
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2022

Virtual Machine for SpartanGold Virtual Machine for SpartanGold

William Wang

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons, and the Other Computer Sciences Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages

Virtual Machine for SpartanGold

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

William Wang

December 2022

© 2022

William Wang

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Virtual Machine for SpartanGold

by

William Wang

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2022

Dr. Thomas Austin Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Katerina Potika Department of Computer Science

ABSTRACT

Virtual Machine for SpartanGold

by William Wang

The field of blockchain and cryptocurrencies can be both difficult to grasp and

improve upon, which makes aids that can assist in these tasks very useful. SpartanGold

is a simplified blockchain-based cryptocurrency created at San Jose State University

as a learning aid for blockchain and cryptocurrencies. In its current state, it closely

resembles Bitcoin, and it is also easily expandable to implement other features.

This project extends SpartanGold with a virtual machine resembling the Ethereum

Virtual Machine. Implementing this feature results in SpartanGold having Ethereum-

related features, which would allow the cryptocurrency to both be a helpful learning

aid for Ethereum and be able to solve interesting blockchain problems associated with

virtual machines and smart contracts.

Using my virtual machine implementation, I was able to produce a simplified

token that resembles Ethereum tokens and works with SpartanGold. This token

demonstrates the SpartanGold Virtual Machine’s usefulness in simulating smart

contracts of real world interest. Going forward, developers can experiment with the

SpartanGold Virtual Machine to test out new ideas without dealing with the full

complexity of the Ethereum Virtual Machine.

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Brief Background . 1

1.2 Motivation . 1

1.3 The SpartanGold Virtual Machine 2

1.4 Competing Approaches . 2

1.5 Expected Results . 2

1.6 Paper Summary . 3

2 Background and Related Work . 4

2.1 Bitcoin Script . 4

2.2 Ethereum Virtual Machine . 4

2.3 Other Relevant Works . 5

3 Design and Implementation . 6

3.1 Virtual Machine Functionality Walkthrough 7

3.2 Shared Ethereum Features . 10

3.2.1 Gas . 10

3.2.2 Storage . 10

3.3 Challenges . 11

3.3.1 SMOD . 11

3.3.2 KECCAK256 . 11

3.3.3 JUMP/JUMPI . 11

v

vi

3.3.4 PUSHARG . 12

4 List of Opcodes in the SpartanGold Virtual Machine 13

4.1 0s: Stop and Arithmetic Operations 13

4.2 10s: Comparison and Bitwise Logic Operations 14

4.3 20s: KECCAK256 . 14

4.4 30s: Environmental Information 15

4.5 40s: Block Information . 15

4.6 50s: Stack, Memory, Storage and Flow Operations 16

4.7 60s and 70s: Push Operations . 17

4.8 80s: Duplication Operations . 18

4.9 90s: Exchange Operations . 19

4.10 a0s: Logging Operations . 19

4.11 b0s: Miscellaneous Operations . 20

4.12 f0s: System operations . 20

5 SpartanGold Integration . 21

5.1 SpartanGold Code Structure . 21

5.2 VmBlock . 22

5.3 VmClient . 22

6 Validation . 24

6.1 Timestamp-based SpartanGold Transfer 24

6.2 Minimum Ethereum Token . 28

7 Conclusion . 30

7.1 Future Work . 30

vii

7.1.1 Opcodes . 30

7.1.2 Contracts . 30

7.1.3 Tokens . 31

LIST OF REFERENCES . 32

CHAPTER 1

Introduction
1.1 Brief Background

Virtual machines are an important concept in the field of blockchain and cryp-

tocurrency, as they are an essential part to running contract bytecode. The most

well-known example of a cryptocurrency virtual machine is the Ethereum Virtual

Machine (EVM) from Ethereum, which allows the cryptocurrency to execute powerful

smart contracts that can perform interesting transactions, such as running decentral-

ized applications (dApps). A lesser known example is the Bitcoin Script for Bitcoin,

which also allows the cryptocurrency to execute contracts, although these tend to

be less powerful and do just enough to perform simple transactions. Having such a

feature in a cryptocurrency allows it to be more flexible in its transactions and do

more interesting tasks with its tokens, so it is imperative to understand how they

work under the hood and implement one for the language.

1.2 Motivation

The source code behind established cryptocurrencies can be difficult to grasp and

to improve upon, especially when it comes to virtual machines. It is often useful to

have a concrete example on hand to visualize the processes being performed under

the hood when experimenting in the field of blockchain and cryptocurrency, so an

alternative token that is easier to manipulate is required. At San Jose State University,

SpartanGold was created to act as a simplified blockchain-based cryptocurrency to be

used as a learning aid and as a springboard for implementing additional features. The

cryptocurrency resembles Bitcoin but is significantly easier to work with, making it

a perfect candidate for implementing a simple virtual machine that can run smart

contracts.

1

1.3 The SpartanGold Virtual Machine

This project seeks to add virtual machine functionality to SpartanGold, allowing

it to run smart contracts. The virtual machine’s design is based on the Ethereum

Virtual Machine and shares many opcode functionalities with it. The source code for

the virtual machine and its supporting files is written entirely in JavaScript, allowing

it to seamlessly connect with the JavaScript-based SpartanGold. The bytecode is

formatted similarly to the ones generated by Ethereum smart contracts, allowing

them to be run by the SpartanGold virtual machine. By attaching a virtual machine

that can take in bytecode resembling Ethereum smart contracts, clients can use their

SpartanGold tokens to facilitate a transaction similar to those done in Ethereum. The

implementation uses special clients and blocks that store and retrieve smart contracts,

a virtual machine to translate the bytecode, and an opcode table to implement the

functionalities needed.

1.4 Competing Approaches

To the best of my knowledge, in the blockchain education space there are very

few competing approaches. Many papers explain the concepts in simpler terms

like in Srivastava et al. [1], but my approach provides a physical token that can

be manipulated to enhance the learning experience. The underlying SpartanGold

structure has also been extended to create new uses for the blockchain, such as the

creation of TontineCoin from Pardeshi et al. [2] and a crowdfunding non-fungible token

from Basu et al. [3], but these approaches are not necessarily focused on blockchain

education.

1.5 Expected Results

The overall effect of my implementation is that clients will be able to create smart

contracts that transfer SpartanGold tokens between each other, allowing SpartanGold

2

to resemble an easier to manipulate version of Ethereum. This token, which resembles

a native coin in standard currencies, will then be able to solve interesting Ethereum

problems in the SpartanGold system without needing to use the actual Ethereum

token. As a proof of concept, I produced a simplified token with basic functionality

equivalent to the Ethereum token using the virtual machine I implemented.

1.6 Paper Summary

In the following sections, I will be detailing various aspects of my implementation

of the SpartanGold virtual machine. First, I will describe how other established

cryptocurrencies designed their virtual machines and the features I chose to adapt to my

implementation. Next, I will describe the structure of my implementation, discussing

my design choices and challenges while implementing the virtual machine. Then, I

will describe the types of contracts that can be written to run on the SpartanGold

virtual machine with examples I have already written. Finally, I will discuss any

future improvements and work that can be done to expand on the SpartanGold virtual

machine.

3

CHAPTER 2

Background and Related Work

In this section, I will go into more detail about some of the background and other

works related to my project, such as the Bitcoin Script and the Ethereum Virtual

Machine.

2.1 Bitcoin Script

The Bitcoin Script [4] is the scripting language used by Bitcoin for its transactions.

The language is based on Forth, and uses a stack-based instruction sequence that

is run from left to right. To maintain stability, the language is also intentionally

designed to be not Turing-complete, so it has no built-in loop structure.

Scripts written in the Bitcoin Script language typically describe conditions that

must be met before a recipient is able to claim and spend the Bitcoins associated

with the transaction. These requirements usually involve a public key associated with

the recipient and a signature associating private key ownership with the public key,

but the language allows for different scripts that require more or less conditions to

be met. A valid transaction is made when nothing in the associated script fails and

the top stack item evaluates to a non-zero value upon the script’s conclusion, which

is checked by combining the script provided by the Bitcoin sender with the inputs

provided by the Bitcoin recipient.

2.2 Ethereum Virtual Machine

The Ethereum Virtual Machine [5] is a virtual state machine that provides an

environment allowing for the execution of more sophisticated contracts, commonly

referred to as "smart contracts". The system also uses a stack-based instruction

sequence to run contracts, but a major difference is its quasi-Turing-complete design,

which allows it to run any computable problem if given enough resources. Stability is

maintained instead through a "gas" system, where instructions are only run if enough

4

gas is provided to run them.

Scripts written for the Ethereum Virtual Machine tend to be more complex and

can be run separate from other Ethereum processes. In addition to setting requirements

that must be met in order to transfer Ethereum, scripts can also be written to store

data on the blockchain, run decentralized applications (dApps), exchange alternate

tokens, and much more. Once a smart contract is run to completion, any Ethereum

transferred, as well as any other changes to the blockchain, are applied and broadcast

to the rest of the network, provided all the conditions set by the contract creator have

been met.

2.3 Other Relevant Works

In addition to the Bitcoin Script and Ethereum Virtual Machine, there are other

blockchain-related projects that utilize virtual machines in their implementations

as well, most of which are based on the Ethereum Virtual Machine. Ellul et al. [6]

designed a virtual machine based on the Ethereum Virtual Machine called AlkylVM

that attempts to integrate the Internet of Things (IoT) with the blockchain. Both

Khoury et al. [7] and Puneet et al. [8] used the Ethereum Virtual Machine to create a

decentralized voting platform on the Ethereum blockchain. Westerkamp et. al [9]

designed a supply-chain traceability system that runs on the Ethereum Virtual

Machine. From these examples, it is clear that understanding and implementing a

virtual machine is an important topic in the blockchain and cryptocurrency space.

5

CHAPTER 3

Design and Implementation

In this section, I will go over the design choices and implementation of the

SpartanGold Virtual Machine.

Figure 1: Execution Sequence for the SpartanGold Virtual Machine

6

3.1 Virtual Machine Functionality Walkthrough

The virtual machine accepts a human-readable file with a list of opcodes via a

file name read from arguments passed in from a client.

Figure 2: Passing in file

7

The text, which represents a smart contract, is first translated to bytecode, which

builds up a mnemonic-to-bytecode map within the virtual machine.

Figure 3: Translating to bytecode

Next, the bytecode is stored on the blockchain with an associated ID value,

allowing other clients to run the contract in the future.

Figure 4: Translating to bytecode

8

When the contract is run, the virtual machine retrieves the bytecode from the

blockchain’s storage via the same ID number.

Figure 5: Retrieving file

Then, the opcodes are run sequentially by looking up the operation’s definition

and performing the required actions.

Figure 6: Looking up opcode

The result is an output that represents the outcome of running the contract,

which depends on how the contract was written.

Figure 7: Consolidating results

9

3.2 Shared Ethereum Features

To emulate the Ethereum Virtual Machine as closely as possible, I made sure to

include some features of Ethereum in my design, such as gas and memory storage.

3.2.1 Gas

To implement the gas feature, a value determined from the Ethereum Yellow

Paper is set as a fixed gas price for an operation, which is deducted from the total gas a

client provides beforehand in order to run the contract. Some operations have variable

costs, but I set the price to be an arbitrary fixed value of 0 in my implementation to

keep it simple.

Table 1: Sample Opcodes and Costs

Opcode Cost Notes

ADD 3 Opcode with fixed cost.
Value determined from Ethereum Yellow Paper.

CODECOPY 0

Opcode with variable cost.
Value set to 0 for simplicity.

Actual cost depends on how many bytes of data are being
copied, with a base cost of 3 plus 3 for each byte copied.

3.2.2 Storage

To implement the two types of memory from the Ethereum Virtual Machine in

my implementation, I used a series of lists stored in the virtual machine and on the

blockchain. Memory, or short-term memory, is stored in a list on the virtual machine.

It has elements added and used via certain operations, and is cleared at the conclusion

of the contract. Storage, or long-term memory, performs similarly to memory, except

that its elements are retrieved and stored on the blockchain at the conclusion of the

contract.

10

3.3 Challenges

Naturally, some opcodes were easier than others, but a few of them presented

interesting design choices in my implementation. Below, I list a few representative

examples, as well as how I chose to implement it in the SpartanGold Virtual Machine.

3.3.1 SMOD

In order to implement opcodes that operated on signed values such as SMOD, I

needed to be able to represent 256-bit numbers. However, JavaScript is not able to

store values that big, which presented a problem. To solve this issue, I decided to

store any values that needed up to 256 bits using the BigNumber class from Ethereum,

which could represent and manipulate the values properly.

3.3.2 KECCAK256

Some operations, such as the KECCAK256 opcode, involved an algorithm that

would have to implemented in order to function properly. However, working imple-

mentations of those algorithms also existed via predefined library functions and would

also allow the opcode to function properly. To reduce the amount of potential bugs in

my implementation, I chose to go with previously implemented library functions for

these kinds of opcodes.

3.3.3 JUMP/JUMPI

A pair of opcodes that was particularly challenging to implement was the set of

jump opcodes, JUMP and JUMPI. Because my virtual machine’s program counter

counted up by byte and the jump destinations in the bytecode referred to line numbers,

I needed a way to associate the current byte and the current line in order for jumps to

work correctly. I was able to solve this problem via a dictionary, with the key being

the line number and the value being the byte number. This system would allow the

bytecode to remain as is, while jumping the code to the actual correct location.

11

3.3.4 PUSHARG

An opcode that does not exist in the Ethereum Yellow Paper’s instruction set

that I implemented was PUSHARG. Similar to the other push opcodes, this operation

pushed data onto the virtual machine’s stack. However, instead of pushing a specific

number of bytes of data read from the space after the opcode, PUSHARG pushes

an arbitrarily-sized data element read from the list of arguments passed in with the

contract. By including this opcode, I was able to insert any necessary arguments

needed for a particular contract at the time it is needed without having to know

exactly where it is located in the bytecode.

12

CHAPTER 4

List of Opcodes in the SpartanGold Virtual Machine

This is a list of every implemented opcode in the SpartanGold Virtual Machine,

sorted by bytecode value. The associated bytecode values for each opcode are identical

to the ones from the Ethereum Yellow Paper, with the exception of user-defined

opcodes, which use unassigned bytecode values.

4.1 0s: Stop and Arithmetic Operations

These opcodes allow the code to perform arithmetic operations such as addition,

subtraction, multiplication, and division on unsigned, 256-bit integers, to perform

mod opcodes on unsigned, 256-bit integers, and to stop the bytecode execution. Some

opcodes are only used with signed, twos-complement integers, and some opcodes are a

combination of multiple simpler opcodes run together.

Bytecode Opcode Cost Description
0x00 STOP 0 Halts execution.
0x01 ADD 3 Addition operation.
0x02 MUL 5 Multiplication operation.
0x03 SUB 3 Subtraction operation.
0x04 DIV 5 Integer division operation.
0x05 SDIV 5 Signed integer division operation (truncated).
0x06 MOD 5 Modulo remainder operation.
0x07 SMOD 5 Signed modulo remainder operation.
0x08 ADDMOD 8 Modulo addition operation.
0x09 MULMOD 8 Modulo multiplication operation.

13

4.2 10s: Comparison and Bitwise Logic Operations

These opcodes allow the code to perform comparison operations such as "less

than", "greater than", "equal to", and "is zero" on unsigned, 256-bit integers and to

perform bit-manipulating operations such as "and", "or", "xor", "not", "left shift",

and "right shift" on unsigned, 256-bit integers. Some opcodes are only used on signed,

twos-complement integers.

Bytecode Opcode Cost Description
0x10 LT 3 Less-than comparison.
0x11 GT 3 Greater-than comparison.
0x12 SLT 3 Signed less-than comparison.
0x13 SGT 3 Signed greater-than comparison.
0x14 EQ 3 Equality comparison.
0x15 ISZERO 3 Simple not operator.
0x16 AND 3 Bitwise AND operation.
0x17 OR 3 Bitwise OR operation.
0x18 XOR 3 Bitwise XOR operation.
0x19 NOT 3 Bitwise NOT operation.
0x1b SHL 3 Left shift operation.
0x1c SHR 3 Logical right shift operation.

4.3 20s: KECCAK256

This opcode allows the code to calculate a Keccak-256 hash, which is often used

to calculate addresses in cryptocurrencies such as Ethereum. Usually, the cost for

performing a KECCAK256 operation depends on the size of the input data, with

a base cost of 30 plus 6 for each byte of input data, but to keep the code simple

for a prototype, I decided to make the operation free, since the reduction is fairly

insignificant compared to the other opcodes.

Bytecode Opcode Cost Description
0x20 KECCAK256 0 (variable) Compute Keccak-256 hash.

14

4.4 30s: Environmental Information

These opcodes allow the code to access information related to the current running

environment, such as the addresses of the caller and account, the values of the input

and output data, and the sizes of the input and output data. An additional opcode

allows the code to copy itself into memory, which usually has a base cost of 3 plus 3

for each byte copied, but to keep the code simple for a prototype, I decided to make

the operation free, since the reduction is fairly insignificant compared to the other

opcodes.

Bytecode Opcode Cost Description
0x30 ADDRESS 2 Get address of currently executing account.
0x33 CALLER 2 Get caller address.

0x34 CALLVALUE 2 Get deposited value by the instruction or
transaction responsible for this execution.

0x35 CALLDATALOAD 3 Get input data of current environment.

0x36 CALLDATASIZE 2 Get size of input data in current
environment.

0x38 CODESIZE 2 Get size of code running in current
environment.

0x39 CODECOPY 0 (variable) Copy code running in current
environment to memory.

4.5 40s: Block Information

These opcodes allow the code to access information related to the block, such as

the block hash, the block reward address, the block timestamp, and other block-related

information.

Bytecode Opcode Cost Description

0x40 BLOCKHASH 20 Get the hash of one of the 256 most recent complete
blocks.

0x41 COINBASE 2 Get the current block’s beneficiary address.
0x42 TIMESTAMP 2 Get the current block’s timestamp.

15

4.6 50s: Stack, Memory, Storage and Flow Operations

These opcodes allow the code to manipulate internal data storage, prepare data

items for external data storage, and make conditional moves within the code. The

four areas of data manipulation where these opcodes operate are on the instruction

stack, the temporary internal memory, the permanent external memory, and valid

jump locations. Usually, external memory storage operations have a variable cost

dependent on the type of data stored and the status of the storage area, but to keep

the code simple for a prototype, I decided to make the operation free. Unlike the

other variable opcodes, this reduction is not insignificant since the original costs are

at least 100 times more than other opcodes.

Bytecode Opcode Cost Description
0x50 POP 2 Remove item from stack.
0x51 MLOAD 3 Load word from memory.
0x52 MSTORE 3 Save word to memory.
0x54 SLOAD 0 (variable) Load word from storage.
0x55 SSTORE 0 (variable) Save word to storage.
0x56 JUMP 8 Alter the program counter.
0x57 JUMPI 10 Conditionally alter the program counter.
0x5b JUMPDEST 1 Mark a valid destination for jumps.

16

4.7 60s and 70s: Push Operations

These opcodes allow the code to push data items ranging between sizes of 1 and

32 bytes onto the instruction stack. Unlike the other opcodes, these operations read

the data item to be pushed from directly adjacent to them in the bytecode.

Bytecode Opcode Cost Description
0x60 PUSH1 3 Place 1 byte item on stack.
0x61 PUSH2 3 Place 2 byte item on stack.
0x62 PUSH3 3 Place 3 byte item on stack.
0x63 PUSH4 3 Place 4 byte item on stack.
0x64 PUSH5 3 Place 5 byte item on stack.
0x65 PUSH6 3 Place 6 byte item on stack.
0x66 PUSH7 3 Place 7 byte item on stack.
0x67 PUSH8 3 Place 8 byte item on stack.
0x68 PUSH9 3 Place 9 byte item on stack.
0x69 PUSH10 3 Place 10 byte item on stack.
0x6a PUSH11 3 Place 11 byte item on stack.
0x6b PUSH12 3 Place 12 byte item on stack.
0x6c PUSH13 3 Place 13 byte item on stack.
0x6d PUSH14 3 Place 14 byte item on stack.
0x6e PUSH15 3 Place 15 byte item on stack.
0x6f PUSH16 3 Place 16 byte item on stack.
0x70 PUSH17 3 Place 17 byte item on stack.
0x71 PUSH18 3 Place 18 byte item on stack.
0x72 PUSH19 3 Place 19 byte item on stack.
0x73 PUSH20 3 Place 20 byte item on stack.
0x74 PUSH21 3 Place 21 byte item on stack.
0x75 PUSH22 3 Place 22 byte item on stack.
0x76 PUSH23 3 Place 23 byte item on stack.
0x77 PUSH24 3 Place 24 byte item on stack.
0x78 PUSH25 3 Place 25 byte item on stack.
0x79 PUSH26 3 Place 26 byte item on stack.
0x7a PUSH27 3 Place 27 byte item on stack.
0x7b PUSH28 3 Place 28 byte item on stack.
0x7c PUSH29 3 Place 29 byte item on stack.
0x7d PUSH30 3 Place 30 byte item on stack.
0x7e PUSH31 3 Place 31 byte item on stack.
0x7f PUSH32 3 Place 32 byte item on stack.

17

4.8 80s: Duplication Operations

These opcodes allow the code to duplicate data items on the instruction stack,

ranging from the 1st to 16th items, counting down. Duplicated data items are placed

at the top of the instruction stack.

Bytecode Opcode Cost Description
0x80 DUP1 3 Duplicate 1st stack item.
0x81 DUP2 3 Duplicate 2nd stack item.
0x82 DUP3 3 Duplicate 3rd stack item.
0x83 DUP4 3 Duplicate 4th stack item.
0x84 DUP5 3 Duplicate 5th stack item.
0x85 DUP6 3 Duplicate 6th stack item.
0x86 DUP7 3 Duplicate 7th stack item.
0x87 DUP8 3 Duplicate 8th stack item.
0x88 DUP9 3 Duplicate 9th stack item.
0x89 DUP10 3 Duplicate 10th stack item.
0x8a DUP11 3 Duplicate 11th stack item.
0x8b DUP12 3 Duplicate 12th stack item.
0x8c DUP13 3 Duplicate 13th stack item.
0x8d DUP14 3 Duplicate 14th stack item.
0x8e DUP15 3 Duplicate 15th stack item.
0x8f DUP16 3 Duplicate 16th stack item.

18

4.9 90s: Exchange Operations

These opcodes allow the code to exchange the positions of data items on the

instruction stack, ranging from the 2nd to 17th items, counting down, which are

exchanged with the 1st item.

Bytecode Opcode Cost Description
0x90 SWAP1 3 Exchange 1st and 2nd stack item.
0x91 SWAP2 3 Exchange 1st and 3rd stack item.
0x92 SWAP3 3 Exchange 1st and 4th stack item.
0x93 SWAP4 3 Exchange 1st and 5th stack item.
0x94 SWAP5 3 Exchange 1st and 6th stack item.
0x95 SWAP6 3 Exchange 1st and 7th stack item.
0x96 SWAP7 3 Exchange 1st and 8th stack item.
0x97 SWAP8 3 Exchange 1st and 9th stack item.
0x98 SWAP9 3 Exchange 1st and 10th stack item.
0x99 SWAP10 3 Exchange 1st and 11th stack item.
0x9a SWAP11 3 Exchange 1st and 12th stack item.
0x9b SWAP12 3 Exchange 1st and 13th stack item.
0x9c SWAP13 3 Exchange 1st and 14th stack item.
0x9d SWAP14 3 Exchange 1st and 15th stack item.
0x9e SWAP15 3 Exchange 1st and 16th stack item.
0x9f SWAP16 3 Exchange 1st and 17th stack item.

4.10 a0s: Logging Operations

These opcodes allow the code to maintain a log record to keep track of the the

current status of the instruction stack. A log record can be empty to indicate an

empty stack, or up to the top 4 data items can be added as one record.

Bytecode Opcode Cost Description
0xa0 LOG0 0 (variable) Append log record with no topics.
0xa1 LOG1 0 (variable) Append log record with one topics.
0xa2 LOG2 0 (variable) Append log record with two topics.
0xa3 LOG3 0 (variable) Append log record with three topics.
0xa4 LOG4 0 (variable) Append log record with four topics.

19

4.11 b0s: Miscellaneous Operations

These opcodes are only defined in the SpartanGold Virtual Machine. They are

defined here because other scripts do not use the bytecode values starting from this

range, allowing for the custom definition of operations. The only opcode defined here

pushes an arbitrarily-sized data item onto the stack, similar to the push opcodes.

Unlike the push opcodes, the operation does not read from directly adjacent data, but

from data passed in with the bytecode via data arguments.

Bytecode Opcode Cost Description
0xb0 PUSHARG 0 (user-defined) Place 1st argument passed in on stack.

4.12 f0s: System operations

These opcodes allow the code to perform system-related operations, such as

modifying the program state, producing an output value, or indicating invalid opcodes.

While every operation here is effectively free, the designated invalid instruction is

technically not an operation and does not have a defined cost.

Bytecode Opcode Cost Description
0xf3 RETURN 0 Halt execution returning output data.

0xfd REVERT 0 Halt execution reverting state changes
but returning data and remaining gas.

0xfe INVALID 0 (null operation) Designated invalid instruction.

20

CHAPTER 5

SpartanGold Integration

Integrating the SpartanGold Virtual Machine with SpartanGold was a fairly

straightforward process, but it required the creation of specialized programs for the

block and client in order for everything to work properly. The structure of the

SpartanGold code and details about these specialized programs are described in the

following sections.

5.1 SpartanGold Code Structure

The code structure of SpartanGold has five main classes that are combined

together via a driver class. The Block class defines the collection of SpartanGold

transactions and links to the previous block. The Blockchain class maintains the

settings and configurations of the SpartanGold blockchain, which allows for custom

blocks. The Transaction class defines the structure of a SpartanGold transaction,

including any information that must be passed along in the blockchain. The FakeNet

class simulates a network that allows SpartanGold transactions to be made and

recorded. The Client class defines a SpartanGold user with functions that allow for

SpartanGold transactions to be made. The classes of relevance for integrating the

SpartanGold Virtual Machine and SpartanGold are the Block and Client classes. The

network used on the SpartanGold Virtual Machine is unchanged so the FakeNet class

should also be unchanged. While the blockchain and transactions on the SpartanGold

Virtual Machine differ slightly from SpartanGold, the structure of the Blockchain and

Transaction classes must remain as is in order for customization to work. Therefore,

the Block and Client classes, which require additional or updated functionalities on

the SpartanGold Virtual Machine, must be extended.

21

5.2 VmBlock

The virtual machine’s VmBlock class is an extension of the Block class from

SpartanGold, with the following modifications:

• updateContracts(): This is a new function that takes the previous block and

a potential new bytecode contract as its arguments. It updates the number

of contracts, the collection of contracts, and the data storage of contracts on

the block. If a new contract is passed in, the contract is translated via the

virtual machine, added to the collection of contracts, and the contract counter

is incremented.

• constructor(): This is an overridden function from the Block class. It runs

the parent constructor and then runs updateContracts().

• rerun(): This is an overridden function from the Block class. It runs

updateContracts() and then runs the parent function.

5.3 VmClient

The virtual machine’s VmClient class is an extension of the Client class from

SpartanGold, with the following modifications:

• postContractDeployTransaction(): This is a new function that resembles

postTransaction() from the Client class. It takes a list of outputs, a fixed

fee and a list of data elements. It runs updateContracts() from the VmBlock

class, passing in the previous block hash and the bytecode file retrieved from

the data elements as its arguments. Returns a generic transaction updated with

information about the added bytecode file.

• postContractCallTransaction(): This is a new function that resembles

postTransaction() from the Client class. It takes a list of outputs, a fixed fee

and a list of data elements. It retrieves from the block the bytecode associated

22

with the ID value specified in the data elements and evaluates the contract using

the virtual machine, providing gas and any arguments needed to successfully

run the file. The relevant output and storage lists are updated depending on

the return values of the specific contract.

23

CHAPTER 6

Validation

In this section, I will demonstrate some of the functionalities of the SpartanGold

Virtual Machine via some example bytecode files.

6.1 Timestamp-based SpartanGold Transfer

In this example, we have three clients: Alice, Bob, and Charlie. Alice wishes

to transfer 100 SpartanGold to either Bob or Charlie, depending on the current

timestamp value on the block.

Figure 8: Execution Sequence for Timestamp-based SpartanGold Transfer

This is an important use case because it demonstrates that we are able to write

a simple smart contract that runs on the virtual machine, transfers SpartanGold,

24

and depends on the state of the current block. The bytecode and console snippets

below show what the code looks like, as well as the results from running it in each

circumstance.

Figure 9: Bytecode

Figure 10: Initial Balance: Even Timestamp

Figure 11: Running Contract: Even Timestamp

25

Figure 12: Final Balance: Even Timestamp

Figure 13: Initial Balance: Odd Timestamp

Figure 14: Running Contract: Odd Timestamp

26

Figure 15: Final Balance: Odd Timestamp

27

6.2 Minimum Ethereum Token

In this example, we have JavaScript code representing a simplified token. This

token includes all minimum functionality needed to qualify as a exchangeable token,

with a structure to keep track of clients’ balances, a constructor to initialize the token

supply, and a transfer function to move tokens between clients.

Figure 16: Original JavaScript Code

This is an important use case because it demonstrates that we can define alternate

tokens to be used as an alternate cryptocurrency or as a proxy for obtaining established

cryptocurrencies such as SpartanGold, or even Ethereum. The bytecode and console

snippets below show what the code looks like as bytecode, as well as the final status

of the token representation when the bytecode is run.

28

Figure 17: Bytecode

Figure 18: Minimum Token Final Status

29

CHAPTER 7

Conclusion

To conclude, virtual machines are important in understanding the blockchain

and cryptocurrencies, but they are often opaque in how they function under the hood.

By implementing the simplified SpartanGold Virtual Machine within the blockchain

learning tool SpartanGold, anyone who wishes to learn more about virtual machines’

role in the blockchain can do so with a token designed for learning and that has

all the core features of widely used cryptocurrencies. As proof of this functionality,

I demonstrated how a simple contract can be written and run, as well as how to

represent a minimum Ethereum token, both with the SpartanGold Virtual Machine.

7.1 Future Work

In the future, there are a lot of different ways the SpartanGold Virtual Machine

can be expanded. Below are just a few ideas for future extensions of the project.

7.1.1 Opcodes

While many opcodes, especially those listed in the Ethereum Yellow Paper,

have been implemented, there are many more that have not been integrated into

the SpartanGold Virtual Machine. A future direction could be implementing more

opcodes from the Ethereum Yellow Paper or from other scripts such as Bitcoin Script,

which would allow for different contracts to be run that use those newly implemented

opcodes in their instruction sequences.

7.1.2 Contracts

Even without implementing other opcodes, the existing set of opcodes can be used

to create different contracts that do interesting things. A future direction could be

figuring out other contracts that can be implemented with the current instruction set

in the SpartanGold Virtual Machine and that also does interesting things in regards

to transferring tokens between users.

30

7.1.3 Tokens

Similar to contracts, the existing set of opcodes can be used to create different

tokens that do interesting things. A future direction could be creating other tokens,

such as the ERC721 token [10] in Ethereum, using the current instruction set available

in the SpartanGold Virtual Machine.

31

LIST OF REFERENCES

[1] G. Srivastava, S. Dhar, A. D. Dwivedi, and J. Crichigno, ‘‘Blockchain education,’’
in 2019 IEEE Canadian Conference of Electrical and Computer Engineering
(CCECE), 2019, pp. 1--5.

[2] C. Pollett, T. H. Austin, K. Potika, J. Rietz, and P. Pardeshi, ‘‘Tontinecoin:
Survivor-based proof-of-stake,’’ Peer-to-Peer Networking and Applications, vol. 15,
no. 2, pp. 988--1007, 2022.

[3] S. Basu, K. Basu, and T. H. Austin, ‘‘Crowdfunding non-fungible tokens on the
blockchain,’’ Silicon Valley Cybersecurity Conference, pp. 109--125, 2022.

[4] ‘‘Script.’’ [Online]. Available: https://en.bitcoin.it/wiki/Script

[5] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction ledger,’’
Ethereum project yellow paper, vol. 151, pp. 1--32, 2014.

[6] J. Ellul and G. J. Pace, ‘‘Alkylvm: A virtual machine for smart contract
blockchain connected internet of things,’’ in 2018 9th IFIP International Confer-
ence on New Technologies, Mobility and Security (NTMS), 2018, pp. 1--4.

[7] D. Khoury, E. F. Kfoury, A. Kassem, and H. Harb, ‘‘Decentralized voting platform
based on ethereum blockchain,’’ in 2018 IEEE International Multidisciplinary
Conference on Engineering Technology (IMCET), 2018, pp. 1--6.

[8] Puneet, A. Chaudhary, N. Chauhan, and A. Kumar, ‘‘Decentralized voting
platform based on ethereum blockchain,’’ in 2021 International Conference on
Advances in Electrical, Computing, Communication and Sustainable Technologies
(ICAECT), 2021, pp. 1--4.

[9] M. Westerkamp, F. Victor, and A. Küpper, ‘‘Blockchain-based supply chain
traceability: Token recipes model manufacturing processes,’’ in 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp.
1595--1602.

[10] W. Entriken, D. Shirley, J. Evans, and N. Sachs, ‘‘Eip-721: Non-fungible token
standard,’’ Jan 2018. [Online]. Available: https://eips.ethereum.org/EIPS/eip-
721

32

https://en.bitcoin.it/wiki/Script
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721

	Virtual Machine for SpartanGold
	Introduction
	Brief Background
	Motivation
	The SpartanGold Virtual Machine
	Competing Approaches
	Expected Results
	Paper Summary

	Background and Related Work
	Bitcoin Script
	Ethereum Virtual Machine
	Other Relevant Works

	Design and Implementation
	Virtual Machine Functionality Walkthrough
	Shared Ethereum Features
	Gas
	Storage

	Challenges
	SMOD
	KECCAK256
	JUMP/JUMPI
	PUSHARG

	List of Opcodes in the SpartanGold Virtual Machine
	0s: Stop and Arithmetic Operations
	10s: Comparison and Bitwise Logic Operations
	20s: KECCAK256
	30s: Environmental Information
	40s: Block Information
	50s: Stack, Memory, Storage and Flow Operations
	60s and 70s: Push Operations
	80s: Duplication Operations
	90s: Exchange Operations
	a0s: Logging Operations
	b0s: Miscellaneous Operations
	f0s: System operations

	SpartanGold Integration
	SpartanGold Code Structure
	VmBlock
	VmClient

	Validation
	Timestamp-based SpartanGold Transfer
	Minimum Ethereum Token

	Conclusion
	Future Work
	Opcodes
	Contracts
	Tokens

	LIST OF REFERENCES

