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Abstract—This paper reports results from experiments using
differential evolution (DE) in a high-fidelity simulation model of
a contemporary financial market in which various traders are
each simultaneously trying to adapt their own trading strategy
to be as profitable as possible, given the distribution of strategies
currently deployed at that time by other traders in the market. In
our model, each trader maintains its own private local population
of trading strategies, and uses DE to adaptively improve its
strategies over time. Because all traders are simultaneously trying
to adapt their strategies, and because the profitability of any one
strategy at time t can only be determined in reference to all other
strategies also active in the market at time t, the system is co-
evolutionary rather than simply evolutionary. Furthermore, the
existence of multiple separate DE populations in the system (i.e.,
one local DE population for each trader) means that technically
this is a co-evolutionary metapopulation system. Using DE in
a co-evolutionary metapopulation context requires extension of
the usual DE approaches used in less challenging applications,
chief of which is the introduction of a mechanism to detect and
actively prevent convergence within each local DE population.
Results are presented which demonstrate that when all traders
are using this nonconvergent DE, the overall economic efficiency
(i.e., the sum of profitability over all traders) of the market is
greatly higher than a baseline established when all traders were
using a simple stochastic hill-climbing strategy optimizer instead
of DE. Source-code for the experiments described in this paper
has been released on GitHub as open-source, freely available
for other researchers to use to replicate and extend the results
presented here.

Index Terms—Zero-Intelligence Traders; Financial Mar-
kets; Automated Trading; Co-Evolution; Differential Evolution;
Metapopulation Dynamics.

I. INTRODUCTION

Many present-day financial markets involve very high pro-
portions of adaptive automated trading systems, each contin-
uously adjusting its trading strategy to try to be as profitable
as it can be, given the current distribution of other trading
strategies present in the market that it finds itself competing
against. But each of those competing strategies is also simul-
taneously engaged in the same form of continual adjustment
to try to maintain its profitability, and hence contemporary
financial markets are manifestly co-evolutionary systems. Un-
derstanding the dynamics of today’s financial markets is an
important problem, given the obvious concerns that arise over
whether such markets are stable or unstable, and whether they
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economically efficient or inefficient; but it is also a fiendishly
difficult problem, given the large number of nonlinearly in-
teracting constituent elements within such market systems. As
in the study of other complex adaptive systems, researchers
seeking to explore or explain contemporary markets typically
either analyse and model fine-grained data from real-world
systems (which, in the context of financial exchanges, is an
approach known as the study of market microstructure: see,
e.g., [1]–[4]); or they conduct series of laboratory experiments
on different types of simplified situations under carefully
controlled conditions (an approach known as experimental
economics: see, e.g., [5]–[8]); or increasingly they turn to
accurate computer-simulation models of markets and the pop-
ulations of traders that inhabit them, using agent-based mod-
elling (ABM) techniques (an approach known as agent-based
computational economics, or ACE: see, e.g., [9]–[11]). This
paper reports on the introduction of differential evolution (DE:
[12]–[14]) into a long-established public-domain open-source
agent-based model of a contemporary financial exchange: to
do that, traditional DE methods needed to be modified, but the
resulting huge increase in economic efficiency in the markets
indicates that DE is a promising method for use in such
models, and potentially also in corresponding deployments in
real-world markets.

The open-source financial exchange ABM used here is
BSE [15], the Python source-code for which has been freely
available on GitHub since 2012 [16]. BSE is a high-fidelity
simulation of a modern financial exchange centred on a
detailed implementation of an exchange’s matching engine
(which matches bid orders from buyers with compatible ask
orders from sellers, joining them to create transactions) and the
exchange’s data-structure known variously as the limit order
book or ladder, which is a record of all bid orders and ask
orders currently active at the exchange but not yet matched
with a counterparty, i.e. not yet transacted. BSE simulates
the market at sub-second time-resolution, and can support
simulations involving very large numbers of traders. Each
trader in BSE is an instance of a particular type of automated
trading system – some of which are adaptive, changing their
trading behavior in response to market conditions; and others
of which are nonadaptive, issuing their bids and/or asks at
time and prices set by their internal algorithm that does not
alter over time. In this paper I introduce to BSE a new type of
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adaptive trader, using DE to continuously improve its trading
strategy, which (for reasons that are explained in Section II)
is known by the acronym PRDE (for Parameterized-Response
Differential Evolution; pronounced “purdy”), and show that
PRDE traders are more profitable than their predecessors.

Section II explains the background to this work in more
detail. Section III describes how DE was used within each
PRDE trader, the problem that arose involving convergence
within a trader’s local DE population, and the remedy that
was introduced to address this. After that, Section IV presents
results from our markets populated by PRDE traders, and the
PRDE markets are shown to be much more economically
efficient when DE is used, in comparison to a baseline
established in earlier work where traders used stochastic-hill-
cilmbing instead of DE. Section V then concludes this paper
with a discussion of various potential paths for further work.

II. BACKGROUND

A. Automated Trading in Financial Markets

Formally instituted financial markets originated in the 1680s
with the founding of what became the Amsterdam Stock Ex-
change, and for the next three centuries such markets involved
human traders engaging with one another, interacting initially
face-to-face and latterly via telephones and then via computer
terminals, the traders bargaining and haggling, buyers quoting
their bid prices and sellers quoting their ask prices, each trying
to get a deal at a price that satisfies their needs. However
in the past twenty years, at the point of execution in most
major financial markets, very many human traders have been
replaced by machines which do exactly the same job, but
which can process super-human quantities of data, and can
react to changes in the market at super-human speeds. The
days of markets populated mainly by human traders are over.

These automated trading systems, known various as algo-
rithmic traders, robot traders, and in their speediest form
high-frequency traders, typically involve mathematical models
that seek to exploit high-order statistical regularities in the
time-series of financial data: see, e.g., [17]; although the
development has been met with dismay by several seasoned
market professionals, as documented in [18]–[20], and there is
clear evidence that modern-day market dynamics can be dra-
matically different from their relatively stable pre-automation
regimes, a point illustrated most starkly by the now-infamous
“Flash Crash” of 6 May 2011, when more than US$800Bn was
wiped from the value of US capital markets in roughly 15
minutes of frenzied and largely machine-to-machine trading
(see e.g. [21], [22]), and scarily similar events in various
other markets since then. Understanding the dynamics of
modern automated markets is a problem given the high rates
of innovation, with the continuous introduction of new types
of robot trader and of existing robots being modified and
improved, as law-makers and regulators struggle to keep up.

B. Models of Markets and Traders

Working with data from real financial exchanges poses a
number of major difficulties: the data streams can be truly

huge, and need to be treated with high degrees of confiden-
tiality; it is often impossible or wholly impracticable to run
controlled tests on real exchanges; and any trader running a
profitable robot-trading operation will most likely keep the
details of the algorithms involved as a very closely guarded
commercial secret.

Faced with these obstacles, researchers have sought alterna-
tive methods of understanding highly automated markets. Re-
search in experimental economics, a field founded and grown
by the economist Vernon Smith (for which he was awarded the
2002 Nobel Prize in Economics) typically involves having a
small number (tens, rather than hundreds) of human subjects
interact with one another via an electronic market platform,
with the experimenters carefully controlling the supply and
demand in the experimental market, and/or the flows of
information within the market, and/or the opportunity sets (i.e.,
space of possible actions) of the participants in those markets.
Smith published his seminal paper on this approach in 1962
[23], and for the next 30 years all the focus in experimental
economics was on studying the dynamics of experimental
markets populated by human traders. This anthropocentric
focus was interrupted in 1993, when Gode & Sunder [24]
introduced some startling results from experimental markets
populated by minimally simple algorithmic trading systems,
referred to as zero intelligence (ZI) traders.

Gode & Sunder’s 1993 study is simple to describe. First,
they set up an unremarkable experimental economics study,
with human subjects buying and selling in the kind of mar-
ket mechanism (technically: a continuous double auction,
or CDA) that is the basis of most the world’s financial
exchanges, and they recorded and analysed the time-series of
transaction prices in this market, to establish some baseline
statistics for how humans perform in this particular market.
Next, they replaced the human traders with robot traders that
simply quoted random prices for their bids or asks, a type
of trader that Gode & Sunder named ZIU (Zero Intelligence
Unconstrained); the time-series of transactions for markets
populated by ZIU looked much like random noise, with no
discernible convergence to any kind of sensible stable price.
Finally, they modified the ZIU traders, introducing a simple
constraint that when the robot trader generated a random price
for a bid or an ask, that price should not be one that would
lead to a loss-making transaction – these traders were named
ZIC (Zero Intelligence Constrained) and they gave surprisingly
human-like market dynamics: in Gode & Sunder’s paper, the
common measure of the efficiency of a market, a metric known
as allocative efficiency, was essentially the same for ZIC-
populated markets as it was for the human-populated markets.
Gode & Sunder’s work can fairly be described as the sparking
point of the robot trader revolution.

Gode & Sunder’s groundbreaking ZIC trader was entirely
non-adaptive: each ZIC trader relied on generating its random
quote-prices from a specified uniform distribution, bounded
above by the maximum purchase price assigned to a specific
buyer, or below by the minimum sale-price assigned to a
specific seller. But Gode & Sunder’s results prompted others



to explore the feasibility of adding in simple adaptivity or
machine learning to such ZI traders, extending the ZI approach
with the smallest amount of additional machinery necessary
and sufficient to give better trading performance, an approach
more accurately described as minimal-intelligence (MI) trad-
ing. Two notable developments in this line of research was the
minimal machine-learning-based robot trader called ZIP (Zero
Intelligence Plus) described in [25]; and the elegantly simple
probabilistic-model-building method reported by Gjerstad &
Dickhaut in [26], an algorithmic trading strategy now widely
referred to simply as “GD”. These two robot trader strategies
were catapulted into prominence with the publication of a
paper at IJCAI 2001 [27] by a team of researchers at IBM’s
main T. J. Watson Research Labs, who demonstrated for
the first time that both ZIP and GD could repeatedly out-
perform human traders in experimental economics studies that
mixed robots and human traders in the same markets – that
is, these two robot-trader strategies were consistently more
profitable than human traders. This was a result that generated
worldwide media coverage, was subsequently replicated by
other researchers [28]–[31], and which poured fuel on the
flame lit by Gode & Sunder: the rise of robot trading in
financial markets accelerated rapidly in the years following
IBM’s announcement of the supremacy of machine traders,
which the IBM authors described as heralding the birth of a
new business opportunity worth billions of dollars annually.

In the two decades since the IBM study was published, a
fair number of further minimal-intelligence algorithmic trading
strategies have been proposed, by researchers in industry
and in academia, with each new strategy proposed as an
improvement in one respect or another on those that had
been published previously: for a summary of this sequence of
developments in trading strategies, see [32]; for reviews of the
surprising utility of ZI-style traders as models of real markets,
see [33]–[35]. However for the purposes of this paper, we need
only to discuss two recently-introduced minimal-intelligence
trading strategies, PRZI and PRSH, which are each direct
descendants of Gode & Sunder’s ZIC:

• PRZI (Parameterized-Response Zero Intelligence; pro-
nounced “prezzy”: see [32]) traders are a nonadaptive
generalisation of ZIC traders: whereas each individual
ZIC trader uses a fixed uniform distribution as the prob-
ability mass function (PMF) to randomly generate its
quote-prices, instead each PRZI trader has a strategy
parameter value s ∈ [−1.0,+1.0] ∈ R which determines
the PMF envelope for that trader: when a PRZI trader
has s = 0, its PMF is identical to that of a ZIC trader
(i.e., uniform); but as s→ ±1.0 the shape of the trader’s
quote-price generator PMF smoothly distorts to be more
biased toward quoting either “urgent” or “relaxed” prices,
such that when a PRZI trader has s = +1.0 it is
maximally urgent, and will generate quote-prices from
a PMF envelope very heavily weighted towards the least
profitable price for that trader (which is hence most likely
to attract a willing counterparty, all other things being

equal), and when a PRZI trader has s = −1.0, it is
maximally relaxed, using a quote-price-generation PMF
that is very heavily biased toward prices that generate the
most profit for that trader, but which are hence less likely
to attract a counterparty. Thus in summary any PRZI
trader has a particular strategy value s and that determines
the PMF for its stochastic generation of quote-prices, but
PRZI is not defined to adapt is strategy over time.

• PRSH (PRZI Stochastic Hillclimber; pronounced “pursh”:
see [36]) is a minimally simple instance of an adaptive
PRZI trader, i.e. one that dynamically alters its trading
strategy value s, attempting to always be increasing
profitability. Each PRSH trader uses a simple stochastic
hillclimber to optimise its s-value, in a manner that is
similar to a k-armed bandit (see, e.g., [37]–[40]): that is,
a PRSH trader maintains a private local population of
k strategy-values; it loops forever on a process where
in each loop it evaluates each of the k strategies in
turn and then identifies which is currently the most
profitable – the most profitable strategy is referred to as
the elite strategy. On each iteration of the loop, once all
k strategies have been evaluated and the elite identified, a
new population of k individuals (i.e., the next generation
of the population) is created by copying in the elite from
the previous generation, and then creating k−1 “mutants”
of the elite strategy, typically by adding a small amount
of Gaussian noise to the elite s-value.

This paper presents first results from experiments where the
entire market is populated by a successor to PRSH, named
PRDE (for PRZI with Differential Evolution; pronounced
“purdy”), in which the simple stochastic hiill-climber of PRSH
is replaced by a differential evolution system: whereas each
PRSH trader can be thought of as operating a very primitive
k-armed bandit algorithm, instead each PRDE trader operates
its own private DE system with a specific population-size
(traditionally denoted by NP in the DE literature). Initial
results from co-evolving markets populated entirely with
PRSH traders were reported in [36] and the methods and
results are summarised below in Section II-C – these results
provide a set of baseline measures against which any changes
resulting from the switch to PRDE can be evaluated. Results
from co-evolutionary markets populated by PRDE, using the
same experiment methods as for PRSH, are then presented in
Section III.

C. Co-evolution with Stochastic Hillclimbing (PRSH)

Reference [36] reports on a set of experiments in which BSE
is used to simulate a financial market for a single abstract
tradeable commodity in which the number of active traders
(denoted by NT ) is 60, split equally into 30 buyers and 30
sellers, and where each trader is running PRSH with k=4. All
buyers were instructed to pay no more than $140 per unit
when purchasing, and all sellers were instructed to sell for
no less than $60 per unit: this style of supply and demand
schedule gives what economists refer to as perfect elasticity
of supply and of demand, and has been used before in many



experimental economics studies (see, e.g., [41]); it means that
in principle every seller can find a buyer (and vice versa)
who is able to be a counterparty to a transaction – i.e., no
traders are given extra-marginal limit prices that would prevent
them from finding a counterparty. When two traders enter into
a transaction, both the buyer’s assignment of cash and the
seller’s assignment of units of stock to sell are depleted to
render them inactive, and they each then wait a random period
of a few (≈ 5) seconds before they are re-assigned fresh cash
or stock, and re-enter the market as active traders.

BSE simulates continuous time using a discrete time-slicing
approach using a temporal step-size of ∆t = 1/NT , i.e.
0.0167sec for NT =60, so that each trader interacts with the
market at least once per second; and the experiments reported
in [36] were run for very long durations, typically simulating
sequences of hundreds of days of continuous round-the-clock
24×7 trading: although the traders are interacting with one an-
other on sub-second timescales, the co-evolutionary dynamics
play out over much longer time periods. The simple stochastic
hillclimber in PRSH evaluated each of the k strategies for 2
hours of simulated trading, an evaluation period denoted here
by ∆E = 7200sec, so with k=4 it took 8 simulated hours of
trading for one trader to evaluate all of its strategies (i.e., all
of the arms on its k-armed bandit), and then it would identify
which of the strategies was the elite, and then copy the elite
and k− 1 mutants of the elite into its set of strategies for the
next iteration of the evaluation loop. Running on a 2022-model
Apple Mac Mini with M1 silicon, the simulation of BSE with
60 PRSH traders ran at roughly 120× real-time, so simulating
100 days of trading took roughly 20 hours of wall-clock CPU
time.

Evaluating a strategy s at time t involved measuring the
profitability of s over a time-period from t−∆E to t, and then
dividing that profitability by ∆E to give a measure referred
to as profit per second (PPS) for s. The profit on any one
transaction was given by the absolute difference between the
transaction price agreed by the buyer and seller, and those
traders’ individual limit prices. Because in these experiments
all buyers had the same limit price of $140, and all sellers had
the same limit price of $60, if a transaction took place at a
price of $90 then the buyer’s profit on that transaction was $50
and the seller’s profit was $30. An individual PRSH trader’s
strategy-value affects the probability mass function (the enve-
lope of the distribution) for its stochastically-generated quote
prices, so altering a trader’s s-value can in principle increase
the profitability of individual trades, at the cost of increasing
the expected wait-time before a trade takes place at that price;
or conversely it can increase the rate at which trades take place,
but decrease the expected profitability of each such trade.

As illustration of typical results from one such experiment
with PRSH, Figure 1 shows results from a 300-day experiment,
plotting the total PPS generated by the 30 buyers (denoted
by πB), the total PPS generated by the 30 sellers (denoted
by πS), and the total PPS extracted from these two sides of
the market (i.e., by all buyers and sellers combined, denoted
by πT , s.t. πT = πB + πS). As can be seen, there is an

Fig. 1. Plot of profitability data from one 300-day experiment in a market
populated entirely by PRSH traders (i.e., using stochastic hill-climbing as
their strategy-optimizer). Horizontal axis is time, measured in days; vertical
axis is simple moving average of profit per second (PPS) over the preceding
7 days. The line labelled B-profit shows the total PPS generated by the sub-
population of buyers (denoted by πB(t) in the text); the line labelled S-profit
shows the total PPS generated by the sub-population of sellers (i.e., πS(t)),
and the line labelled Sum shows the total PPS extracted by all traders (i.e.,
πT (t) : πT (t) = πB(t) + πS(t)). See text for further discussion.

initial adaptive transient over days 0 to ≈25, in which the
πT value rises from ≈50 at t = 0 to ≈90 by Day 25. After
that period in which the system’s random initial conditions
are manifestly improved upon, the system then settles to an
ongoing dynamic in which πT is relatively constant, but in
which there are temporally protracted periods where one side
is consistently being more profitable than the other (i.e. either
πB > πS or πS > πB continuously for some period of time):
the roughly-constant πT is to be expected, given the zero-sum
nature of the PPS calculation (for πB to go up, πS must go
down, and vice versa); but the temporal coherence, the fact
that either the buyers or the sellers are consistently the more
profitable group for long sequences lasting multiple days (i.e.,
periods of strong autocorrelation in PPS) is an indication that
the underlying co-evolutionary dynamics involve surprisingly
long-term transients: long periods where one side or the other
holds the upper hand, is more profitable, until the other side
co-evolves a response that improves its profitability; the tables
are then turned, and the pressure is now on the previously
more-profitable side to evolve to regain the upper hand.

To illustrate the co-evolutionary dynamics at the level of
individual trader’s strategies, Figure 2 shows a heatmap of
the elite s-values for the 30 buyers in the market over the
same 300-day experiment for which PPS values were shown
in Figure 1, and Figure 3 shows the corresponding heat-
map for the elite s-values for the 30 sellers in that same
experiment. In this experiment the initial (t=0) strategy values
were assigned randomly from a uniform distribution over the
range [−1.0,+1.0]: after the 25-day opening adaptive transient



Fig. 2. Heat-map of individual strategy-values for the population of 30
PRSH buyers in the experiment for which profitability values were plotted
in Figure 1. Horizontal axis is time measured in days; vertical axis is simple
moving average of strategy value over past 7 days. The space is pixelated
into 40 bins on the vertical axis (i.e., bin-size of 0.05) and 300 bins (i.e., one
per day) on the vertical: intensity of pixel-shading (’“heat”) increases with
the sample probability density – i.e., each bin is displayed as its raw count
divided by the total number of counts and the bin width. There is a dominant
mode at s ≈ −1.0 and a second more diffuse mode meandering around the
range [+0.35,+0.75]; see text for further discussion.

when πT is climbing to its steady-state value, thereafter there
is clear multi-modality in the distribution of strategy values,
and even after hundreds of days of trading there is no sign of
the system settling to a fixed distribution. This multimodality
is a very common outcome for this type of experiment with
PRSH traders: [36] shows further sets of independent and
identically distributed (IID) individual-experiment results from
this type PRSH-market, each of which results in multimodal
distributions of strategies; here, multimodality in the norm.

Note that, if ever the population did converge to a static set
of strategies, using the language of dynamical systems analysis
we might say that it was settling to a fixed-point attractor in
the 30-dimensional space of possible buyer strategy-sets. That
is: at any time t each buyer b has its own single elite strategy-
value sb(t) ∈ [−1.0,+1.0] ∈ R and hence the distribution of
elite strategies in the population of 30 buyers can be conceived
of as a vector ~VB(t) in a 30-dimensional buyer-strategy phase-
space, denoted by PSB , s.t. PSB ∈ [−1.0,+1.0]30 ∈ R30;
and over time the co-evolving population of buyers traces a
trajectory through PSB as their individual sb values alter: if
ever the population converged on a fixed set of 30 strategies
which remained unchanged thereafter (i.e., to a set of 30
evolutionary stable strategies: see e.g. [42]) then the trajectory
would halt at that point in PSB .

Effectively visualising trajectories in such high-dimensional
phase-spaces is nontrivial, but thankfully in recent decades
physics researchers have developed a set of conceptually
intuitive visualisation tools and techniques that have proven to
be usefully effective: the primary visualisation tool of choice
here is the recurrence plot (RP), a 2-D matrix of cells/pixels

Fig. 3. Heat-map of individual strategy-values for the population of 30
PRSH sellers in the experiment for which profitability values were plotted
in Figure 1; format is the same as for Figure 2. There is a major broad mode
in the range s ∈ [+0.8,+1.0] and a much weaker but more focused minor
mode at s ≈ −1.0; see text for further discussion.

that (in the simplest formulation of RPs) are either shaded
or unshaded, with a shaded cell denoting that the system
at some time t1 is at a point in its phase space that is
sufficiently close to a point in the phase space that it previously
visited at an earlier time t0 : t0 < t1 that the state of the
system at t0 is said to have recurred at t1. RPs will often
show particular distributions or macro-scale patternings of
shaded and unshaded cells that are immediately obvious to the
human eye, and that are informative of the system’s dynamics;
these can be quantified by the application of straightforward
image-processing algorithms to the RP, a technique known as
recurrence quantification analysis (RQA): for further details of
RP and RQA, see the Appendix of this paper. Figure 4 shows
a RP for the co-evolving set of 60 trader strategies during
the experiment whose profitability was illustrated in Figure 1:
the caption to Figure 4 explains the salient features of that
particular RP.

The description in this section has introduced the experi-
ment design/setup and the three modes of visualization that
will be used in Section IV to show the improvements arising
when the traders populating the market are switched from
PRSH to PRDE; i.e., when differential evolution is introduced
as the adaptive mechanism within the co-evolutionary market.

III. CO-EVOLUTION WITH DIFFERENTIAL EVOLUTION

Continuing in the spirit of minimalism that pervades re-
search in markets populated by ZI/MI traders, the implemen-
tation of DE as the adaptation mechanism for PRZI traders
(i.e., extending PRZI to give PRDE) is deliberately bare-bones.
Each PRDE trader maintains its own private local popula-
tion of potential strategy-values, of population-size NP≥4,
which for trader i can be denoted by si,1, si,2, . . . , si,NP .
Because PRZI traders involve only a single real scalar value
to specify their bargaining behavior, each individual in the



Fig. 4. Recurrence plot (RP) for the co-evolutionary trajectory through
strategy phase-space of the population of PRSH traders in the 300-day
experiment that was illustrated in Figure 1: scale on both axes is time
measured in hours (i.e.: 24 × 300 = 7200). The threshold distance for
recurrence (denoted by ε: see Appendix) is 2.5% of the maximum possible
distance in phase-space. The trapping time for this plot is 18.01 hours: i.e.,
on the average, when the population is at any one point in the 60-dimensional
phase-space, it will remain within ε of that point for roughly 18 hours – this
is evidenced by the thickness of the diagonal Line of Identity (LOI) running
from bottom left to top right. Also obvious from visual inspection are the
multiple roughly-square shaded regions occurring along the LOI: e.g. running
from t≈200 to t≈1300; from ≈1300 to ≈1600; from ≈2500 to ≈6100; and
so on. These square shaded zones on the RP are sustained periods during
which the trajectory is rarely more than ε distant from previously-visited
points in that square’s zone of the strategy phase-space – that is, the squares
signify periods where relatively little changes in terms of the distribution of
strategies within the market, and might reasonably be described as periods
of co-evolutionary equilibria. These are punctuated by the transits between
equilibria, indicated by those sections of the LOI that are relatively thin.

DE population is a single value, a 1-D vector, and so the
conventional DE notion of crossover (i.e., switching between
two parents when selecting alleles, one allele per dimension
of the genomes) is not relevant here: in PRDE, each new
genome is constructed entirely from the operations on the
base vector. As currently configured, PRDE applies the basic
“vanilla” DE/rand/1 where, once a particular strategy si,x
has been evaluated, three other distinct s-values are chosen
at random from the population: si,a, si,b, and si,c where
x 6=a6=b6=c, and then a new candidate strategy si,y is created
s.t. si,y = max(min(si,a+Fi(si,b−si,c),+1),−1) where Fi is
the trader’s differential weight coefficient, (in the experiments
reported here, Fi = 0.8;∀i) and where the min amd max
functions are introduced to keep the candidate strategy within
[−1.0,+1.0]. Then the fitness of si,y is evaluated and if it is
better than that of si,x then si,y replaces si,x, otherwise it is
discarded; and then the next strategy si,x+1 is evaluated.

In early trials with PRDE it became clear that convergence
within any one trader’s population of candidate strategies was
a problem: in a highly-converged population, the length of the
(one-dimensional) difference vector si,b − si,c can tend very
close to zero, and so each si,y is then only very marginally
different from the si,x it is being compared to, and any

Fig. 5. Plot of profitability data from one 300-day experiment in a market
populated entirely by PRDE traders (i.e., using differential evolution as their
strategy-optimizer). Format is the same as for Figure 1.

signal in the comparison between si,x and si,y is swamped by
noise arising from the inherent nondeterminism of the market
environment in which the evaluation takes place. To address
this, a simple vector-perturbation mechanism was added into
PRDE, such that if at any time the maximum distance between
any pair of vectors in trader i’s population of candidate
strategies is less than some threshold distance, then one of the
strategies is chosen at random, and it is randomised to a new
value generated as a draw from a uniform distribution over
the entire range of allowable s-values, i.e. [−1.0,+1.0] ∈ R

To enable a like-with-like comparison, in the experiments
reported here NP=4 was used in each PRDE trader, as a direct
correlate of the k=4 used in generating the PRSH results that
PRDE will be compared against; however future work will
explore the effects of using larger values of NP .

IV. RESULTS

Figure 5 shows a PPS plot from a typical experiment for a
market populated by PRDE traders.

Comparing this to Figure 1 we see that the total profit
extracted (i.e., πT (t)) by PRDE traders is roughly double that
of PRSH traders; and Figure 6 shows summary data from
multiple PRSH and PRDE experiments, to demonstrate that the
results in Figures 1 and 5 are indeed typical: markets populated
by PRDE traders are consistently ≈100% more profitable,
more economically efficient,1 than those populated by PRSH.
Given that the only difference between PRDE and PRSH is the
use of DE in PRDE versus stochastic hill-climbing in PRSH,
this increase in performance can safely be attributed to DE.

1The usual measure of economic efficiency in experimental economics is
calculated by dividing the actual total profit extracted from the market, by
the total profit that would be expected if all transactions had instead taken
place at that market”s competitive equilibrium price conventionally denoted
by P0. Therefore the total-PPS measure πT used here can be thought of as
a measure of efficiency, absent the division by some constant P0.



Fig. 6. Comparison of overall profitability of markets populated by stochastic
hill-climber (PRSH) vs. those populated by differential evolution (PRDE)
trader-agents. Horizontal axis is time measured in days of continuous trading;
vertical axis is sum of total profit-per-second (PPS) measures of all traders
in the market. The data plotted here come from 20 IID experiments each
involving 300 days of continuous round-the-clock trading, in which the market
is populated with 60 PRSH traders, and 20 IID experiments again of 300 days
but where the market is instead populated with 60 PRDE traders. The only
difference between the two sets of experiments is whether the traders are using
stochastic hill-climbing or differential evolution. The PPS values of the PRSH-
trader markets form the obvious tightly-clustered set of traces that converge
to values around 90, while the PPS values of the PRDE-trader markets all
form the looser cluster around 170-180. That is, the switch to DE roughly
doubles the overall profitability/efficiency of the market.

Fig. 7. Heat-map of individual strategy-values for the population of 30
PRDE buyers in the experiment for which profitability values were plotted in
Figure 5; format is the same as for Figure 2. See text for discussion.

Heat-maps of the individual strategies in the populations of
PRDE buyers and sellers from the experiment illustrated in
Figure 5 are illustrated in figures 7 and 8, respectively: as
is evident from visual inspection, the multimodality is much
less pronounced in the PRDE buyer population (Figure 7) than
it was in the PRSH buyers (Figure 2); and it is seemingly
eliminated in the PRDE sellers (Figure 8).

Fig. 8. Heat-map of individual strategy-values for the population of 30
PRDE sellers in the experiment for which profitability values were plotted
in Figure 5; format is the same as for Figure 2. See text for discussion.

Fig. 9. Recurrence plot for the PRDE trader population whose strategy-value
time-series was illustrated in figures 7 and 8: format is as for Figure 4; see
text for further discussion. The trapping time for this plot is 2.37 hours, which
is reflected in the LOI which is markedly thinner than that in the PRSH RP
of Figure 4. Also glaringly obvious in comparison to Figure 4 is the lack of
any sustained equilibrium periods (i.e., there are no big shaded squares on
this RP) – instead, this very sparse RP indicates a co-evolutionary dynamic
that rarely revisits previously-sampled areas of the strategy phase-space, with
any recurrences lasting for only brief periods of time.

Finally, Figure 9 shows the recurrence plot (RP) for the
PRDE experiment whose data was plotted in Figures 5 on-
wards: as is immediately obvious, the PRDE RP is much more
sparse than the PRSH RP, indicating that differential evolution
is driving the trajectory through strategy phase-space onwards
into previously unvisited territory, rather than meandering for
long periods in already frequently-visited zones of phase-
space, as was seen in the PRSH RP of Figure 4.



V. DISCUSSION AND CONCLUSION

The co-evolutionary population of traders in the BSE market
simulator used here are, technically, a metapopulation: that is,
a population (the set of traders) of independent subpopulations
(the private set of NP candidate strategies used in each
trader’s internal DE strategy-optimization process). Previously
authors have reported evolutionary optimization approaches
that borrow ideas from metapopulations (e.g., [43]) and within
the DE research literature there are papers that explore multi-
population ensemble methods, such as [44] – although that is
focused primarily on improving effective use of the mutation
operator within DE. However, these systems are directed at
creating multiple populations that collectively contribute to
the solution of some overall problem. In contrast, the co-
evolutionary system described here involves each DE sub-
population being in zero-sum competition with every other
sub-population in the market, and the overall system is not
directed at solving any specific problem; rather it is intended
as a minimal model of a contemporary real-world financial
market populated by adaptive automated trading systems,
each continuously co-evolving against the other. One of the
contributions of this paper is the demonstration that when each
trading entity within the market is using DE as its internal
adaptation mechanism, the resultant system-level outcome is
a doubling in the amount of available profit that is actually ex-
tracted via the traders’ interactions within the market, relative
to the baseline established by the market when the traders’
adaptation mechanism is a stochastic hill-climber.

An additional contribution is the identification of the stark
difference in the co-evolutionary dynamics between PRSH
markets and PRDE markets, as evidenced by the two recur-
rence plots of figures 4 and 9. It seems likely that one major
factor is the use here of a simple convergence-detection and
countermeasure (whole-range re-randomization of one strategy
chosen randomly from the trader’s private set of NP candidate
strategies) which in effect introduces a sudden mega-mutation
to the trader’s set of strategies: intuitively, this must surely
greatly reduce the probability of recurrences, which would
then explain the stark differences in the recurrence plots. The
competitive co-evolution in the BSE system described here
means that convergence is to be avoided forever, whereas
other researchers working with DE in non-co-evolutionary
applications have often either focused on convergence to a
static population of genomes as a positive outcome, to be
encouraged (e.g., [45]), or have explored principled ways of
slowing its progress (e.g., [46], [47]), but not of permanently
avoiding it.

To the best of my knowledge, this is the first paper to
report on a system in which multiple DE-using entities are in
a never-ending competitive co-evolutionary dynamic; and this
is the first report on the behavior of the BSE system when
the traders are competitively adapting and each using DE.
In the spirit of minimalism associated with zero-intelligence
and minimal-intelligence modelling of real-world financial-
market dynamics, in this initial study there was a deliberate

choice to use what is arguably the simplest from of DE,
i.e. DE/rand/1, and that was then implemented in the most
minimal fashion by keeping NP=4, the smallest viable value.
The intriguing results presented here invite various lines of
future research. One obvious line is to explore the effects
on the market’s dynamics of altering key parameters, such
as increasing the value of NP homogeneously (i.e., with all
traders in the market having an identical value of NP>4) and
also of studying the dynamics of markets with heterogeneous
distributions of NP (i.e., different traders having different
values of NP ); similar explorations of homo/heterogeneous
parameter-sweeps of the key DE parameter Fi would also be
worth exploring. Another appealing line of future research is to
explore the co-evolutionary dynamics in the BSE system when
DE/rand/1 is replaced by other, more sophisticated instances
of DE such as DE/best/1; and/or JADE [48]; and/or SHADE
[49]: various authors have offered comparative studies between
a range of the more notable DE variants (see, e.g., [50], [51])
but as far as I am aware all such studies seem to be focused on
stationary fitness landscapes, with static optima – it would be
interesting to see the results of similar controlled comparison
studies on the permanently shifting fitness landscapes of the
co-evolutionary DE metapopulation described here.

Finally, again in the spirit of minimalism, the work reported
here has studied adaptive traders whose trading strategy is
completely specified by only a single scalar value: there are
other trading strategies in the same broad class of minimal-
intelligence models that have more parameters, e.g. the Zero
Intelligence Plus family of strategies described in [52] has
instances with parameter-counts that range from 8 to 60 real
values, and studying the co-evolutionary dynamics of markets
populated with these higher-dimensional minimal strategies
would be interesting – again, either homogeneously populated
with all strategies of the same type and dimensionality; or
instead a heterogeneous mix of various strategy types and
varying dimensionalities which would also be a step closer
to the reality of present-day financial markets populated by
heterogeneous mixes of automated trading strategies.

There is clearly plenty to explore: the Python source-code
for the experiments described here has been made freely
available on GitHub for other researchers to replicate and
extend the results described in this paper: see [16].

APPENDIX

For the benefit of any readers unfamiliar with the recurrence
plots (RPs) used in Figures 4 and 9, the diagrams in Figures 10
and 11 illustrate key aspects of this visualization technique for
characterising high-dimensional dynamical systems: in their
simplest incarnation, RPs are square arrays of cells or pixels,
that are binary-shaded (e.g.: the pixels are either black or
white), with a cell at column c and row r (denoted here
by Cc,r) being shaded if the state of the system at the time
associated with row r is a recurrence of a previously-observed
system state that occurred at the time associated with column
c; otherwise unshaded.



Fig. 10. Illustrative synthetic recurrence plot (RP) for a dynamical system that
starts at time t = 0 in state A and then over the next 12 timesteps transitions
through the following sequence of states: B, C, D, A, A, A, B, C, D, E, F, E.
Let Cc,r denote the cell/pixel at column c and row r: the cell is shaded if the
state of the system at time t = r is a recurrence of the state of the system
at time t = c, and is otherwise unshaded. For D-dimensional dynamical
systems where the state of the system at time t is ~s(t) ∈ RD , recurrence
is usually defined to occur when the distance |~s(r) − ~s(c)| < ε for some
suitably small ε. By convention, the RP origin point is at lower left, and the
diagonal line of cells Cc,r:c=r is referred to as the Line of Identity (LOI);
cells on the LOI are shaded because the distance from any state to itself is
zero. The LOI divides the RP into two right-triangles with mirror-symmetric
patterns of blank and shaded cells. The figure shows two key features in
RPs: the diagonal line of four shaded cells (i.e., C0,6, C1,7, C2,8 and C3,9)
starting at time t = 6 when the state sequence A-B-C-D recurs, having first
occurred at times t = 0 to t = 3; and the vertical line of three shaded cells
(i.e., C0,4, C0,5, and C0,6) starting at time t = 4 where the state A recurs
three times, having first occurred at time t = 0. The quantitative analysis
of RPs, an approach known as Recurrence Quantification Analysis (RQA),
typically involves the calculation of statistics involving the distributions of
vertical and/or diagonal lines in the RP.

In systems where the state at any one time is one of a
small number of discrete values, recurrence would usually be
defined as strict equality of states. But in many dynamical
systems of practical interest, the system state at time t is
a D−dimensional real-valued vector ~S(t), and for creating
an RP any subsequent state ~S(t + ∆t) that is within a
D−dimensional solid hypersphere (i.e., a D−ball) centered
on ~S(t) with radius ε is considered to be a recurrence of ~S(t).
Naturally, the choice of ε is significant: if too large, each new
state is registered as a recurrence of all previous states; if
too small, it is possible that no recurrences are ever recorded.
The RP origin point is normally displayed at lower left, and
the diagonal line of cells Cc,r:c=r , referred to as the Line
of Identity (LOI), is always shaded because the distance from
any state to itself is zero.

Once an N×N RP is created, summary statistics can be cal-
culated by doing simple image-processing such as computing
the frequency distribution of lengths of vertical and diagonal
lines of shaded cells in the RP, and then calculating summary
statistics from those distributions: this approach is known as
Recurrence Quantification Analysis (RQA). For example, the
trapping time statistic (conventionally denoted by TT ), given

Fig. 11. Illustrative synthetic recurrence plot (RP) for a D−dimensional
dynamical system with state vector ~S(t) ∈ RD that starts at time t = 0 in
state ~S(0) = S0 and then over the next three timesteps transitions through
states S1 to S3 with no recurrences. The upper pair of figures, labelled
t = 3, illustrates the set of non-recurring state-vectors on the left, and the
corresponding RP on the right. Here the end-point of each state-vector is the
centre of a D−ball (i.e., a solid D−dimensional hypersphere) of diameter ε,
such that if any two balls intersect then the distance between the two vector
end-points must be less than ε, which is thus counted as a recurrence. As
there have been no recurrences by t = 3, the RP plot only shows shaded
cells on the LOI. The lower pair of figures, labelled t = 5, illustrates the
situation after the system has transitioned through state S4 to state S5: the
ball for S4 intersected with the balls for each of states S0 to S3, so the single
state S4 is recorded as a recurrence of each of the states S0 to S3, giving
rise to a horizontal line of recurrences on the RP at cells C0,4–C3,4; then
S5 intersects only with S3, shown on the RP as a single shaded cell at C3,5.

P (v) the frequency distribution of vertical lines of length v in
the RP, measures the RP’s average length of vertical lines at
least as long as vmin (usually vmin = 2):

TT =

(
N∑

v=vmin

vP (v)

)
/

(
N∑

v=vmin

P (v)

)
So for example if an RP has a TT of 6, and the time delta
between successive rows/columns on the RP is one hour, then
the trapping time is six hours, indicating that on average the
system remains within ε of any particular state for six hours.

For further details of RPs and RQA, see e.g. [53]–[60].
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M. Schoenauer, Eds. Springer, 2013, vol. 8752.

[48] J. Zhang and A. Sanderson, “JADE: Adaptive Differential Evolution
with Optional External Archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

[49] R. Tanabe and A. Fukunaga, “Success-history based parameter adapta-
tion for differential evolution,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2013, pp. 71–78.

[50] A. Piotrowski and J. Napiorkowski, “Step-by-step improvement of
JADE and SHADE-based algorithms: Success or failure?” Swarm and
Evolutionary Computation, vol. 43, pp. 88–108, 2018.

[51] M. Georgioudakis and V. Plevris, “A comparative study of differential
evolution variants in constrained structural optimization,” Frontiers in
Built Environment, vol. 6, no. 102, pp. 1–14, 2020.

[52] D. Cliff, “ZIP60: further explorations in the evolutionary design of trader
agents and online auction-market mechanisms,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 1, pp. 3–18, February 2009.

[53] J.-P. Eckmann, S. Oliffson Kamphorst, and D. Ruelle, “Recurrence plots
of dynamical systems,” Europhysics Letters, vol. 5, pp. 973–977, 1987.

[54] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths,
“Recurrence-plot based measures of complexity and their application to
heart-rate-variability data,” Physical Review E, vol. 66, pp. 026 702:1–
026 702:8, 2002.

[55] N. Marwan and A. Meinke, “Extended recurrence plot analysis and
its application to ERP data,” International Journal of Bifurcation and
Chaos, vol. 14, no. 2, pp. 761–771, January 2004.

[56] N. Marwan, “Recurrence plot statistics and the effect of embedding,”
Physica D, vol. 200, pp. 171–184, 2005.

[57] N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths, “Recurrence
plots for the analysis of complex systems,” Physics Reports, vol. 438,
pp. 237–329, 2007.

[58] N. Marwan, “A historical review of recurrence plots,” The European
Physical Journal Special Topics, vol. 164, pp. 3–12, 2008.

[59] C. Webber and N. Marwan, Eds., Recurrence Quantification Analysis:
Theory and Best Practice. Springer, 2015.

[60] M. Tolston, G. Funke, and K. Shockley, “A comparison of cross-
correlation and joint-recurrence quantification analysis based methods
for estimating coupling strength in non-linear systems,” Frontiers in
Applied Mathematics and Statistics, vol. 6, no. 1, pp. 1–12, 2020.


