

2.2 Related Work 11

2.2.1 DIODE 11

2.2.2 D3
12

2.2.3 HPDedup 13

2.2.4 Hybrid Deduplication System 13

2.2.5 Discussion 14

3 architecture 16

3.1 General Overview 16

3.2 Deduplication Workflow - Inline Mode 18

3.3 Deduplication Workflow - Offline Mode 20

3.4 Deduplication Workflow - Background Processing 21

3.5 Deduplication Controller 22

4 prototype 24

4.1 SPDK 24

4.2 Implementation Details 25

4.3 Deduplication Controller 26

4.3.1 Feedback Loop Controller 27

5 experimental evaluation 29

5.1 Testing Methodology 29

5.2 Preliminary Experiments 30

5.2.1 Results Analysis 30

5.3 Micro Experiments 32

5.3.1 Results Analysis 33

5.4 Macro Experiments 45

vi

contents vii

5.4.1 Mountain/Valley 45

5.4.2 Stairs 48

5.5 Discussion 50

6 conclusion 51

6.1 Future Work 52

L I S T O F F I G U R E S

Figure 1 Deduplication Scheme 2

Figure 2 Architecture and Workflow of a Basic Deduplication System 6

Figure 3 Fixed-Size Chunking versus Variable-Size Chunking 7

Figure 4 HIODS Architecture 16

Figure 5 Deduplication Workflow on Inline Mode 18

Figure 6 Deduplication Workflow on Offline Mode 20

Figure 7 Background Process Workflow 21

Figure 8 HIODS integration with SPDK 25

Figure 9 Mountain Test 46

Figure 10 Valley Test 47

Figure 11 Ascending Stairs Test 48

Figure 12 Descending Stairs Test 49

viii

L I S T O F TA B L E S

Table 1 Comparison Among Hybrid Deduplication Systems 15

Table 2 Read Operations on NVMe vs SPDK 30

Table 3 Write Operations on NVMe vs SPDK 31

Table 4 Resources Used by NVMe and SPDK 31

Table 5 Read Operations without Deduplication 33

Table 6 Read Operations with Memory Deduplication 34

Table 7 Read Operations with Persistent Deduplication 35

Table 8 Resources 36

Table 9 Write Operations without Deduplication 37

Table 10 Write Operations with Inline Memory Deduplication 38

Table 11 Write Operations with Offline Memory Deduplication without Back-
ground Processing 39

Table 12 Write Operations with Offline Memory Deduplication with Back-
ground Processing 40

Table 13 Write Operations with Inline Persistent Deduplication 41

Table 14 Write Operations with Offline Persistent Deduplication without Back-
ground Processing 42

Table 15 Write Operations with Offline Persistent Deduplication with Back-
ground Processing 43

Table 16 Write Operations with Offline Persistent Deduplication with Feedback
Loop Controller 44

ix

L I S T O F L I S T I N G S

4.1 Feedback Loop Controller . 28

x

A C R O N Y M S

CTA Context-aware Threshold Adjustment.

DIODE Dynamic Inline-Offline DEduplication.

DPE Deferred Priority-based Enforcement.

FF File Fingerprint.

FLC Feedback Loop Controller.

HDS Hybrid Deduplication System.

HPC High-Performance Computing.

NVME Non-Volatile Memory Express.

PID Proportional–Integral–Derivative.

SPDK Storage Performance Development Kit.

SSD Solid-State Drive.

xi

1

I N T R O D U C T I O N

Nowadays, new products and services are introduced almost daily. These products and
services are now generating and consuming digital information at an exponential rate, which
was never foreseen to happen so early in this century. An International Data Corporation
study [1] suggests that by the year 2025, 73 ZB worth of information will be generated by IoT
appliances alone, which will account for 75% of the 56 billion connected devices. A second
study by the same corporation [2] also predicts that the total number of data generated in
2025 can reach 175 ZB. Furthermore, a significant share of companies will have at least some
part of their business and data hosted in cloud services [3].

In reality, the cloud's many services alongside the highly competitive pricing have led the
users to upload a majority of their data to the cloud. Actually, several studies show [4, 5] that
the massive cloud storage usage introduced around 50% of duplicate data in primary storage
and 90% to 95% in secondary systems. Another study regarding HPC Storage Systems [6]
shows averages between 20% to 30% of redundant content, which can rise as high as 70%.
The significant amount of duplicates raised the need to eliminate such data, saving storage
space and, therefore, costs.

The previous observations led cloud providers to adopt deduplication solutions for
their storage infrastructures. Briefly, deduplication is a technique that allows finding and
removing duplicate content from a storage system. The deployment of such a solution can
optimize the storage space needed by applications since only a single data instance is stored.
Then, logical pointers to this single copy are used so that it can be accessed transparently by
users storing and accessing the same information.

This technique was initially used in the context of archival and backup systems but it is
now being applied to other storage ecosystems such as primary storage, RAM, and SSDs [7].
However, each mentioned ecosystem has a specific set of requirements, which ultimately
leads to different solutions since no single system fits them all. For example, secondary
storage systems (archival and backup) are only used to store information in the long term.
Therefore, in this type of storage, the data is highly unlikely to change.

On the other hand, primary storage is used as the backend by high-performance applica-
tions such as databases and analytical platforms. Hence the data stored here is foreseen to
be changed by the applications' users. Furthermore, the applications using primary storage

1

2

may not bear the overheads introduced by traditional deduplication, which calls for an
alternative solution.

Figure 1: Deduplication Scheme

Traditionally, the deduplication process is able to reduce storage space because it only
stores a single instance of the same data. As to quickly identify such duplicate data, all the
information already stored on disk must be indexed by the deduplication system. Thus,
when a new storage request arrives, the system immediately checks the indexed data for
a copy. For example, we can look at Figure 1- a , where a write request intending to store
the data C is pictured. The system then checks the indexed data, which contains A and B,
for a copy of the information. As such copy does not exist, C is indexed and stored. In the
opposite case, Figure 1- b , as a copy of B already exists, the data is not written to disk. The
final storage organization is seen in Figure 1- c .

This inline algorithm allows finding and removing redundant data that would, otherwise,
be stored on disk, wasting storage space. However, the previously described deduplication
process has associated a performance cost since it searches and eliminates duplicate data in
the I/O critical path.

Many applications have unique performance requirements, thus may not tolerate the
overhead imposed by deduplication processing [7]. Therefore, for this applications to
also benefit from deduplication space savings, a new type of deduplication algorithm was
proposed in the literature. This new mode, called offline deduplication, differs from the
original as it does not find or remove the duplicates in the I/O critical path. Instead,
storage write requests are persisted on disk and, later, a background job scans unprocessed
information, eliminating it if redundant.

Offline deduplication requires additional storage space since duplicate content is written
and only shared later. Also, both applications and the deduplication engine will be accessing

1.1. Problem 3

concurrently content at the storage medium, thus requiring control access mechanisms to
ensure storage consistency and preventing data corruption.

1.1 problem

In a general fashion, each deduplication system implements the mode that best fits the
requirements of applications being served. This process is done statically and manually
and, even for applications whose performance requirements may change over time, it is not
possible to change the deduplication settings.

Therefore, applications that suddenly contemplate high loads of storage requests and use
inline deduplication will experience significant degradation in I/O operations throughput
and/or latency. On the other hand, applications working at lower I/O rates, in which inline
deduplication could have a minimal impact on I/O performance, may not benefit from
additional storage space savings if configured with an offline scheme. However, having a
hybrid design that can alternate across both types of deduplication while being aware of
workload changes is not a trivial task. Namely, the solution's design must be adapted to
integrate both schemes seamlessly, and the applications workloads must be monitored to
understand what scheme should be applied at each time.

Additionally, choosing what scheme to use should be done automatically, thus avoiding
users or system administrators from making this decision manually.

1.2 goals and contributions

Building on section 1.1, this dissertation has as its primary goal the design of an hybrid
deduplication system. The proposed solution must be able to dynamically switch between
inline and offline deduplication to best fit different application workloads. For example, if an
application requires 1000 I/O operations per second and such an objective is not delivered
by inline deduplication, the operation mode should automatically be changed to offline,
thus reducing the overhead in the critical I/O path and increasing the overall performance.

To achieve the proposed goal, this dissertation's first contribution is HIODS, an Hybrid
Inline and Offline Deduplication System. HIODS automatically and dynamically ensures that
the best deduplication strategy is being applied in order to: i) guarantee the I/O performance
goals of different applications; and ii) optimize deduplication space savings.

In more detail, inline deduplication is chosen as the preferred method if the targeted I/O
performance objective is being guaranteed, thus also maximizing deduplication space savings.
When the I/O workload cannot be supported efficiently by inline deduplication, then HIODS
changes the scheme to an offline approach, thus promoting storage performance over space
savings. Moreover, HIODS is able to throttle the requests of the offline deduplication engine

1.3. Dissertation Structure 4

in cases where concurrent accesses to the storage backend, and the corresponding access
control mechanisms, might be affecting the I/O performance of applications. Again, this
decision promotes better performance for applications at the cost of extra storage space.

As a second contribution, a prototype of HIODS is implemented using SPDK [8]. SPDK is
a framework that provides a wide range of tools and libraries to write high-performance,
highly scalable, and user-space storage applications.

Finally, the prototype is extensively evaluated and validated with different workloads,
including dynamic ones. The results show that HIODS successfully changed its operation
mode based on the system workload and performance objective.

1.3 dissertation structure

In the following chapter, we present the state of the art for deduplication systems, while
explaining core concepts of this field. Chapter III introduces HIODS general architecture,
explains all components, and describes the data flow for supported deduplication modes. In
Chapter IV, we discuss the implementation of HIODS prototype. In Chapter V, the testing
methodology is detailed and the results from the experimental evaluation are discussed.
Finally, Chapter VI concludes the dissertation while pointing interesting future work.

2

B A C K G R O U N D A N D S TAT E O F T H E A RT

This chapter starts by presenting an overview of the deduplication field and key concepts.
Then, we detail relevant related work on the area and discuss its main differences when
compared to the solution proposed by this dissertation.

2.1 deduplication

The need to reduce the storage space used by archival and backup systems led the industry
to search for a mechanism capable of achieving such goals. Thus arises Deduplication as a
process of finding and removing duplicated data.

Nowadays, deduplication is used in a larger variety of products and services like, for
instance, primary storage, RAM, and SSDs [7].

Despite being used with the same end goal and the main elements remain similar between
systems, the fact is that the target systems have, quite often, unique characteristics which
demand custom made components for deduplication systems to be deployed.

2.1.1 Basic Architecture

All deduplication systems aim to reduce the storage space used by applications. To save
storage space and reduce the respective costs, the process takes advantage of references
and associations, allowing for the elimination of duplicate content without the loss of any
information.

In order to find redundant data, deduplication systems must know all the information
already stored on disk. Therefore, one of the components widely used in all designs is
referred as the Index, which indexes all unique data and is instrumental to quickly determine
if a piece of information is already in the system. Actually, to improve system performance,
a data digest, also called a signature, is often indexed instead of the original data, although
the latter can also be used. Furthermore, every entry in the Index is linked with the original
data's physical location and its number of references. The former is used to locate the data
on disk while the latter tracks the number of logical pointers to the unique copy.

5

2.1. Deduplication 6

A second fundamental component is called Metadata. This data structure associates the
address where the application intended to store its data, also known as the logical address
(LBA), with its actual physical location (PBA) at the persistent storage medium.

Figure 2: Architecture and Workflow of a Basic Deduplication System

Having shown the essential components, we now introduce the basic workflow of any
traditional deduplication system. First, a new storage request containing the data and
logical address where it must be stored is intercepted (Figure 2- 1 6). The request is then
redirected to the Deduplication Engine, which calculates the data digest (digest(A) = aaa).
Next, using such a signature, the Index is able to verify if a copy of the data is already stored
(Figure 2- 2). If such data does not exist in the system (Figure 2- a), an entry that maps to
an available physical address is inserted (Figure 2- 3). Then, in Metadata, an association
between the request's logical address and the physical block where the data will be stored
is created (Figure 2- 4). Finally, the data is written to disk (Figure 2- 5), and the storage
request is completed.

Otherwise, if a copy of the data is already indexed (Figure 2- b), the number of references
is incremented (Figure 2- 7), and the associated physical address returned. Finally, the
association between the request's logical offset and the returned physical address is created
(Figure 2- 8).

Suppose now that the system intercepts a read request to a logical offset. In that situation,
the physical address linked with the request's logical offset in Metadata must be read, and
its content returned to the application.

2.1. Deduplication 7

2.1.2 Deduplication Criteria

A deduplication system can be defined by six fundamental criteria that drive its design
and implementation [7].

granularity

The first criterion and one of the most important is Granularity. It defines the size of the
chunks that are going to be used to identify and remove duplicates. Choosing the chunk
size is one of the most significant decisions when implementing a deduplication system
since it will directly influence its performance and achievable space savings.

When deciding about this criterion, there are three alternatives. The first resorts to whole
files (whole file chunking) [9]. This alternative is often used in file-oriented systems since
there is no need to split the data into smaller pieces and, therefore, less processing to do in
the I/O critical path [10]. On the other hand, two very similar files, where only a single byte
differs, will not be identified as duplicates, therefore loosing the opportunity to improve
space savings.

The second alternative and a popular one is chunks with a fixed size (ex: 4KB), which
is often used in storage systems that already used a fixed-size unit [11, 12]. Unlike the
previous alternative, this option can detect redundancy within the file since it compares
multiple chunks of the same file. For this very reason, this solution requires extra processing
power [10, 13].

Figure 3: Fixed-Size Chunking versus Variable-Size Chunking

One of the most substantial problems regarding fixed-size chunking is the lack of versatility.
For example, let us imagine a base file and a similar second one with an extra 10 bytes
added to the beginning. That small 10-byte difference, with the current alternative, will fail
to match every single chunk with the original file by 10 bytes (Figure 3- a). As to mitigate

2.1. Deduplication 8

such a problem [14], a variation using variable size chunks [15] was designed. Picking up
the previous example, if the original file were deduplicated with a 4 KB chunk size, the
modified file's first block could be handled with 4106 bytes. This larger first block would
allow the remaining ones to be processed at 4KB granularity, matching the original file
blocks (Figure 3- b).

timing

The next criterion is called Timing, and it decides when to perform deduplication. As
previously mentioned, traditional inline deduplication [11, 16, 17, 18] detects and removes
duplicate data before storing it to disk. Thus, when a storage request is intercepted, a
signature that represents its data is immediately calculated. Next, the computed signature is
used to check if the request's data is duplicate and, if so, prevent the write operation to disk.

However, this process is performed in the I/O critical path, introducing additional
storage performance overhead, which can be critical for some applications [19]. So that
high-performance demanding applications can also take advantage of the process, offline
deduplication was proposed. In this new mode, all the processing is moved to a background
job, which frees the I/O critical path maintaining the original performance. The process of
finding and removing redundant content is executed at an opportune moment.

Both options have advantages and disadvantages. The former's main downside is that it
introduces a latency overhead in the request since some computations are executed in the
I/O path before completion. When it comes to offline deduplication, this drawback is not
present, although it has a few of its own. As the data needs to be stored before processing,
additional resources are required, including storage and processing power.

indexing

The third criterion is called Indexing. It defines the system index, which is the main
structure of any deduplication system since it is in it that the digests will be stored.

When it comes to this auxiliary structure, its choice is sometimes overlooked, making it
the system's bottleneck. There are three alternatives. The first and most used is called Full
Index. All distinct data digests are stored with this type, which makes finding all duplicates
possible [9, 11]. However, this alternative comes with a high potential for growth, which
may become unsustainable over time. In fact, this type of Index has the potential to become
so big that its maintainability in memory becomes impossible, triggering the need to access
the disk. This change will increase the overhead caused by deduplication since disk accesses
are considerably slower than memory ones [11].

An alternative to the previously presented and that solves the size problem is called
Sparse Index [20, 21]. Unlike the previous option, this type is based on similarities among

2.1. Deduplication 9

the chunks. Therefore, the Index does not store signatures representing a single piece of
information but referencing a group of similar chunks instead.

Finally, a second alternative that also mitigates the size problem is called Partial Index. This
option employs the same technique as the Full Index, where each entry represents a unique
chunk. However, unlike the first alternative, not all signatures are stored in this solution. In
fact, as it can not know all the information already stored on disk, only partial deduplication
is achievable [22, 23, 24, 25]. Regarding how to choose which chunks are indexed, there are
many algorithms. One of them is the use of access patterns, where the most recent chunks
are indexed, and the older signatures are deleted.

locality

The fourth criterion is Locality, which is not system-related but instead a storage workload
property. On the one hand, Temporal Locality tells us that a percentage of duplicate blocks
are expected to be written in a short time period. On the other hand, Spatial Locality explains
that if the blocks appeared in a specific order, then they will appear in the same order as
before. For example, imagine that the sequence of chunks A, B, C, D, and E enters the
system. The spatial locality concept tells us that if a stream formed by A, B, C, and D were
intercepted in the future, the next chunk would likely be E.

Accepting this property comes with the need to design and implement additional compo-
nents to take advantage of it [11]. A component that tries to predict the following intercepted
chunk to optimize the index lookups and reduce the overhead is one of many examples of
extra complexity in the system. These mechanisms can be quite useful if well designed and
implemented and, most of all, when locality is present in the data. However, if the data does
not show locality, these mechanisms will not be able to optimize the system, introducing
extra overhead. For this reason, many deduplication systems do not take advantage of
it [26, 27, 28], a small group focus on only one type, and very few take advantage of both.

technique

The penultimate criterion is called Technique, and it determines how data will be stored
on disk, with two main alternatives. The first is the use of unique chunks, storing only
unique copies. On the other hand, when dealing with similar blocks, it is possible to store
only a base chunk and a list of changes that allow recovering the original data. The former is
called Chunk-based Deduplication [9, 11], and the latter is known as Delta Encoding [29]. When
it comes to advantages and disadvantages, the former requires less processing power and
can restore faster [30], while the latter allows saving extra storage space [29, 31].

2.1. Deduplication 10

scope

Scope is the sixth and final criterion. It indicates at what level deduplication will be
performed in a distributed scenario.

On the one hand, finding and removing duplicates can be done at a Local Scope [21, 32],
meaning that every node performs deduplication on its own. On the other hand, this process
can be performed at a Global Scope [12, 26, 28, 33], allowing deduplication to be performed
system-wide where shared structures and locking mechanisms are required at the expense
of performance.

2.1.3 Primary Storage vs Secondary Storage

Deduplication methods are now used in multiple aspects of our lives, particularly in
archival/backup and primary storage, among others.

Archival and backup storage share similarities regarding the necessary characteristics
needed for a deduplication system since the information present is not expected to change,
and both prefer throughput over latency. Furthermore, in secondary storage, a 90-95%
degree of duplicate information can be found, causing huge storage losses and increasing
the storage costs if such redundant content is stored instead of removed.

There is primary storage on the other side of the coin, which also has unique requirements,
but, in this case, regarding storage operations latency. Therefore, the major challenge of a
deduplication system aimed at primary storage is to reduce to the maximum the overhead
introduced in I/O critical path. Besides latency requirements, in this type of system, data is
expected to change regularly. This new update operation, which does not exist in secondary
systems, introduces additional complexity to the deduplication process. There is now the
need for mechanisms capable of performing the update and simultaneously maintaining
consistency with the other referenced chunks. Furthermore, updating information allows
for the number of references of individual blocks to reach zero, meaning that its presence in
the system must be erased in order to accommodate a new chunk in its physical address
bringing storage waste to a minimum. As a side note, primary storage systems are built on
top of state of the art hardware, meaning that any reduction in space is directly translated
into financial gains.

For all the reasons presented above, the inline mode is often associated with secondary
storage and offline deduplication with primary storage. However, many applications require
high performance during only a few key moments and could take the overhead of inline
deduplication in the remaining occasions. For example, let us imagine an application
requiring a high throughput for a few hours every day and that such throughput can
only be achieved with offline deduplication. In reality, the application could withstand
the overhead introduced by inline deduplication during the remaining hours. However, as

2.2. Related Work 11

the performance for a few hours a day can only be achieved by offline deduplication, a
static offline system would probably be implemented. In fact, a hybrid system capable of
switching between inline and offline deduplication would be the ideal solution. This way,
the system could benefit from inline deduplication during the off-peak hours and switch to
offline mode when necessary.

2.2 related work

The majority of existing deduplication systems are based on only one timing approach,
i.e., they either exploit inline deduplication or perform offline deduplication depending on
the workload's performance requirements. Recently, hybrid deduplication systems have
emerged as a more efficient solution for workloads whose requirements may vary over
time or across different groups of data, and where a combination of offline and inline
deduplication may be best suitable.

2.2.1 DIODE

A first system that already implements hybrid deduplication is called Dynamic Inline-Offline
Deduplication (DIODE) [34], and it introduces two new mechanisms. Context-aware Threshold
Adjustment (CTA) controls inline deduplication, and Deferred Priority-based Enforcement (DPE)
has the goal to monitor and adjust offline deduplication.

When a file is intercepted by DIODE, it is immediately classified in one of three types
having the file extension as the criterion. The first, Highly-deduplicatable Type (H-Type),
comprises file extensions known to have a high deduplication gain. Conversely, files
belonging to the Poorly-deduplicatable Type (P-Type) have low deduplication gains. All the
other files fit in the Unpredictable Type (U-Type).

After this first assessment, the chunks whose original file belonged to the H-Type or
U-Type are transferred to DIODE's inline deduplication module, iDeduper. However, not all
chunks will be processed since it only removes duplicates on redundant chunk sequences
higher than CTA's current threshold. This threshold defines the minimum size that a
redundant chunk sequence must have to be processed by inline deduplication. For example,
suppose that the threshold is set to five. Then, inline deduplication will only be chosen
on a five or higher sequence if at least five consecutive requests exhibit duplicate data or
if their logical addresses are sequential (ex.: 1, 2, 3, 4, 5). DIODE's choice to only perform
inline deduplication to redundant chunk sequences higher than a specific limit allows for
improving read efficiency with a slight reduction in redundant data found [19, 35].

P-Type files are skipped and will be dealt with offline deduplication. Therefore, when
the number of unprocessed files reaches a threshold now set by DPE, offline deduplication

2.2. Related Work 12

is activated. A sorted by priorities and fixed-size list of undealt files is generated, and the
files present will be processed, at a block level, by DIODE's offline deduplication module,
oDeduper.

Besides the detailed mechanisms above, DIODE also exploits temporal locality since it
assigns lower priorities to the most recent accessed files. Furthermore, the full list of written
blocks is only processed by deduplication if the system detects more write requests being
intercepted. This way, if the system detects multiple read requests during offline processing,
the background task is stopped at half the list in order to reduce interference with the read
requests.

2.2.2 D3

While the previous system is meant for centralized primary storage, the authors also
designed and implemented a distributed version, Dynamic Dual-Phase Deduplication Frame-
work for Distributed Primary Storage (D3) [36]. D3 shares the core components with DIODE
like the extension-based file classification, CTA to control inline deduplication, and DPE to
help adjust offline deduplication. However, since it now targets a distributed scenario, D3

also introduces new components like the Application Layer, deployed on the client-side, the
Coordinator Cluster, and the Storage Node Cluster both on the server-side.

In D3, the dataflow is quite different from DIODE since the files are intercepted on the
Application Layer, which is on the client-side. It is also there where they are classified
the same way as before (H-Type, P-Type, and U-Type). One of the main differences is the
granularity since P-Type files are treated as a whole, and in the remaining types, chunk
level deduplication is performed. One other variation is the fact that all file types can be
processed in an inline manner.

Once classified, the Application Layer sends the file (P-Type) or the chunks (H-Type
and U-Type) to the Coordinator Cluster. In the former, the Coordinator computes its File
Fingerprint (FF) and redirects the file to the FF mod n node, where n is the total number of
nodes in the system. The node's local inline deduplication module, iDeduper, will then search
for a duplicate. If such is found, the metadata is updated, and the process is completed.
Otherwise, its File Fingerprint is inserted into the File Fingerprint Hash Table, which stores
the unique fingerprints for P-Type files only, but the actual process is delayed and performed
later by D3's offline deduplication.

A signature is also computed with the remaining types, and the blocks are sent to
the respective node. Like in DIODE, the inline deduplication module will only process
redundant chunk sequences higher than the threshold set by the CTA.

All chunks that were not yet processed (P-Type files are later split into chunks) are
retrieved by each node's offline deduplication module, oDeduper, and sent to the Coordinator

2.2. Related Work 13

Cluster. When the threshold defined by DPE is reached, global offline deduplication is
activated accordingly to the mechanisms already explained in DIODE.

2.2.3 HPDedup

Possibly the most significant performance bottleneck in every deduplication system is,
without a doubt, the Index. This component, which contains all unique chunks' signatures,
tends to become quite large, not allowing its existence in memory. Hybrid Prioritized Data
Deduplication Mechanism (HPDedup) [37] introduces an in-memory fingerprint cache to mitigate
such problem.

When a block is intercepted, its digest is computed. After that, the in-memory fingerprint
cache is queried for the presence of such signature. If present, the physical address is
returned, and the pair (logical address, physical address) is inserted into the corresponding
structure in the cache. Otherwise, the chunk is written to disk, and offline deduplication
will deal with it later.

Besides the in-memory fingerprint cache, HPDedup also introduces the Stream Locality
Estimator. This module monitors the data arriving at the system to best estimate temporal
locality, which is then used to fill the cache to achieve the best hit-rate possible. Spatial
locality is also estimated and used to reduce disk read fragmentation.

2.2.4 Hybrid Deduplication System

Designing a deduplication system that targets primary storage is not an easy task due
to its peculiar characteristics. Because of that, many systems take advantage of data
locality in order to improve performance. However, when such systems are cloud-based,
locality conditions are not likely to be present due to random accesses. Thus arises Hybrid
Deduplication System (HDS) [38], which uses similarity to reduce index lookup times.

When a request arrives at the system, it is immediately classified into one of four possible
types accordingly to request size and operation: Small Read, Large Read, Small Write, and
Large Write. After this initial step, the request is inserted in the corresponding queue and
must wait until its queue priority is high enough to be processed.

Afterwards, in the background, the Request Preprocessing Module is splitting the write
requests' data into chunks and performing additional computations. Among them are data
digests calculations.

It is now time to calculate which blocks will be processed and which are not. If it is
a small write, all requests will be processed and duplicates are found using a hash table,
which maps unique data fingerprints to its metadata. Otherwise, a graph is used to help

2.2. Related Work 14

calculate similarities among chunks. After some processing, the graph is computed, similar
blocks are chosen, and metadata is updated.

2.2.5 Discussion

To mitigate the challenges that appear when designing a deduplication system that targets
primary storage, all systems presented above introduce new algorithms and mechanisms to
deal with primary storage unique characteristics.

One of the first mechanisms presented, introduced by DIODE and D3, is an initial
classification based on the file extension. In fact, there is research [39, 40, 41] that associates
the extension with the percentage of duplicate data present. Therefore, this approach can be
beneficial to the system. However, this mechanism can only be implemented when working
at the file-level since it is impossible to determine the original file extension at the block-level.

A second optimization implemented by several of the above systems is only performing
inline deduplication on redundant chunk sequences with redundancy higher than a certain
threshold. Once again, this approach is also supported by some research [19, 35], which
shows that employing this mechanism can significantly improve system performance at
extra storage expense.

DIODE and D3 also introduce some mechanisms to improve offline deduplication. First of
all, offline processing is only activated when a certain threshold of unprocessed data backlog
is reached. However, since deduplication will be delayed, duplicated blocks will be stored
for longer periods increasing the necessary storage space. A second decision implemented
by both is prioritizing blocks, which despite introducing extra complexity to the system and
requiring more resources, can sometimes be useful.

As a way to reduce the interactions with the Index, since it is almost always a bottleneck
for performance [37], HPDedup designs and implements an in-memory fingerprint cache. It
also introduces the Stream Locality Estimator module, which tries to fill the cache to achieve
the highest hit-rate possible. If well optimized and working together, this set of mechanisms
is an excellent optimization that will undoubtedly bring performance boosts.

The last system presented also introduces a few algorithms. Among them are: splitting
I/O into four queues depending on size and operation to perform, different ways to process
the write requests, and similarity techniques, which are not very common. Unlike unique
signatures, similarity allows the Index to stay compact, which ultimately leads to an increase
in performance. Therefore, it makes perfect sense to separate small writes from large writes
since similarity is much more likely to exist in large sets.

2.2. Related Work 15

System Granularity Indexing Locality Technique Scope

DIODE Chunk Level Full Index Temporal Locality Chunk-Based -

D3 File & Chunk Level Full Index Temporal Locality Chunk-Based Both

HPDedup Chunk Level Full Index Both Chunk-Based -

HDS Chunk Level Sparce Index None Chunk-Based -

HIODS Chunk Level Full Index None Chunk-Based -

Table 1: Comparison Among Hybrid Deduplication Systems

The systems previously presented, whose characteristics are compared in Table 1, try
to mitigate the overhead introduced by inline deduplication through several mechanisms
and algorithms, like locality or caching. For example, when DIODE and D3 classify a
file as Poorly-deduplicatable, which indicates a low duplicate content, it is immediately
disregarded as a candidate to inline deduplication. The same happens with HPDedup,
which only performs inline deduplication on chunks present in the in-memory fingerprint
cache. Finally, HDS only serves read requests immediately, leaving the write ones for a
later time. In conclusion, all previous systems employ inline and offline deduplication
simultaneously.

HIODS follows a different approach. In this system, only one of the operation modes is
active, depending on the workload. Thus, in moments where the application can bear the
costs introduced by inline deduplication, that mode is used. Otherwise, the operation mode
is dynamically switched to offline deduplication.

A second difference from the previous is when to process the undealt chunks from offline
deduplication. For example, DIODE and D3 activate such a process when the threshold
defined by the DPE is reached. Despite being able to mitigate the competition for resources,
this method requires a higher storage capacity since the undealt chunks will be stored
without processing for more extended periods. Therefore, HIODS immediately processes
such information to minimize storage waste. Also, if interference with the desired system
throughput is detected, a delay between chunks' processing is implemented using Feedback
Loop algorithms.

3

A R C H I T E C T U R E

In this chapter, the architecture of HIODS is detailed. Furthermore, the workflow for the
different deduplication modes is introduced.

3.1 general overview

All deduplication systems have the same basic architecture, as described in 2.1.1. However,
the need for optimizations and the deployment target can lead to modifications in the
system's architecture.

Figure 4: HIODS Architecture

As we can observe in Figure 4, HIODS comprises eight fundamental modules. Some
represent auxiliary structures that store and manipulate metadata while others control and
perform the deduplication process.

One care from the beginning was to design the system completely independent from its
target. Therefore, the Interceptor acts as a door to the outside world implementing the most
common operations to block devices and storage systems: read(logical address) and write(

16

3.1. General Overview 17

data, logical address). The former receives a single argument (logical address) representing
the address from where the application wants to read data. It returns the physical address
where the data associated with the logical address is actually stored. On the other hand, the
latter receives as arguments the data to store (data) and the address where to store it (logical
address). As a response, this function returns an available physical address, if available,
where the data must be stored instead. Otherwise, an error code (-1) is returned.

Besides being the gateway to the system, this module also collects metrics, like throughput,
latency and entry/exit timestamps, that will help dynamically adjust the deduplication
operation mode.

The main module where duplicate data will be found and eliminated is called Deduplica-
tion Engine. Depending on the operation mode currently set, this component either will
find and remove redundant data in the I/O critical path, or later perform offline deduplica-
tion. The module responsible for adjusting the deduplication mode is the Deduplication
Controller. With the metrics sent by the Interceptor, this module is able to calculate the
system load and decide if the deduplication mode should be switched or if such is not
necessary.

The remaining modules provide structures and manipulation functions to assist the Dedu-
plication Engine. As to find and remove all redundant data being stored, the deduplication
system must know exactly which data it already has stored on the disk. Therefore, the
Index stores a signature, also known as digest, for each unique chunk. Furthermore, every
signature is also linked with the corresponding information's physical location (PBA) and
the number of references using such data (nRef). The former allows for quickly finding
duplicate data, and the latter indicates the number of references to a physical address (i.e.,
logical pointers to the unique chunk). When the number of references reaches 0, then the
physical address is no longer being used and can be allocated to store another unique chunk.

The Reverse Index was developed in order to provide an efficient mechanism to search for
the hash of a given chunk when only knowing the chunk's physical location at the storage
medium. This is important when shared chunks are updated, and the number of references
needs to be updated.

As previously mentioned, one of the main concerns in a deduplication system is to
link the logical address where the application intended to write in the first place with the
actual physical address where the data was written. Such a task falls under the Metadata
component, which links a logical address (LBA) to a physical address. Furthermore, every
entry also has a Copy-on-Write (CoW) flag indicating if such data is already being shared
among multiple logical addresses. The CoW flag is important because stored chunks cannot
be updated until there are no logical addresses referencing them.

HIODS final components are the FreeBlocks and the DirtyQueue. The former contains
a list of available disk addresses where novel chunks can be written. Finally, so that

3.2. Deduplication Workflow - Inline Mode 18

deduplication can occur later, the DirtyQueue stores, for each undealt storage request, the
data digest computed from the original data, the logical block address present in the original
request, and the physical block address where the data was physically stored.

3.2 deduplication workflow - inline mode

Figure 5: Deduplication Workflow on Inline Mode

When a new storage request arrives at the Interceptor, an entry timestamp is computed,
and the request is redirected to the Deduplication Engine for processing (Figure 5- 1).
Assuming inline deduplication is active, the first step is to compute a digest of the request's
data.

Next, and since HIODS is a hybrid system where the operation mode changes between
inline and offline, the DirtyQueue is checked (Figure 5- 2) for a pending request for the
same logical address, i.e., a request that was processed by offline mode but was not yet
deduplicated. If such exists, it can be removed from the DirtyQueue, because the new storage
request makes the pending one obsolete as it rewrites the previous information. At last, the

3.2. Deduplication Workflow - Inline Mode 19

physical address where the previous data was written, and present in the DirtyQueue, is
returned to FreeBlocks.

After the previous verification, the Metadata module is consulted (Figure 5- 3) to retrieve
information associated with the storage request's logical address. This query returns the
associated physical address and the respective Copy-on-Write flag, which indicates if the
returned address is being shared among multiple logical addresses. If the CoW flag is set,
additional steps are required to ensure the deduplication system's consistency.

Let us assume that other logical addresses do not share the returned physical address
(CoW == 0). It is now necessary to determine if a copy of the request's data is already
stored on disk. As to ascertain such, a test and increment operation is conducted on the
Index (Figure 5- 4) with the previously computed digest as key. This operation allows for
determining if the digest is already in the Index, indicating whether the data is duplicated.
If this is not the case, a new physical address is requested from FreeBlocks (new phy addr)
(Figure 5- 5). Next, the pair (digest, new phy addr) is inserted into the Index (Figure 5- 6)
and the reverse pair into the Reverse Index (Figure 5- 7). Finally, Metadata is updated
(Figure 5- 8) with the logical address associated with the request now pointing to the
new physical address. Also, the CoW flag is set, indicating that, from now on, the before-
mentioned physical address is being shared. On the other hand, if the digest already exists in
the Index, the test and increment operation previously performed increments the associated
number of references and returns the physical address where the data is stored (phy addr).
In this case, the last step is to point the logical offset in Metadata (Figure 5- 8) to the physical
address where the copy of the request's data is stored (phy addr), also activating the CoW
flag.

In the case where the data is already being shared (CoW == 1), the same operations are
performed. However, it is also necessary to check if the data there stored is still referenced
by any other logical address (nRef > 0). With that in mind, the Reverse Index is consulted
(Figure 5- 9), with the physical address returned by the Metadata module as the key,
retrieving the digest of the data there stored. Next, its number of references is decremented
and returned by the Index (Figure 5- 10). Suppose the returned value equals zero, indicating
that the data is no longer being used by any logical address. In that case, the digest is
removed from the Index (Figure 5- 11), and the physical address returned by Metadata is
removed from Reverse Index (Figure 5- 12). This phase's final step is to return to Freeblocks
(Figure 5- 13) the same physical address removed from Reverse Index.

Finally, if the data has to be written to disk, the physical address provided by Freeblocks
is returned to the Interceptor. This component then calculates the timestamp and sends the
previous timestamp along with the recently calculated one to the Deduplication Controller.
At last, the data is written to the new phy addr address on disk (Figure 5- 14), and the write
request is marked as completed.

3.3. Deduplication Workflow - Offline Mode 20

3.3 deduplication workflow - offline mode

Figure 6: Deduplication Workflow on Offline Mode

The beginning of the process is quite similar to the one described above. When the
Interceptor receives a storage request to process, the timestamp is collected, and the request
is redirected to the Deduplication Engine (Figure 6- 1).

Next, a pending deduplication request to the same logical address is searched for in the
DirtyQueue (Figure 6- 2). In fact, if there was a request to the same logical address that
was not yet processed, it became obsolete due to the current rewrite. Therefore, we can use
the same physical address to store the data present in the current storage request. If an old
request did not exist, a new physical address is requested from FreeBlocks (Figure 6- 3).

So that deduplication can be performed later, it is necessary to store some information
to make it possible. Therefore, to avoid disk operations and increase system efficiency, a
data digest is calculated and stored in the DirtyQueue (Figure 6- 4), alongside the original
logical address and the previously chosen physical address.

3.4. Deduplication Workflow - Background Processing 21

Following the previous step and before updating the Metadata, it is necessary to check
whether the physical address currently associated with the logical offset in Metadata is
being shared among multiple logical addresses. As to verify such condition, the Metadata
module is consulted (Figure 6- 5) with the request's logical address as the key returning
the associated physical address and the corresponding CoW flag. Suppose the address is
being shared (CoW == 1). Then the digest associated with the physical address is returned
by Reverse Index (Figure 6- 6), and its number of references is decremented in the Index
(Figure 6- 7). If the number equals zero, the digest is removed from the Index (Figure 6- 8),
and the pair (physical address, digest) deleted from Reverse Index (Figure 6- 9). To end the
current phase, the physical address is returned to FreeBlocks (Figure 6- 10).

Finally, an update to Metadata (Figure 6- 11) makes the request's logical address point
to the physical address chosen in step 2 or 3. As deduplication has yet to be performed,
the CoW flag is set to zero. The physical address is returned to the Interceptor, which
calculates the current timestamp and sends it alongside the initially calculated one to the
Deduplication Controller. At last, the data is written to the physical address returned to the
Interceptor (Figure 6- 12).

3.4 deduplication workflow - background processing

Figure 7: Background Process Workflow

As offline deduplication only stores the necessary information for later processing, not
finding nor removing duplicates in the I/O critical path, a background task is required to
perform the process.

3.5. Deduplication Controller 22

Therefore, this process, which is only activated periodically, for example, 1 minute after
the last time it went to sleep, has the primary goal to process the dirty blocks, i.e., the entries
in the DirtyQueue. Each dirty block comprises a data digest and a logical address, both
present in the original storage request and the physical address (new phy addr) where it
was stored on the disk by the foreground I/O logic.

The following algorithm is followed for every entry in the DirtyQueue. First, a dirty
block is retrieved from the DirtyQueue (Figure 7- 1). Next, a test and increment operation
is performed on the Index (Figure 7- 2) using the digest present in the dirty block as the
key. This operation allows for determining if the digest is already in the Index, indicating
whether the data is duplicated.

If the previous operation replies that the digest is not present in the Index, and since
the data is already stored on the disk, it is only necessary to insert the digest and the
physical address where the original data was previously stored (new phy addr) in the Index
(Figure 7- 3). The reverse pair is inserted into the Reverse Index (Figure 7- 4). The final step
is to update the Metadata (Figure 7- 5) pointing the original logical address to the physical
address. The CoW flag is also set, indicating that multiple logical addresses could be using
that same physical one from now on.

Otherwise, i.e., if the digest is already present in the Index, the number of references
associated with it is incremented, and the corresponding physical address is returned
(phy addr). Next, it is necessary to point the logical address present in the dirty block to the
physical address returned by the Index in Metadata (Figure 7- 6). As to finish this step, the
physical address present in the dirty block (new phy addr) must be returned to FreeBlocks
(Figure 7- 6) since both phy addr and new phy addr store the same data on disk. This step
is required to optimize the used space, eliminating copies of duplicate data on disk, which
is the primary goal after all. Finally, the DirtyQueue entry is expunged (Figure 7- 7).

Being a background job, it competes for resources with the primary process. Such
competition may cause concurrency issues as both jobs may access the same structures
for processing. In order to mitigate that problem, concurrency control mechanisms for all
auxiliary structures were also implemented.

3.5 deduplication controller

In a vast set of systems, deduplication is performed in a static manner, i.e., only one
mode is implemented. However, HIODS primary goal is to update the operation mode
dynamically, inline to offline and vice-versa. The exact moment when the mode should
switch is one of the most significant challenges in designing an hybrid deduplication system.

In order to achieve such goal, HIODS introduces a new way to switch the operation mode
automatically. Namely, it relies on two conditions to switch its operation mode. The first is

3.5. Deduplication Controller 23

the system load, calculated by the Deduplication Controller, and the second is the system
performance. Therefore, when the application starts to send a high number of storage
requests, the Controller is able to realize that the Engine is under considerable stress and
may not be able to achieve its objective. After this realization, the current throughput is
acquired and compared with the desired performance. Suppose the former is lower than the
latter. In that case, the operation mode is switched to offline and kept that way until the
Deduplication Controller decides that the system is no longer under heavy load, in which
case, the operation mode is switch back to inline deduplication.

As it is possible to observe by the workflow images from the previous chapters (3.2, 3.3),
inline deduplication does more operations in the I/O critical path than offline deduplication.
Such is due to the fact that the latter only finds and removes duplicates later in time and on
background.

As to find and remove the redundant data that offline deduplication misses, a background
job is required. However, when to activate the process does not have a trivial answer.
Actually, when activated regularly, an additional amount of resources, which may be
necessary to the primary job, will be used by the background process. On the other hand, if
the background process is only activate in periods of low I/O load, it will not be able to find
and remove duplicates quickly, thus wasting valuable storage space.

In HIODS, the DirtyQueue is processed periodically to eliminate as many duplicates as
possible, as soon as possible. However, the need to share resources previously mentioned
is contemplated. Namely, our solution implements a Feedback Loop Mechanism in order to
control the throughput of background deduplication processing. If the target performance
objective is not being met, this mechanism calculates a time, in nanoseconds, to delay the
processing of the entries in the DirtyQueue. This pause in the background job will allow the
foreground process to increase the throughput and achieve the desired performance target.

Feedback Loop Controllers, also known as Closed Loop Controllers, are a type of controller that
receives input measurements from the same system where they are implemented. In this
particular case, it receives the current throughput and calculates the time, in nanoseconds,
to delay the background process in order to achieve the target throughput.

4

P R O T O T Y P E

To be able to assess the mechanisms introduced in the previous chapter, a prototype of
the system was developed. To achieve that, C was chosen as the programming language and
SPDK as the framework where HIODS was integrated.

4.1 spdk

Every system's performance is always limited by the weakest link, and storage systems
are no exception. Until a few years ago, these systems were limited by hardware. However,
in the last few years, the hardware business has changed considerably with the appearance
of SSDs and, more recently, with NVMe SSDs. All these innovations caused the balance to
change sides, and, nowadays, it is the software that introduces overhead to the system.

Considering what was previously mentioned and according to tests [8], the Kernel I/O
Stack causes a significant percentage of the software overhead due to context switches, data
copy between the kernel and userspace, interrupts, and resources competition. Thus arises
SPDK, short for Storage Performance Development Kit, with the primary goal to bridge the
gaps previously presented, which means reducing the overhead introduced by software,
which ultimately translates into high-performance applications. SPDK achieves its goals
with three techniques [8]:

• Move all necessary drivers into userspace, which avoids system calls and enables
zero-copy access from the applications;

• Polling hardware for completions instead of relying on interrupts, which lowers both
total latency and latency variance;

• Avoiding all locks in the I/O path, instead relying on message passing.

Besides being built with performance as the primary focus introducing all the above
mechanisms to improve it, SPDK was also designed to be modular and extensible. Thus,
this framework introduces a layered structure based on block devices that can be stack on
each other.

24

4.2. Implementation Details 25

SPDK presents two types of block device modules. The first is called a block device, and
its differentiating characteristic is that it represents physical devices, i.e., devices that can
store information. On the other hand, there are virtual block device modules. These receive
storage requests, process them in some manner, like deduplication or encryption services,
and finally, redirect them to the underlying block device, either physical or virtual.

HIODS was developed as a virtual block device module. It receives requests from
applications, finds and removes redundant data if inline deduplication, or makes the
necessary arrangements for later processing if the offline mode is activated. Finally, if
necessary, redirects the request to the NVMe block device for persistent storage.

Figure 8: HIODS integration with SPDK

So that applications can take advantage of HIODS virtual block device, such is exported
as a regular operating system block device by Network Block Device (NBD) [42], as shown
in Figure 8. If this were not the case, the applications would need to be changed in order to
integrate with SPDK.

4.2 implementation details

With the extra deduplication processing since I/O requests are intercepted until their
completion, a decrease in system performance is expected. In order to accurately measure
such performance drop, it is necessary to implement the most capable system possible. Thus,
the first version of the deduplication system had all its data structures stored in memory.

4.3. Deduplication Controller 26

Therefore, the Index was implemented as a GHashTable from glib [43] with the data digest
as the key. Reverse Index used an array where each position represented a physical address,
with its content being the digest of the data there stored. In the same way, Metadata
also implemented an array where each position corresponded to a logical address, and its
content was the associated physical address and CoW flag. Freeblocks was stored using a
circular array where all available physical addresses were stored. This component's solution
also involved an index for retrieving the associated physical address and a second one for
storing a returned address. The final structure, DirtyQueue, once again resorted to an array
where each position matches a logical address. Every position stores the corresponding
digest and physical address where the data represented by the digest was stored by offline
deduplication.

However, a system where its data is stored in memory does not allow for its long-term
maintenance and scalability. Therefore, HIODS' second version was developed with the
primary goal to promote persistent storage of metadata.

Considering the data types store by every component, is it perceptible that all of them
associate key-value pairs. For instance, a data digest is associated with the physical address
and the number of references in the Index. Therefore, all the previous components could
easily be stored in Key-Value Databases. After searching for possible candidates, leveldb [44]
was chosen to store the Index, Reverse Index, and Metadata. Actually, the DirtyQueue
remained in memory as it is not a vital component. While the loss of the data stored in
the three first mentioned components would lead to the system's inconsistency, the loss of
DirtyQueue would only lead to some lost deduplication opportunities.

Finally, the last component with the need for persistent storage was FreeBlocks. In
reality, as it only stores a list of available physical addresses, the first implementation
resorted to a file. However, it quickly became apparent that such implementation introduced
significant overheads. Therefore, the solution was to store this structure in a dedicated
disk partition accessible through SPDK. Nevertheless, if every single request/return of an
available physical address required accessing the disk, it could lead to unwanted pressure
on this vital component. With that in mind, a configurable caching mechanism, currently set
for 16000 blocks, was designed and implemented.

4.3 deduplication controller

HIODS' primary objective is being able to switch between deduplication modes whenever
necessary. To achieve such a goal, the Deduplication Controller was developed.

As previously mentioned, the switch between inline and offline deduplication is based
on two conditions: the current system load and the desired performance goal. So that the
former can be calculated, the system uses the entry time of the current request and the

4.3. Deduplication Controller 27

exit timestamp of the previous request. Actually, we assumed that when a system is under
heavy workloads, a new request is dealt immediately after the previous one exits the system.
Therefore, if the difference between the previous two timestamps is under a certain limit, 3

ms in our implementation, the current request is flagged as “in stress”.
Periodically, a background job is responsible for determining if the system is under heavy

stress. To label it as such, the ratio between the total number of requests and the ones
marked as “in stress” must be at least 90%. Furthermore, the last request must have been
caught within a few moments before the evaluation, 1 second in our implementation, to
eliminate unique bursts as false indicators. For example, let us imagine that only ten requests
in a row were intercepted right after an evaluation. As they were made in a row, the first
condition is verified. However, it was a solo burst that should not trigger the Controller
to detect stress. Therefore, the second condition helps in avoiding such situations. If both
conditions are verified, the Controller realizes that the Engine is under stress and may not
achieve the desired performance goal.

Suppose the first condition is verified. Then, the current system throughput is acquired
and compared with the desired performance. Suppose now that the first condition is verified
and the target performance is not reached for a consecutive number of measurements in a
row, 3 in our implementation. In that case, offline deduplication mode is activated, easing
the I/O critical path's processing, increasing the overall system throughput. For inline
deduplication to be switched back, the only requirement is for the Engine not to be under
heavy workloads for a certain number of measurements in a row, once again, 3 in our
implementation.

4.3.1 Feedback Loop Controller

In order to control the background job's throughput, we endowed the deduplication system
with a Feedback Loop Controller that delays the processing of dirty blocks. This mechanism
controls the number of dirty blocks processed every second, decreasing the interference
between foreground and background I/O operations, thus helping the foreground job to
reach and maintain the target performance.

When it comes to this category, there were several possible choices. One of the most
known and used in the industry is the Proportional–Integral–Derivative Controller [45]. This
algorithm was chosen to integrate this system.

4.3. Deduplication Controller 28

i n t e g r a l = 0

prev iousError = 0

de f p i dCont r o l l e r (measuredThroughput , dt) :

de lay = 0

e r r o r = 0

d e r i v a t i v e = 0

kp = 5 . 0 , k i = 0 .15 , kd = 0.25

e r r o r = targetThroughput - measuredThroughput ;

i n t e g r a l = i n t e g r a l + e r r o r * dt ;

d e r i v a t i v e = (e r r o r - prev iousError) / dt ;

de lay = kp * e r r o r + k i * i n t e g r a l + kd * d e r i v a t i v e ;

p rev iousError = e r r o r ;

r e turn de lay ;

Listing 4.1: Feedback Loop Controller

One of the characteristics of this type of Controller is the fact that it receives as input a
measurement from the system where it will be deployed. Listing 4.1 presents the pseudo-
code for the PID Controller implemented in HIODS.

As we can observe from the pseudo-code, this PID algorithm receives as an argument the
system performance (measuredThroughput) measured over a period of time (dt in seconds).
From the former, it is possible to calculate the error, i.e., the Proportional component, by
subtracting the measured to the desired throughput (targetThroughput). Next, the remaining
two components, Integral and Derivative, are computed. Afterward, each component is
multiplied by its coefficient, kp, ki, and kd. Finally, the time to delay the processing of dirty
blocks, in nanoseconds, is obtained by adding the previously multiplied components.

5

E X P E R I M E N TA L E VA L UAT I O N

To ensure the correct implementation and evaluate the mechanisms introduced, as well as
assess the overall performance of the deduplication system, a series of tests were designed
and executed.

At an early stage, a preliminary set of experiments with the primary goal to evaluate the
overhead introduced by SPDK was developed. The next collection, which we called micro
experiments, allowed for evaluating critical operations individually. This set also helped in
adjusting specific system parameters. Finally, with the macro experiments, it was possible to
observe and evaluate all mechanisms working together.

5.1 testing methodology

In order to perform the experiments, a tool capable of submitting I/O operations to a
block device was required. DEDISbench [46] was chosen for this purpose.

This tool is capable of performing read and write operations in three different modes:
sequential, uniform, and hotspot. The first reads/writes to sequential disk addresses, and
the second chooses the target address according to an uniform distribution. Finally, the
hotspot mode focuses most of its operations on a small set of disk addresses.

Furthermore, DEDISbench also allows for configuring the target, i.e., where to write/read
data, the amount of information to write/read (operation size), the block size, i.e., the unit
to which the block device works, and the number of processes to use.

DEDISbench distinctive characteristic is that it takes as argument a distribution file
that specifies a realistic content distribution, extracted from analyzing real datasets. This
distribution is then used to generate realistic content for write requests at the targeted system
under evaluation. For these specific tests, two distributions were primarily used: highperf
and kernels. The former contains a small percentage of duplicate data (around 20%) and the
latter presents around 75% of redundant information.

To proceed with the designed tests, both DEDISbench and SPDK were properly installed
in a single machine. This machine was equipped with one processor (Intel(R) Core(TM)
i5-9500 CPU @3.00GHz), which contained six cores (1 thread per core), 16GB of RAM, an

29

5.2. Preliminary Experiments 30

500GB hard drive (WDC WD5000AZLX-75K2TA1 500GB) with Ubuntu 18.04 installed, and a
250GB NVMe SSD (Samsung SSD 970 EVO Plus 250GB).

In general, the performed experiments focused on read and write operations in sequential,
uniform, and hotspot modes, and used one and four processes. Each test had 20 minutes or
64GB duration and was run three times to obtain the mean and standard deviation. Finally, it
is worth noting that hardware metrics (CPU, RAM, and disk) were retrieved using dstat [47]
in every test across all categories.

5.2 preliminary experiments

This initial test set had the primary goal of observing the performance losses that arrive
from using SPDK. In order to achieve such an objective, intensive I/O tests were performed.
Firstly, NVMe was directly targeted. With this mode, the best possible performance was
achieved since there were no additional layers. Later, the tests focused on the same disk
exported as a network block device by SPDK. This initial round consisted primarily of
read and write requests under two modes: sequential and random. For these experiments,
DEDISbench was configured to generate the highperf content distribution.

5.2.1 Results Analysis

Target Mode
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

NVMe
Sequential 1724,55 1,89 2,00 0,00

Uniform 46,16 0,01 84,00 0,00

SPDK
Sequential 1547,46 2,33 2,00 0,00

Uniform 48,66 0,04 80,00 0,00

Table 2: Read Operations on NVMe vs SPDK

Focusing on Table 2 regarding read requests, a substantial decrease in performance
between the sequential and random modes is immediately noticeable (NVMe: 1724 MB/s to
46 MB/s, SPDK: 1547 MB/s to 49 MB/s). Those were expected since random read operations
are more costly to a disk than sequential ones.

Moving on to compare the distinct environments in the same category, it is evident that,
from NVMe to SPDK, the throughput on sequential reads decreased, from 1724,55 MB/s on
NVMe to 1547,46 MB/s on SPDK. Such a situation was entirely expected since the number

5.2. Preliminary Experiments 31

of intermediate layers has increased. Besides SPDK itself, the use of nbd to export the disk
also causes additional overhead.

On the other hand, the uniform reads performance increased slightly, from 46,16 MB/s on
NVMe to 48,66 MB/s on SPDK. Since this type of I/O is conditioned by hardware and not
software, a small variation was expected.

Target Mode
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

NVMe
Sequential 504,87 0,48 6,00 0,00

Uniform 529,03 0,85 6,00 0,00

SPDK
Sequential 462,24 2,28 7,00 0,00

Uniform 445,12 1,33 7,00 0,00

Table 3: Write Operations on NVMe vs SPDK

Concentrating on the writes, whose results are presented in Table 3, we can quickly
identify a contrast between sequential and uniform modes.

Actually, NVMe results show an increase between sequential and uniform modes (504,87 MB/s
on sequential and 529,03 MB/s on uniform mode), but SPDK results present a decrease
between the two (462,24 MB/s on sequential to 445,12 MB/s on uniform mode). In fact,
uniform write operations in SSDs, unlike in HDDs, are almost as efficient as sequential ones,
which may lead to negligible differences between the two modes.

Regarding the results between the two environments, sequential performance drops from
504,87 MB/s to 462,24 MB/s and from 529,03 MB/s to 445,12 MB/s on uniform mode. Once
again, such a decrease is caused by the additional layers introduced with SPDK.

Target Operation Mode CPU (%) Memory (GB)

NVMe
Read

Sequential 2,40 0,64

Uniform 0,04 0,64

Write
Sequential 3,38 0,69

Uniform 2,95 0,65

SPDK
Read

Sequential 11,08 6,83

Uniform 8,94 6,62

Write
Sequential 9,59 4,01

Uniform 9,98 4,14

Table 4: Resources Used by NVMe and SPDK

5.3. Micro Experiments 32

It is possible to observe from Table 4, which compares the resources used by both tests,
that the experiments involving SPDK used around 10% of the available processing power.
On the other hand, NVMe tests required significantly less power (around 3%). Furthermore,
the tests using SPDK required more memory than on NVMe (an average of 5 GB versus
less than 1 GB with NVMe). Such a discrepancy was expected since SPDK introduces new
processing layers, which require additional resources.

5.3 micro experiments

This second category had the primary objectives of guaranteeing the system's correct
implementation and evaluating each component independently. Furthermore, it also allowed
observing the overhead introduced by deduplication.

As already detailed in chapter 3, the hybrid deduplication system presented in this
dissertation comprises four main components: inline mode, offline mode, the mechanism
for switching between the previous, and the Feedback Loop Controller. This series of tests
enabled the analysis of the first and second components, as well as to adjust the last one's
parameters.

The initial round of micro experiments targeted SPDK without deduplication, as the last
category did. However, in this case, a more extensive set of configurations was used. In
addition to the previous configurations, the hotspot access pattern, four processes, and the
Kernels distribution were used for these experiments.

As to calculate the overhead introduced by deduplication, the second round of micro
experiments used the memory version of the system. This version, since it is the most
optimized in terms of performance, allowed for calculating the overhead introduced by inline
and offline deduplication without the I/O overhead introduced by metadata persistence.
Furthermore, in order to observe the interference that the background process introduces,
two configurations were tested. At first, offline deduplication without the background
process was examined. Next, the background process without delay between dirty blocks
was enabled.

The last round of micro experiments targeted the persistent version of the system. This
round allowed for calculating the overhead introduced by persistent metadata storage. In
this one, besides evaluating the same mechanisms as before, the Feedback Loop Controller
was also tested.

To sum up, the micro experiments targeted SPDK without deduplication, the memory
implementation, and the system's persistent version. Inline and offline deduplication (with
and without background processing) were tested individually, and in the persistent version,
the Feedback Loop Controller was also examined.

5.3. Micro Experiments 33

5.3.1 Results Analysis

In this section, we introduce and analyze the results of the micro experiments. First, we
start by presenting the results of read operations, and then we focus on write operations.

5.3.1.1 Read Operations

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 1477,58 6,42 3,00 0,00

Kernels 1472,31 7,16 3,00 0,00

4

HighPerf 1797,44 85,94 8,67 1,23

Kernels 1793,65 17,47 8,75 1,06

Uniform
1

HighPerf 51,14 0,10 76,00 0,00

Kernels 50,31 0,14 77,33 0,58

4

HighPerf 182,08 0,34 85,50 3,00

Kernels 178,56 0,46 87,25 1,76

HotSpot
1

HighPerf 196,07 0,09 20,00 0,00

Kernels 187,27 1,07 21,00 0,00

4

HighPerf 685,52 4,22 22,50 0,67

Kernels 636,68 1,85 24,25 0,45

Table 5: Read Operations without Deduplication

Analyzing Table 5, which presents read operations without deduplication, a clear differ-
ence is observed among disk access patterns. While sequential operations reach 1475 MB/s,
hotspot mode only achieves 190 MB/s, and uniform reads stay at 50 MB/s. Again, random
reads are the bottleneck of the type of disk used at the experiments, with much higher
overheads than sequential operations. On the other hand, hotspot mode only conducts its
operations in a limited number of logical addresses. Such fact allows for the use of system
caches, which are impossible to take advantage of in uniform mode. At last, sequential reads
present the higher throughout, as expected.

Regarding the number of processes used, 1 and 4, it is quickly noticeable that higher
values are achieved with the latter. For example, sequential operations raise from 1475 MB/s
to 1795 MB/s, uniform from 50 MB/s to 180 MB/s, and hotspot performance increases from
190 MB/s to 630 MB/s.

5.3. Micro Experiments 34

Despite the increase seen across the board, it is clear that it is not proportional to all
access patterns since sequential performance only increases around 20%, while uniform
and hotspot report gains of around 3.5 times. Such a difference is caused by the fact that,
since sequential reads perform very well, they use almost all disk capability. In the other
two patterns, as they do not use a significant amount of the available bandwidth, higher
concurrency leads to an almost proportional increase in throughput.

Finally, it is noticeable that the distribution used does not influence the results. Such a
fact was expected as all blocks were stored on disk due to the lack of deduplication.

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 325,96 4,26 12,00 0,00

Kernels 392,40 0,50 10,00 0,00

4

HighPerf 301,45 0,78 52,00 0,00

Kernels 490,89 0,19 32,00 0,00

Uniform
1

HighPerf 37,87 0,40 102,67 1,15

Kernels 39,37 0,05 99,00 0,00

4

HighPerf 138,75 0,33 112,33 0,78

Kernels 144,36 0,39 108,00 1,48

HotSpot
1

HighPerf 114,04 3,07 34,00 1,00

Kernels 130,33 1,06 30,00 0,00

4

HighPerf 368,74 3,41 42,25 0,62

Kernels 417,75 23,26 34,92 0,90

Table 6: Read Operations with Memory Deduplication

Examining Table 6, we can note that the results between operation modes follow the same
pattern as before.

On the other hand, since deduplication is now active, the distribution used can interfere
with the performance. Focusing on the results, we can observe that sequential performance
increases from 325,96 MB/s when using highperf to 392,40 MB/s with kernels. Also, uniform
reads performance improves from 37,87 MB/s to 39,37 MB/s, and hotspot operations reach
130,33 MB/s from 114,04 MB/s.

These differences are directly related to the number of duplicates introduced in the system
by each. Actually, as the kernels distribution presents a substantial amount of redundant
information, the volume of data actually stored on the disk is very scarce. The previous fact
allows for previous reads to be kept in cache, lowering the overall disk usage.

5.3. Micro Experiments 35

When comparing the use of 1 and 4 processes, we can observe that uniform performance
increased from 38 MB/s to 140 MB/s and that the hotspot mode also recorded substantial
gains (120 MB/s to around 400 MB/s). However, sequential performance with the highperf
distribution suffered a small drop to 301,45 MB/s compared to the 325,96 MB/s that had
been achieved with a single process. Once again, the substantial amount of unique data
makes caching impossible, requiring accessing the disk for every request. These accesses
from four different processes caused interference with each other, which ultimately lead to
performance drops.

In order to perceive the influence of deduplication in the overall system performance, we
must turn our attention to both tables. After comparing its results, a performance decrease
is evident. For example, sequential operations dropped from 1475 MB/s to 300/400 MB/s,
uniform performance decreased to 38 MB/s from 50 MB/s, and hotspot reads declined from
190 MB/s to 120 MB/s.

Because a new layer of processing was added to the workflow, a reduction in throughput
was expected. However, the drop is considerably higher in sequential reads when compared
to the others. Despite the extra processing costs seen in uniform and hotspot, deduplication
also introduces disk fragmentation, most visible in sequential requests. While sequential
logical addresses translate to sequential physical addresses in a typical environment, such
a statement is not accurate with deduplication since sequential logical addresses can be
associated with physical blocks scattered across the disk.

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 249,65 0,60 15,67 0,58

Kernels 336,06 0,50 11,33 0,58

4

HighPerf 233,94 0,59 66,67 0,49

Kernels 449,28 0,30 35,00 0,00

Uniform
1

HighPerf 35,71 0,08 109,00 0,00

Kernels 36,98 0,03 105,00 0,00

4

HighPerf 126,00 0,30 123,67 0,49

Kernels 132,97 0,24 117,00 0,00

HotSpot
1

HighPerf 132,06 0,59 29,00 0,00

Kernels 137,18 0,35 28,00 0,00

4

HighPerf 424,31 2,54 36,42 0,51

Kernels 463,60 14,39 33,33 0,98

Table 7: Read Operations with Persistent Deduplication

5.3. Micro Experiments 36

Considering that the memory implementation is always the most efficient version of a
system, it was evident that the switch to persistent storage would bring performance losses.
This decrease in performance can be confirmed in Table 7. These results show a sequential
performance of around 250/330 MB/s, compared to the 325/390 MB/s with the memory
version. Uniform reads also dropped from 38 MB/s to 36 MB/s.

Since it focuses its operation on a limited number of addresses, the hotspot mode can,
once again, take full advantage of data already cached. As it relies on caching mechanisms,
queries to leveldb are minimal in this operation mode, which allows the performance to
remain stable between the two versions.

Environment CPU (%) Memory (GB)

No Deduplication 9,79 4,98

Memory Deduplication 43,69 9,21

Persistent Deduplication 42,54 3,57

Table 8: Resources

It is possible to note, from analyzing Table 8, which compares the resources used by the
multiple testing environments, an increase in CPU (from 9,79% to 43,69%) and memory
usage (from 4,98 GB to 9,21 GB) between the environment without deduplication and HIODS
memory version. Actually, the increase was expected as deduplication introduces additional
processing. Furthermore, as the metadata structures were stored in memory, such an increase
was also foreseen.

Finally, the processing power used by the persistent version of HIODS remains unchanged,
as the process itself does not change between versions. However, the metadata is now stored
in leveldb, which allows for freeing the memory previously used to store the auxiliary data.

5.3. Micro Experiments 37

5.3.1.2 Write Operations

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 441,78 10,51 7,33 0,58

Kernels 451,66 1,37 7,00 0,00

4

HighPerf 435,19 4,00 34,33 0,49

Kernels 439,68 1,91 34,00 0,00

Uniform
1

HighPerf 400,76 24,74 8,00 1,00

Kernels 387,36 1,10 8,00 0,00

4

HighPerf 389,18 3,53 38,67 0,49

Kernels 392,61 5,82 38,33 0,49

HotSpot
1

HighPerf 380,17 11,37 8,67 0,58

Kernels 378,71 6,91 8,67 0,58

4

HighPerf 392,64 1,25 38,17 0,39

Kernels 402,07 2,29 37,33 0,49

Table 9: Write Operations without Deduplication

Concerning write operations and observing Table 9, it is possible to conclude that the se-
quential mode delivered the best performance among the three, achieving around 440 MB/s.
In fact, such results were expected as sequential operations introduce the lowest overheads.
Changing the focus to uniform and hotspot operations, a slight decrease to around 390 MB/s
is observed on both. Actually, modern hardware like regular SSDs and NVMe SSDs can
reach almost identical performances between sequential and uniform write operations as
they do not possess physical components like regular HDDs, where uniform operations are
significantly more costly.

Moving on to the differences between 1 and 4 processes, stability in the results is observed.
Contrary to what happened in the readings, a single process can take full advantage of the
available bandwidth. With the introduction of multiple processes, the disk resources must
be shared between them, which can cause interference among the processes, occasionally
leading to slightly lower performances.

Finally, the content distribution used does not influence the results because deduplication
is not implemented on this first setup.

5.3. Micro Experiments 38

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 293,89 1,88 12,00 0,00

Kernels 296,41 1,22 12,00 0,00

4

HighPerf 286,01 2,20 53,00 0,00

Kernels 294,55 0,63 51,33 0,49

Uniform
1

HighPerf 271,13 0,70 13,00 0,00

Kernels 276,79 0,74 12,00 0,00

4

HighPerf 282,83 3,07 53,83 0,39

Kernels 284,39 0,91 53,17 0,39

HotSpot
1

HighPerf 461,10 2,71 7,00 0,00

Kernels 465,89 2,79 7,00 0,00

4

HighPerf 443,10 4,23 33,42 0,51

Kernels 446,22 0,91 33,00 0,00

Table 10: Write Operations with Inline Memory Deduplication

Following the base measurements, a memory deduplication layer was introduced. With
this version, the overhead introduced by deduplication will be easily recognized. Firstly, the
inline mode was tested, and the results are shown in Table 10.

Focusing on these last results, a general performance drop compared to the environ-
ment without deduplication is quickly perceived. For instance, sequential write perfor-
mance decreased from 440 MB/s to 290 MB/s, and uniform mode performance dropped to
270/280 MB/s from the 390 MB/s previously obtained. The drop in performance is a direct
consequence of an additional processing layer.

A second observation is a reduced difference between sequential and uniform operations,
which was around 50 MB/s without deduplication, and now stands at 15 MB/s. Actually,
when started from scratch, the deduplication system transforms all other requests into
sequential ones as sequential addresses are provided by FreeBlocks to the Deduplication
Engine. The previous fact, combined with operating system optimizations and lower disk
usage, as it is not necessary to store all data, allow hotspot mode to gain 20% in performance,
delivering around 450 MB/s versus the original 390 MB/s.

Directing our attention to the last table alone, slightly higher results are observed when
using the kernels content distribution, when compared to the highperf one. For example,
sequential operations using one process and the highperf content distribution delivered
293,89 MB/s, while the same configuration using the kernels content distribution reached
296,41 MB/s. In fact, the higher the number of duplicates, the better the engine will perform

5.3. Micro Experiments 39

since fewer interactions with the components and fewer communications with the disk are
performed. With 75% of redundant content against only 20%, kernels does not produce such
heavy disk usage, which, combined with fewer interactions with the components, results in
higher performance.

Finally, we can still observe that the competition for resources among the four processes
leads to small decreases compared to a single process.

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 307,33 0,17 11,00 0,00

Kernels 307,82 0,12 11,00 0,00

4

HighPerf 306,63 0,25 49,17 0,39

Kernels 307,04 0,61 49,08 0,29

Uniform
1

HighPerf 295,88 0,05 12,00 0,00

Kernels 297,07 0,33 11,00 0,00

4

HighPerf 293,98 0,44 51,33 0,49

Kernels 295,58 0,04 51,00 0,00

HotSpot
1

HighPerf 481,43 0,51 6,00 0,00

Kernels 490,32 1,43 6,00 0,00

4

HighPerf 467,40 11,64 31,75 0,75

Kernels 459,60 20,52 32,17 1,40

Table 11: Write Operations with Offline Memory Deduplication without Background Processing

Inline deduplication introduces extra overhead since it finds and removes duplicate data in
the I/O critical path. As an alternative, offline deduplication was developed. This new mode
does not find or remove duplicate data in the I/O critical path, relying on a background job
that competes for resources with the main task.

To observe the real impact that the background process has on performance, tests targeting
offline deduplication without and with it were conducted. Table 11 presents the results of
the former.

Since the targeted environment does not find or remove duplicates, either in the critical
path or later in time, a boost in performance was expected and is confirmed by the results.
For instance, sequential operations that achieved 290 MB/s with inline deduplication,
reached 307 MB/s. Uniform and hotspot performance also improved from 275 MB/s and
450 MB/s to 295 MB/s and 475 MB/s, respectively.

5.3. Micro Experiments 40

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 294,69 0,28 12,00 0,00

Kernels 294,76 0,42 12,00 0,00

4

HighPerf 293,46 0,62 51,83 0,39

Kernels 294,41 1,33 51,58 0,51

Uniform
1

HighPerf 276,10 0,28 12,00 0,00

Kernels 277,08 0,44 12,00 0,00

4

HighPerf 273,11 0,44 55,25 0,45

Kernels 274,99 0,58 55,00 0,00

HotSpot
1

HighPerf 455,65 2,62 7,00 0,00

Kernels 458,28 3,34 7,00 0,00

4

HighPerf 434,81 7,31 34,25 0,62

Kernels 467,51 3,60 31,67 0,49

Table 12: Write Operations with Offline Memory Deduplication with Background Processing

Despite exhibiting the best possible performance, the targeted HIODS setup in Table 11

does not find or remove duplicates because offline deduplication requires a background job
to do so. Therefore, the background task was activated, and the results are presented in
Table 12.

As expected, since the secondary job competes for resources with the primary process, a
performance drop is noticeable. In fact, the sequential mode that delivered 307 MB/s without
the background job could only achieve 294 MB/s with the current system configuration. The
same drop was experienced in the remaining modes, which saw their performance drop to
275 MB/s and 450 MB/s from the 295 MB/s and 475 MB/s previously obtained by uniform
and hotspot experiments.

5.3. Micro Experiments 41

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 77,02 0,82 49,33 0,58

Kernels 95,39 0,33 39,00 0,00

4

HighPerf 77,69 0,15 198,33 0,58

Kernels 96,05 0,11 160,67 0,58

Uniform
1

HighPerf 61,25 0,22 62,00 0,00

Kernels 81,71 0,17 46,00 0,00

4

HighPerf 60,83 0,04 253,33 1,15

Kernels 81,11 0,21 190,00 0,00

HotSpot
1

HighPerf 102,05 22,39 32,00 0,00

Kernels 153,71 2,85 23,33 0,58

4

HighPerf 133,15 0,31 113,33 1,53

Kernels 153,62 0,53 99,33 0,58

Table 13: Write Operations with Inline Persistent Deduplication

The previous round of tests targeted the memory version of the system. However, a
system should not rely on memory to store its data. Therefore, Table 13 reveals the results
from the tests performed with inline persistent deduplication.

When comparing the memory version (Table 10) with the persistent version (Table 13), it is
possible to realize the negative impact that a key-value store like leveldb has on performance.
In the former, sequential and uniform performance hovered around 250 to 300 MB/s, and
hotspot operations reached 450 MB/s. With these last results, the first two modes dropped
to between 60 and 100 MB/s, and hotspot experiments delivered higher results between 100

and 150 MB/s, but still far from the original performance.
Furthermore, the performance disparity between highperf and kernels content distribu-

tions, which was around 5 MB/s in memory experiments, is now close to 20 MB/s. Besides
the reduced disk accesses when using the latter, the former has substantially more unique
data that must be stored on the Index and Reverse Index, which leads to more leveldb
interactions, thus significantly increasing the overhead with the highperf distribution.

5.3. Micro Experiments 42

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 143,13 0,30 26,00 0,00

Kernels 143,53 0,30 26,00 0,00

4

HighPerf 143,62 0,18 106,67 0,58

Kernels 143,02 0,28 107,00 0,00

Uniform
1

HighPerf 139,81 0,10 26,00 0,00

Kernels 139,99 0,38 26,00 0,00

4

HighPerf 139,88 0,21 109,33 0,58

Kernels 140,44 0,14 109,00 0,00

HotSpot
1

HighPerf 261,00 0,29 13,00 0,00

Kernels 263,13 1,22 13,00 0,00

4

HighPerf 263,40 1,10 57,00 0,00

Kernels 262,46 5,32 57,33 1,53

Table 14: Write Operations with Offline Persistent Deduplication without Background Processing

As to observe the real overhead introduced by inline mode, since the system does not live
in memory anymore, tests targeting persistent offline deduplication without background
processing were executed once again. The results can be seen in Table 14.

As expected, a performance boost that reached two times the inline performance is
witnessed. For example, sequential operations that achieved around 80 MB/s now reach
143 MB/s. Furthermore, uniform performance also increased from about 71 MB/s to
140 MB/s, and the 100 to 150 MB/s hotspot operations now reach 262 MB/s.

Such gains are directly related to the fact that offline mode does not find or remove
duplicates in the I/O critical path. However, while the gains were almost negligible when in
memory, here, the performance increase reached 50%. These considerable gains relate to the
difference in operations between inline and offline, which were not best seen in memory
due to its high-speed nature. However, when on leveldb, every operation involving it causes
additional overhead, resulting in a much lower performance with inline deduplication.

Regarding the results involving the two different distributions, it is clear that the previously
seen disparity no longer exists. The gap disappearance relates to the fact that all blocks are
written to disk with offline deduplication. Furthermore, as the current target does not find
or remove duplicates, the Index and Reverse Index are only consulted for update operations
resulting in almost negligible overheads. The existence of updates in uniform mode is also
the reason for its slightly lower results when compared to sequential operations.

5.3. Micro Experiments 43

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 60,98 0,61 62,33 0,58

Kernels 81,07 0,38 46,33 0,58

4

HighPerf 67,94 2,29 227,67 7,77

Kernels 83,46 0,75 185,33 1,53

Uniform
1

HighPerf 47,56 0,23 80,33 0,58

Kernels 71,38 1,02 53,00 1,00

4

HighPerf 44,41 0,37 346,67 2,08

Kernels 71,24 0,52 215,33 2,52

HotSpot
1

HighPerf 122,25 1,42 30,33 0,58

Kernels 136,87 0,74 27,00 0,00

4

HighPerf 114,27 1,02 134,33 1,15

Kernels 129,43 2,26 117,00 2,00

Table 15: Write Operations with Offline Persistent Deduplication with Background Processing

One of the most significant downsides of offline deduplication is the need for extra
resources. In addition to storage space, since all chunks are stored in the disk, offline
deduplication also requires a background job to find and remove duplicates, which competes
for resources alongside the foreground job. Table 15 presents the results of offline persistent
deduplication with simultaneous background processing.

As already seen in the memory version, although more lightly, a 50% drop in performance
from the previous results is discerned. For example, sequential performance dropped from
143 MB/s to around 70 MB/s, uniform operations decreased from 140 MB/s to an average
of 58 MB/s, and hotspot experiments dropped to 125 MB/s from 263 MB/s.

In reality, the competition for resources is so intense that even inline deduplication with all
its overhead outperforms it. For example, sequential mode, which reported 75 to 100 MB/s
with inline deduplication, only achieves 60 to 80 MB/s with the current setup.

A second difference with the previous results is the return of the contrast between
distributions that did not exist without background processing. In reality, highperf introduces
more unique data into the system, which must be stored on Index and Reverse Index,
significantly increasing leveldb accesses in the background job. As such operations are quite
costly, the processing power is redirected to the secondary task decreasing the overall system
capability.

5.3. Micro Experiments 44

5.3.1.3 Feedback Loop Controller

Unlike inline deduplication, where redundant data is found and eliminated directly in the
I/O critical path, offline mode requires a secondary process to achieve the same goal.

However, as the secondary job also requires resources to find and eliminate duplicate
data, the total system capacity must be shared between the two. This split of resources may
cause a decrease in the primary process performance, which we witnessed in the previous
experiments (Table 15).

As to reduce the background process activity, which releases resources to the primary
job, increasing its overall performance, HIODS implements a Feedback Loop Controller
mechanism capable of regulating the secondary job throughput, thus helping to reach and
maintain the performance goal.

Mode nProcesses Distribution
Throughput (MB/s) Latency (us)

Mean SDeviation Mean SDeviation

Sequential
1

HighPerf 117,98 0,62 31,67 0,58

Kernels 119,89 1,65 30,67 0,58

4

HighPerf 118,29 0,41 129,67 0,58

Kernels 120,34 0,04 127,00 0,00

Uniform
1

HighPerf 123,03 0,25 30,00 0,00

Kernels 123,41 0,26 30,00 0,00

4

HighPerf 123,66 0,47 124,00 1,00

Kernels 124,17 0,26 123,67 0,58

HotSpot
1

HighPerf 241,22 2,21 14,33 0,58

Kernels 248,61 1,53 14,00 0,00

4

HighPerf 247,50 0,61 60,33 0,58

Kernels 250,84 0,13 60,00 0,00

Table 16: Write Operations with Offline Persistent Deduplication with Feedback Loop Controller

Analyzing the results presented in Table 16, we can conclude that this FLC mechanism,
capable of limiting the background job throughput, is vital in helping HIODS reach and
maintain the desired performance. In fact, the sequential and uniform results without the
FLC achieved between 60 to 80 MB/s but, with the current strategy, measurements between
118 and 125 MB/s were reached.

Despite the good results, the tests show that the FLC is not being aggressive enough
because it did not reach the goal set to 35000 operations per second (136,72 MB/s) with
the following parameters: kp = 5.0, ki = 0.001, and kd = 0.25. However, fixing the lack

5.4. Macro Experiments 45

of aggressiveness is a relatively easy task since it only requires some adjustments to its
parameters.

Regarding the processing power and memory used by these experiments, similar values
to the read tests (Table 8) were measured. Furthermore, both inline and offline modes were
able to save around 11.5 GB of storage space when highperf was used, and 45.8 GB with the
kernels content distribution.

5.4 macro experiments

This last series of tests had as primary objective to analyze how HIODS reacts to changes
in the workload with distinct performance goals. In order to examine such reactions, the
mechanism for switching between deduplication modes, and the FLC were observed.

In order to achieve the proposed goals, four experiments were conducted: Mountain, Valley,
Ascending Stairs, and Descending Stars. All the previous defined multiple performance
goals that were increased or decreased after writing 64 GB at a fixed pace to simulate
workload changes. For these experiments, DEDISbench nominal flag, which allows for
defining workload at fixed rates, was used.

5.4.1 Mountain/Valley

With the objective to simulate two distinct workloads, Mountain/Valley experiments
defined two performance tiers: a relatively low, which allowed the overhead introduced by
inline mode, and a much higher second tier that made offline deduplication the only option.
The chosen tiers were 4000 and 20000 operations per second.

Therefore, mountain mode started with a 64GB write at 4000 operations per second.
Following that first operation, an operation of the same size was realized at 20000 operations
per second. Finally, a third 4000 operation per second 64GB write was conducted. On the
other hand, the Valley mode performed a first 64GB write at 20000 operations per second,
which then was decreased to 4000 operations a second 64GB write. Finally, a third write
similar to the first was performed.

5.4. Macro Experiments 46

Figure 9: Mountain Test

The Mountain results are shown in Figure 9 under a plot. In it, it is possible to see the
throughput achieved by DEDISbench (red line), which corresponds to HIODS performance,
and it is expected to match the target performance (black line). Furthermore, to watch the
FLC mechanism in action, the background job throughput is also shown (blue line). These
colors represent the same measures in all the following figures. Focusing on the results,
three phases are clearly seen.

At the beginning of the test, phase 1, the engine started with inline deduplication active
and, as expected, was able to maintain that operation mode until the end of this phase. The
null background processing throughput is evidence of such achievement.

The second set of operations, which represents the mountain, had the primary goal
of activating offline deduplication through a high enough desired performance goal. As
observable by the graphic, the background job started processing the undealt data at around
4300 seconds, indicating that the switch to offline mode was triggered. Finally, by the end
of this phase, difficulty in achieving the desired goal lead the FLC to increase the delay,
lowering the background job throughput to around 600 operations per second, from close to
1000 operations per second.

At last, the switch back to inline mode was intended with the last set of write operations.
When switching from offline to inline mode, the Controller disables the FLC mechanism
removing the delay in the processing of undealt blocks, which leads to a mass processing
of the DirtyQueue, reaching 25000 operations per second. When analyzing the last phase,
an exponential increase in the background job throughput clearly shows that the intended
switch was made.

5.4. Macro Experiments 47

Figure 10: Valley Test

While the plot in Figure 9 shows the mountain, Figure 10 presents the opposite test, the
valley. So, this second test started with a high performance goal, which posteriorly slowed
down. In the end, the high objective was increased to motivate the switch to offline mode.

This second test started with offline mode and a goal of 20000 operations per second,
which was achieved as witnessed in the plot above. However, at the end of this first set of
operations, difficulties in maintaining the desired objective lead the FLC to increase its delay,
which lowered the background processing throughput from 7500 to 5000 operations per
second, allowing the foreground process to keep performing at the desired level.

The second round of operations was intended at 4000 operations per second, which
should trigger the switch to inline mode. As already explained in the previous results, the
exponential growth of the background job throughput shows that the switch occurred.

Finally, the desired goal was once again increased in the final phase, making the switch
to offline deduplication necessary. As seen in the last phase, the background job starts to
process data at around 5100 seconds, indicating such trade. Another interesting fact is the
difference between performances achieved by the background job in the first and last phase.
A significant decrease, from 7500 to 450 operations per second, is noticeable from the former
to the latter, which indicates difficulties in achieving the desired performance objective,
which was not fully reached. Such performance difference between the two phases is due to
the use of resources to accommodate leveldb caches and other mechanisms, which gradually
decreases the system performance and stability.

Finally, when the benchmark stopped issuing requests, at second 6300, the Deduplication
Controller detected that the engine was not under stress anymore, switching back to inline
mode, which led to the massive processing of dirty blocks.

5.4. Macro Experiments 48

5.4.2 Stairs

The second category of macro experiments had a slightly different configuration. Unlike
the previous tests, where the switching mechanism was in the spotlight, with these experi-
ments, the goal was to watch the FLC adjust the DirtyQueue delay accordingly to the current
workload and system capacity.

With that objective in mind, this test set required an additional tier compared to the Moun-
tain/Valley tests. Therefore, three performance tiers were established. Like the previous
tests, the first was set to 4000 operations per second to activate inline deduplication. The
next tier, set to 16000 operations per second, was meant for activating offline deduplication
without a significant delay from the FLC. Finally, to lower the background job throughput to
its minimum, the last tier was set to 20000 operations per second.

The results from ascending stairs (4-16-20) and descending stairs (20-16-4) are shown in
Figures 11 and 12.

Figure 11: Ascending Stairs Test

Analyzing the plot from the ascending stairs test, similarities with Figure 9 are evident. In
fact, also here the system started with inline mode and maintained it through the first 64GB.

In the second phase of this test, the desired performance goal was set to 16000 operations
per second at around 4100 seconds. As expected and evidenced by the start of the simultane-
ous background processing, the offline mode was activated. In this phase, the background
throughput averaged 1500 operations per second.

Next, the goal was set to 20000 operations per second. Due to the previously explained
reasons, the goal was not often reached despite the FLC effort, which substantially increased

5.4. Macro Experiments 49

the processing delay of undealt blocks in order to decrease the interference with the primary
process. The much lower background job throughput, around 450 operations per second by
the end, evidences the effort mentioned above compared to the previous phase.

At last, with the end of write operations at second 6400, the Deduplication Controller
once again detected the lack of stress switching the operation mode to inline, leading to the
massive processing of the DirtyQueue.

Figure 12: Descending Stairs Test

The final performed test reversed the previous operations. First, the engine was started
with offline mode, and a 64GB write at 20000 operations per second was conducted. As
evident in Figure 12, the desired goal was achieved with a background throughput at around
5000 operations per second. However, in the final stage of this first phase, the FLC saw
the need to increase the delay. By reducing the background throughput to around 3500

operations per second, the foreground job was able to maintain the performance goal.
After the first 64GB, the goal was decreased to 16000 operations per second, which were

delivered. This reduction should allow for a slight increase in background performance to
occur. We can witness that improvement, from 3500 to 3750 operations per second, between
the seconds 1000 and 2000.

Finally, the desired goal was set to 4000 operations per second which were delivered. As
expected, around the second 2000, we witness massive processing of dirty blocks, indicating
that the switch to inline deduplication occurred.

5.5. Discussion 50

5.5 discussion

The performed tests had several distinctive objectives. With the first category, preliminary
experiments, it was possible to compare the raw NVMe performance against a baseline
implementation using SPDK. Micro experiments had a primary goal to observe the perfor-
mance impact of deduplication. Furthermore, this second category also allowed for assessing
individual system components. Finally, macro experiments targeted the deduplication mode
switching mechanism and the Feedback Loop Controller.

From a general perspective, the first category show slightly lower results with SPDK,
where the block-device is exported through nbd, than the tests conducted directly on the
NVMe. These results were predictable since introducing additional processing layers leads
to extra latency.

With the next category, micro experiments, it is possible to conclude several things. First,
it is possible to observe the weight of deduplication in the overall system performance by
comparing the system without deduplication with its memory version. In the same category,
HIODS persistent version was tested. The results show a significant performance drop since
we are now storing the Index, Reverse Index, and Metadata on disk using leveldb, which has
much higher latencies than RAM. These results also show a more visible difference between
inline and offline (with and without the background job) deduplication. In fact, offline
deduplication without the background job presents significantly higher performance than
inline deduplication. However, since it does not find or removes duplicates, a background job
is necessary, which competes for resources with the foreground I/O task. The introduction
of such a process leads to lower results than inline deduplication.

In order to control the background processing throughput, HIODS introduces a Feedback
Loop Controller capable of delaying the processing of dirty blocks. The results of the tests
conducted on this mechanism show that it was able to significantly increase performance, and
improve it over inline deduplication, by reducing the resources needed by the background
job.

Finally, the last category, macro experiments, focused on the switching mechanism and
the Feedback Loop Controller. These results show that HIODS successfully changed its
operation mode based on the system workload and performance objective. Furthermore, it
was also possible to conclude that the FLC mechanism plays a vital role in helping HIODS
reach and maintain the desired performance.

6

C O N C L U S I O N

This dissertation presents HIODS, a hybrid inline and offline deduplication system capable
of dynamically switching between inline and offline modes to achieve and maintain the
desired performance goals of distinct applications.

When analyzing the state of the art it is possible to conclude that some systems already
leverage both deduplication modes. However, these systems present new algorithms and
mechanisms whose main objective is only to mitigate the overhead introduced by inline
deduplication. For example, DIODE and D3 classify the input file into three types based on
its extension degree of deduplication. Such classification is then used to determine the best
deduplication mode for the file. Therefore, in a general fashion, these systems identify the
best candidates to inline deduplication, leaving the remaining ones, which may cause extra
performance interference, to be dealt in background.

The deduplication system designed in this dissertation aims differently. While the previ-
ous systems decide the best operation mode according to each request's data to efficiently
perform inline deduplication, HIODS bases its decision on the performance goals of applica-
tions using the storage system to choose the best deduplication mode. In order to achieve
the proposed goal, the system relies on a performance objective that must be achieved and
maintained to keep inline deduplication operating. In the cases where the overhead intro-
duced by the inline mode does not allow achieving the proposed objective, the offline mode
is chosen. Furthermore, HIODS also introduces a second mechanism based on Feedback
Loop Controllers that limits the background deduplication job to reduce the interference
with critical I/O operations and, again, achieve the desired application performance.

Following the design of the system, a prototype was implemented using SPDK. This
prototype implements both inline and offline deduplication, the switching mechanism,
and the Feedback Loop Controller (FLC) capable of rate limiting offline deduplication. To
summarize these components, inline deduplication processes the storage request in the
I/O critical path introducing additional overhead but only storing unique copies. On the
other hand, the offline mode only performs the required procedures for later processing,
thus reducing to the minimum the overhead in the I/O critical path but storing all data,
unique or duplicate. Periodically, the switching mechanism analyses the current and desired

51

6.1. Future Work 52

performances and decides if the operation mode should change or not. Finally, suppose
the offline mode is active, and the performance goal is still not being reached. In that case,
the FLC delays the background deduplication processing, reducing the competition for
resources between deduplication and I/O operations and, therefore, increasing storage I/O
performance.

In order to evaluate the mechanisms introduced in HIODS, a series of experiments were
designed and executed. The results show that HIODS successfully changed its operation
mode based on the system workload and performance objective. Furthermore, it was also
possible to conclude that the FLC mechanism plays a vital role in helping HIODS reach and
maintain the desired performance.

In conclusion, this dissertation introduces a system capable of dynamically changing its
deduplication mode to reach and maintain the performance requirements of applications.

6.1 future work

Since deduplication introduces additional performance costs, finding and removing
duplicates directly in the I/O critical path or preparing the data for later processing, the
optimization of both operation modes allows for lower overheads and higher performance.
Implementing mechanisms capable of taking advantage of data locality, or more complex
indexes with lower access times are a few examples of possible optimizations.

A second improvement in the system would be developing an alternative to persistently
store the deduplication metadata. As observable in the micro experiments, the transition
from memory to a persistent implementation with leveldb brought significant performance
overhead. A possible solution would be to store this metadata directly on a disk partition
while using SPDK to do it.

Also, despite the promising results shown by the Feedback Loop Controller mechanism,
the system may benefit from research regarding its parameters, kp, ki, and kd. Finally,
the switch from offline to inline deduplication causes a burst of background deduplication
operations. This burst can interfere with the foreground I/O operations, so a new mechanism
capable of limiting such processing may also be an asset to HIODS.

B I B L I O G R A P H Y

[1] Abhishek Mukherjee, Alvin Afuang, Bill Rojas, Hugh Ujhazy, and Theresa Rago. Iot
growth demands rethink of long-term storage strategies, says idc. Technical report,
International Data Corporation, July 2020.

[2] David Reinsel, John Gantz, and John Rydning. Data age 2025: The evolution of data to
life-critical. Technical report, International Data Corporation, November 2018.

[3] 451 Research. 69% of enterprises will have multi-cloud/hybrid it environments by 2019,
but greater choice brings excessive complexity. Technical report, 451 Research, New
York (NY) and Las Vegas (LV), November 2017.

[4] Aayushi Vernika Das, Delisha Clair Sequeira, Gulshan Damini Patel, and V R Srividhya.
A survey on deduplication techniques in cloud storage with cryptographic techniques.
In 2017 International Conference on Pervasive Computing and Networking. International
Journal of Engineering Research & Technology (IJERT), 2017.

[5] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A survey of secure data deduplica-
tion schemes for cloud storage systems. ACM Computing Surveys, 49(4):1–38, February
2017.

[6] Dirk Meister, Jurgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn, and Julian
Kunkel. A study on data deduplication in HPC storage systems. In 2012 Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis. IEEE,
November 2012.

[7] João Paulo and José Pereira. A survey and classification of storage deduplication
systems. ACM Comput. Sur. 47, 1, Article 11, page 30 pages, may 2014.

[8] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu, Cunyin
Chang, Gang Cao, Jonathan Stern, Vishal Verma, and Luse E. Paul. SPDK: A devel-
opment kit to build high performance storage applications. In 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE, December 2017.

[9] William J Bolosky, Scott Corbin, David Goebel, and John R Douceur. Single instance
storage in windows 2000. In Proceedings of the 4th USENIX Windows Systems Symposium,
pages 13–24. Seattle, WA, 2000.

53

bibliography 54

[10] Calicrates Policroniades and Ian Pratt. Alternatives for detecting redundancy in storage
systems data. In USENIX Annual Technical Conference, General Track, pages 73–86, 2004.

[11] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In FAST,
volume 2, pages 89–101, 2002.

[12] Bo Hong, Demyn Plantenberg, Darrell DE Long, and Miriam Sivan-Zimet. Duplicate
data elimination in a san file system. In MSST, pages 301–314, 2004.

[13] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kilian, and Cezary Dubnicki. Re-
ducing impact of data fragmentation caused by in-line deduplication. In Proceedings of
the 5th Annual International Systems and Storage Conference, pages 1–12, 2012.

[14] Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improving
content-based chunking algorithms. Hewlett-Packard Labs Technical Report TR, 30(2005),
2005.

[15] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network
file system. In Proceedings of the eighteenth ACM symposium on Operating systems principles,
pages 174–187, 2001.

[16] Sean C Rhea, Russ Cox, and Alex Pesterev. Fast, inexpensive content-addressed storage
in foundation. In USENIX Annual Technical Conference, pages 143–156, 2008.

[17] Benjamin Zhu, Kai Li, and R Hugo Patterson. Avoiding the disk bottleneck in the data
domain deduplication file system. In Fast, volume 8, pages 1–14, 2008.

[18] Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale, Stephen Rago,
Grzegorz Calkowski, Cezary Dubnicki, and Aniruddha Bohra. Hydrafs: A high-
throughput file system for the hydrastor content-addressable storage system. In FAST,
volume 10, pages 225–239, 2010.

[19] Kiran Srinivasan, Timothy Bisson, Garth R Goodson, and Kaladhar Voruganti. iDedup:
latency-aware, inline data deduplication for primary storage. In Fast, volume 12, pages
1–14, 2012.

[20] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezis, and
Peter Camble. Sparse indexing: Large scale, inline deduplication using sampling and
locality. In Fast, volume 9, pages 111–123, 2009.

[21] Deepavali Bhagwat, Kave Eshghi, Darrell DE Long, and Mark Lillibridge. Extreme
binning: Scalable, parallel deduplication for chunk-based file backup. In 2009 IEEE Inter-
national Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, pages 1–9. IEEE, 2009.

bibliography 55

[22] Fanglu Guo and Petros Efstathopoulos. Building a high-performance deduplication
system. In USENIX annual technical conference, 2011.

[23] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl: A content-aware flash transla-
tion layer enhancing the lifespan of flash memory based solid state drives. In FAST,
volume 11, pages 77–90, 2011.

[24] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasubramaniam.
Leveraging value locality in optimizing nand flash-based ssds. In FAST, pages 91–103,
2011.

[25] Jonghwa Kim, Choonghyun Lee, Sangyup Lee, Ikjoon Son, Jongmoo Choi, Sungroh
Yoon, Hu-ung Lee, Sooyong Kang, Youjip Won, and Jaehyuk Cha. Deduplication in
ssds: Model and quantitative analysis. In 012 IEEE 28th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–12. IEEE, 2012.

[26] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian,
Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal Welnicki.
Hydrastor: A scalable secondary storage. In FAST, volume 9, pages 197–210, 2009.

[27] Tian-Ming Yang, Dan Feng, Zhong-ying Niu, and Ya-ping Wan. Scalable high perfor-
mance de-duplication backup via hash join. Journal of Zhejiang University SCIENCE C,
11(5):315–327, 2010.

[28] Austin T Clements, Irfan Ahmad, Murali Vilayannur, Jinyuan Li, et al. Decentralized
deduplication in san cluster file systems. In USENIX annual technical conference, pages
101–114, 2009.

[29] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and Shmuel T
Klein. The design of a similarity based deduplication system. In Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference, pages 1–14, 2009.

[30] Randal C Burns and Darrell DE Long. Efficient distributed backup with delta compres-
sion. In Proceedings of the fifth workshop on I/O in parallel and distributed systems, pages
27–36, 1997.

[31] Lawrence You and Christos T Karamanolis. Evaluation of efficient archival storage
techniques. In MSST, pages 227–232, 2004.

[32] Lawrence L You, Kristal T Pollack, and Darrell DE Long. Deep store: An archival storage
system architecture. In 21st International Conference on Data Engineering (ICDE’05), pages
804–815. IEEE, 2005.

bibliography 56

[33] John R Douceur, Atul Adya, William J Bolosky, P Simon, and Marvin Theimer. Reclaim-
ing space from duplicate files in a serverless distributed file system. In Proceedings 22nd
international conference on distributed computing systems, pages 617–624. IEEE, 2002.

[34] Yan Tang, Jianwei Yin, Shuiguang Deng, and Ying Li. DIODE: Dynamic Inline-Offline
DEduplication providing efficient space-saving and read/write performance for primary
storage systems. In 2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, September
2016.

[35] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian. POD: Performance oriented i/o
deduplication for primary storage systems in the cloud. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium. IEEE, May 2014.

[36] Jianwei Yin, Yan Tang, Shuiguang Deng, Ying Li, and Albert Y. Zomaya. D3 : A dynamic
dual-phase deduplication framework for distributed primary storage. IEEE Transactions
on Computers, 67(2):193–207, February 2018.

[37] Huijun Wu, Chen Wang, Yinjin Fu, Sherif Sakr, Liming Zhu, and Kai Lu. HPDedup:
A hybrid prioritized data deduplication mechanism for primary storage in the cloud,
2017.

[38] Amdewar Godavari, Chapram Sudhakar, and T. Ramesh. Hybrid Deduplication Sys-
tem—a block-level similarity-based approach. IEEE Systems Journal, pages 1–11, 2020.

[39] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan, Ron Oldfield,
Matthew Wolf, and Qing Liu. Six degrees of scientific data: reading patterns for extreme
scale science io. In Proceedings of the 20th international symposium on High performance
distributed computing, pages 49–60, 2011.

[40] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and Sudipta Sengupta.
Primary data deduplication—large scale study and system design. In Presented as part
of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 285–296, 2012.

[41] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun Shastry, Philip Shilane, Sun Zhen,
Vasily Tarasov, and Erez Zadok. Using hints to improve inline block-layer deduplication.
In 14th USENIX Conference on File and Storage Technologies (FAST 16), pages 315–322,
2016.

[42] Network block device. https://nbd.sourceforge.io/. Accessed: 18-12-2020.

[43] Glib reference manual. https://developer.gnome.org/glib/. Accessed: 18-12-2020.

[44] Google. google/leveldb. https://github.com/google/leveldb. Accessed: 18-12-2020.

https://nbd.sourceforge.io/
https://developer.gnome.org/glib/
https://github.com/google/leveldb

bibliography 57

[45] Vineet Kumar, BC Nakra, and AP Mittal. A review on classical and fuzzy pid controllers.
International Journal of Intelligent Control and Systems, 16(3):170–181, 2011.

[46] JTPaulo. jtpaulo/dedisbench. https://github.com/jtpaulo/dedisbench. Accessed: 18-12-
2020.

[47] dstat. https://linux.die.net/man/1/dstat. Accessed: 18-12-2020.

https://github.com/jtpaulo/dedisbench
https://linux.die.net/man/1/dstat

	1 Introduction
	1.1 Problem
	1.2 Goals and Contributions
	1.3 Dissertation Structure

	2 Background and State Of The Art
	2.1 Deduplication
	2.1.1 Basic Architecture
	2.1.2 Deduplication Criteria
	2.1.3 Primary Storage vs Secondary Storage

	2.2 Related Work
	2.2.1 DIODE
	2.2.2 D3
	2.2.3 HPDedup
	2.2.4 Hybrid Deduplication System
	2.2.5 Discussion

	3 Architecture
	3.1 General Overview
	3.2 Deduplication Workflow - Inline Mode
	3.3 Deduplication Workflow - Offline Mode
	3.4 Deduplication Workflow - Background Processing
	3.5 Deduplication Controller

	4 Prototype
	4.1 SPDK
	4.2 Implementation Details
	4.3 Deduplication Controller
	4.3.1 Feedback Loop Controller

	5 Experimental Evaluation
	5.1 Testing Methodology
	5.2 Preliminary Experiments
	5.2.1 Results Analysis

	5.3 Micro Experiments
	5.3.1 Results Analysis

	5.4 Macro Experiments
	5.4.1 Mountain/Valley
	5.4.2 Stairs

	5.5 Discussion

	6 Conclusion
	6.1 Future Work

