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Abstract

In many complex systems, from robot and insect swarms
to human social systems, agents take decisions collectively,
using information retrieved from the environment and from
each other. This information is usually correlated to some
extent – e.g., voters reading the same media outlets, ani-
mals receiving the same cues from their environment, or peo-
ple listening to the same opinion leaders. Taking inspiration
from human social systems, we consider the case of collec-
tive decision-making between two choices, one being the cor-
rect one. We break down the problem of collective decision-
making in correlated environments into two components: (i)
how likely different configurations of information environ-
ments are to show the correct option and (ii) how likely dif-
ferent configurations of collectives are to detect the majority
shown by the environment. An agent-based model is pre-
sented, where agents scan an information environment, com-
posed of correlated and uncorrelated sources, and form in-
dividual opinions based on the information perceived. Once
individual opinions are formed through a majority function,
agents take a majority vote to determine their chosen option.
Preliminary results show how different population parameters
lead to different decision accuracy in similar information en-
vironments, and how the two steps of opinion formation and
collective vote can skew the collective’s perception of the en-
vironment positively or negatively. Future work will expand
these results by allowing agents to form local groups before
taking decisions collectively.

Introduction
Across different domains of sociality, agents in collectives
interact to take decisions together, be it eusocial insects find-
ing new nest sites, or people voting on high-stake referen-
dums. From an information perspective, collective decision-
making can be seen as a process of collective computation,
where there is a slow phase of information accumulation fol-
lowed by a faster phase of information aggregation (Flack
(2017); Daniels et al. (2017)). In the first step of information
accumulation, agents can perceive information cues from
spatial environments or from semantic ones. In the former,
information sources are organized by spatial proximity; in
the latter, by semantic similarity. We refer to such semantic
environments as “information environments”. When agents

in collectives form individual opinions by scanning these en-
vironments, information cues tend to present some degree of
correlation because of their semantic closeness (e.g., people
in an organization reading the same news sources, or mem-
bers of a collective listening to charismatic opinion leaders).
Due to this correlation, the phenomenon of the “wisdom of
the crowds”, where larger collectives converge to more ac-
curate decisions, does not always hold – this has been stud-
ied and proven across different domains (see references in
Galesic et al. (2018)). Considering an environment com-
posed of several (correlated and uncorrelated) information
cues, collective decision-making problems can be seen as
problems of (i) how likely an information environment is to
show the correct cue as the majority and (ii) how “good”
a collective is at detecting the environment’s majority. We
present an agent-based model (ABM) that allows exploring
the relationship between different degrees of correlation in
an information environment, different population parame-
ters (the size of the population, and the information capacity
of individual agents), and decision accuracy. A group of
agents scans an information environment composed of in-
formation sources that can show one of two options. Each
agent forms an opinion on which information source to vote
for, based on the one they have seen the most through their
exploration. Then, agents vote collectively with their opin-
ions, through a majority vote. We refer to information ab-
straction as any process where information at a given level is
lost or compressed onto a higher level of analysis, through
an abstraction function that could be sampling, averaging,
taking the maximum, etc. In our case, opinion formation
is the first abstraction, since each agent compresses the in-
formation sources they have perceived into a single opinion
(through an internal majority vote); and the vote is the sec-
ond abstraction, since agents’ opinions are compressed onto
a final vote (through a collective majority vote). Follow-
ing Ladha (1995), we refer to the majority option shown by
a given environment as the Full Information Majority Rule
(FIMR). In addition, we consider the environment’s Full In-
formation Majority Strength (FIMS) – i.e., how strong the
environment’s majority is. Preliminary results show how



different degrees of correlation and accuracy of correlated
and uncorrelated information sources lead to different types
of information environments, described by FIMR and FIMS.
Population parameters, then, determine how collectives dis-
tort information from those environments, either positively
or negatively, through the two abstraction steps of opinion
formation and voting.

Related Work
Kao and Couzin (2014) show how smaller groups can out-
perform larger ones when taking collective decisions in cor-
related environments. In their model, animals in a collec-
tive take a decision based on a low-correlation information
cue, characterized by a reliability RL between 0.5 and 1;
a high-correlation information cue, characterized by a reli-
ability RH , also between 0.5 and 1; and p, the probabil-
ity of choosing the low-correlation cue (with 1 − p being
the probability of choosing the high-correlation one). Vary-
ing the population size N , they find that smaller groups can
outperform larger ones when correlation is high, since the
noise in their information aggregation allows them to ex-
plore higher decision accuracy areas that are not available
to larger groups. We take this set-up as our starting point,
translating it into an ABM where information sources are
distributed across a semantic environment. Differently from
Kao and Couzin (2014), in our model agents do not see all
the information sources around them, but partially scan their
environment. In doing so, we add the variables of infor-
mation capacity (how much information each agent can de-
tect) and an algorithm of exploration (how the agents move
to scan their environment). Translating notions of correla-
tion to media consumption, Pescetelli et al. (2020) show how
Kao and Couzin (2014)’s ideas can be applied to human so-
cial systems, making a statistical argument for the inclusion
of independent (uncorrelated) news sources in the informa-
tion landscape used to take decisions where the collective
payoff needs to be maximized. In different fields, exist-
ing ABMs have explored the theme of collective decision-
making. For a review grounded in ecology, see DeAnge-
lis and Diaz (2019). In human social systems specifically,
social choice theory addresses the fundamental question of
how people combine their individual preferences into a col-
lective decision (Laughlin, 2011). For a recent overview and
conceptual framework for studying collective adaptation, in-
cluding references to models of human social systems, see
Galesic et al. (2022). The framework through which we look
at these problems in our ABM is that of information abstrac-
tion in multi-scale systems. A multi-scale system is a system
where there is at least one layer of macro-scale information
abstracted from a micro-scale, through an abstraction func-
tion leading to less syntactic information at the macro-scale
(Diaconescu et al., 2019). In our case, both individual opin-
ions and the final vote are abstractions from the information
environment.

Figure 1: An example information environment. Larger dots
are global information sources; smaller ones are local infor-
mation sources; blue dots show the correct option (1); red
dots show the incorrect option (0). The global information
in this example is presenting the correct option.

Model Description
Information Environment
The model was built using the AgentPy Python package
(Foramitti, 2021). In its current iteration it remains ab-
stract, loosely simulating people forming opinions on binary
choices (e.g., a referendum) from online news consump-
tion. The information environment (Fig. 1) has a fixed num-
ber of 900 information sources, distributed across a 30x30
grid. We refer to uncorrelated information sources as lo-
cal sources, and to correlated information sources as global
ones. Local sources are distributed in a polarized way, with
the correct sources (those showing option 1, blue in Fig. 1)
in the top part of the environment, and the incorrect sources
(those showing option 0, red in Fig. 1) in the bottom part of
the environment. The transition area between the two parts
is composed of three rows (10% of the information space).
This polarized landscape reflects information environments
used by people who take decisions through online news con-
sumption, since media consumption tends to be highly polar-
ized (Garimella et al. (2021)). When agents are placed on the
grid, they can detect nine information sources at once (the
one they are on, plus the eight neighbors around it). Global
sources (the bigger dots in Fig. 1) are distributed uniformly
throughout the grid, so that agents always perceive the same
number of global sources in their direct environment.

The environment is described by three parameters:

1. The reliability of local information cues, RL, between
0.5 and 1, meaning that we assume that local information
sources have a higher probability of being correct than in-
correct. At each run, RL determines how many of the lo-
cal information sources show the correct option (in Fig. 1,
how many of the smaller dots are blue vs. red).



2. The reliability of global information cues, RG, between
0.5 and 1. Global sources all show the same option within
each run (in Fig. 1, the larger dots, in this run showing the
correct option). RG determines in how many runs across
each sample the global sources show the correct option.

3. The ratio of global sources to total sources, G – since
the direct environment perceived by each agent is of 9
sources, this ratio can range from 1/9 to 8/9.

Initially, agents are distributed randomly on the grid.
Thus, RL reflects the probability that an agent will see lo-
cal sources showing the correct option.

Population parameters
The population is characterized by two parameters: (i) a
population size N ; (ii) an information capacity CI . Once
N agents are placed randomly on the grid, they explore the
space until their CI are full. The exploration algorithm is
a simple random walk, meaning that larger CI lead to a
larger exploration of the space, and to a higher probability
of crossing the border between local sources showing differ-
ent options. This reflects the fact that people who consume
more information to take a decision have a higher proba-
bility of reading information sources with opposing views.
The random walk, on the other hand, reflects the fact that
agents tend to move within semantic spaces with similar
information sources. When collecting information through
their random walk, agents have a 1-step memory for redun-
dancy. When moving one step in one of the possible eight
directions, they only scan the new sources they see, without
re-scanning the sources they have already stored. At sub-
sequent steps, agents can re-scan a source from which they
had already collected information.

Abstraction steps
Agents scan their environment, form an opinion based on
what they have seen (through an internal majority vote), and
then vote collectively, each with their opinion (through a
second majority vote). We refer to these two steps (opin-
ion formation and final vote) as two abstraction steps, since
each time multiple information sources are being abstracted
through a majority function onto a single opinion or vote.

Experiments
We set the following discrete parameter ranges:

• N : 3, 5, 7, 11, 21, 31, 41, 51, 61, 75, 101

• CI : 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99

• RL: 0.5, 0.6, 0.7, 0.8

• RG: 0.5, 0.6, 0.7, 0.8

• G: 1/9, 2/9, 3/9, 4/9, 5/9

Each parameter combination is run 400 times and results
are averaged out per sample. In terms of stochasticity, within
each run RL gives the probability that a local source will
show option 1. Across runs, RG gives the probability that
global sources will (all) show option 1 or 0.

Decision quality in correlated environments
Decision quality as a function of FIMR & FIMS
Each information environment (given by a combination of
RL, RG and G) is described by two variables: the Full In-
formation Majority Rule (FIMR) and Full Information Ma-
jority Strength (FIMS). At each run of a given sample, FIMR
is given by the source shown as the majority option (either 1
or 0). FIMS is given by the total number of correct sources
divided by the total number of sources (a number between
0 and 1). For each sample, FIMR and FIMS are averaged
over the 400 runs, leading to a number between 0 and 1.
These two variables reflect how likely a given information
environment is to show the correct option as the majority
option (FIMR), and how strong that majority is (FIMS). For
each sample, decision accuracy is calculated as the average
of the final vote across runs (either 0 or 1, corresponding
to the final vote for the incorrect or correct option), leading
to a value between 0.5 and 1. Fig. 2 shows how decision
accuracy varies as a function of these two environmental
variables, for all N and CI . As expected, FIMS is a better
predictor of decision accuracy than FIMR, since it describes
in more detail what the information environment looks like.
Population parameters, then, can help explain the noise in
the curves – i.e., why a similar FIMS can lead to a range of
decision accuracy, as shown by the confidence intervals in
Fig. 2.

The role of population size and information
capacity
Fig. 3 shows how decision accuracy varies as a function of
N and CI , for different environmental parameters RL, RG

and G. In Fig. 3a, RL = 0.7, RG = 0.5, G = 2/9. Under
these conditions, decision accuracy increases as a function
of N , converging to 1 for N > 21, while different CI do not
affect the outcome of the collective vote. As the global ratio
increases to 4/9 (Fig. 3b), decision accuracy decreases over-
all, except for CI = 9, where agents are placed randomly on
the grid without exploring (they form an opinion based on
the nine sources they see upon landing on the grid). Once
the agents start exploring their environment, higher N and
CI lead to more accurate votes. In the second row (Fig. 3c,
3d), the situation is inverted: RL = 0.5 and RG = 0.7. As
expected, decision accuracy improves as G increases from
2/9 to 4/9. However, this does not hold for CI = 9.

These results show how, in low-correlation environments
where the accuracy of local information sources is high
(Fig. 3a), higher population sizes outperform lower ones, ir-
respective of how much agents explore the information en-



Figure 2: Decision accuracy as a function of FIMR and FIMS
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Figure 3: Decision accuracy as a function of population size N and information capacity
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(d) RL = 0.5, RG = 0.7, G = 5/9

Figure 4: FIMR (abstraction step 0); PIMR (abstraction step 1) and FVMR (abstraction step 2)

vironment. If RG < RL and the degree of correlation in the
environment is increased (Fig. 3b), the best performance is
given by agents who do not explore their environment, tak-
ing a vote with limited information. As agents start explor-
ing, however, higher populations and information capacities
lead to more accurate decisions. When RG > RL, and cor-
relation is high (Fig. 3c), the situation is inverted and the
lowest information capacity (with no exploration) leads to
worse performance.

The role of information abstraction
While FIMR and FIMS characterize the information envi-
ronment (they are calculated regardless of the agents), sim-
ilar variables can be calculated to reflect the perception that
agents have of their information environment before each
abstraction step. When agents have explored their environ-
ment, before forming individual opinions, we refer to Par-
tial Information Majority Rule (PIMR) as the majority op-
tion given by the pooled information collected by all agents,
and to Partial Information Majority Strength (PIMS) as the
associated strength (how many of the pooled information

sources show the correct option, divided by the total num-
ber of pooled sources). They reflect the likelihood that the
collective perceived environment shows the correct option
as the majority (and the strength of that likelihood). They
also show what the collective vote would be if agents pooled
information sources before taking a decision, rather than
forming an individual opinion and then voting based on that
opinion. In this sense, they allow determining whether the
abstraction of opinion formation is useful or not. The sec-
ond abstraction step occurs when agents take a majority vote
out of their aggregated opinion. In this case, the majority
rule is the final vote (Final Vote Majority Rule – FVMR).
This rule is also associated with a given strength (how many
agents voted for the correct option), the Final Vote Majority
Strength (FVMS). Looking at the evolution of the majority
rules and strengths from full information, to partial informa-
tion, to the final vote shows whether the abstraction steps
distort the information environment in a positive way (in-
creasing decision accuracy), in a negative way (decreasing
it), or whether the abstraction steps have no effect. Fig. 4
gives an example of this, showing the evolution of FIMR to



PIMR and FVMR for different types of environments. The
two top figures (Fig. 4a and 4b) show environments where
RG < RL (RL = 0.7 and RG = 0.5). In this case, when
G = 3/9, the abstraction is positive, increasing the likeli-
hood that agents will vote correctly. When more than half of
the information sources are global (Fig. 4b), abstraction is ir-
relevant, as decision accuracy is dominated by those global
sources. In the opposite case, where RG > RL (Fig. 4c and
4d), abstraction has a negative effect, especially for lower
population sizes. This suggest that abstraction plays a posi-
tive role when uncorrelated sources dominate and are more
reliable than correlated ones.

Discussion & Conclusions
Collective decision-making in correlated environments can
be seen as a problem of how likely information environ-
ments are to show the correct option, and whether infor-
mation abstractions by collectives distort the initial envi-
ronment positively or negatively. Exploring this through an
ABM, our preliminary results showed how decision accu-
racy improves with FIMS, as expected. However, there is
noise in this relationship, that can be explained by the pop-
ulation parameters: how many agents there are, how they
explore the semantic space, how much information they col-
lect, and how they form opinions and vote based on that
information. Our preliminary results showed that, when
agents are placed randomly on the information environment,
with no exploration, lower information capacities can have
positive benefits when global information cues have low re-
liability, and negative ones when they have high reliabil-
ity. Once agents start exploring the space, different patterns
emerge. It is important to understand how much these pat-
terns are a consequence of the way agents explore the space
and store information. In particular, adjusting the level of
redundancy (to what extent agents re-scan information they
have already seen) will be crucial to further understand the
dynamics at play. Moreover, agents with a higher infor-
mation capacity have a higher chance of crossing the po-
larized divide between local sources showing different op-
tions. It will be interesting to explore how the ratio of agents
who hold space for opposing views is correlated with de-
cision accuracy. Looking at the system at subsequent ab-
straction steps (of opinion formation and voting) allows see-
ing whether the majority vote distorts the information en-
vironment positively or negatively for the collective. Here,
preliminary results showed how abstraction is positive when
the global information cues have low reliability, with differ-
ent behaviours for different population sizes. More work
is needed to understand these patterns and relate them to
the existing literature. In its current iteration, the model re-
mains highly abstract – to test for these theoretical results
in real-world scenarios, controlled experiments such as the
ones performed by Pescetelli et al. (2020) are needed. How-
ever, this level of abstraction also holds benefits, as it allows

exploring particular relationships between chosen variables
in ways that are applicable to a variety of complex systems.
Future work will also expand the existing model by allowing
agents to form local groups, determined by semantic prox-
imity and a communication capacity, before voting. This
will add a third abstraction step before a collective deci-
sion is taken, and will be useful in understanding whether
there are information environments where some abstraction
is positive, but excessive abstraction reverts those positive
outcomes.
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