
Feature-Interaction Sampling for Scenario-based Testing of
Advanced Driver Assistance Systems∗

Lukas Birkemeyer

l.birkemeyer@tu-braunschweig.de

Technische Universität Braunschweig

Braunschweig, Germany

Tobias Pett

t.pett@tu-braunschweig.de

Technische Universität Braunschweig

Braunschweig, Germany

Andreas Vogelsang

vogelsang@cs.uni-koeln.de

University of Cologne

Cologne, Germany

Christoph Seidl

chse@itu.dk

IT University of Copenhagen

Copenhagen, Denmark

Ina Schaefer

i.schaefer@tu-braunschweig.de

Technische Universität Braunschweig

Braunschweig, Germany

ABSTRACT
Scenario-based testing is considered state-of-the-art to verify and

validate Advanced Driver Assistance Systems. However, two es-

sential unsolved challenges prevent the practical application of

scenario-based testing according to the SOTIF-standard: (1) how to

select a set of representative test scenarios, and (2) how to assess

the effectiveness of a test scenario suite. In this paper, we leverage

variability modelling techniques to select scenarios from a scenario

space and assess the resulting scenario suites with a mutation score

as metric. We capture the scenario space in a feature model and

generate representative subsets with feature-interaction coverage

sampling. The mutation score assesses the failure-finding effec-

tiveness of these samples. We evaluate our concepts by sampling

scenario suites for two independent Autonomous Emergency Brak-

ing function implementations and executing them on an industrial-

strength simulator. Our results show that the featuremodel captures

a scenario space that is relevant to identify all mutants. We show

that sampling based on interaction coverage reduces the testing

effort significantly while maintaining effectiveness in terms of mu-

tation scores. Our results underline the potential of feature model

sampling for testing in the automotive industry.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Sampling Strategies, Scenario-based testing, ADAS, SOTIF

ACM Reference Format:
Lukas Birkemeyer, Tobias Pett, Andreas Vogelsang, Christoph Seidl, and Ina

Schaefer. 2022. Feature-Interaction Sampling for Scenario-based Testing of

Advanced Driver Assistance Systems. In Proceedings of the 16th International
Working Conference on Variability Modelling of Software-Intensive Systems

∗
This work has been partially been funded by the PhD program "Responsible AI in the

Digital Society" funded by the Ministry for Science and Culture of Lower Saxony.

VAMOS ’22, February 23–25, 2022, Florence, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
16th International Working Conference on Variability Modelling of Software-Intensive
Systems (VAMOS ’22), February 23–25, 2022, Florence, Italy, https://doi.org/10.1145/
3510466.3510474.

(VAMOS ’22), February 23–25, 2022, Florence, Italy. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3510466.3510474

1 INTRODUCTION
In recent years, Advanced Driver Assistance Systems (ADASs) have

become an essential part of modern motor vehicles. Verification and

validation of Advanced Driver Assistance Systems / Autonomous

Driving (ADASs/AD) have to ensure increasing reliability for in-

creasing autonomous functionality. ADAS are software components

so that established software engineering methods have potential

to improve their testing process. While real-world tests require a

significant effort, both in terms of time and money, simulations

reduce effort during the testing process. Simulation tools such as

Carla [18] and Gazebo
1
stem from the open-source community,

while e.g., CarMaker by IPG Automotive GmbH [23] and VTD by

VIRES Simulationstechnologie GmbH [55] are simulation tools from

industry. Based on simulations, scenario-based testing is a common

approach to verify and validate ADAS/AD [12, 13, 26, 39, 49, 53].

A scenario [53] is a sequence of scenes, which describe the envi-

ronment of a vehicle, e.g., road design, road users, or weather [6].

ISO 26262 is an essential standard within the automotive industry,

which addresses functional safety of motor vehicles and avoids

design faults [25]. The Safety of the intended functionality (SO-

TIF) standard (ISO 21448) focuses on failures that are not directly

traceable to design faults but to a vehicle’s environment [26, 34].

SOTIF employs scenarios as a basis and classifies scenarios into

the classes known or unknown and into the classes safe or unsafe.
Unsafe scenarios are of particular importance for the testing pro-

cess of Highly Autonomous Vehicles (HAVs). However, SOTIF does

not specify criteria to select scenarios, leaving test engineers to

choose scenarios based on intuition. In addition, there is no metric

to assess scenarios with respect to their suitability of testing and

their effectiveness for failure-finding.

In this paper, we show that Software Product Line (SPL) engi-

neering techniques such as feature modelling and sampling are

not only beneficial for development of multi-variant products [4],

but also for testing of ADAS/AD in the automotive industry. This

study is based on the master’s thesis [10]. We leverage variability

modelling techniques to select scenarios from a scenario space.

We apply sampling strategies from SPL engineering to generate

1
http://gazebosim.org

https://doi.org/10.1145/3510466.3510474
https://doi.org/10.1145/3510466.3510474
https://doi.org/10.1145/3510466.3510474
http://gazebosim.org

VAMOS ’22, February 23–25, 2022, Florence, Italy Birkemeyer et al.

scenario suites. Sampling strategies have potential to significantly

reduce test effort for highly configurable systems by focussing on

subsets that represent all possible configurations. Following this

concept, we consider a scenario as a configuration of a simulation

tool (e.g., CarMaker). The set of all possible scenarios constitutes the

configuration space. In SPLs, the configuration space is commonly

represented by a Feature Model (FM) [4]. We create an FM that rep-

resents the scenario space and use sampling strategies to generate

sets of configurations to represent the overall configuration space

of the FM [29, 30]. These sampling strategies aim for coverage of

feature interactions relevant for practical testing representative

subsets of the configuration space. A representative subset of con-

figurations has similar properties as the overall configuration space.

In contrast to existing approaches [2, 6, 12, 13, 27], the scenario

selection using FM sampling is suitable to reduce the number of

test scenarios. In evaluation experiments, we generate scenarios

that trigger the Autonomous Emergency Braking (AEB) of a vehicle.

We assess the resulting scenario suites with a mutation score as

metric. Mutation testing [17, 28] is a common concept to assess test

sets by seeding errors into the System Under Test (SUT), resulting

in mutants, and performing tests on the mutants. Mutation testing

has potential to effectively asses the quality of a test set in the

sense of its ability to detect failures in a SUT. The mutation score

indicates how many mutants are detected by a test set. The higher

the mutation score, the stronger is the test set. We apply mutation

testing to determine the ability of scenarios to detect failures and

assess the strength of scenario sets.

In summary, we contribute the following:

• We apply variability modelling and management techniques

to scenario-based ADAS testing:

– We show that an FM is a suitable modelling formalism for

configuration spaces of simulation tools.

– We show that FM sampling is suitable to scenario-based

ADAS testing by comparing coverage-based and random

sampling with expert strategies.

– We assess scenario suites with mutation testing and show

strengths of FM sampling.

• We provide a prototypical implementation of our generic

concepts in a tool chain using CarMaker as simulation tool

and Simulink for ADAS functionality.

• We evaluate our concepts for scenario selection and scenario

assessment in experiments using two AEB implementations.

In our evaluation, we show that feature-interaction cover-

age sampling reduces the testing effort significantly while

maintaining effectiveness in terms of mutation scores.

2 STATE-OF-THE-ART
In this section, we discuss work relevant to scenario generation

and scenario assessment.

Scenario Generation. We identify three essential approaches

for scenario generation: optimization-based, data-driven, and com-

binatorial scenario generation.

Optimization-based Scenario Generation. Optimization-based sce-

nario generation approaches focus on a mathematical (non-linear)

optimization, e.g., of a metric that rates how critical a scenario

is [2, 8, 32, 33, 51, 52]. There is also search-based scenario genera-

tion [9, 22] using evolutionary algorithms. These approaches are

used to generate scenarios considering a specifically tailored fitness

function to test a specific SUT (e.g., pedestrian detection). These

approaches generate scenarios that are critical according to the

specification of the SUT encoded by the fitness function. The set

that covers all possible scenarios is explicitly not modelled.

Data-Driven Scenario Generation. Data-Driven scenario genera-

tion approaches generate scenarios from existing scenario data [45].

This data may be information from real-world scenarios [41] or

police reports [21]. Current approaches use machine learning [27]

or stochastic parameterisation [16, 58] to generate scenarios. These

approaches are restricted by available data and do not explicitly

structure knowledge or configurability of scenarios. Thus, per con-

cept, they do not allow to generate sets of scenarios that cover an

overall scenario space exceeding available data or variations of it.

Combinatorial Scenario Generation. Combinatorial concepts

generate or select scenarios based on a model that describes

a scenario space. Rocklage et al. [47] introduce combinatorial

interaction testing coverage using classical optimization by solvers

for trajectory generation. Based on Schuldt [49], Bagschik et al. [7]

develop a five-level model to structure knowledge of scenarios.

Bagschik et al. [7] and Ulbrich et al. [54] use an ontology to model a

scenario space. Fremont et al. [20] propose SCENIC, a probabilistic

programming language to generate test scenes. They select scenes

from scenarios with rejection sampling. To summarise, existing

combinatorial scenario generation approaches do not generate sets

of scenarios that satisfy a specific coverage criterion.

In this paper, we address the SOTIF scenario-based, black-box

testing concept by generating scenarios independently of a specific

SUT. We structurally model a scenario space and combinatorically

select scenarios coverage-based. Instead of an ontology, we focus

on an FM to model the scenario space which is suited for scenario

generation with coverage-based sampling.

Assessment of Scenarios. Distance-based evaluation of

scenarios considers statistically which critical scenarios occur in

the real world [57]. However, testing effort is immense. Other

approaches for scenario assessment define a criticality metric,

e.g., by their driveable area [33] or accident velocities [27]. These

criticality metrics focus on specific SUTs (e.g., trajectory planning);

thus, they are not suited for a scenario-based black-box testing

concept demanded by SOTIF.

In this paper, we use mutation testing to assess scenario suites

in accordance with SOTIF. Mutation testing is a generic concept

that rates the ability of detecting failures in an SUT.

3 BACKGROUND
In this section, we introduce variability modelling in the form of

feature modelling and sampling as basis. We also establish the

concept of mutation testing and terminology to describe scenarios.

Feature-Interaction Sampling for Scenario-based ADAS-Testing VAMOS ’22, February 23–25, 2022, Florence, Italy

Figure 1: FM implementation for scenario generation

3.1 Variability Modelling
Feature modelling. Feature modelling is a common approach to

describe variability in SPLs [4, 11, 31, 48, 50]. In a Feature Model

(FM), features are arranged as nodes in a tree structure. Apel et al. [4]

define a feature 𝑓 as a behaviour of a system that is visible to the

end-user. 𝐹 describes the set of all features 𝑓 . In the FM, features

may bemandatory or optional. An alternative or an or-group permit

selection of exactly one or at least one of the contained features,

respectively. Cross-tree constraints express dependencies between
features, which cannot be modelled as a tree structure. The FM

represents the configuration space of a variable system, the related

solution space is implemented as so-called 150%-model, i.e., a rep-

resentation of the implementation that encompasses all possible

variations. A valid configuration 𝑐 is a selection of features that is

permitted by the FM. In the solution space, a configuration serves

as input for pruning the 150%-model to a 100%-model.

In Figure 1, we present an example FM that con-

figures scenarios in the context of scenario-based test-

ing [7, 49, 53]. In the example, there are the features Cross-
ing_Object, Cat, Pedestrian, Rain, and Fog. Two valid exam-

ple configurations are 𝑐1 = {Crossing_Object,Cat, Fog} and

𝑐2 = {Crossing_Object, Cat, Rain}. In Figure 1, the cross-tree

constraint Fog ⇒¬ Rain defines that, if the feature Fog is selected,

the feature Rain must not be selected.

Sampling. The configuration space of an FM becomes large so

that testing of all valid configurations becomes infeasible due to

combinatorial explosion [19, 37]. In SPL engineering, so-called sam-

pling strategies are used to select a representative sample which is

a set of configurations. Uniform random sampling [42, 43] leads to

an unbiased sample by selecting configurations that are uniformly

distributed in the configuration space. Other sampling strategies fo-

cus on a Feature-Interaction Coverage (FIC) of𝑇 features which has

been shown to be effective and efficient for failure detection [30, 36].

FIC-sampling generates samples that contain configurations with

each combination of𝑇 features, e.g., for two-wise sampling (𝑇 = 2),

each combination of two features occurs at least once in the sample.

State-of-the-art FIC-sampling strategies are IncLing [1], ICPL [30],

Chvatal [29], and YASA [35].

3.2 Mutation Testing
Mutation testing is a software engineering method to evaluate the

quality of a test suite regarding effectiveness to discover failures [17,

28]. In mutation testing, errors are injected into a program 𝑃 to

generate so-called mutants 𝑃𝑀 = {𝑃𝑀1
, 𝑃𝑀2

, ..., 𝑃𝑀𝑛
}. The quality

of a test suite is determined by the number of mutants that are

detected by the test suite. If a mutant does not pass the tests, it

is classified as killed. If a mutant passes the tests, it is classified

as alive. The kill criterion is derived from the specification of 𝑃

as defined in the test oracle of a test 𝑡 . The mutation score 𝑀𝑆 is

the ratio of killed mutants 𝑃𝑀𝑘
by the number of all mutants 𝑃𝑀 .

Thus, the mutation score is defined as𝑀𝑆 ∈ [0, 1]. The higher the
mutation score, the stronger is the test suite regarding its ability

for detecting failures in an SUT.

3.3 Scenario Description
Ulbrich et al. [53] define the terms scene and scenario within the

context of automotive testing: "A scene describes a snapshot of the

environment including the scenery and dynamic elements [...]" [53].

The scenery of a scene contains static elements such as the road

network, traffic lights, or crash barriers. Dynamic elements are,

e.g., road users or obstacles that move. A sequence of scenes re-

sults in a scenario [53]. Bagschik et al. [6] follow this definition

and structure the description of a scenario into five levels which

we use to structure the FM. The first three levels define the road

network. Level 1 (E1) describes the road itself, e.g., the route and

surface. Level 2 (E2) defines the infrastructure such as traffic signs.

Level 3 (E3) describes temporary adjustments of E1 and E2, e.g., con-

struction sites. Level 4 (E4) describes dynamic and movable objects.

Level 5 (E5) defines environmental conditions such as weather.

As a running example to motivate challenges of scenario-based

testing and to illustrate our solutions, we introduce a concrete

scenario: a vehicle drives through a city and a pedestrian crosses

the street directly in front of the vehicle. The road is a straight road

with asphalt (E1). The road has a sidewalk, guiding lines, and there

are buildings next to the sidewalk (E2). No temporary adjustments

are defined (E3). A yellow vehicle (ego-vehicle) drives on the road,

and a pedestrian walks on the sidewalk. The pedestrian crosses the

street directly in front of the yellow vehicle (E4). In the scenario,

there is daylight and no rain (E5). The scenario is designed to trigger

the AEB of the yellow vehicle. An AEB function identifies potential

collisions and warns the driver. If the driver does not react, the AEB

automatically performs a deceleration of up to −10𝑚/𝑠2 to avoid,
or at least to mitigate, a collision [5].

4 SCENARIO SELECTION AND ASSESSMENT
In the following, we introduce our concept for scenario modelling

with variability modelling techniques and assessment of scenario

suites with mutation score as metric. Figure 2 provides an overview

of the process. Scenario modelling (4.1) is based on an FM (5.1.1)

that we use to represent a scenario space. From this FM, we generate

configurations by FM sampling (5.1.2) and transfer them into sce-

narios that are executable in a simulation tool (5.4). In Section 4.1,

we provide detailed insights into our concept for designing an FM

for scenario generation. The assessment of scenario suites (4.2) is

based on mutation testing. We generate mutants (5.2) and use them

as SUT in the simulation (5.4). We define a safety envelope (5.3) and

derive a kill criterion for mutants from it. To assess the effectiveness

of the generated scenario suites, we determine the mutation score

(5.5) based on simulation results. In Section 4.2, we describe our

ideas for scenario assessment.

VAMOS ’22, February 23–25, 2022, Florence, Italy Birkemeyer et al.

Figure 2: Process: Scenario modelling and assessment

4.1 Scenario Modelling
To capture a scenario space in an FM, we consider a scenario as a

configuration of a simulation tool and model configurable elements

as features. Thus, we assume that the simulation tool provides a

realistic scenario space. This scenario space is finite, but extremely

large. The selection of scenarios is an essential challenge because

(1) each scenario has to be semantically valid and (2) the set of

scenarios has to be representative. A scenario is semantically valid,

if the scenario is (a) physically possible, (b) in accordance with

traffic regulations, and (c) compilable in the simulation tool. Inspired

by generative model-based software development [15], we devise

a template-based FM design: A template is a fixed scenario with

configurable parts that captures solution-space variability. The FM

captures the problem-space with only valid scenarios.

Template-based Scenario Modelling. Scenarios that are relevant
for the same SUT have a lot of similarities. Considering the running

example, we might use the same road network to generate different

scenarios where, e.g., the trajectory of a pedestrian or weather

conditions differ. Scenarios have elements that are closely linked to

each other and others that are independent. The temperature, e.g.,

does not affect the course of the road. However, the course of the

road affects the trajectories of all road users. We model similarities

and closely linked elements as non-configurable elements in the

template. In contrast, we define an element as configurable if it is

independent of other elements and freely configurable.

Following the five-level interpretation of scenarios according

to Bagschik et al. [6], we consider elements of the scenario levels

E1–E3 as non-configurable. These elements are often closely linked

to each other and build the basis of the road network. This, in

turn, affects elements of the levels E4–E5. Some elements of the

scenario levels E4 and E5 are closely linked to elements of E1–E3.

We consider those closely linked elements as non-configurable.

In the running example, we define the position of a guiding line

(E2) and start position of the road users (E4) as non-configurable

because they are closely linked to the road course (E1). Examples

for configurable elements of the example scenario are the type

of the crossing object (E4), the trajectory of the crossing object

(E4), or the weather (E5). For configurable elements, we consider

presence or absence of the element in the scenario, but identify that

configurable elements have parameters. We parameterise, e.g., the

speed of the ego-vehicle. Some of these parameters are continuous.

To permit using FIC-sampling to select representative scenar-

ios from one FM, we integrate templates, non-configurable

elements, and parameters in the same FM. A scenario

then is a configuration of the FM. We define a scenario

𝑆 = {𝑓1, 𝑓2, . . . , 𝑓𝑛 | 𝑓𝑖 ∈ 𝐹 𝑎𝑛𝑑 𝑖 ∈ {1, . . . , 𝑛}} as a

configuration of features 𝑓𝑖 of 𝐹 . Generating scenarios from the

FM with all valid sampling results in a set of all possible scenarios

𝑆𝑐𝐴𝑙𝑙 ⊆ P(𝐹). A scenario suite 𝑆𝑐𝑆𝑢 ⊆ 𝑆𝑐𝐴𝑙𝑙 is a subset of all

possible scenarios.

Scenario Feature Model. Simulation tools have numerous con-

figuration options. Capturing all scenarios that can be simulated

with a specific simulation tool leads to a large FM. Many of its

configurations are not relevant for a specific SUT. We focus on

relevant parts and reduce the size of the FM (i.e., complexity) by

eliminating irrelevant parts.

We devise a concept to generically structure FMs to capture a

template-based scenario space. Inspired by the five-level interpre-

tation of scenarios according to Bagschik et al. [6], we structure an

FM in three main subtrees: Template, E4, and E5. In subtree Template,
we model each template as a template feature to select between

different templates. In the subtree E4, we model all configurable

elements of the scenario that belong to level E4.
2
In the subtree E5,

we model configurable elements that belong to level E5.
3
Each con-

figurable element is represented by a scenario feature. To simplify

sampling by reducing the complexity that comes with continuous

parameters, we define equivalence classes for parameters and add

parameter features instead of using feature attributes [14, 50]. We

use parameter features in the subtrees E4 and E5.
A template requires specific configurable elements of E4 and E5.

We use cross-tree constraints to guarantee semantical validity of a

scenario. Each valid configuration of the FM contains one template

feature, multiple scenario features, and possibly multiple param-

eter features. Figure 3 presents an FM representing the scenario

space of our running example. In addition to the generic structure,

it is worth noting that the constraint Simple_Crossing ⇒ Cross-
ing_Obj ∧ Crossing_Path ensures complete specification of the tem-

plate Simple_Crossing. The constraint Rain ⇒ ¬ Fog stems from

physical restrictions.

Scenario Selection. We select a representative sample of semanti-

cally valid scenarios from the FMwith coverage-based FIC-sampling

strategies. According to the template feature, we take the selected

template as basis. We supplement the template with configurable

elements and parameterise those with parameter features of the

configuration. For the running example, a configuration, e.g., con-

tains the template feature Simple_Crossing, the scenario features

Pedestrian_Male_Casual_01_IPG, Crossing_Path, and Speed, and the

parameter feature Speed_50.

4.2 Assessment of Scenario Suites
According to the SOTIF standard, a strong scenario suite reveals

unintended behaviours of an SUT, which we define as the failure-

finding capability of the scenario suite. Mutation testing [17, 28] is

a method used in software testing to evaluate a test suite according

to its failure-finding capabilities with a mutation score.

Kill Criterion. A challenge in mutation testing is the definition

of a kill criterion for detecting mutants. Inspired by back-to-back

testing [56], we compare the outputs of the original SUT to the

2
Note: Scenario level E4 represents dynamic and movable objects.

3
Note: Scenario level E5 represents environmental conditions.

Feature-Interaction Sampling for Scenario-based ADAS-Testing VAMOS ’22, February 23–25, 2022, Florence, Italy

Figure 3: Example FM for scenario generation for AEB-system

outputs of the mutants. We consider the original SUT as correct, so

that we classify a mutant as killed if its output is not the same as

the original SUT, otherwise as alive. Considering all mutants that

do not equally behave like the original as killed is a strict criterion,

which we will relax in the next paragraph.

Safety Envelope. In ADAS/AD, modified behaviour of mutants

with respect to the original system might be acceptable as long as

the overall vehicle performs as intended. An error in an ADAS/AD-

software component, e.g., may lead to a delayed, but more abrupt

braking behaviour. Although the behaviour is changed, the overall

vehicle still grinds to halts without collision. Thus, the error affects

the comfort for the passengers of a car. From a safety point of view,

however, this error is not relevant, but the Equal Behaviour (EB)

kill criterion, as explained above, classifies this mutant as killed.

Since the SOTIF standard focuses on safety-relevance, we devise

a Safety Envelope Controller (SEC), to capture this notion [40], and

accept modified behaviour as long as it is not safety-relevant. As

input, the SECmonitors parameters of the SUT (e.g., speed, detected

objects, or steering angle) and its environment (e.g., weather, street

conditions, or road users). Using the SEC as kill criterion, a challenge

is the definition of undesired incidents. We arrange detectors for

these undesired incidents in a fault-tree structure [38] and combine

them with Boolean operators to a single output which indicates

safety-relevance. Considering our example, we define a collision as

an undesired incident and implement a collision detector.

5 IMPLEMENTATION AND TOOL SUPPORT
We have implemented our generic concepts prototypically in a

tool chain to support our experimental evaluation. Our tool chain

is publicly available to support replicability and further research

activities
4
. The scenario generation process (5.1) uses template-

based scenario suite generation to produce executable scenarios.

We combine ADAS-mutants (5.2), SEC (5.3), and the scenario suites

to test cases and execute them in the simulation tool (5.4). We

assess scenario suites according to the mutation score (5.5). In the

following, we describe the tools that we use to realise this workflow.

4
https://doi.org/10.5281/zenodo.5422113

(5.1) Scenario Generation. We use FeatureIDE v3.6.3 [31, 50] to

design an FM that represents a scenario space and to generate con-

figurations from it. FeatureIDE is one of most established variability

modelling tools and includes all sampling strategies required to eval-

uate our concepts. To transfer configurations from FeatureIDE into

executable simulation files for a simulation tool, we implemented

the Java tool C2S.

(5.2) Mutant Generation. To evaluate our concepts, we imple-

mented the SUT in Simulink – a widely applied tool in the auto-

motive industry for model-based software development [3]. The

generation of mutants is based on SIMULTATE by Pill et al. [44],

which is open source and adapted by Mevenkamp [40]. We extract

mutants with a Python-script by activating mutation operators.

(5.3) Safety Envelope Controller. We implement the SEC as

Simulink model to reuse the interface of the SUT to communicate

with the simulation tool. We separate the SEC from the ADAS-

model to create a kill criterion that is independent of the SUT.

(5.4) Simulation.Within the automotive industry, there are a num-

ber of simulation tools for ADAS testing [23, 24, 55].We focus on the

simulation tool CarMaker [23] by IPG Automotive GmbH, which

is widely used in the automotive industry. The CarMaker Test-

Manager automatically executes and assess simulation scenarios.

CarMaker also provides interfaces to connect Simulink models.

(5.5) Scenario Assessment. During the simulation, we log simu-

lation results for each scenario. We determine the mutation score

with the tool R [46].

6 EVALUATION AND DISCUSSION
In this section, we describe experiments that we perform with our

prototypical implementation.

6.1 Research Questions
RQ1. As described in Section 4.1, we use an FM to represent

a scenario space. We investigate: RQ1: Does the FM capture
the scenario space that is relevant to kill all mutants? The
objective is to determine the mutation score for all scenarios of the

scenario space. If the mutation score is equal to one, the FM captures

https://doi.org/10.5281/zenodo.5422113

VAMOS ’22, February 23–25, 2022, Florence, Italy Birkemeyer et al.

scenarios that are relevant to kill all mutants. If the mutation score

is less than one, the scenario space might be incomplete regarding

relevant scenarios. FMs might not be suitable to represent scenario

spaces or the abstraction of the FM may be too coarse in the sense

that relevant variations of scenarios may not be represented.

RQ2. We generate scenario suites that represent the scenario

space based on FIC-sampling to reduce test effort by reducing the

number of test scenarios. To evaluate the quality of the scenario

selection, we investigate research question RQ2: What is the im-
pact of sampling strategies on test effectiveness? The objective
of RQ2 is to compare measured mutation scores for independently

generated scenario suites with various strategies. We determine if,

for five runs each, the mutation scores’ median is higher and its

spread is smaller which would be deemed as a more effective sce-

nario suite. The following three comparisons are of special interest:

(1) We generate scenario suites with different sampling algorithms

and degrees of FIC. We investigate their effectiveness in terms of

mutation scores regarding scenarios from all valid sampling for

RQ1. (2) We compare the FIC-sampled scenario suites with ran-

domly sampled scenario suites. Consequently, we investigate the

effectiveness of systematic scenario selection regarding unsystem-

atic scenario selection. (3) We challenge sampling strategies against

a scenario selection by expert knowledge to compare our concept

with common evaluation methods of the automotive industry.

RQ3. As described in Section 4.2, we propose an SEC as kill

criterion to assess scenario suites independently of an SUT. We

define research question RQ3: What is the influence of the SEC
as kill criterion on the mutation score? The objective of RQ3 is
to compare measured mutation scores for generated scenario suites

in combination with EB and SEC kill criterion. We determine if, for

five runs, the mutation scores qualitatively performs similarly in

terms of mutation scores.

6.2 Study Design
We designed an experiment to evaluate our concepts along the

workflow presented in Figure 2. We use an AEB function as exem-

plary SUT. AEB functions are essential parts of modern vehicles

and some implementations are publicly available. We use two in-

dependent AEB implementations to reduce a potential bias of one

concrete implementation. As aeb-1, we use an implementation

inspired by Arcidiacono [5]. The implementation of aeb-2 is based
on the Autonomous Driving Toolbox by Mathworks

5
, which we

adapted for CarMaker. For each AEB implementation, we generate

sets of mutants𝑀𝑎𝑒𝑏−1 and𝑀𝑎𝑒𝑏−2 by randomly activating one or

twomutation operators.We use SIMULTATE [44] to insert potential

mutation operators before or after each block of the AEB Simulink

model. We insert mutation operators of the types: Absolute_mut,
Zero_fault_mut, Inverter_mut, Negation_mut, Increment_mut. Ran-
dom activation of mutation operators reduces potential bias in the

mutation process. Each set𝑀𝑥 contains 49mutants.We consider the

SUT implementation and their mutations as controlled variables.

We created an FM that represents the scenario space of relevant

scenarios for the AEB. The resulting FM is an expansion of the

5
https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-

with-sensor-fusion.html

FM in Figure 3 and contains seven templates. The templates relies

on seven initial scenarios which are implemented and provided

by IPG Automotive GmbH as scenarios for CarMaker to test AEB.

Three of these scenarios are inspired by EuroNCAP
6
and are com-

monly used within the automotive industry to assess safety of AEBs.

We identify configurable elements of the templates and model them

as features and their dependencies as cross-tree constraints. This

results in a FM containing 76 features and 10 cross-tree constraints.

We use the scenario suite as input for a simulation with the simula-

tion tool CarMaker. We simulate each scenario for all mutants for

aeb-1 and aeb-2 as SUTs. We calculate the mutation score for the

union of a scenario suite with Equation 1. The mutation score for

each mutation set𝑀 is the dependent variable in our experiments.

For RQ1, we generate the scenario suite 𝑆𝑐𝑆𝑢𝑎𝑙𝑙 , which contains

24,412 valid scenarios, with all valid sampling of FeatureIDE.

𝑀𝑆𝑀𝑥
(𝑆𝑐𝑆𝑢) = |{𝑚 ∈ 𝑀𝑥 |𝑚 𝑘𝑖𝑙𝑙𝑒𝑑 𝑏𝑦 𝑠𝑜𝑚𝑒 𝑆 𝑖𝑛 𝑆𝑐𝑆𝑢}|

|{𝑀𝑥 }|
(1)

In research question RQ2, we aim to evaluate the impact of

sampling strategies. We generate multiple scenario suites 𝑆𝑐𝑆𝑢𝑥
using the sampling algorithms ICPL [30] and Chvatal [29]. Both

sampling algorithms are parameterised with respect to their FIC of

𝑇 features. We parametrise both algorithms with 𝑇 = 1, 𝑇 = 2, and

𝑇 = 3. Thus, we can evaluate the influence of sampling algorithm

and FIC separately. Both sampling strategies, ICPL and Chvatal are

non-deterministic. We generate five scenario suite versions for each

sampling strategy. In the evaluation, we investigate the median and

distribution of mutation scores for each sampling strategy. The

number of scenarios generated depends on the FIC of 𝑇 features.

For 𝑇 = 1, a scenario suite contains 10 scenarios, while a scenario

suite with 𝑇 = 2 contains 118–121 scenarios and 𝑇 = 3 leads to

979–991 scenarios. The resulting mutation score is impacted by

the number of scenarios and the selection of scenarios. To assess

the impact of scenario selection, we generate, for each scenario

suite 𝑆𝑐𝑆𝑢𝑥 , a randomly sampled scenario suite 𝑆𝑐𝑆𝑢𝑥_𝑟𝑎𝑛𝑑 with the

same number of scenarios |𝑆𝑐𝑆𝑢𝑥_𝑟𝑎𝑛𝑑 | = |𝑆𝑐𝑆𝑢𝑥 |. A comparison

of 𝑀𝑆𝑀𝑥
(𝑆𝑐𝑆𝑢𝑥) and 𝑀𝑆𝑀𝑥

(𝑆𝑐𝑆𝑢𝑥_𝑟𝑎𝑛𝑑) indicates whether FIC-
sampling (systematic scenario selection) leads to stronger scenario

suites than random sampling (unsystematic scenario selection). We

generate 30 scenario suites that contain a total of 11,145 scenarios.

For a comparison of our variability modelling concept and common

evaluation methods, we also use the scenario suite 𝑆𝑐𝑆𝑢𝑖𝑛𝑖𝑡 that

contains the seven initial scenarios, from which we derive the FM.

These scenarios were selected by expert knowledge.

Research question RQ3 focuses on the influence of the kill cri-

terion on the mutation score. We use both, EB and SEC as kill

criterion to determine the mutation score for each scenario suite.

To realise the EB kill criterion, we execute the original AEB and

the mutant in parallel. We compare the desired acceleration of both

using a relational operator in Simulink. The SEC is independent of

the SUT and requires a definition of undesired incidents. For our

experiments, we implemented a collision detector.

6
https://www.euroncap.com

https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html
https://www.euroncap.com

Feature-Interaction Sampling for Scenario-based ADAS-Testing VAMOS ’22, February 23–25, 2022, Florence, Italy

6.3 Study Results and Discussion
RQ1. We performed simulations with the scenario suite 𝑆𝑐𝑆𝑢𝑎𝑙𝑙

for both AEB implementations aeb-1 and aeb-2. The scenario suite

𝑆𝑐𝑆𝑢𝑎𝑙𝑙 reaches a mutation score of 𝑀𝑆 (𝑆𝑐𝑆𝑢𝑎𝑙𝑙) = 1 for both

AEB implementations. In other words, after running all 24,412

valid scenarios that can be sampled from the FM, all mutants were

identified as such by at least one scenario. For research question
RQ1, we conclude, that our FM captures a scenario space that is

relevant to kill all mutants and that our concept of capturing a

scenario space in an FM is feasible. We argue that in general an FM

is a suitable abstraction to represent a scenario space for failure

detection in scenario-based testing.

RQ2. Figure 4 shows the mutation scores for the scenario suites

that we generated with FIC-sampling strategies (red) in comparison

with themutation scores of the related randomly generated scenario

suites (blue). We determine the mutation scores using both EB and

SEC as kill criterion. We arrange the sampling strategies according

to their FIC of 𝑇 features on the x-axis. The dot represents the

median value of the five samples for each sampling strategy and

the line depicts minimum and maximum values.

Figure 4 shows that the median mutation scores increase with

increasing FIC of 𝑇 features. The median mutation score for

ICPL with increasing coverage, e.g., is 𝑀𝑆 (𝑆𝑐𝑆𝑢𝐼𝐶𝑃𝐿_𝑇 1) ≈ 0.61,

𝑀𝑆 (𝑆𝑐𝑆𝑢𝐼𝐶𝑃𝐿_𝑇 2) ≈ 0.67, and 𝑀𝑆 (𝑆𝑐𝑆𝑢𝐼𝐶𝑃𝐿_𝑇 3) ≈ 1 for aeb-1

with EB kill criterion. The diagrams show the same qualitative trend

for any combination of Chvatal, abe-2 and SEC as kill criterion.

The scenario suites Chvatal (𝑇 = 3) in combination with aeb-2 and

ICPL (𝑇 = 3) lead to a median mutation score of one. We also recog-

nise an increasing spread of the mutation scores for the five versions

of each scenario suite for increasing𝑇 except for ICPL (𝑇 = 2). If we

compare these results with randomly generated scenario suites, we

recognise that randomly generated scenario suites lead to lower me-

dian and a broader spread of mutation scores. An exception for this

is ICPL (𝑇 = 2) in combination with aeb-2. The mutation scores that

we determine using the SEC as kill criterion lead to less or equal

mutation scores inmedian than using the EB kill criterion.We recog-

nise this trend for both AEB implementations. There are outliers for

the randomly generated scenario suites related to ICPL (𝑇 = 3) in

combination with aeb-1 although we use the same scenario suites

in combination with aeb-2 for which we cannot pinpoint the

reason. The scenario suite 𝑆𝑐𝑆𝑢𝑖𝑛𝑖 leads to a mutation score of

𝑀𝑆𝑀𝑎𝑒𝑏−1 (𝑆𝑐𝑆𝑢𝑖𝑛𝑖) = 0.62 and 𝑀𝑆𝑀𝑎𝑒𝑏−2 (𝑆𝑐𝑆𝑢𝑖𝑛𝑖) = 0.52 with EB

kill criterion. The mutation scores determined with SEC as kill cri-

terion are𝑀𝑆𝑀𝑎𝑒𝑏−1 (𝑆𝑐𝑆𝑢𝑖𝑛𝑖) = 0.58 and𝑀𝑆𝑀𝑎𝑒𝑏−2 (𝑆𝑐𝑆𝑢𝑖𝑛𝑖) = 0.5.

Thus, the seven initial scenarios from which we derived the FM,

kill less than 65% of the mutants.

(1) In our experiment, scenario suites generated by three-wise

sampling lead to a detection of at least 75% of mutants. Depending

on the AEB implementation, these scenario suites kill all mutants

such as the scenario suite generated with all valid sampling. Sce-

nario suites generated by three-wise sampling contain approx. 4%

of 𝑆𝑐𝑆𝑢𝑎𝑙𝑙 (991 scenarios instead of 24,412). Thus, in our experiment,

three-wise sampling significantly reduces test effort in the number

of test scenarios while maintaining effectiveness in terms of muta-

tion scores. We conclude FIC-sampling is a reasonable strategy to

reduce the number of scenarios in a test suite. However, to reach

mutation scores close to 1, a coverage degree of 𝑇 > 2 is necessary.

(2) We conclude that an influence of the sampling algorithm

(Chvatal or ICPL) is low but we recognise that the FIC of𝑇 features

influences the mutation score. The higher 𝑇 , the stronger is the

resulting scenario suite. This effect cannot be explained only by the

increasing number of tested scenarios in a suite because a scenario

suite with equally many randomly sampled scenarios performs

worse in general. One exception is ICPL (𝑇 = 3) in combination

with aeb-2, where the spread of random sampling is smaller than

for FIC-sampling. We consider this exception as outlier in favour

of randomly generated scenario suites.

(3) We compare the scenario suites generated with FIC-sampling

to the scenario suite 𝑆𝑐𝑆𝑢𝑖𝑛𝑖 , which consists of seven scenarios

that are selected by expert knowledge. The mutation scores that we

measure for 𝑆𝑐𝑆𝑢𝑖𝑛𝑖 are comparable to scenario suites sampled with

feature sampling strategies. The mutation scores are influenced by

both AEB implementation and kill criterion, but the initial scenarios

kill less than 65% of the mutants. In contrast, all valid sampling and

sampling strategies with 𝑇 > 2 detect up to 100% of the mutants.

In terms of mutation scores, FIC-sampling has the potential to be

more effective than a scenario selection by expert knowledge.

Thus, for research question RQ2, our experiments show that

FIC-sampling with 𝑇 > 2 significantly reduces the test effort while

maintaining effectiveness in terms of mutation scores.We also show

that FIC-sampling leads to more effective scenario suites in terms

of mutation scores compared to random sampling. The coverage

𝑇 has an essential impact on the effectiveness of a scenario suite,

while the sampling algorithm is negligible. ICPL is based on the

Chvatal sampling algorithm; thus, the resulting scenario suites

might be similar causing only a minimal influence. Comparing

FIC-sampled scenario suites with a scenario selection by expert

knowledge emphasises the potential of our concept with regard

to common evaluation methods. Based on these findings, we con-

clude that systematic scenario selection has potential to outperform

unsystematic scenario selection for scenario-based testing.

RQ3. We compare the mutation scores based on EB and SEC kill

criterion to investigate the impact of the SEC. The mutation scores

in Figure 4 show the same trend of mutation scores with regard to

the sampling strategy. The median of the mutation score is equal or

lower if we use the SEC as kill criterion instead of EB. This behaviour

is plausible because the EB criterion detects whether the behaviour

of SUT and mutant are identical. The SEC defines an abstraction of

undesired incidences that must not occur. Hence, the SEC is more

tolerant which is reflected in the experiment results. There are

exceptions, where the SEC kills moremutants as the EB kill criterion.

These exceptions occur for three scenario suites in combination

with aeb-2: 𝑆𝑐𝑆𝑢𝑖𝑛𝑖 , 𝑆𝑐𝑆𝑢𝐶ℎ𝑣𝑎𝑡𝑎𝑙_𝑇 1 (version v3), and 𝑆𝑐𝑆𝑢𝐼𝐶𝑃𝐿_𝑇 1
(version v5). Each of these scenario suites kills less than 55% of the

mutants, which is almost as bad as random. These scenario suites

are not effective enough to properly kill mutants so that we assume

that their results are not suitable to assess kill criteria. However,

focussing on scenario suites with𝑇 ≥ 2 the mutation scores of both

kill criteria are similar. Moreover, the deviation of EB and SEC kill

criterion is small. Regarding research question RQ3, we conclude
that it is feasible to use an SEC as kill criterion.

VAMOS ’22, February 23–25, 2022, Florence, Italy Birkemeyer et al.

aeb−1

EB

aeb−1

SEC

aeb−2

EB

aeb−2

SEC

C
hv

at
al

 T
1

IC
P

L
T

1

C
hv

at
al

 T
2

IC
P

L
T

2

C
hv

at
al

 T
3

IC
P

L
T

3

C
hv

at
al

 T
1

IC
P

L
T

1

C
hv

at
al

 T
2

IC
P

L
T

2

C
hv

at
al

 T
3

IC
P

L
T

3

C
hv

at
al

 T
1

IC
P

L
T

1

C
hv

at
al

 T
2

IC
P

L
T

2

C
hv

at
al

 T
3

IC
P

L
T

3

C
hv

at
al

 T
1

IC
P

L
T

1

C
hv

at
al

 T
2

IC
P

L
T

2

C
hv

at
al

 T
3

IC
P

L
T

3

0.00

0.25

0.50

0.75

1.00

sampleAlgorithm

M
ut

at
io

nS
co

re

Random

FALSE
TRUE

Figure 4: FM implementation for scenario generation to trigger the AEB-system

6.4 Threats to Validity
In the following, we discuss threats to internal, external, and con-

struct validity.

Internal Validity. A threat to internal validity is a bias from the

developed FM, which might result from the initial scenarios or

the manual creation process. We address this by using EuroN-

CAP scenarios that are commonly used to evaluate safety of motor

vehicles and demo scenarios that are provided by IPG Automo-

tive GmbH for AEB-testing. Subsequently, we reviewed the FM

with multiple experts in an iterative process to reduce researcher

bias. Another threat to internal validity is non-determinism of FIC-

sampling strategies. To mitigate this, we generate five versions of

scenario suites and evaluate their median and distribution. A third

threat to internal validity is that the implementation of the SUT

might influence the mutation score. We address this by using two

independent AEB implementations. Although these implementa-

tions are academic examples, we argue that SUTs with industrial

strength lead to qualitatively similar results. Lower mutation scores

are expected, due to more functionality and higher complexity. A

last threat to internal validity is an influence of specific mutation

operators on the mutation score. To address this, we use the same

parameterisation of SIMULTATE for both AEB implementations.

External Validity. A threat to external validity is that the results

may be influenced by the usage of specific simulation tools in our

workflow. To mitigate this threat, we select the tools CarMaker and

Simulink widely adapted in the automotive industry. We expect

similar results for alternative solutions. A second threat results

from the sampling algorithms used in our experiments, because

ICPL is based on Chvatal. Future work is necessary to obtain a

reliable, generalizable statement about the influence of the sam-

pling algorithm on the mutation score. Another threat to external

validity is that the results may not be generalizable to an FM that

covers the overall scenario space of a simulation tool because in our

experiments, we reduce the size of the FM by eliminating irrelevant

parts to reduce complexity. This threat comes with the generaliz-

ability of our results to further ADAS. To address both, we argue

that our variability modelling concept is designed to cover a sce-

nario space for ADAS/AD testing. The identification of scenarios of

interest is done by expert knowledge in an iterative process. An au-

tomated solution for identification of relevant parts and specialised

FIC-sampling or slicing for specific ADAS is future work.

Construct Validity. A threat to construct validity is that the mu-

tation score might not be suitable to assess the quality of scenario

suites. Mutation testing is commonly accepted for evaluating test

suites in software testing [28]. The implementation of ADAS/AD in

the automotive context is based on software; thus, we expect using

mutation testing for scenario-based testing to be valid.

7 CONCLUSION
In this paper, we leverage variability modelling techniques and mu-

tation testing to solve two essential unsolved challenges of scenario-

based testing in the automotive industry: (1) scenario selection and

(2) scenario assessment. We select scenarios with coverage-based

FM sampling from a scenario space and assess the resulting scenario

suites with a mutation score as metric. Our experiments underline

that it is feasible to use an FM to represent a scenario space in a

template-based structure. FIC-sampling significantly reduces the

testing effort while maintaining effectiveness in terms of mutation

scores. In our experiments, these systematic sampling strategies

outperform unsystematic random sampling and a scenario selec-

tion by expert knowledge. The coverage 𝑇 has an essential impact

on the effectiveness of a scenario suite while the selection of the

sampling algorithm is negligible. Our experiments also show that

it is feasible to use a tolerant kill criterion in form of a safety enve-

lope controller to assess scenarios. These findings demonstrate the

potential of variability management and FIC-sampling to improve

scenario-based testing. In the future, we plan to optimize and ex-

pand template-based FM design focussing on the configurability

of E1–E3 elements. We also plan to investigate the influences of

SUT and mutation operations on the mutation score. Simulations

using a scenario space defined by independent automotive experts

will be used to evaluate the generalization of our concept. We also

plan to investigate our concept in combination with further ADAS,

autonomous driving and sampling strategies.

Feature-Interaction Sampling for Scenario-based ADAS-Testing VAMOS ’22, February 23–25, 2022, Florence, Italy

REFERENCES
[1] Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter

Saake. 2016. IncLing: efficient product-line testing using incremental pairwise

sampling. ACM SIGPLAN Notices 52, 3 (2016), 144–155.
[2] Matthias Althoff and Sebastian Lutz. 2018. Automatic generation of safety-critical

test scenarios for collision avoidance of road vehicles. In 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1326–1333.

[3] Harald Altinger, Franz Wotawa, and Markus Schurius. 2014. Testing methods

used in the automotive industry: Results from a survey. In Proceedings of the 2014
Workshop on Joining AcadeMiA and Industry Contributions to Test Automation
and Model-Based Testing. 1–6.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Alberto Arcidiacono. 2018. ADAS virtual validation: ACC and AEB case study
with IPG CarMaker. Master’s thesis. Politecnico di Torino.

[6] G Bagschik, T Menzel, C Körner, and M Maurer. 2018. Wissensbasierte Szenar-

iengenerierung für Betriebsszenarien auf deutschen Autobahnen. InWorkshop
Fahrerassistenzsysteme und automatisiertes Fahren. Bd, Vol. 12.

[7] Gerrit Bagschik, Till Menzel, and Markus Maurer. 2018. Ontology based scene

creation for the development of automated vehicles. In 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1813–1820.

[8] Halil Beglerovic, Michael Stolz, and Martin Horn. 2017. Testing of autonomous

vehicles using surrogate models and stochastic optimization. In 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 1–6.

[9] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016.

Testing advanced driver assistance systems using multi-objective search and

neural networks. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 63–74.

[10] Lukas Birkemeyer. 2021. Sampling strategies for generating scenarios for
simulation-based validation of advanced driver assistance systems. Master’s thesis.

Braunschweig. https://doi.org/10.24355/dbbs.084-202102191146-0

[11] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based

approach to feature modelling: Syntax and semantics of TVL. Science of Computer
Programming 76, 12 (2011), 1130–1143.

[12] ENABLE S3 Consortium. 2019. Testing & Validation of highly automated sys-
tems: Summary of Results. https://drive.google.com/file/d/15c1Oe69dpvW5dma8-

uS8hev17x-6V3zU/view [accessed 2021-05-07].

[13] PEGASUS Consortium. 2020. Schlussbericht für das Gesamtprojekt PEGASUS
Projekt zur Etablierung von generell akzeptierten Gütekriterien, Werkzeugen und
Methoden sowie Szenarien und Situationen zur Freigabe hochautomatisierter
Fahrfunktionen. https://www.pegasusprojekt.de/files/tmpl/pdf/PEGASUS_

Abschlussbericht_Gesamtprojekt.PDF [accessed 2021-05-07].

[14] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.

Beyond boolean product-line model checking: dealing with feature attributes

and multi-features. In 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 472–481.

[15] Krzysztof Czarnecki and Simon Helsen. 2006. Feature-based survey of model

transformation approaches. IBM Systems Journal 45, 3 (2006), 621–645.
[16] Erwin de Gelder and Jan-Pieter Paardekooper. 2017. Assessment of automated

driving systems using real-life scenarios. In Intelligent Vehicles Symposium (iv).
IEEE, 589–594.

[17] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on

test data selection: Help for the practicing programmer. Computer 11, 4 (1978),
34–41.

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. 2017. CARLA: An open urban driving simulator. arXiv preprint
arXiv:1711.03938 (2017).

[19] Emelie Engström and Per Runeson. 2011. Software product line testing–a sys-

tematic mapping study. Information and Software Technology 53, 1 (2011), 2–13.

[20] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L

Sangiovanni-Vincentelli, and Sanjit A Seshia. 2019. Scenic: a language for scenario

specification and scene generation. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 63–78.

[21] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating effective test

cases for self-driving cars from police reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 257–267.

[22] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-

driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
318–328.

[23] IPG Automotive GmbH. [n. d.]. CarMaker. https://ipg-automotive.com/de/

produkte-services/simulation-software/carmaker/. [accessed 2020-12-08].

[24] IPG Automotive Group [n. d.]. User’s Guide. IPG Automotive Group.

[25] ISO. 2018. Road vehicles — Functional safety.

[26] ISO. 2019. Road vehicles — Safety of the intended functionality.

[27] Ian Rhys Jenkins, Ludvig Oliver Gee, Alessia Knauss, Hang Yin, and Jan Schroeder.

2018. Accident scenario generation with recurrent neural networks. In 2018 21st

International Conference on Intelligent Transportation Systems (ITSC). IEEE, 3340–
3345.

[28] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of

mutation testing. IEEE Transactions on Software Engineering 37, 5 (2010), 649–678.
[29] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2011. Properties

of realistic feature models make combinatorial testing of product lines feasible.

In International Conference on Model Driven Engineering Languages and Systems.
Springer, 638–652.

[30] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2012. An

algorithm for generating t-wise covering arrays from large feature models. In

Proceedings of the 16th International Software Product Line Conference-Volume 1.
46–55.

[31] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,

Fabian Wielgorz, and Sven Apel. 2009. FeatureIDE: A tool framework for feature-

oriented software development. In 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 611–614.

[32] BaekGyu Kim, Akshay Jarandikar, Jonathan Shum, Shinichi Shiraishi, and

Masahiro Yamaura. 2016. The SMT-based automatic road network generation in

vehicle simulation environment. In 2016 International Conference on Embedded
Software (EMSOFT). IEEE, 1–10.

[33] Moritz Klischat and Matthias Althoff. 2019. Generating critical test scenarios

for automated vehicles with evolutionary algorithms. In 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2352–2358.

[34] Philip Koopman, Uma Ferrell, Frank Fratrik, and Michael Wagner. 2019. A safety

standard approach for fully autonomous vehicles. In International Conference on
Computer Safety, Reliability, and Security. Springer, 326–332.

[35] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas

Leich. 2020. YASA: yet another sampling algorithm. In Proceedings of the 14th
International Working Conference on Variability Modelling of Software-Intensive
Systems. 1–10.

[36] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. 2004. Software fault

interactions and implications for software testing. IEEE Transactions on Software
Engineering 30, 6 (2004), 418–421.

[37] Jihyun Lee, Sungwon Kang, and Danhyung Lee. 2012. A survey on software

product line testing. In Proceedings of the 16th International Software Product Line
Conference-Volume 1. 31–40.

[38] Wen-Shing Lee, Doris L Grosh, Frank A Tillman, and Chang H Lie. 1985. Fault

tree analysis, methods, and applications a review. IEEE Transactions on Reliability
34, 3 (1985), 194–203.

[39] Till Menzel, Gerrit Bagschik, and Markus Maurer. 2018. Scenarios for develop-

ment, test and validation of automated vehicles. In 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 1821–1827.

[40] Phillipp Mevenkamp. 2019. Mutation Testing for Autonomous Vehicle. Master’s

thesis. Technical University of Braunschweig.

[41] Pascal Minnerup, Tobias Kessler, and Alois Knoll. 2015. Collecting simulation sce-

narios by analyzing physical test drives. In 2015 IEEE 18th International Conference
on Intelligent Transportation Systems. IEEE, 2915–2920.

[42] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. 2019.

Uniform random sampling product configurations of feature models that have

numerical features. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume A. 289–301.

[43] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. 2017. Finding

near-optimal configurations in product lines by random sampling. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 61–71.

[44] Ingo Pill, Ivan Rubil, Franz Wotawa, and Mihai Nica. 2016. SIMULTATE: A

toolset for fault injection and mutation testing of Simulink models. In 2016 IEEE
Ninth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 168–173.

[45] Andreas Pütz, Adrian Zlocki, Julian Bock, and Lutz Eckstein. 2017. System vali-

dation of highly automated vehicles with a database of relevant traffic scenarios.

situations 1 (2017), E5.
[46] R Core Team. 2020. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.

org

[47] Elias Rocklage, Heiko Kraft, Abdullah Karatas, and Jörg Seewig. 2017. Automated

scenario generation for regression testing of autonomous vehicles. In 2017 ieee
20th international conference on intelligent transportation systems (itsc). IEEE,
476–483.

[48] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.

Feature diagrams: A survey and a formal semantics. In 14th IEEE International
Requirements Engineering Conference (RE’06). IEEE, 139–148.

[49] Fabian Schuldt. 2017. Ein Beitrag für den methodischen Test von automatisierten
Fahrfunktionen mit Hilfe von virtuellen Umgebungen. Ph. D. Dissertation. TU

Braunschweig.

[50] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,

and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-

oriented software development. Science of Computer Programming 79 (2014),

70–85.

https://doi.org/10.24355/dbbs.084-202102191146-0
https://drive.google.com/file/d/15c1Oe69dpvW5dma8-uS8hev17x-6V3zU/view
https://drive.google.com/file/d/15c1Oe69dpvW5dma8-uS8hev17x-6V3zU/view
https://www.pegasusprojekt.de/files/tmpl/pdf/PEGASUS_Abschlussbericht_Gesamtprojekt.PDF
https://www.pegasusprojekt.de/files/tmpl/pdf/PEGASUS_Abschlussbericht_Gesamtprojekt.PDF
https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/
https://ipg-automotive.com/de/produkte-services/simulation-software/carmaker/
https://www.R-project.org
https://www.R-project.org

VAMOS ’22, February 23–25, 2022, Florence, Italy Birkemeyer et al.

[51] Cumhur Erkan Tuncali and Georgios Fainekos. 2019. Rapidly-exploring ran-

dom trees for testing automated vehicles. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, 661–666.

[52] Cumhur Erkan Tuncali, Theodore P Pavlic, and Georgios Fainekos. 2016. Utilizing

S-TaLiRo as an automatic test generation framework for autonomous vehicles. In

International Conference on Intelligent Transportation Systems (itsc). IEEE, 1470–
1475.

[53] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and Markus Mau-

rer. 2015. Defining and substantiating the terms scene, situation, and scenario

for automated driving. In 2015 IEEE 18th International Conference on Intelligent
Transportation Systems. IEEE, 982–988.

[54] Simon Ulbrich, Tobias Nothdurft, Markus Maurer, and Peter Hecker. 2014. Graph-

based context representation, environment modeling and information aggrega-

tion for automated driving. In 2014 IEEE Intelligent Vehicles Symposium Proceed-
ings. IEEE, 541–547.

[55] MSC.Software GmbH VIRES Simulationstechnologie GmbH. [n. d.]. Virtual Test

Drive. https://www.mscsoftware.com/de/virtual-test-drive. [accessed 2020-12-

08].

[56] Mladen A Vouk. 1988. On back-to-back testing. In Computer Assurance, 1988.
COMPASS’88. IEEE, 84–91.

[57] Walther Wachenfeld and Hermann Winner. 2016. The release of autonomous

vehicles. In Autonomous driving. Springer, 425–449.
[58] Marc René Zofka, Florian Kuhnt, Ralf Kohlhaas, Christoph Rist, Thomas Schamm,

and J Marius Zöllner. 2015. Data-driven simulation and parametrization of traffic

scenarios for the development of advanced driver assistance systems. In 2015
18th International Conference on Information Fusion (Fusion). IEEE, 1422–1428.

https://www.mscsoftware.com/de/virtual-test-drive

	Abstract
	1 Introduction
	2 State-of-the-Art
	3 Background
	3.1 Variability Modelling
	3.2 Mutation Testing
	3.3 Scenario Description

	4 Scenario Selection and Assessment
	4.1 Scenario Modelling
	4.2 Assessment of Scenario Suites

	5 Implementation and Tool Support
	6 Evaluation and Discussion
	6.1 Research Questions
	6.2 Study Design
	6.3 Study Results and Discussion
	6.4 Threats to Validity

	7 Conclusion
	References

