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Two simple movement mechanisms for
spatial division of labour in social insects

Thomas O. Richardson 1,2,4, Nathalie Stroeymeyt 1,2,4 , Alessandro Crespi3 &
Laurent Keller 1

Manyanimal species divide space into apatchworkof home ranges, yet there is
little consensus on the mechanisms individuals use to maintain fidelity to
particular locations. Theory suggests that animal movement could be based
upon simple behavioural rules that use local information such as olfactory
deposits, or global strategies, such as long-range biases toward landmarks.
However, empirical studies have rarely attempted to distinguish between
these mechanisms. Here, we perform individual tracking experiments on four
species of social insects, and find that colonies consist of different groups of
workers that inhabit separate but partially-overlapping spatial zones. Our
trajectory analysis and simulations suggest that worker movement is con-
sistent with two local mechanisms: one in which workers increase movement
diffusivity outside their primary zone, and another in which workersmodulate
turning behaviour when approaching zone boundaries. Parallels with other
organisms suggest that local mechanismsmight represent a universal method
for spatial partitioning in animal populations.

Spatial heterogeneities in the distribution of organelles within cells1, of
cells within tissues2, of individuals and social groups within
populations3, and of populations within communities4 are ubiquitous
in nature and arebelieved toplay a fundamental role in the functioning
of biological systems. A common challenge in the study of these het-
erogeneities is to uncover the links between global patterns and the
processes operating at the level of individual units. For example,
understanding how individual-level movement properties lead to the
emergence of population-level spatial patterns, such as the segrega-
tion of animals into separate home ranges or territories, has been the
focus of much attention in animal ecology3,5–7. Theoretical movement
models have assumed that home ranges could be the product of ani-
mals (i) consistently biasing the direction of their movement towards
the centre of their home range (focal-point attraction), (ii) switching
between low- and high-diffusivity movement regimes depending on
position (locomotion adjustment), or (iii) changing direction when
encountering home range boundaries (boundary effect)7; other candi-
date mechanisms for home range behaviour include memory effects8,

competitive interactions9 or conspecific avoidance10. Some of these
mechanisms have received support from empirical studies of indivi-
dual trajectories (e.g. focal-point attraction in desert ants11, locomotion
adjustment in foraging bees12, nematodes13 and albatrosses14, and
boundary effect in butterflies15, among others). However, the use of
spatially-explicit approaches that make comparisons between empiri-
cal and simulated spatial trajectories to tease apart multiple candidate
mechanisms has been a relatively recent development fraught with
analytical and statistical challenges3,5, and it remains unclear whether
the individual-level behavioural mechanisms for generating global
spatial patterning are system-specific or generic7. Here we aim to
evaluate which individual movement mechanisms may be responsible
for collective patterns of spatial occupancy within the nests of four
different species of social insect.

Social insects form extended-family units numbering from tens to
millions of individuals, which are morphologically, physiologically
and/or behaviourally differentiated into functional groups (e.g. nurses
feeding and grooming brood, or foragers bringing back food to
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the nest) whose membership remains relatively consistent over inter-
mediate timescales16,17. This social division of labour among workers is
typically associated with a spatial division of the nest into task zones
which aremainly visited bydifferent subsets ofworkers18–29. Becauseof
this almost ubiquitous relationship between social and spatial het-
erogeneities within the nest, social insects are an ideal system to
investigate the link between individual behaviour and collective spatial
patterns. Here we do so by using an automated tracking system to
obtain thewithin-nest spatial trajectories of 12 559 individually-marked
workers from colonies of the honeybee Apis mellifera, the common
black garden ant Lasius niger, the large acorn ant Leptothorax acer-
vorum, and the acorn ant Temnothorax nylanderi (Fig. 1, Fig. S1, Sup-
plementary Note 1). To objectively describe the patterns of spatial
occupancy of individuals within the nest, we develop a spatially-
explicit analytical framework in which individuals and the locations
they visit are represented as a two-layer (i.e., bipartite) network30. As
this framework quantifies ties between individuals and locations
(rather than between individuals and tasks25,26,31–33, or among
individuals17,22,28,34,35), it combines the social and spatial structure of the

colony within a single representation, providing an objective method
for functional mapping of the nest into spatial ‘modules’. We then use
these spatial maps and the over two billion trajectory coordinates
produced by the tracking system to explore whether our empirical
data are consistent withmodified versions of the threemain candidate
mechanisms presented above. In the context of social insect nests, the
focal-point attraction mechanism is formulated as a global navigation
process in which workers consistently bias the direction of their
movement towards the boundaries of their primarymodulewhen they
stray outside of it. Such a global navigation process, which assumes
that workers always know in what direction their goal is regardless of
their current position (e.g., through landmark navigation or path
integration11,36), has been used as a means of producing spatial orga-
nisation in models of social insect colonies37, but has not been
experimentally demonstrated inside the nest. The locomotion adjust-
ment mechanism is formulated as a context-dependent process in
which workers use local cues such as chemical blends deposited onto
the nest surfaces38 to assess whether or not they are currently within
their primary module, and accordingly adopt either slow- or fast-
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Fig. 1 | Spatial organisation in four species of social insects. a–d One-hour
trajectories of all workers in an example colony. The nest interior is divided into
discrete sites definedby a hexagonal grid. The trajectoryof a single focal individual
is shown in red. e–h Corresponding site-visit networks. Edges connect individuals
(upper layer) to the sites they visit (bottom layer). Edge widths are proportional to
the number of visits. The module scores for each node are indicated by the
coloured bars (Nurse (N): cyan; Intermediate (I): black; Peripheral (P): magenta;
Forager (F): yellow). In the honeybee colony, two different shades of cyan are used
to depict the two distinct nurse modules. The connections of the focal individual
are shown in red. i–l Map of the nest floor. Sites are coloured according to the
linear combination of CMYK colours for each module, weighted by its module
scores; thus a site with a forager score of 1 (‘pure’ forager site) is shown in yellow
(top right corner in the colour key), while a site with a forager score of 0.5 and a

peripheral score of 0.5 is shown in orange (middle of top row in the colour key). In
the honeybee colony, two different shades of cyan are used to depict the two
distinct nursemodules. Solid black lines indicate the borders of the broodnest inA.
mellifera, and the outline the brood pile in the ants. The circle indicates the nest
entrance. White grid cells correspond to unvisited sites (typically occupied by
clusters of brood in the ants, or wax pillars in the bees). m–p Heatmaps showing
themodule score diversity of all visitors to each site (‘Visitor diversity’). The brood
and the area near the nest entrance are associated with low visitor diversity (i.e.,
low mixing between individuals from different modules), whilst the intermediate
area is associated with high visitor diversity (i.e., high mixing between individuals
from different modules). White grid cells correspond to unvisited sites. Source
data are provided as a source data file.
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diffusing movement. Slow-diffusing movement within the primary
module would reduce workers’ likelihood of leaving it, whilst fast-
diffusingmovement when outside the primarymodulewould increase
their likelihood of quickly finding it. Finally, the boundary effect
mechanism is formulated as a second context-dependent process in
which workers can detect local module boundaries and actively adjust
their movement direction to avoid leaving their preferred module
(e.g., by making a U-turn when encountering the boundary from the
inside), or to preferentially cross into it (e.g., by keeping walking
straight when encountering the boundary from the outside).

Our results do not provide support for the focal-point attraction
mechanism as a generic organisation rule, as ants do not display
consistent directional bias towards their primary module and bees do
so onlyweakly. By contrast, empirical trajectories in all four species are
consistent with both the locomotion adjustment and boundary effect
mechanisms, suggesting that the spatial organisation of social insect
nests may be underpinned by these two well-conserved local move-
ment mechanisms.

Results
Quantifying the social and spatial organisation of social
insect nests
The automated video tracking produced a dataset consisting of ~ 2.5
× 109 trajectory coordinates, corresponding to ~ 2.1 × 105 ant-hours
and ~ 1.3 × 105 bee-hours of observations (Table 1).

To analyse these data, the trajectories of all individually-marked
workers in each colony were combined into a bipartite spatial network
consisting of two types of nodes: ‘individuals’ (workers) and spatial
‘sites’ obtained by dividing the nest into a regular grid (Fig. 1a–d, Fig.
S2, Supplementary Note 2). These two types of nodes were connected
by weighted edges representing the number of times each individual
visited each site (Fig. 1e–h). This representation thus allows the spatial
habits of all colony members to be summarized in a single network.

To test whether individuals can be classified into groups with
similar space use patterns, we used a stochastic community detection
algorithm to partition the network into distinct modules, each con-
sisting of a set of workerswith strong ties to a shared set of sites39. This
stochastic algorithm was repeated 1000 times for each colony to
evaluate the variation in both the number of modules identified and
the assignment of individuals and sites to particular modules. In all
four species, colonies typically consisted of four modules (mean ±
standard error of the proportion of algorithm iterations that identified
exactly four modules, A. mellifera: 89.5 ± 0.03%; L. niger: 71.3 ± 0.05%;
L. acervorum: 79.8 ± 0.04%; T. nylanderi: 74.4 ± 0.07%; Fig. S3). In the
ants therewas typically onemodulewhose outline closely followed the
border of the brood pile (‘nurse’module), one module centred on the
nest entrance (‘forager’module), one that closely followed the internal
walls (‘peripheral’ module), and one that formed a sickle- or ring-
shaped area between the nurse and forager modules or between the
nurse andperipheralmodules (‘intermediate’module, Fig. 1 j–l, Fig. S4-
S5, Supplementary Note 3). The honeybee colonies also typically
consisted of four modules, including one peripheral and one forager
module, but instead of one nurse module and one intermediate
module, they possessed two nurse modules – one covering the
broodnest on one side of the wax comb, and the other covering the

broodnest on the other side of the comb (Fig. 1 i, Fig. S5). The presence
of two distinct nurse modules in the honeybee probably stemmed
from the physical architecture of the honeybee nest (a double-sided
wax comb with a separate patch of brood cells on each side20), com-
bined with the relatively low mobility of nurse bees, which together
limit the exchange of nurses between the two broodnests (mean ±
standard error of the number of switches between the two sides of the
comb, nurses: 15.2 ± 0.26; other bees: 35.6 ± 0.51; generalized linear
mixed-effects model (GLMM) with Poisson error & colony identity as
random effect, nurses versus all other bees: d.f. = 1, χ2=33721,
p <0.0001). However, bees from the two nursemodules did not differ
fromone another in age (general linearmixed-effectmodel (LME) with
mean module age as a main effect and & colony identity as random
effect, difference between the two nurse modules: z =0.93, p =0.79).
Therefore, in all subsequent analyses the two honeybee nursemodules
were pooled into a single group.

Repeated iterations of the community detection algorithm
revealed that individuals and sites were often allocated to more than
one module. To quantify this overlap between modules, each indivi-
dual and each site was assigned four continuous ‘module scores’,
representing the proportion of iterations in which the node was
assigned to each module (Fig. 1 e–l, Fig. S2, Fig. S4-S5). As these mea-
sures are proportions, module scores vary in the range 0-1, and the
four scores of each individual or site always sum to 1. Thus, an ant that
wasmost often assigned to the foragermodule and occasionally to the
peripheralmodule, would have a high score for the foragermodule (its
‘primary’ module, i.e., the module for which it scores highest), a low
score for the peripheral module, and zero scores for the nurse and
intermediate modules. In all four species, the majority of individuals
had either the nurse or the forager module as their primary module,
with the intermediate and peripheral modules making up the
remaining 20-30% of the individuals, and the remaining 30-40% of the
sites (Table S1, Supplementary Note 4).

To assess the performance of our community detection approach
we performed two validation steps. The first step was to check for a
correlation between age and task (i.e., age polyethism), which is
observed in most species of social insects18–20. Both species for which
we had data on individual age (i.e., A. mellifera and L. niger) exhibited
characteristic signs of age polyethism: young workers had the highest
scores for the nurse module, middle-age workers had the highest
scores for the peripheral and intermediatemodules,whilst oldworkers
had the highest scores for the forager module (Fig. 2a–b).

As social insect division of labour is characterised by different
worker groups carrying out different sets of tasks in different parts of
the nest18,20,28, our second validation step was to check whether the
spatial module(s) to which an individual belongs correspond to the
tasks it performs, that is, its ‘task profile’. To quantify worker task
profiles we analysed several task-relevant behaviours: patrolling,
queen attending, foraging, and entranceguarding.Of these, patrolling,
queen attending and foraging were defined without any reference to
workers’positionwithin thenest,whilst entranceguardingwasdefined
based onworkers’ behavioural state when just inside the nest entrance
(see Methods). To visualise the individual-level variation in these high-
dimensional task profiles we used the LargeVis algorithm40 to reduce
the task profiles to a two-dimensional ‘task space’. In this

Table 1 | Summary statistics for colony sizes and tracking data

Species N colonies Colony size Colony size Total tracked Sum total Sum total
(mean ± S.D.) (range) Individuals Trajectory coordinates Ant/bee hours

A. mellifera 10 4494 ± 1176 2867–6462 8850 970,538,883 134,797

L. niger 20 93± 35 31–139 1867 839,179,656 116,553

L. acervorum 10 64 ± 21 22–94 635 210,372,480 29,218

T. nylanderi 10 114 ± 37 76–191 1142 441,439,804 61,311
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representation, each point represents a worker, and the distance
between pairs points represents the dissimilarity in their task profiles.
Hence, workers with similar task profiles are close to one another, and
workers with dissimilar task profiles are far apart. In all four species
individuals with similar module scores clustered together in the task
space (Fig. 2c–d; SupplementaryMovie 1). In all species, the nurses and
foragers each clustered together on opposite sides of the task space,
suggesting that they had the most dissimilar task profiles. The inter-
mediates and peripherals clustered together in the area between the
nurses and foragers, indicating that their task profiles were a combi-
nation of those exhibited by the nurses and the foragers. Multiple
analysis of variance (MANOVA) confirmed that individuals with dif-
ferent primary modules had significantly different task profiles (Fig.
S6, Supplementary Note 5), and trajectory analysis further indicated
that they displayed significantly different movement characteristics
(Fig. S7, Supplementary Note 6), confirming that the modules identi-
fied using our purely spatial approach correspond to biologically-
relevant functional groups.

Comparative analysis of social and spatial organisation
Examining the module scores of all sites and individuals revealed that
honeybee colonies exhibited greater social and spatial segregation
than ant colonies. Indeed, compared to ants, honeybee colonies had a
higher proportionof full specialists (i.e.,workersbelonging toonlyone
module, Fig. 3 a, Fig. S2; Table S2, Supplementary Note 7). Similarly,
honeybee colonies had a larger proportion of non-overlapping sites
(i.e., sites belonging to only one module) than ant colonies (Fig. 3 b,
Fig. 1 i–l, Fig. S2, Fig. S4; Table S2). The greater social and spatial
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Fig. 3 | Honeybee colonies exhibit greater socio-spatial segregation than ant
colonies. Points represent colony means. Bars & whiskers indicate grand means
and standard errors. a Proportion of specialist workers (individuals that belong to
only one module). The red line shows the case when the two A. mellifera nurse
modules were treated separately, rather than being pooled. General linear model
(GLM); proportion of specialist workers ~ species, F3,46= 15.7, p <0.0001. Letters
above bars indicate Benjamini-Hochberg (BH) corrected post-hoc contrasts
betweenall speciespairs. Three ant versus honeybee contrasts: ∣z∣ > 3.8,p <0.001 in
each case. b Proportion of non-overlapping sites (sites that belong to only one
module). GLM; proportion of non-overlapping sites ~ species, F3,46= 16.8,
p <0.0001. Three ant versus honeybee contrasts: ∣z∣ > 4.3, p <0.0005 in each case.
All analyses based on n = 50 biologically independent colonies. Source data are
provided as a source data file.

Fig. 2 | Correlations between age, module score and task validate the spatial
approach. a, b Honeybee and ant workers exhibit similar transitions between
modules as a function of age. Stacked bars indicate the average module score
profile for individuals of a given age. The horizontal bar encodes the typical
module score profile for individual of each age (CMYK combination of the scores
for each module, averaged across all individuals of each age). c, d Workers
belonging to different spatial modules exhibit different task profiles. Scatterplots

represent the outcome of LargeVis dimensionality reductions applied to the
worker task profiles. Points represent different individuals. Point separation indi-
cates task profile similarity. The module scores were not used in the LargeVis
analysis or in the task definitions. See Supplementary Movie 1 for three-
dimensional LargeVis representations of all four species. Source data are provided
as a source data file.
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segregation of honeybee colonies was not contingent upon the pool-
ing of the two honeybee nursemodules (Fig. 3, red lines; Table S3), nor
was it a methodological artefact arising from differences in network
sizes between species (Fig. S8, Supplementary Note 8). Though this
greater social and spatial segregation in the honeybees could bedue to
their larger colony sizes leading to more pronounced division of
labour41–43, it was not possible to tease apart the relative effect of col-
ony size versus species idiosyncrasies in our dataset (Supplemen-
tary Note 7).

To quantify the mixing between worker populations from differ-
ent modules, we calculated an entropy-based measure of hetero-
geneity, termed ‘module score diversity’ (see Methods), for (i) all the
sites that each individual visited, (ii) all the individuals that visited a
given site (Fig. 1 m–p, Fig. S9, Supplementary Note 9), and (iii) all the
nestmates that each individual physically contacted. Workers from the
peripheral or intermediate modules visited a greater diversity of sites
than those from the nurse or foragermodules (Fig. 4a–b; Table S4, and
Supplementary Note 10). Similarly, sites from the intermediate or
peripheral modules were visited by a greater diversity of individuals
than sites from the nurse or forager modules (Fig. 4 c–d; Table S4).
Finally, workers from the intermediate or peripheral modules inter-
actedwith a greater diversity of nestmates thanworkers from thenurse
or forager modules (Fig. 4e–f; Table S4). Overall, these results indicate
that the intermediate and peripheral modules may play an ‘interface’
role in mediating mixing between different worker populations.

Finally, as thebroodand thenest entrancearekey locationswithin
the nest, we tested whether these areas were subject to more or less
mixing than other areas. Across all species both areas had a lower
diversity of visitors thanother parts of thenest (Fig. 1m–p; Fig. S9; LME
with visitor diversity as response, colony as random effect, and
proximity to brood, nest entrance and colony size as main effects;
effect of brood: β ≤ −0.17, χ2 ≥ 4829.2, p <0.0001; effect of nest
entrance: β ≤ −0.17, χ2 ≥ 1354.3, p < 0.0001 in all species; Table S5).
Thus, the brood and entrance areas appear to be exclusive zones that
are visited primarily by specialist workers from a single module (the
nurse and forager modules respectively), whereas other nest areas are
mixing zones that are visited by generalists and/or specialists from
multiple modules.

Describing the movement patterns associated with collective
spatial organisation
To explore how nest-level spatial segregation may arise from indivi-
dual movement patterns, we tested predictions from the three can-
didatemovementmechanisms described above: focal-point attraction,
locomotion adjustment and boundary effect. The focal-point attraction
mechanism predicts that individuals should bias the direction of their
movement towards their primary module over both short and long
distances. The locomotion adjustment mechanism predicts that fun-
damental statistics thatunderpin locomotiondiffusivity (probability of
being active, speed and turn angle) should vary depending upon
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∣z∣≥8.4, p <0.0001 in all cases. b Three-day trajectories for an example nurse (left) and peripheral (right) honeybee workers on both sides of the wax comb. The circles
indicate the nest entrance. d Worker visitation patterns for the two example focal sites indicated in the module map blow-up (left: nurse site; right: peripheral site).
Visitation patterns represented as treemaps; each rectangle represents a worker that visited the focal site at least once. Rectangle areas are proportional to the number of
visits by a worker to the site. Colours encode each worker’s module scores (CMYK combination). Rectangles are grouped together according to workers' primarymodule.
f The middle network shows the daily contact network, in which nodes represent individuals, and weighted edges the number of physical contacts between bees. Node
positions are determined by a force-directed layout. The left and right plots show ego-centric contact networks for a nurse (left) and a peripheral bee (right), indicated by
the central stars. The distance from each node to the focal bee indicates the number of contacts with the focal bee. Source data are provided as a source data file.
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location, and whether individuals are inside or outside their primary
module. The boundary effect mechanism predicts that when reaching
the boundary of their primary module, individuals should vary their
turning behaviour depending upon their approach direction, such that
they make larger (respectively smaller) turns when approaching the
boundary from the inside (respectively outside).

First, to assess whether empirical trajectories are consistent with
the focal-point attraction mechanism, we tested whether the direc-
tional bias (‘taxis index’; see Methods, Fig. S10-S11 and Supplementary
Note 11) towards any focalmodulewas greater inworkers belonging to
that module than in other workers. Honeybees exhibited some direc-
tional bias towards their primary module up to distances of 13 body
lengths outside the boundary; however, this effect was very weak and
completely absent at longer distances (Fig. 5a). Furthermore, in all
three ant species, workers only showed bias towards their primary
spatialmodulewhen very close to the border (i.e., nomore than2body
lengths outside; Fig. 5 b–d).Overall, thesedata indicate that long-range
attraction toward the primary module is very weak in honeybees and
absent in ants, suggesting that focal-point attraction is unlikely to be a
general organising mechanism for spatial organisation in social
insect nests.

We next tested whether the probability of a worker being active
and its speed and turn angle while active depended upon location, as
predicted by the locomotion adjustment mechanism. To account for
the overlapping nature of the spatial modules, we defined the ‘indivi-
dual-site similarity’ (cosine similarity between the module scores of a
worker and a site, see Methods), which provides a fine-grained quan-
tification of the degree to which a worker is inside or outside its pri-
mary module. We found that when visiting sites with module scores
similar to their own, workers (i) were less likely to be in the active state
(Fig. 6 a–d), (ii) moved more slowly while active (Fig. 6 e–f), and (iii)
made larger turns while active (Fig. 6 i–l), than when visiting sites with
module scores dissimilar to their own (Fig. S12, Supplementary
Note 12; LME with individual-site similarity and colony size as main
effects and colony identity, worker identity, site identity & worker
density as random effects; effect of individual-site similarity on prob-
ability of being active : χ2 > 51396, d.f. = 1, p <0.0001 in all species;
effect of individual-site similarity on speed while active: χ2 > 20421,
d.f. = 1, p < 0.0001 in all species; effect of individual-site similarity on
turn angle while active: χ2 > 8286, d.f. = 1, p < 0.0001 in all species). To
check these results, we mapped how these three locomotion para-
meters vary in space, for individuals with different primary modules
(Fig. 7). These module-specific maps confirmed that workers from all
four modules displayed lower diffusivity (more inactive, slower, with

sharper turns) when visiting sites belonging to their primary module
(where the individual-site similarity was high), and higher diffusivity
(more active, faster, with smaller turns) when visiting sites outside
their primary module (where the individual-site similarity was low).
This transition from a low-diffusivity movement regime in the core of
the primary module to a high-diffusivity movement regime when far
outside it was observed in all four species and is consistent with the
locomotion adjustment mechanism. This suggests that locomotion
adjustment mechanism could potentially act as a general organising
rule underlying spatial organisation in social insect nests.

Finally, we tested whether, upon reaching the boundary of their
primary module, workers vary their turning behaviour depending
upon their approach direction, as predicted by the boundary effect
mechanism. To do so, we first developed a method to objectively
quantify approach direction near fuzzy, overlapping module bound-
aries. In this method, the topography of the score landscape of each
module M is described using a gradient field F

!
M , in which vectors

encode the local score gradient steepness and direction at each site.
For example, whenmoduleM exhibits a very gradual spatial transition
into another module, sites in this transition zone are associated with
short vectors (shallow gradient) pointing ‘up’ the local module score
gradient (Fig. 8a–b; see Methods). We used these gradient fields to
quantify how workers change direction in areas of transition between
modules (i.e., areas with non-zero gradient) depending on their
approach direction. In all four species, workers had higher turn angles
when travelling down-gradient of their primary module compared to
workers from other modules travelling in the same direction at the
same location (Fig. 8c, e-h). In other words, workers approaching their
primary module boundary from the inside had a greater tendency to
change direction to avoid crossing the boundary and thus avoid
leaving their primarymodule. Furthermore, in all four species workers
had lower turn angles when travelling up-gradient of their primary
module than workers from other modules travelling in the same
direction at the same location (Fig. 8c, e-h). In other words, workers
approaching their primary module boundary from the outside had a
greater tendency to maintain their movement direction to cross the
boundary and re-enter their primary module (Fig. 8d, e-h). Interest-
ingly, these effects were more pronounced when the local module
score gradient was steeper (Fig. 8e–h; LME on �θi,s,Mi

with three main
effects: up/down-gradient approach direction, local field steepness
∣g∣M,s, colony size, with one interaction: direction × ∣g∣M,s, and with four
random effects: colony identity, worker identity, site identity and
worker density; effect of direction × ∣g∣M,s: χ

2 > 146.6, d.f. = 1, p <0.0001
in all species). These results show that the empirical trajectories are

Fig. 5 | Quantifying directional bias toward the primary module. Panels
a–d show the signed difference in the taxis indices of resident versus non-resident
workers as a function of distance to the focal module border, for each species.
Positive values occur when individuals from a focal module (residents) exhibit
stronger taxis toward the nearest point on the border of that module than indivi-
duals from other modules (non-residents). Vertical bars indicate standard errors,

and shaded areas represent the 95% confidence intervals after Bonferroni correc-
tion. Asterisks indicate distances at which there was a statistically significant dif-
ference between the taxis of residents and non-residents after BH correction for
multiple testing. All analyses based on n = 12494 workers, drawn from n = 50
colonies. Source data are provided as a source data file.
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consistent with a boundary effect in all four species, and that this effect
is enhanced when workers encounter a discrete and well-delineated
border, compared to workers that find themselves in a gradual tran-
sition between overlapping modules. This suggests that the boundary
effectmechanism could also potentially act as a general organising rule
underlying spatial organisation in social insect nests.

From movement patterns to spatial segregation: agent-based
modelling
We next developed an agent-based simulation model for individual
movement, to (i) assess whether the three candidate mechanisms
make distinct predictions for individual movement, and (ii) test whe-
ther the two local movement mechanisms locomotion adjustment and
boundary effect are sufficient to explain the observed spatial segrega-
tion between task groups (see Supplementary Note 13 for detail). All
simulations were based on a simple correlated random walk model37,
which was modified to include one or more of the three movement
mechanisms presented above, and parameterised using tracking data
from each species (Table S6). Figure 9a, b illustrates the concepts
underlying ourmodelling approach for each of the threemechanisms.

Comparing the simulation outcomes from the three candidate
mechanisms confirmed that each mechanism makes distinct predic-
tions for individual movement. Thus, only the focal-point attraction
mechanism predicted long-range attraction toward the primary
module, only the locomotion adjustment mechanism predicted
location-dependent changes in movement diffusivity, and only the
boundary effect mechanism predicted that turning behaviour of
workers approaching their primary module boundary depends upon
the approachdirection and transition steepness (Figs. 9c and S13–S15).
These non-overlapping predictions demonstrate that the three can-
didatemovementmechanisms are non-redundant, so for example, the
locomotion adjustment mechanism does not produce an apparent
boundary effect.

Comparisons between the empirical and simulated trajectories
(Fig. 9c) showed that the global focal-point attraction model failed to
reproduce the universal movement patterns highlighted in our

analyses of empirical trajectories, confirming that this mechanism is
unlikely to be the main driver of spatial organisation in social insect
nests. By contrast, the empirical trajectoriesweremore consistentwith
simulated trajectories produced from the local mechanisms: the
locomotion adjustment model successfully reproduced the location-
dependent modulation of movement diffusivity, and the boundary
effect model successfully reproduced the direction-dependent mod-
ulation of turning behaviour for individuals at the boundary of their
primary module. However, the best match between the empirical and
simulated trajectories was achieved by a model that combined both
local mechanisms (B.E. + L.A. in Fig. 9c and Figs. S13–S15).

Furthermore, analyses of the spatial segregation produced by the
movement models showed that the combination of the two local
mechanisms is also sufficient to produce full spatial segregation
between populations of workers in all species (Fig. S16). Further sen-
sitivity analyses revealed that the locomotion adjustment mechanism
has a stronger effect than the boundary effect mechanism, but both
mechanisms were necessary to produce full spatial segregation in
honeybee colonies (Fig. S17). Overall, our results suggest that spatial
division of labour in social insect nests is consistent with workers
basing their movement decisions upon two well-conserved context-
dependent movement mechanisms.

Discussion
A common feature of many social insect species is a spatial division of
labour, wherebyworker subsets carrying out different task sets occupy
different parts of the nest20–24,28,29,44. The bipartite spatial network
approach presented here provides an objective method for simulta-
neously dividing the colony population into social groups and map-
ping the nest into functional zones, opening the way to new
quantitative analyses of socio-spatial organisation in animal groups.
Although our method used spatial visitation patterns as the only
input, the social groups identified differed not only in their typical
location, but also in age, in the tasks they performed and in the way
they moved. The connection between these different measures sug-
gests that our approach is successful in identifying biologically-

Fig. 6 | Individuals increase their diffusivity when outside their primary mod-
ule. a–d Individuals were less active when visiting sites with module scores that
were similar to their own, and more active when visiting sites with module scores
thatwere very different to their own. e–lActive individualsmovedmore slowly and

tortuously when visiting sites with module scores that matched their own, and
faster and straighterwhen visiting siteswith differentmodule scores. Points& error
bars represent means and standard errors, calculated across all colonies. Source
data are provided as a source data file.
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relevant social groups using trajectory fixes only, without relying on
ad-hoc definitions for what constitutes a task20,21,25,28,33,45, a social
interaction22,23,26,28,29,44, or a caste23,50. Because of its generality, and
because it requires fewdefinitions or assumptions, our approach could
thus allow more meaningful comparisons between the social organi-
sation of multiple species. Remarkably, the application of our method
to four physically monomorphic species of social insect consistently
identified four partially overlapping worker groups (Figs. 1 and S2–S5),
which contrasts with the cross-species variability in social structure
highlighted by previous studies (one worker group46,47, two27,29,
three18,22,23,45,48–50, four20,21,25, or five51).

Our spatial approach also revealed that all four species exhibited a
similar segregation between exclusive zones (around the brood and
nest entrance) that were chiefly visited by single-module specialists,
and interface zones (peripheral and intermediate modules) visited by
generalists and/or specialists from all modules, where workers mixed
with a wide range of individuals from all modules. Furthermore, the
movement of nurses and foragers was more constrained to their pri-
mary module than the movement of peripheral and intermediate
workers which roamed more freely across spatial modules. The ten-
dency of nurses and foragers to restrict their movements to separate
exclusive zones could have implications for disease transmission24,52,
as it should decrease the frequency of direct contacts between high-
value individuals (i.e., the queen, brood and young nurses) and high-
risk individuals (i.e., foragers that may pick up pathogens outside).
Although the exact function of the intermediate and peripheral indi-
viduals remains unclear, their free-roaming movement suggests that

they have the opportunity to act as an interface that mediates or
regulates the exchange of information and material between the
otherwise less-well connected forager and nurse module.

We investigated three alternative, non-exclusive candidate beha-
vioural mechanisms for the maintenance of spatial segregation
between groups of workers: (i) a focal-point attraction mechanism in
which workers know the direction of their primary module relative to
their current location and can bias their movement towards it36, (ii) a
locomotion adjustmentmechanism in which individuals can adjust the
diffusivity of their movement depending on whether or not they are
within their primary module, and (iii) a boundary effectmechanism in
which individuals can detect module borders and actively avoid leav-
ing, or preferentially enter, their primary module. Our analysis pro-
vided only limited evidence that the focal-point attractionmechanism
is used by honeybee workers, and no evidence for its use in the three
ant species. By contrast, the empirical data were consistent with the
locomotion adjustment and the boundary effectmechanisms in all four
species, and agent-basedmodelling confirmed that the combinationof
these two mechanisms should be sufficient to maintain colony-level
spatial segregation in all four species.

In the locomotion adjustmentmechanism, workersmodulate their
movement diffusivity according to their location. Importantly, this
simple mechanism does not require complex navigational capabilities
such as path integration11 or cognitive maps53. Instead, it would be
sufficient for an individual to sense local cues indicating whether or
not it is within its primary module, and adjust its movement accord-
ingly. For example, individuals may use chemical signatures as
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Fig. 7 | Visualising location-dependent locomotion adjustment. All panels show
data for a representative L. acervorum colony.aMap showing thepartitioningof the
nest into four spatial modules. b–e Maps depicting the individual-site similarity
between the observedmodule scores of all sites and those of a visiting worker that
scored 1 for the indicated module. f–q Maps depicting spatial variation in move-
ment parameters according to primary module. Site colours show movement
metrics for individuals with the indicated primary module. To facilitate compar-
isons between modules, all three movement metrics are expressed as relative
measures, i.e., signed differences between themean activity probability (f–i),mean
speed (j–m), ormean turnangle (n–q) calculatedacross all visits by individualswith

the indicated primarymodule, and the globalmean calculated across all visits by all
individuals. Positive values (red) indicate a higher activity probability, a higher
speed, or a greater turn angle than the global average. Workers exhibit low diffu-
sivity (relatively low activity probabilities, slow and tortuous movement) when
visiting sites with similar module scores to their own (for example, nurse workers
inside the brood pile (f, j, n) or foragers near the nest entrance (i, m, q)). By
contrast, workers exhibit high diffusivity (relatively high activity probabilities, fast
and straight movement) when visiting site with module scores that do not match
their own (for example, nurse workers near the nest entrance (f, j, n) or foragers
inside the brood pile (i, m, q)). Source data are provided as a source data file.
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locational cues: in ants, different areas within the nest are marked by
distinctive cuticular hydrocarbonblends laid on the nest floor38, and in
honeybee colonies the wax comb is delineated into separate zones
containing either developing brood, pollen, or honey, each with its
own unique chemical bouquet54. Alternatively, interactions between
task stimuli and individual response thresholds55 may also be respon-
sible for the location-dependent changes in movement diffusivity. For
example, within the brood pile or broodnest, a nurse with a low
threshold for stimuli associatedwith hungry broodmay bemore likely
to stop and attend to the brood (thus adopting slow, tortuous move-
ment), whereas a foragerwith a high brood care thresholdwouldmore
likely ignore the brood and continue on its original path (displaying
faster, straighter movement). In such a case the movement patterns
described here would represent a consequence - rather than a cause -
of the underlying division of labour between workers.

In the boundary effect mechanism, individuals modulate their
turning angle depending on the direction from which they approach
the boundary of their primary module. The dependency of this
response upon the steepness of theboundary suggests that individuals
may respond to the local gradient in chemical cues associated with
their primary module rather than to a tangible, clearly delineated
entity. Although the detailed underlying mechanism remains to be
established, previous studies of pheromone trail following behaviour
have shown that ant workers can detect lateral differences in antennal
sensory inputs and adjust their movement accordingly56,57, showing
that they possess the neural circuitry to detect chemical gradients.

The simplicity of the two local movement mechanisms (locomo-
tion adjustment and boundary effect) indicates that they might be
present in a range of biological systems. Indeed, the locomotion
adjustmentmechanism bears a striking resemblance to ‘win-stay, lose-
shift’ strategies in animal decision-making58, exemplified by foraging
nematodes13, bumble bees12, and albatrosses14. Furthermore, move-
ment consistent with the boundary effect mechanism has also been
reported in the butterfly Proclossiana eunomia. In this species, indivi-
duals make ‘U’-turns when they encounter the boundary of a suitable
habitat patch from the inside, which causes them to stay inside the
patch15. Finally, Escherichia coli bacteria exhibit movement patterns
that are highly reminiscent of the two local movementmechanisms. In
these bacteria, cells immersed in an amino-acid gradient tend to make
long straight ‘runs’ when facing up the gradient, but perform more
frequent ‘tumbles’ (shorter runs with frequent reorientations) when
facing down the gradient, causing the cell to perform a biased random
walk toward the resource59,60.

Only honeybee colonies displayed long-range attraction toward
the primary module, in agreement with the focal-point attraction
mechanism. This additional movement mechanism in the bees could
explain why honeybee colonies exhibit stronger spatial segregation
than all three ant species. Alternatively, more pronounced partitioning
of the honeybees could have two other explanations. First, the size of
the worker populations in the honeybee colonies were about two
orders of magnitude larger than those of the ant colonies (Table 1). It
has been suggested that larger social insect colonies should display

Fig. 8 | Worker navigation within module gradient fields. Panels (a–d) illustrate
the direction-dependent modulation of turning behaviour within the gradient field
for an example focal module (the nursemodule of the same L. acervorum colony as
shown in Fig. 7).a,bCalculating the gradientfield. aModule scoremap for the focal
module.bThe focalmodule gradientfield, derived from local spatial regressionson
the site scores. The blow-up shows a transect across the border. Arrow heading and
length indicate respectively the field direction and steepness. c, d Relative turn
angles for residents (in this example, nurses) and non-residents heading down- and
up-gradient in the field of the focal (nurse) module. Blow-ups in (c): residents
heading down-gradient in the field of their primary module (�θ

down
i,s,Mi

) exhibit larger
turn angles than the average worker heading down-gradient at the same site in the
same field (�θ

down
s,Mi

), and so generally have positive relative turn angles (i.e., are less

likely than average to leave the focal module). Blow-ups in d: residents heading up-
gradient (�θ

up
i,s,Mi

) exhibit smaller turn angles than the average worker (�θ
up
s,Mi

) and so
generally have negative relative turn angles (i.e, are more likely to enter the focal
module). e–h Relative turn angles for workers heading down- or up-gradient (red &
blue respectively) of their primary module, as a function of the gradient field
steepness. Allmodules and all workers were included in this analysis. Points & error
bars represent grand means and standard errors, calculated from the 50 colony
means. Shaded areas represent the 95% confidence intervals after Bonferroni cor-
rections. The dashed line represents the null expectation that residents and non-
residents behave in the same way when approaching the module border. All ana-
lyses based on n = 613100 sites, and n = 12494workers, drawn from n = 50 colonies.
Source data are provided as a source data file.
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greater division of labour and greater specialisation of workers into
tasks, leading to stronger social and spatial segregation within the
nest41–43. However, while we could not rule out that this is the case, our
experimental data provided little evidence for a direct effect of colony
size on segregation. Second, the spatial segregation between the
honeybee worker groups may be enhanced by the physical organisa-
tion of the honeybee hive, which is divided into discrete zones inwhich
the comb cells contain different, easily identifiable substances, such as
honey, pollen and developing brood20,23, and which could serve as a
scaffold for modulating worker movement. As ant nests lack comb
cells, the changes in chemical cues are likely to bemore gradual, which
could explain the greater degree of overlap. Carefully-controlled
experiments that manipulate colony size and cue availability will be
required to distinguish between these alternative explanations.

Overall, our study reveals that two simple context-dependent
movement mechanisms are sufficient to explain the maintenance of
spatial segregation in colonies of four social insect species housed in

simple, two-dimensional observation nests. These results do not rule
out the possibility that more complex mechanisms may be at play in
more realistic, three-dimensional nests composed of multiple cham-
bers and tunnels. Nevertheless, parallels between the movement
mechanisms outlined here and movement patterns reported in a
diverse range of organisms, including species with limited cognitive
capacities such as bacteria and nematodes12,13,15,59,60, suggest that
navigation algorithms based on local, context-dependent movement
rules that generate population-level spatial heterogeneities may be
ubiquitous in Nature.

Methods
Automated tracking of four social insect species
Fifty queenright colonies were used in the tracking experiments
(Table 1). Honeybee colonies (subspecies A. mellifera carnica) were
housed in the campus apiary of the University of Lausanne. Colonies of
L. nigerwere raised from single mated queens collected on campus. T.

Correlated
random walk

t+1

t    

t-1

�
L
vt

vt-1

Focal-point
attraction

t+1

t    

t-1

vt

vt-1

vCRW

vbias

I

Boundary effect

t+1

t    

t-1

t-1

 t 

t+1

vCRW

+�
vt

vt-1 vCRW-�vt

vt-1

II                            III

Locomotion adjustment

t+1

t    

t-1

t+1

t    

t-1

�

L vt

vt-1

� L
vt

vt-1

IV                          V

D
en

si
ty

Step length, L
(body lengths)

0 0.5 1

D
en

si
ty

Turn angle, ��
(rad)

-� 0 �

I

IV

V

III

II 0

0.5

1

D
is

ta
nc

e 
sc

or
e

D
en

si
ty

Step length, L
(body lengths)

0 0.5 1

D
en

si
ty

Turn angle, ��
(rad)

-� 0 �

A.m. L.n. L.a. T.n.

Directional
bias

TM,s~residency

A.m. L.n. L.a. T.n.

Activity
probability
P i,s~cos i,s

A.m. L.n. L.a. T.n.

Speed
while active
v i,s~cos i,s

A.m. L.n. L.a. T.n.

Turn angle
while active
�  i,s~cos i,s

A.m. L.n. L.a. T.n.

��  i,s
 down

~|g| M,s

A.m. L.n. L.a. T.n.

��  i,s
  up 

~|g| M,s

Relative turn angle

Empirical data
B.E. + L.A.

Locomotion adjustment (L.A.)

Boundary effect (B.E.)

Focal-point attraction

Movement metric:        

Analysis:        

M
od

el
pr

ed
ic

tio
ns

-

0

+

C
oe

ffi
ci

en
t

a b

c

Fig. 9 | Agent-based modelling of individual movement. a All simulation trajectories were based on the correlated random walk (CRW) model. A CRW trajectory is
constructed from a sequence of vectors vt

!, produced by randomly drawing a step length L and a turn angle θ from an exponential and a wrapped normal distribution,
respectively.bThe uppermap represents the nest grid uponwhich trajectories are simulated. The nest includes twooverlapping ‘spatialmodules’ (central andperipheral),
characterisedby a ‘distance score’ increasingnon-linearlywith thedistanceof each site to the nest centre. Tomodel the threemovementmechanisms, theCRW ismodified
as follows. In the focal-point attractionmodel (point I inmap), the CRWvector vCRW

���! ismodified by adding a bias vector vbias
��!, which points towards the closest point on the

border of the individual’s primary module (magenta cell). In the boundary effect model (points II–III), the CRW is modified in the vicinity of the module boundary by
increasing (decreasing) theCRWturnanglebyσwhenapproching theboundary from the inside (outside). In the locomotionadjustmentmodel, the L andθdistributions are
modified according to location, so individuals make shorter (larger) steps and larger (smaller) turns when inside (outside) their primary module (points IV & V, green &
orange distributions, respectively). c Comparison between empirical and simulated trajectories. Grouped columns indicate the five movement metrics described in the
main text, and letters below individual columns give species name abbreviations. Formulas provide a brief description of the statistical model conducted for each
movement metric, and cell colours encode the sign and value of the coefficient of the predictor in the statistical model (see text for the model definitions). To facilitate
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nylanderi colonies were collected from the University of Lausanne
campus, and L. acervorum colonies collected from Anzeindaz, Swit-
zerland. These four species were chosen because of their abundance
and easy availability in Switzerland, and because they – or closely-
related species – have previously been used as model systems for the
study of spatial organisation in social insects20,21,23,27,44. The colony sizes
used in our experiments (Table 1) fell within the natural range of sizes
experienced by these species in nature, either as recently founded
colonies (L. niger colonies are founded by a single queen and pro-
gressively grow from a few workers to mature sizes of up to 40,000
workers over the course of several years; new honeybee colonies are
founded by swarms counting 2400–41,000 bees61) or as mature
colonies (all colonies of T. nylanderi and L. acervorum used in our
experiments were mature colonies collected whole from the field).

In all species, a paper tag bearing a unique two-dimensional bar-
code was glued to the thorax of individuals to allow automated
tracking of their movements (Fig. S1). In the ants, tagging of all indi-
viduals was performed in a single session two days before the begin-
ning of the experiment, whilst in the bees, newly-emerged workers
(one-day-old or less) were tagged every 3 days over the 21 days prior to
the beginning of the experiment (Supplementary Note 1).

Tagged colonies were kept in glass observation nests with a single
entrance (internal nest dimensions, A. mellifera: 69 × 45 × 4 cm, L.
niger: 70 × 40 × 8 mm; L. acervorum: 63 × 42 × 2 mm, T. nylanderi:
63 × 42 × 1.5 mm). The honeybee observation nests also included a
64 × 44 cm wooden frame enclosing a double-sided wax comb con-
taining honey, pollen, and developing brood20. Bees were free tomove
between both sides of the comb. In all species, individuals were
allowed to freely exit and enter the nest. Ants were provided with ad
libitum food (Drosophila, sugar solution) andwater in a foraging arena,
while bees foraged on natural resources outside. Both the ant and
honeybee observation nests were exposed to diurnal cycles of tem-
perature and light (Supplementary Note 1).

High resolution digital video cameras operating at two frames
per second were used to identify the location and orientation of each
tag across successive images22. All colonies were continuously tracked
for three days, which corresponded to the inter-cohort time in the
honeybee colonies. The trajectories of each worker, and the physical
contacts between workers (Fig. S18 and Supplementary Note 14) were
extracted using an existing software pipeline62.

Building bipartite site-visit networks
To quantify the spatial preferences of individual ants and bees, the
interior of the nest was discretised into a regular hexagonal lattice
(Fig. 1a, b). Because the worker body lengths of our four study species
span an order of magnitude (from ~ 1.5 mm for T. nylanderi to ~ 15 mm
for A. mellifera), the width of the hexagonal bins were defined as 1/4 of
the mean worker body-length.

To characterise the spatial preferences of different individuals to
different parts of the nest, we counted the number of times ns

i that
each individual i visited each hexagonal site s. A visit by individual i to
site s beganwhen i crossed the border into s, andwas terminatedwhen
i crossed the border out of s, regardless of the amount of time spent
inside. To prevent stationary individuals located on the border
between two adjacent sites from rapidly accumulating many single-
frame visits to the two sites, successive visits to a same site were only
counted when at least 20s elapsed between the end of the previous
visit and the start of the next.

The site-visit data were used to construct a bipartite network, in
which individuals (layer 1) were connected by undirected edges to the
sites (layer 2) they visited (Fig. 1c, d). Because individuals typically
made multiple visits to the same sites, each edge i–s was weighted
according to the total number of times individual i visited site s, that
is, ns

i .

Partitioning site-visit networks into modules
The extent to which the site-visit networks were partitioned into dis-
crete ‘modules’ (i.e., set of workers with similar space-use patterns and
the set of sites that they exhibit strong ties to) was assessed using the
DIRTLPAwb+ algorithm for partitioning weighted bipartite networks39.
This algorithm searches for the partition that maximises the number
and strength of the links within modules, whilst minimizing connec-
tions between modules. The number of modules was not specified a
priori by the user, but was identified by the algorithm. All site-visit
networks had positive modularity (Fig. S3), indicating that they could
be partitioned into a set of well-separatedmodules (Figs. 1e–h, S2, and
S4–S5). The modules in each partition were then assigned functional
labels according to the following rules. First, the module whose sites
were on average closest to the nest entrance was labelled ‘forager’
module. Second, the module or modules with the greatest spatial
overlap with the brood pile in the ant colonies or the broodnest(s) in
the honeybee colonies were labelled ‘nurse’ module(s). After defining
the forager and nurse modules, the remaining modules (if any) were
labelled as follows. If there was only one module remaining after
identifying the nurse and forager modules, as was typically the case in
honeybee colonies, it was labelled ‘peripheral’. If there were two
modules remaining, as was typically the case in ant colonies, then the
module whose sites were on average closer to the nest borders (i.e., to
the periphery of the nest) was labelled ‘peripheral’, and the remaining
module labelled ‘intermediate’. In some cases, the DIRTLPAwb+ algo-
rithm identified five or more modules (9.0% of all iterations across all
species and colonies). In these cases, the supernumerary modules
never containedmore than 1 or 2 individuals, and as they could not be
unequivocally assigned using our labelling scheme, they were left
unclassified for these iterations.

Validating network modules
As a network constructed by a purely random process could exhibit
apparent modular structure by chance, we tested whether the dis-
covered modules represent statistically significant entities. To do so,
we produced 1000 null model random networks for each observed
network using an established permutation method for bipartite
networks63 (Supplementary Note 2). Comparisons between the max-
imum modularity of the observed networks with that of the corre-
sponding random networks showed that, in all four species, the
observed modularity was significantly greater than expected by
chance (Fig. S3).

Constructing worker task profiles
A unique labour profile for each ant and each honeybee was con-
structed by estimating the activity of each worker in the following
four tasks:

1. Entrance guarding: workers were classed as guarding when they
were (i) within two body lengths of the entrance, (ii) roughly facing the
entrance, i.e., with a body alignment diverging from the direct heading
to the entrance by nomore than π/2 radians, and (iii) ‘on station’ at the
entrance, as defined by trajectory coordinates with an associated first
passage time (ref. 64; time taken for the individual to pass beyond a
circle centredon its current locationwith a radius of twobody-lengths)
in excess of 500s.

2. Patrolling: workers were classed as patrolling65 when they were
(i) active, and (ii) ‘roaming’, as defined by first passage times of <5min
for a circle with a radius of four body-lengths.

3.Queen attendance:workerswereclassed as attending thequeen
if they were in physical contact and facing towards the queen, as
defined by the trapezoidmethod for identifying contacts described in
Supplementary Note 14.

4. Foraging: workers were defined as foraging when they left the
nest and entered the foraging arena.
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As the total time an individual allocates to a given task, and the
number of times it performs that task can vary (nearly) independently,
we quantified both the total time spent on each task, and also the
number of bouts of each task. As individuals were occasionally lost
from view all measures were normalized by the total number of tra-
jectory fixes for a given individual.

Assigning module scores for individuals and sites
As discrete categories are not always suitable to describe continuous
biological processes, we developed a methodological extension that
allows for overlapping modules. To do so, we exploited the stochastic
nature of the DIRTLPAwb+ algorithm and applied it to each network
1000 times, thus producing an ensemble of slightly different parti-
tions. After eliminating duplicate partitions, we defined the score
denoting the membership of each individual i (or site s) to each
moduleM as the proportion of partitions in which i (or s) was assigned
toM. Thus, each individual and each site was assigned a set of module
scores summing to 1 (Supplementary Note 2).

Measuring diversity
We used an information-theoretic approach to obtain three measures
of the heterogeneity of the module scores for individuals and spatial
locations. These were termed the module score diversity of (i) the
visitors to a given site, (ii) the sites an individual visited, and
(iii) the nestmates an individual contacted. To do so, we first defined
the typical module score profile of (i) the typical visitor to a given site,
(ii) the typical site an individual visited, and (iii) the typical nestmate an
individual contacted by calculating the following weighted averages:

Typical visitor :
N*
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P*

F *

2
6664

3
7775
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Typical visited site :
N*

I*

P*

F *

2
6664

3
7775
visited,i

=

P
s2nest

ni,s �

N

I

P

F

2
6664

3
7775

sP
s2nest

ni,s

;

Typical contacted nestmate :
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where [N*, I*, P*, F*] denotes the module score profile of (i) the typical
visitor of a given site s, (ii) the typical site visited by an individual i, or
(iii) the typical nestmate contacted by individual i; ni,s denotes the
number of visits by individual i to site s; ci,j denotes the number of
contacts between individuals i and j; [N, I, P, F] denotes the scores of (i)
individual i, (ii) site s, or (iii) individual j for the Nurse, Intermediate,
Peripheral and Foragermodules. Because these areweighted averages,
there is a proportionally greater contribution to the typical score
profile by (i) individuals that visit site s more frequently, (ii) sites that
individual i visits more frequently and (iii) individuals that individual i
contacts more frequently. These typical module score profiles were
then used to calculate the module score diversity D of each site s and

individual i;

Dvisitor,s =
Hvisitor,s

Hmax
; Dvisited,i =

Hvisited,i

Hmax
; Dcontacted,i =

Hcontacted,i

Hmax
,

where Hvisitor,s is the entropy of the typical scores of the typical visitor
to site s, ½N*,I*,P*,F *�visitor,s; Hvisited,i the entropy of the typical scores of
the typical site visited by individual i, ½N*,I*,P*,F *�visited,i; and Hcontacted,i

the entropy of the typical scores of the typical nestmate contacted by
individual i, ½N*,I*,P*,F *�contacted,i. The diversity index ranges from 0
(e.g., sites that are only visited by specialists for one module – indivi-
duals that scored 1 for one module and 0 for all other modules) to 1
(e.g., sites that are visitedbymodule generalists and/or by anequalmix
of specialists from all modules).

Module score similarity between workers and sites
The similarity between themodule scores of a worker and a site that it
visits was quantified using cosine similarity, a standardmeasure of the
distance between two vectors, defined as the cosine of the angle
between them. Each node was represented by the vector of its module
scores, and the cosine similarity of individual i and site s, wasdefined as
follows:

cosi,s =

P
M2ðN,I,P,FÞ

Mi ×MsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M2ðN,I,P,FÞ

Mi
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M2ðN,I,P,FÞ

Ms
2

r ,

where Mi and Ms are the module scores of individual i and site s for
module M, respectively. Because all module scores were positive, in
our study cosine similarity ranged from 0 (orthogonal vectors) to 1
(identical vectors).

Measuring long-range attraction
To assess whether long-range attraction of workers towards their pri-
mary module could be amechanism for producing spatial segregation
between workers, we defined a taxis index TM,i,s, which measures the
attraction of an individual i to a focal module M, at each site s that it
visited. The taxis indexwasdefined by calculating the projection of the
mean resultant vector of all trajectory segments of i starting at site s,
vi,s
�!, onto a vector pointing directly from site s to the nearest point on
the boundary of the focal moduleM (Fig. S11). Thus, positive values of
TM,i,s occur when an individual exhibits a tendency to head towardM,
and negative values indicate a tendency to move away from M.

To test whether individuals display greater attraction towards
their primarymodule than individuals belonging to othermodules, we
then defined, for each module M and each site s lying outside M, a
mean taxis index TM,s for either ‘resident’ workers (i.e., individuals
whose primarymodule isM) or ‘non-resident’workers (i.e., individuals
whose primary module is not M). For each species, we then tested
whether worker ‘residency’ (resident vs. nonresident) had a significant
effect on the mean taxis index TM,s at different distances from the
module boundaryusing generalisedmixed-effectmodelswith TM,s as a
dependent variable, worker group and colony size as fixed effects, and
colony identity, site identity and focal module identity as random
effects. As this analysis involved multiple testing (one for each
distance), p-values were adjusted using the Benjamini-Hochberg (BH)
correction for multiple testing.

Investigating location-dependent movement
We here describe three fundamental measures of individual locomo-
tion. The first was the site-specific activity probability, which describes
the likelihood that a particular individual is in motion at a particular
site. The activity probability was obtained by first decomposing each
trajectory into an alternating sequence of active and inactive bouts
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using a combination of change-point analysis6 and cluster analysis (Fig.
S19, Supplementary Note 15). For each individual i – site s pair, we then
calculated the activity probability Pi,s, that is, the proportion of time
that i was in the active state when visiting site s (Fig. S20 and Supple-
mentary Note 16).

To further characterise locomotion while individuals were in the
active state, wedefined twoadditionalmeasures for every site s, visited
by each individual i, namely the mean speed while active vi,s, and the
mean unsigned turn angle while active θi,s (Fig. S20). Calculating these
measures using only trajectory coordinates associated with active
individuals ensured that these measures capture properties of move-
ment, rather than the probability of moving.

Mapping module gradient fields
To estimate the overallmodule gradient field for a givenmoduleM, we
performed a spatialmultiple regression at each site s. To do so,we first
defined a local neighbourhood around each site s, which included all
sites whose centres were within one worker body length of the centre
of the focal site. The scores formoduleMwere then regressedon the x-
and y-coordinates of the centres of all sites in this neighbourhood. This
allowed us to extract the equation of best fit for the scores for module
M around each site s, that is,Ms = aM,s*x + bM,s*y + cM,s. The coefficients
of this equation were then used to define a scalar vector,

g!M,s =
aM,s
bM,s

� �
, whose directional component corresponded to the

direction of steepest increase in the scores of module M around
s, and whose magnitude component ∣g∣M,s represents the steepness
of that increase. Neighbourhoods in which all sites had
the exact same score for module M had a magnitude of 0 and an
undefined direction. Finally, the local vectors for all sites were com-

bined to produce a two-dimensional gradient field F
!

M for module M
across the entire nest. The gradient field typically took values of 0 at
the core or far outside the module of interest, where module scores
tended to takehomogeneous values of 1 (module core) or of 0 (outside
of the module). By contrast, the gradient field typically took non-zero
values in areas of transition between adjacent modules, with the
steepest values coinciding with the module’s borders (Fig. 8b).

Quantifying worker movement in the module gradient field
As worker movement may be affected by spatial heterogeneities
and physical features within the nest, such as the presence of
physical barriers like nest walls, we first established the typical
movement of the average worker within the gradient field of each
module. To do so, for each module M and each individual i, each
trajectory segment was classified into one of two categories
according to whether the individual was heading up-gradient or
down-gradient within that module’s gradient field, F

!
M . Segments

were classified as up-gradient when the absolute angular differ-
ence between the trajectory heading and the gradient vector
direction at that location was smaller than π/2 radians, and down-
gradient when it was greater than π/2 radians.

To quantify the turning behaviour of individuals heading down-
gradient in the field of their primarymodule (i.e., when i is heading out
of Mi), we defined a ‘relative down-gradient turn angle’,

Δθdowni,s = �θ
down
i,s,Mi

� �θ
down
s,Mi

where �θ
down
i,s,Mi

is themean turn angle of individual iwhen heading down-
gradient in its primary module field, F

!
Mi
, at site s, and the second

term, �θ
down
s,Mi

is the mean turn angle of all individuals heading down-
gradient in F

!
Mi

at site s. Positive values of Δθdown
i,s,M occur when a

resident worker approaching the border of its primary module from
the inside makes bigger turns than the average worker. Such workers

tend to turn away from the border, and so are likely stay inside their
primary module.

To quantify the behaviour of individuals heading up-gradient in
their primary module (i.e., i heading into Mi), we also defined the
‘relative up-gradient turn angle’,

Δθupi,s =
�θ
up
i,s,Mi

� �θ
up
s,Mi

Negative values of Δθup
i,s occur when a resident worker heading intoM

from the outside turns less than the average worker. Such workers
tend not to turn away from the border, and so are likely to enter their
primary module.

Statistical analyses
Theproportion of specialistworkers andofnon-overlapping siteswere
analysed using general linear models (GLM) implemented using the
package stats version 3.6.1 for R. The proportion of specialist workers
was subjected to a square-root transformation to ensure normality of
residuals (Shapiro–Wilk test, n = 50, proportion of specialist workers:
W =0.987, p =0.84; proportion of non-overlapping sites: W =0.980,
p =0.53). After fitting the GLM, the significance of themain effects was
evaluated using F-tests.

All linearmixed-effectsmodels (LME) and the Poisson generalized
linear mixed-effects model (GLMM) were implemented using the
package lme4 version 1.1–1366 for R. In these models, continuous
explanatory variables were scaled where necessary (e.g., in models
including both colony size and individual-site similarity as explanatory
variables, as these differed in scale by several orders of magnitude),
though scaling did not affect the direction or significance of the main
effects. To check that the LME model assumptions were not violated,
we did not use traditional normality tests because those are not sui-
table for large sample sizes ofmore than 300data points67. Instead, we
calculated the skewness and kurtosis of each model’s residuals and
checked that they were compatible with a normal distribution (i.e.,
skewness between −2.1 and +2.1 and kurtosis <7.1;67). Where necessary,
dependent variables were subjected to a square root-, power- or log-
transformation to ensure the normality of residuals. In the final mod-
els, skewness ranged from −2.1 to 0.5 and kurtosis from 1.6 to 6.6. After
fitting the mixed-effects models, the significance of main effects was
evaluated using Wald χ2-tests. All post-hoc comparisons were imple-
mented by the package multcomp version 1.4-1068 for R using the BH
method to correct for multiple testing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The automated tracking
datasets (raw trajectories) generated for the current study are available
in the Dryad repository https://doi.org/10.5061/dryad.9w0vt4bjb.

Code availability
Code for constructing the bipartite spatial networks, and for the
simulations, are available in the Zenodo repository, https://doi.org/10.
5281/zenodo.6787674.
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