
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

6-22-2020

Comparing students' solutions to an open-ended problem in an Comparing students' solutions to an open-ended problem in an

introductory programming course with and without explicit introductory programming course with and without explicit

modeling interventions modeling interventions

Kelsey Joy Rodgers
Embry-Riddle Aeronautical University

Matthew A. Verleger
Embry-Riddle Aeronautical University

Farshid Marbouti
San Jose State University, farshid.marbouti@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Kelsey Joy Rodgers, Matthew A. Verleger, and Farshid Marbouti. "Comparing students' solutions to an
open-ended problem in an introductory programming course with and without explicit modeling
interventions" ASEE Annual Conference and Exposition, Conference Proceedings (2020). https://doi.org/
10.18260/1-2--34311

This Conference Proceeding is brought to you for free and open access by SJSU ScholarWorks. It has been
accepted for inclusion in Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F1682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18260/1-2--34311
https://doi.org/10.18260/1-2--34311
mailto:scholarworks@sjsu.edu

Paper ID #29427

Comparing Students’ Solutions to an Open-ended Problem in an
Introductory Programming Course with and without Explicit Modeling
Interventions

Dr. Kelsey Joy Rodgers, Embry-Riddle Aeronautical University - Daytona Beach

Kelsey Rodgers is an Assistant Professor in the Engineering Fundamentals Department at Embry-Riddle
Aeronautical University. She teaches a MATLAB programming course to mostly first-year engineering
students. She primarily investigates how students develop mathematical models and simulations and
effective feedback. She graduated from the School of Engineering Education at Purdue University with
a doctorate in engineering education. She previously conducted research in Purdue University’s First-
Year Engineering Program with the Network for Nanotechnology (NCN) Educational Research team,
the Model-Eliciting Activities (MEAs) Educational Research team, and a few fellow STEM education
graduates for an obtained Discovery, Engagement, and Learning (DEAL) grant. Prior to attending Purdue
University, she graduated from Arizona State University with her B.S.E. in Engineering from the College
of Technology and Innovation, where she worked on a team conducting research on how students learn
LabVIEW through Disassemble, Analyze, Assemble (DAA) activities.

Dr. Matthew A. Verleger, Embry-Riddle Aeronautical University - Daytona Beach

Matthew Verleger is an Associate Professor of Engineering Fundamentals at Embry-Riddle Aeronautical
University in Daytona Beach, Florida. His research interests are focused on using action research method-
ologies to develop immediate, measurable improvements in classroom instruction and on the development
of software tools to enhance engineering education. Dr. Verleger is an active member of ASEE, having
served as the founding chair of the Student Division, a Program Chair and a Director for the Educational
Research and Methods Division, and the General Chair of the First-Year Division’s First-Year Engineering
Experience Conference.

Dr. Farshid Marbouti, San Jose State University

Farshid Marbouti is an Assistant Professor of General (interdisciplinary) Engineering at San Jose State
University (SJSU). He is currently the chair of SJSU Senate Student Success Committee. Farshid com-
pleted his Ph.D. in Engineering Education at Purdue University. His research interests center on First-Year
Engineering student success and engineering design.

c©American Society for Engineering Education, 2020

Comparing Students’ Solutions to an Open-ended Problem in an
Introductory Programming Course with and without Explicit

Modeling Interventions

Abstract

Engineers must understand how to build, apply, and adapt various types of models in order to be
successful. Throughout undergraduate engineering education, modeling is fundamental for many
core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching
modeling, particularly in the first years of an engineering program. The research questions that
drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both
written and coded solutions) develop over the course of multiple submissions? and (2) How do
these developments compare across groups of students that did and did not participate in a course
centered around modeling?. Students’ solutions to an open-ended problem across multiple
sections of an introductory programming course were explored. These sections were all divided
across two groups: (1) experimental group - these sections discussed and utilized mathematical
and computational models explicitly throughout the course, and (2) comparison group - these
sections focused on developing algorithms and writing code with a more traditional approach.
All sections required students to complete a common open-ended problem that consisted of two
versions of the problem (the first version with smaller data set and the other a larger data set).
Each version had two submissions – (1) a mathematical model or algorithm (i.e. students’ written
solution potentially with tables and figures) and (2) a computational model or program (i.e.
students’ MATLAB code). The students’ solutions were graded by student graders after
completing two required training sessions that consisted of assessing multiple sample student
solutions using the rubrics to ensure consistency across grading. The resulting assessments of
students’ works based on the rubrics were analyzed to identify patterns students’ submissions
and comparisons across sections. The results identified differences existing in the mathematical
and computational model development between students from the experimental and comparison
groups. The students in the experimental group were able to better address the complexity of the
problem. Most groups demonstrated similar levels and types of change across the submissions
for the other dimensions related to the purpose of model components, addressing the users’
anticipated needs, and communicating their solutions. These findings help inform other
researchers and instructors how to help students develop mathematical and computational
modeling skills, especially in a programming course. This work is part of a larger NSF study
about the impact of varying levels of modeling interventions related to different types of models
on students’ awareness of different types of models and their applications, as well as their ability
to apply and develop different types of models.

Introduction

Engineers must understand how to build, apply, and adapt various types of models, including
mathematical and computational models, to be successful. Modeling is fundamental for many
core undergraduate engineering courses, though it is rarely explicitly taught [1]. There are many
benefits to teaching modeling or using modeling projects, particularly in the first years of the
engineering curriculum [1-3]. There are some well-developed pedagogies that demonstrate the
successes of doing this. Model-eliciting activities (MEAs) are an impactful example of a

pedagogical approach used in first-year engineering to teach mathematical modeling skills [3].
Even though there are some established approaches, there is still a need for more meaningful
ways to teach modeling throughout the engineering curricula and especially in first-year
engineering courses [1].

Developing computational thinking skills is something that has been emphasized in engineering
education more recently and aligns with this call for curriculum that explicitly teaches
mathematical and computational modeling skills [4]. Computational thinking skills involve
abstraction, analysis, automation, and modeling [5]. Again both the objectives of developing
students’ computational thinking skills and explicitly teaching modeling present similar
underlying goals.

Many modeling interventions have been proven effective based on research conducted within the
Computational Adaptive Expertise (CADEX) [2] and Models and Modeling Perspective
(M&MP) [6] frameworks. Carberry, McKenna, Linsenmeier, and Cole [7] conducted research
within the CADEX framework and found that a modeling intervention caused a significant shift
in senior engineering students’ concepts of models, including discussing more predictive models.
Carberry and McKenna [1] expanded their research within the CADEX framework to gain a
greater understanding of modeling conceptions and found more students discussed mathematical
and predictive models when they were taught an explicit mathematical modeling module.
Research efforts within the M&MP have focused around a mathematical modeling building
intervention called MEAs [3]. Some of this research has focused on how students develop
mathematical model solutions to MEAs (e.g., [8, 9]) and how MEAs are incorporated in
engineering courses (e.g., [10, 11]). Also this research has been conducted in various settings
including research in large first-year engineering courses (e.g., [12]) and upper division
engineering courses (e.g., [13, 14]). There is also some research about a modeling application
intervention called model-adaptation activities (MAAs) within the M&MP framework [15].

Models are fundamentally systems based on real-world systems [16]. There are various types of
models used in engineering. Physical models (e.g., prototypes, drawings) are the most common
type of models that engineering students identify as a type of model and discuss as a model used
in the design process [1, 17]. Although physical models are one type of model that engineers use,
there are other critical types of modeling, including mathematical models [3, 6, 18] and
computational models [19, 20]. Within engineering curricula, various types of models need to be
explicitly introduced to enhance students’ definitional knowledge and implemented to develop
students’ modeling skills. Interventions need to focus on types of models, model application, and
model development in engineering curricula, especially on mathematical and computational
models [1, 3, 15, 19].

Mathematical models and computational models were the two types of models focused on in this
study. Mathematical models utilize mathematics to quantify and explain a real-world system
[16]. As aforementioned, MEAs are a pedagogical approach to help students develop
mathematical modeling skills [18]. MEAs are a mathematical modeling problem that require
students to create a model to meet particular criteria and constraints for a stakeholder based on
provided, relevant data, where there are multiple good possible solutions [3]. Computational
models are based on mathematical models and utilize computer programs to enable users to

interact with the underlying model [15-16]. A specific type of computational model are
simulations, which require a visualization of outputs in addition to the manipulable user inputs
(e.g., [15, 21-23]). Simulations are more commonly being implemented in courses as a tool to
enable more exploration of concepts (e.g., [19]). When tools are implemented in courses, it is not
as common to see an emphasis on computational models nor the development of these tools.
Rodgers [15] discussed the use of MAAs to challenge students to apply models in computer
programs (specifically MATLAB). The structure presented by Rodgers [15] of having students
develop a simulation based on a mathematical model built through a MEA motivated the design
of the problems utilized in this study.

This study focused on embedding a modeling problem in a programming course. Programming
courses typically focus primarily on syntax, but there is a need to teach students how to
effectively develop an algorithmic solution to create good programs [24, 25]. Most engineering
education studies on computer programming focus on other pedagogical approaches, such as
paired programming (e.g., [26]) or extreme programming (XP) (e.g., [27]). This study focused
specifically on modeling development in a first-year programming course and built off a similar
previous study [28].

Rodgers et al. [28] found that students participating in a programming course explicitly teaching
mathematical and computational modeling consistently improved their demonstrated modeling
abilities across four submissions of a modeling problem. In the same study, students in the same
programming course that did not explicitly teach modeling did not demonstrate consistent
improvement [28]. Based on these findings, this study investigated similar research questions in
a later semester with similar conditions.

Research Purpose and Questions

The research questions that drove this study are: (1) How do students’ solutions to a complex,
open-ended problem (both written and coded solutions) develop over the course of multiple
submissions? and (2) How do these developments compare across groups of students that did and
did not participate in a course centered around modeling?.

Methods

Setting and Participants

In Spring 2019, 348 students enrolled in an introductory computer programming course for
engineers across 16 sections at a medium-sized, private, STEM+Business university. MATLAB
is the programming language for the course. All mechanical, civil, and aerospace engineering
students are required to take this course. The electrical and computer engineering students take a
similar course that uses Java as the programming language. This course is open to other students
at the university and required by some non-engineering degree programs, such as the astronomy
and astrophysics program and the unmanned aircraft systems (UAS) science degree. Even with
these additional requirements, sections are made up of mostly engineering students and more
specifically aerospace engineering students. The focus of the course is to teach engineering

students how to develop effective computer programs for solving engineering problems. The
learning objectives of the course are to:

1. Demonstrate understanding of the role of software design when solving problems using
the computer.

2. Apply knowledge of mathematics and computer programming to communicate ideas
when solving computational problems.

3. Design and implement algorithmic solutions to problems requiring user input/output
(I/O), data processing, control structures, arrays, and file input/output (I/O).

4. Solve problems of intermediate complexity requiring the use of non-numerical data such
as characters and strings.

5. Apply a top-down design methodology to problems of intermediate complexity using
functions.

Two of the 16 sections were taught by one instructor that explicitly incorporated modeling
throughout the course materials by developing various levels of modeling problems for all the
homework assignments and in-class activities. The revised course was designed to scaffold
students from solving more close-ended modeling problems to more open-ended modeling
problems across the semester. Students were presented different approaches to solve problems
throughout the course. They were challenged to see how there can be multiple good approaches
and solutions depending on the problem. The language of the class focused on mathematical and
computational models, in addition to the more common computing language of algorithms and
computer programs. There was a total of 47 students enrolled in these two sections. The other 14
sections taught by four other instructors were not significantly modified from previous iterations
of the course. There was a total of 301 students enrolled in these 14 sections. These sections
focused more on syntax and used close-ended problems with one correct answer for most of their
assignments. Most sections use a seven step problem solving process in the class (demonstrated
in the modeling problem shown in Appendix A). One step of this process prompts the students to
identify assumptions they are making that simplify the problem in developing their solution.

The students from all sections of this course were required to complete one common modeling
problem with two different versions individually. Each version consisted of two submissions –
the first submissions were students’ written solutions potentially with tables, figures, and
flowcharts (i.e. their mathematical model) and the second submission were students’ MATLAB
code with comments, as specified (i.e. their computational model). The four submissions are
summarized in Table 1. One important change in this implementation in comparison to the
previous semester (Fall 2018 – [28]) is students were required to incorporate comments
throughout their code, whereas before they could attach their previously submitted written
model. The problem explicitly stated, “You are required to comment your assumptions (for Step
4) and all your justifications for each step throughout your code” (see Appendix A).

Table 1: Description of the four submissions for the modeling problem
Submission Modeling Problem Assigned Submission Type
Submission 1 Version 1 (table of data) Written solution
Submission 2 Version 1 (table of data) Coded solution (.m file)
Submission 3 Version 2 (Excel file with a larger data set) Written solution
Submission 4 Version 2 (Excel file with a larger data set) Coded solution (.m file)

The modeling problem was developed using the six design principles of the M&MP theoretical
framework [6]. The second version of the problem contained more data than the first version to
prompt the students to reevaluate their solutions based on successful implementations of MEAs
[3]. The intention of the second version was also to ensure more iterations in their model
development process and capture how their demonstrated modeling skills changed across the
course. The written submission for the problem was similar to a MEA [3] in that the students had
to interpret a problem and data to develop a model. The coded submission followed the concept
of a MAA [6, 15] in that the students had to apply the model they developed through the first
submission.

The modeling problem challenged students to develop a model to rank possible wind farm
locations from best to worst based on historical wind data and a relevant graph about power
output vs. wind speed for an alternative engineering company. The first version of the modeling
problem is provided in Appendix A. In the first version, the students were provided a table
summarizing a year of wind data for five different locations. In the second version of the
problem, the students were provided an Excel file of data that contained the minimum, average,
and maximum windspeed for every day of the year of 2018 for seven different locations. The
larger data set for the second version contained the raw data for the original five locations and
two additional locations.

Data Collection

The 46 students in the two sections taught by the one professor with the revised modeling
curriculum make up the experimental group for this study. Out of the 14 sections taught by the
four instructors (i.e. the comparison group), only two instructors both implemented the
assignment consistent with the way it was developed and ensured the assessment of the
assignment was consistent. One instructor taught four sections with 74 students (Comparison
Group – Instructor 1) and the other instructor taught four sections with 85 students (Comparison
Group – Instructor 2). The data collected for this study were the students submitted solutions for
all four of the modeling problem submissions, summarized in Table 1. Out of the 205 students
across the 10 sections, 192 students completed at least one submission, summarized in Table 2.
All of these students submissions were included in this study.

Table 2: Summary of the number of student submissions per group

Group and instructor Total number of
students in the group

Students submitted
at least one submission

Experimental Group 46 45 (97.8%)
Comparison Group – Instructor 1 74 69 (93.2%)
Comparison Group – Instructor 2 85 78 (91.8%)

Data Analysis

To assess the quality of students’ models in each of the submissions, a rubric was developed. The
rubric consisted mostly of items based on the four dimensions established for assessing students’
solutions to MEAs [8, 29]. The other additional rubric items were included to assess the quality
of students’ code for the coding submissions. The already established dimensions are
mathematical model complexity, modifiability, reusability, and shareability [8, 29]. The purpose

of the mathematical model complexity dimension is to assess students’ ability to address the
complexity of the problem in an elegant solution [8, 29]. Items related to this category consisted
of meaningful utilization of the provided data and relevant facts, as well as proper conversion of
units. There was a total of five items developed within this category. The purpose of the
modifiability dimension is to ensure a student’s model is generalizable by evaluating the
student’s rationale for each step in their model [8, 29]. There was a total of five items created
that focused on students’ rationale for five major components of their models. The purpose of the
reusability dimension is to assess students’ understandings of the given problem and their client
or user (i.e., problem scoping) [8, 29]. There was one item created that focused on students’
ability to identify assumptions they are making in solving the problem. The purpose of the
shareability dimension is to evaluate students’ ability to communicate their solution [8, 29].
There were two items that assessed this dimensions; these items related to how the students
communicated the written model and the provided sample results. These 13 rubric items were
used to assess students’ models in all four submissions.

The entire rubric used for the fourth submission is provided in Appendix B. All the scores for the
rubric items shown in the appendix are based on the fourth submission scoring used for assigning
students’ grades. For the data analysis all the rubric items for were assigned a possible score
based on how many levels there were for each item. Every rubric item consisted of either two,
three, or four options for each grade with points and options as summarized in Table 3.

Table 3: Description of the four submissions for the modeling problem
Number of Options
for Rubric Items

Submission Scores/Levels

2 options (levels) demonstrated – 1 point; or not – 0 points
3 options (levels) fully – 2 points; partially – 1 point; or not demonstrated – 0 points
4 options (levels) fully – 3 points; some – 2 points; less – 1 point; or not demonstrated – 0 points

In the development of this rubric, reflection on the previous implementation of a similar problem
were considered – findings discussed by Rodgers et al. [28]. The two biggest changes were: (1)
rubric items related to the shareability dimension were incorporated in and (2) some rubric items
had more levels rather than having as many dichotomous rubric items. The first change was to
add another dimension of analysis in the study. The second change was primarily based on the
different context of the problem aligned better with more levels for some rubric items.

The students’ solutions to the modeling problem included in this study were graded by two
student graders. The graders completed a required training that consisted of assessing multiple
sample student solutions using the rubrics to ensure consistency across grading. There were two
different trainings – one for each version of the modeling problem. In this training, the graders
practiced applying the rubric for both the model and code submissions after a detailed
explanation of each item.

The resulting assessments of students’ works based on the 13 modeling items of the rubric was
analyzed using descriptive statistics and t-tests, when fitting [30]. The t-tests were used to
determine statistically significant differences between the first and last submission within each
group, where further investigation was of interest.

Findings

Mathematical Model Complexity – Comparing Groups/Instructors

The average scores for all the mathematical model complexity rubric items across all four
submissions for all three instructors (the one teaching students in the experimental group and the
other two teaching students in the comparison group) are presented in Figure 1. Along the
mathematical model complexity dimension, the students across all sections improved from the
first written model (submission 1) to second written model (submission 3) and from the first
coded solution (submission 2) to second coded solution (submission 4). Only the average scores
for the students in the experimental group improved from the first submission (first written
model) to the last submission (second coded solution).

Figure 1: Average of students’ scores on Mathematical Model Complexity items

As demonstrated in Table 4, the only statistically significant change in the average scores was
from submission 1 (first written model) to submission 3 (second written model) for the students
from the experimental group. There were no other statistically significant changes at a 0.05 level
of significance across the submissions. The next closest to statistically significant change was the
change in the average scores from the first to the last coding submission (submissions 2 to 4) for
the students from the experimental group.

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

1 2 3 4

Av
er

ag
e

Sc
or

es
 (o

ut
 o

f 1
0

po
in

ts
)

Submissions

Mathematical Model Complexity Dimension

Comparison - Group 1 Comparison - Group 2 Experimental Group

Table 4: Mathematical model complexity – All instructors – Difference between submissions
Section Submissions p-value

Comparison Group - Instructor 1

1 (model v.1) to 2 (code v.1) 0.32
1 (model v.1) to 3 (model v.2) 0.21
1 (model v.1) to 4 (code v.2) 0.94
2 (code v.1) to 4 (code v.2) 0.37

Comparison Group - Instructor 2

1 (model v.1) to 2 (code v.1) 0.39
1 (model v.1) to 3 (model v.2) 0.70
1 (model v.1) to 4 (code v.2) 0.51
2 (code v.1) to 4 (code v.2) 0.84

Experimental Group

1 (model v.1) to 2 (code v.1) 0.35
1 (model v.1) to 3 (model v.2) 0.00*
1 (model v.1) to 4 (code v.2) 0.31
2 (code v.1) to 4 (code v.2) 0.10

* statistically significant difference between first and last submissions

Figure 1 presents the change in students’ average scores summed up across all the various rubric
items. The following figures show the students’ average scores for each of the five individual
rubric items for the mathematical model complexity dimension.

The students’ average scores for the utilizing data set rubric item are shown in Figure 2. The
students from the experimental group started with a much higher average than the students from
the two comparison groups. By the third submission, all the groups had more similar scores. The
two comparison groups showed the most improvement across the submissions.

Figure 2: Average of students’ score on a Mathematical Model Complexity item

2.40

2.50

2.60

2.70

2.80

2.90

3.00

1 2 3 4

A
ve

ra
ge

 S
co

re
s (

ou
t o

f 3
 p

oi
nt

s)

Submission

MMC - Utilizing Data Set

Comparison - Group 1 Comparison - Group 2 Experimental Group

The students’ average scores for the two rubric items regarding students ability to ensure their
solution works for a varying number of locations and implementation of appropriate unit
conversions are presented in Figures 3 and 4, respectively.

Figure 3: Average of students’ scores on a

Mathematical Model Complexity item
Figure 4: Average of students’ scores on a

Mathematical Model Complexity item

The students’ average scores for the rubric items related to students implementing provided
relevant theory about wind turbines are shown in Figures 3 and 4. The average scores for
students from all three groups did much better implementing the relevant theory in their written
models than their coded solutions.

1.40

1.50

1.60

1.70

1.80

1.90

2.00

1 2 3 4

A
ve

ra
ge

 S
co

re
s (

ou
t o

f 2
 p

oi
nt

s)

Submission

MMC - Addressing Varying
Number of Locations

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4

A
ve

ra
ge

 S
co

re
s (

ou
t o

f 1
 p

oi
nt

)

Submission

MMC - Consistent Units
(Conversions)

Figure 5: Average of students’ scores on a

Mathematical Model Complexity item
Figure 6: Average of students’ scores on a

Mathematical Model Complexity item

Modifiability – Comparing Groups/Instructors

The average scores for all the modifiability rubric items across all four submissions for the
experimental group and two comparison groups are presented in Figure 7. All groups scored
higher on the written submissions than the coding submissions. One of the comparison groups
(Group 1) had the most consistent average scores between the written and coded solutions. The
experimental group was the only group that had a later submission (submission 3) with a higher
average score than the first submission.

Figure 7: Average of students’ scores on Modifiability items

0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

1 2 3 4

A
ve

ra
ge

 S
co

re
s (

ou
t o

f 2
 p

oi
nt

s)

Submission

MMC - Implement Theory -
Rated Output Speed/Power

0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90

1 2 3 4

A
ve

ra
ge

 S
co

re
s (

ou
t o

f 2
 p

oi
nt

s)

Submission

MMC - Implement Theory -
Cut-in/Cut-out Speed

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 2 3 4

Av
er

ag
e

Sc
or

es
 (o

ut
 o

f 6
 p

oi
nt

s)

Submissions

Modifiability Dimension

Comparison - Group 1 Comparison - Group 2 Experimental Group

As presented in Table 5, there was a statistically significant negative change from the first to the
last submission across all three groups (both comparison groups and the experimental group).
There was also a statistically significant negative change across the two written submissions for
one of the comparison groups (Group 2). There were no other statistically significant changes at
a 0.05 level of significance across the analyzed submissions.

Table 5: Modifiability – All instructors – Difference between submissions
Section Submissions p-value

Comparison Group - Instructor 1 1 (model v.1) to 3 (model v.2) 0.09
1 (model v.1) to 4 (code v.2) 0.05*

Comparison Group - Instructor 2 1 (model v.1) to 3 (model v.2) 0.03*
1 (model v.1) to 4 (code v.2) 0.00*

Experimental Group 1 (model v.1) to 3 (model v.2) 0.16
1 (model v.1) to 4 (code v.2) 0.00*

* statistically significant difference between first and last submissions

Reusability – Comparing Groups/Instructors

The average scores for the reusability rubric items across the submissions for the experimental
group and two comparison groups are presented in Figure 8. The students had similar average
scores across all the groups for both the written solutions. The experimental group had the
highest scores across all the submissions, although it was extremely close to one of the
comparison group’s scores (Group 2) on the written submissions.

Figure 8: Average of students’ scores on Reusability items

As shown in Table 6, there was a statistically significant negative change from the first to the last
submission across all three groups (both comparison groups and the experimental group). On the

0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20

1 2 3 4

Av
er

ag
e

Sc
or

es
 (o

ut
 o

f 2
 p

oi
nt

s)

Submissions

Reusability Dimension

Comparison - Group 1 Comparison - Group 2 Experimental Group

other hand, there was also a statistically significant positive change across the two written
submissions for all three groups.

Table 6: Reusability – All instructors – Difference between submissions
Section Submissions p-value

Comparison Group - Instructor 1 1 (model v.1) to 3 (model v.2) 0.02*
1 (model v.1) to 4 (code v.2) 0.00*

Comparison Group - Instructor 2 1 (model v.1) to 3 (model v.2) 0.01*
1 (model v.1) to 4 (code v.2) 0.00*

Experimental Group 1 (model v.1) to 3 (model v.2) 0.01*
1 (model v.1) to 4 (code v.2) 0.00*

* statistically significant difference between first and last submissions

Shareability – Comparing Groups/Instructors

The average scores for the shareability rubric items across the submissions for the experimental
group and two comparison groups are presented in Figure 9. The experimental group had the
highest average scores across all four submissions, but also had the largest negative change from
the third to the fourth submission. One of the comparison groups (Group 1) received higher
average scores on their coded solutions (submissions 2 and 4) than the written solutions
(submissions 1 and 3).

Figure 9: Average of students’ scores on Shareability items

As demonstrated in Table 7, there were no statistically significant changes related to the
shareability dimension at a 0.05 level of significance across the analyzed submissions.

2.60

2.80

3.00

3.20

3.40

3.60

3.80

1 2 3 4

Av
er

ag
e

Sc
or

es
 (o

ut
 o

f 4
 p

oi
nt

s)

Submissions

Shareability Dimension

Comparison - Group 1 Comparison - Group 2 Experimental Group

Table 7: Shareability – All instructors – Difference between submissions
Section Submissions p-value

Comparison Group - Instructor 1 1 (model v.1) to 3 (model v.2) 0.78
1 (model v.1) to 4 (code v.2) 0.26

Comparison Group - Instructor 2 1 (model v.1) to 3 (model v.2) 0.88
1 (model v.1) to 4 (code v.2) 0.32

Experimental Group 1 (model v.1) to 3 (model v.2) 0.31
1 (model v.1) to 4 (code v.2) 0.33

* statistically significant difference between first and last submissions

Summary

As demonstrated in the figures above, the students from the experimental group were
consistently receiving higher scores on the mathematical model complexity, reusability, and
shareability dimensions than the comparison groups. The modifiability dimension was the only
area the comparison groups typically outperformed the experimental group. Although the
students across all three instructors had similar scores on the reusability dimension, especially on
their written submissions. The comparison groups had fairly similar scores across most of the
dimensions; the greatest consistent difference across the comparison groups was on the
mathematical model complexity dimension.

Also shown in the figures, the experimental group scores consistently improved across the two
written submissions for all four dimensions. For the experimental group, there was a statistically
significant difference between students’ scores on the first and third submissions for the
mathematical model dimension. All groups had statistically significant improvements across the
written submissions for the reusability dimension. As demonstrated in the figures above, the
students’ scores in the two comparison groups were not consistently improving nor declining;
their scores typically fluctuated across the four submissions.

Conclusions

The results identified differences that exist in the mathematical and computational model
development between students who were exposed to the revised modeling language and
examples (experimental group) compared to those students who were not (comparison groups).
There were four dimensions in the modeling rubric that were analyzed for this study:
mathematical model complexity, modifiability, reusability, and reusability [8, 29]. The
dimensions of the rubric were analyzed separately to capture the nature of the differences
between the experimental and comparison groups. Since this study complemented the work of a
previous study [28], these results are compared where relevant.

Rodgers et al. [28] found that students in the experimental group demonstrated statistically
significant improvements across all three analyzed dimensions (i.e. mathematical model
complexity, modifiability, and reusability), while the comparison group only demonstrated
statistically significant improvement across the reusability dimension. In this study, the
experimental group demonstrated statistically significant improvements from across their written
submissions on the mathematical model complexity and reusability dimensions, while the

comparison groups only demonstrated statistically significant improvement on the reusability
dimension (across the two written submissions). There were no other positive statistically
significant changes. The change in submission requirements that students had to add comments
in their code seemed to have a huge impact on students’ lower scores on coded submissions for
the reusability and modifiability dimensions.

Although there was not as consistent improvement seen in students’ coded solutions, the students
in the experimental group presented higher scoring ideas in their written mathematical models
than the implemented in their computational models (i.e. coded solutions). There is a need for
further investigation into how to help students improve their computational models. Future
research will integrate in revisions to enhance computational thinking skills into the course to
hopefully help enable students to better improve their computational models (coded solutions).

The students who were exposed to the revised modeling language and materials had the only
statistically significant gains across the course of the semester in their ability to address the
complexity of the problems (mathematical model complexity). The experimental group had the
greatest improvement on their written solutions in their ability understand the application of the
model and potential for adaptation (modifiability). Again for the coded submissions, the students
had to comment their rationale in their code. This may have caused the much lower scores on the
coded submissions. One of the comparison groups had the most consistent grades between the
written and coded solutions. The instructor for the this group has the most specific requirements
for the format and comments in students’ code submissions. These requirements may have
positively contributed these students’ higher average scores on this dimension and the
shareability dimension.

All the groups scored similarly with high scores in their ability to address the users’ anticipated
needs by identifying assumptions they made in solving the problem (reusability). This
improvement in both groups could be attributed to the fact that emphasizing writing code for a
given user and understanding your assumptions in solving a problem to know when the solution
is applicable is embedded in the course. Identifying assumptions is something that all three
instructors require their students to do in various homework assignments. This may have
contributed to the consistently high students’ scores on this dimension.

The students who were not exposed to the modeling language nor given the opportunity to
engage in modeling activities beyond the assigned modeling problem did not demonstrate as
much improvement on the mathematical model complexity dimension. Their completion of the
two versions of the one modeling problem could have had some impact on their demonstrated
modeling abilities. Although, the additional course materials seemed to be much more
fundamental in leading to the success seen by the experimental group. These findings help
inform other researchers and instructors how to help students develop modeling skills,
specifically modeling skills related to mathematical model complexity, modifiability, reusability,
and shareability dimensions. This research will build upon this idea by further analyzing impact
of the revised modeling language in more courses and covering more types of modeling,
including physical and business models.

Acknowledgements

This work was made possible by a collaborative research grant from the National Science
Foundation (DUE 1827392; DUE 1827600; DUE 1827406). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation.

References

[1] A. R. Carberry and A. F. McKenna, "Exploring student conceptions of modeling and

modeling uses in engineering design," Journal of Engineering Education, vol. 103, no. 1,
pp. 77-91, 2014.

[2] A. McKenna, R. Linsenmeier, and M. Glucksberg, "Characterizing computational
adaptive expertise," in 2008 ASEE Annual Conference and Exposition, 2008.

[3] J. S. Zawojewski, H. A. Diefes-Dux, and K. J. Bowman, Models and modeling in
engineering education: Designing experiences for all students. Sense Publishers, 2008.

[4] J. M. Wing, "Computationalthinking," in Communications of the ACM, vol. 49, no. 3, p.
33-35. 2006.

[5] U. Ilic, H. I. Haseski, and U. Tugtekin, "Publications trends over 10 years of
computational thinking research," in Contemporary Education Technology, vol. 9, no. 2,
p. 131-153, 2018.

[6] R. Lesh and H. M. Doerr (Eds.). Beyond constructivism: Models and modeling
perspectives on mathematics problem solving, learning, and teaching. Lawrence Erlbaum
Associates Publishers, 2003.

[7] A. R. Carberry, A. F. McKenna, R. A. Linsenmeier, and J. Cole, "Exploring senior
engineering students' conceptions of modeling," in 118th ASEE Annual Conference and
Exposition, 2011.

[8] H. A. Diefes-Dux, M. A. Hjalmarson, and J. S. Zawojewski, "Student Team Solutions to
an Open-Ended Mathematical Modeling Problem: Gaining Insights for Educational
Improvement," Journal of Engineering Education, vol. 102, no. 1, pp. 179-216, 2013.

[9] H. A. Diefes-Dux, K. Bowman, J. S. Zawojewski, and M. Hjalmarson, "Quantifying
aluminum crystal size part 1: The model-eliciting activity," Journal of STEM Education:
Innovations and Research, vol. 7, no. 1/2, p. 51, 2006.

[10] H. A. Diefes-Dux, M. A. Hjalmarson, T. K. Miller, and R. Lesh, "Chapter 2: Model-
eliciting activities for engineering education," Models and modeling in engineering
education: Designing experiences for all students, pp. 17-35, 2008.

[11] E. Hamilton, R. Lesh, F. Lester, and M. Brilleslyper, "Model-Eliciting Activities (MEAs)
as a Bridge between Engineering Education Research and Mathematics Education
Research," Advances in Engineering Education, vol. 1, no. 2, p. n2, 2008.

[12] H. A. Diefes-Dux and P. Imbrie, "Chapter 4: Modeling activities in a first-year
engineering course," Models and modeling in engineering education: Designing
experiences for all students, pp. 37-92, 2008.

[13] R. M. Clark, L. J. Shuman, and M. Besterfield-Sacre, "In-Depth Use of Modeling in
Engineering Coursework to Enhance Problem Solving," in Modeling Students'
Mathematical Modeling Competencies: Springer, 2010, pp. 173-188.

[14] T. P. Yildirim, L. Shuman, M. Besterfield-Sacre, and T. Yildirim, "Model eliciting
activities: assessing engineering student problem solving and skill integration processes,"
International Journal of Engineering Education, vol. 26, no. 4, pp. 831-845, 2010.

[15] K. J. Rodgers, "Development of First-Year Engineering Teams' Mathematical Models
through Linked Modeling and Simulation Projects" (2016). Open Access Dissertations.
838. https://docs.lib.purdue.edu/open_access_dissertations/838

[16] R. Lesh and G. Harel, "Problem solving, modeling, and local conceptual development,"
Mathematical thinking and learning, vol. 5, no. 2-3, pp. 157-189, 2003.

[17] A. R. Carberry and A. F. McKenna, "Engineering student's conceptions of model uses in
design," in 2011 Research in Engineering Education Symposium, REES 2011, 2011.

[18] R. Lesh, M. Hoover, and A. Kelly, "Equity, assessment, and thinking mathematically:
Principles for the design of model-eliciting activities," Developments in school
mathematics education around the world, vol. 3, pp. 104-130, 1993.

[19] O. B. J. Daniel K. Howe, "Developing an Interactive Computer Program to Enhance
Student Learning of Dynamical Systems," in 2016 ASEE Annual Conference &
Exposition, 2017.

[20] A. J. Magana, "Modeling and Simulation in Engineering Education: A Learning
Progression," Journal of Professional Issues in Engineering Education and Practice, vol.
143, no. 4, p. 04017008, 2017.

[21] A. J. Magana, S. P. Brophy, and G. M. Bodner, "Instructors' intended learning outcomes
for using computational simulations as learning tools," Journal of Engineering
Education, vol. 101, no. 2, pp. 220-243, 2012.

[22] A. Stefan, "A Computer Model of Cell Dynamics Using Agents," in American Society for
Engineering Education, 2010: American Society for Engineering Education.

[23] J. P. A. Omer Farook, Athula Kulatunga, Ashfaq Ahmed P.E., Wangling Yu, Yoonill
Lee, Hassan Abdullah Alibrahim, "Freshman Experience Course in Electrical and
Computer Engineering Technology Emphasizing Computation, Simulation, Mathematical
Modeling, and Measurements," in 2017 ASEE Annual Conference & Exposition, 2017.

[24] A. El-ZEin, T. Langrish, and N. Balaam, "Blended Teaching and Learning of Computer
Programming Skills in Engineering Curricula," Advances in Engineering Education, vol.
1, no. 3, p. n3, 2009.

[25] H. Fangohr, "A comparison of C, MATLAB, and Python as teaching languages in
engineering," in International Conference on Computational Science, 2004: Springer, pp.
1210-1217.

[26] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, "The impact of pair
programming on student performance, perception and persistence," in Software
Engineering, 2003. Proceedings. 25th International Conference on, 2003: IEEE, pp. 602-
607.

[27] L. Williams and R. Upchurch, "Extreme programming for software engineering
education?," in Frontiers in Education Conference, 2001. 31st Annual, 2001, vol. 1:
IEEE, pp. T2D-12.

[28] K. J. Rodgers, J. C. McNeil, M. A. Verleger, and F. Marbouti, "Impact of a modeling
intervention in an introductory programming course," presented at the 2019 ASEE

Annual Conference & Exposition Tampa, Florida, 2019. [Online]. Available:
https://peer.asee.org/32918.

[29] H. A. Diefes-Dux, J. S. Zawojewski, and M. A. Hjalmarson, "Using educational research
in the design of evaluation tools for open-ended problems," International Journal of
Engineering Education, vol. 26, no. 4, p. 807, 2010.

[30] J. M. Stonehouse and G. J. Forrester, "Robustness of the t and U tests under combined
assumption violations," Journal of Applied Statistics, vol. 25, no. 1, pp. 63-74, 1998.

Appendix A. Modeling Problem Assignment (Version 1 – Submission 1 and 2)

Modeling Problem v.1 – Wind Farm Development
Problem:
Zee’s Alternative Energies was founded in 2000 to increase the use of alternative energies across the
United States. The company has been extremely successful with their development of solar energy
farms. They are expanding and looking to develop a wind farm of horizontal-axis wind turbines.

You have been hired by Zee’s Alternative Energies to develop a reusable computational model that
will determine the best location to build a wind turbine farm based on historical wind data. The
company has provided you with some descriptive statistics for a few locations that they are considering.
They will send more data for potentially more locations later for further analysis. You must first
provide a written solution (description of your model) and then later provide a coded solution
(implementation of your model). Keep in mind your solution must be developed in a way that it will
work for various locations (meaning your solution should make sense for locations with different values
and it should be easy to change the data in your code).

Submissions:
Please note that the submission for this assignment is different than any of your homework
assignments. (It is worth 5% of final grade, hence requires more work than usual.). A written model
will be due for this problem in about one week and then your code for your solution will be due
about one week later (refer to Canvas for exact dates).

• (Part1 due now): Your model – for this submission you must complete the Engineering
Process (steps 1 to 7a only) either typed or handwritten as described in the document. You
must also follow these additional guidelines: Keep in mind assumptions will be very
important for your user to understand the constraints and limitations for using your
solution. For your solution steps (Step 5), you must explain why you went about solving
the problem the way you did – meaning you must explain your rationale for designing the
steps the way that you did (refer to the example provided in the bullet point below). In
addition to your written model, you must provide the outputs of your model based on the
provided data.

o Example of some steps and justifications in italics (keep in mind some parts of these examples may
be wrong – we can't give you all the answers! J): (EXAMPLE 1) The locations for which "the
maximum of the daily maximum wind speeds are between the rated output speed and cut-out speed"
are ranked towards the top. I want the wind turbine to run within the rated output power most of the
time. I have decided that having the maximum at within this range will help ensure the wind speeds
of the selected location are more likely within the rated power output. - . (EXAMPLE 2) The locations
that have a mean average wind speed closest to the cut-out speed without going over the cut-out speed
are ranked towards the top. I want the wind turbine to run within the rated output power as much as
possible. I have decided the closer that the mean is to being within that range the better, but I have
eliminated above the cut-out speed because I want to ensure the data is not above the specified range
for the rated output power.

• (Part2 due later): Your code (or computational model) – your code will be based on the
model that you submitted above. It is natural to modify your model (and algorithm)
throughout the coding process. You are required to comment your assumptions (for Step
4) and all your justifications for each step throughout your code. In addition to your code,
you must provide outputs for your code (as specified in Steps 5&6).

Solution:
Below are the 7 steps of the engineering process. They are also shown
in Figure 1. These steps can be used to guide you through solving a
problem. Sometimes you will cycle through these steps, as shown by
the arrows in Figure 1. You are required to show your work for all
of these steps, as specified under each step.

1. Decipher Problem Statement
The first step is to decipher the problem and identify the information
(or variables) given and what information you need to find (or display
to the user at the end of your program).

Givens (inputs):
The user has told you that they have provided you with historical wind data to use for your sample output
(shown in Table 1). The data consists of some descriptive statistics about the daily maximum, daily average,
and daily minimum wind speed for the entire year of 2018 for five locations. An example of what the raw
data (before the descriptive statistics were found) looked like for one day is shown in Table 2. The relevant
data that you decided to use will be hardcoded in your code (computational model), but be sure to code it
in a way that it is easy to change the data later. Be sure to clearly state what data you plan on using and
why. If you do not use any data, be sure to clearly state what data you are not using and why you are not
using that data.

Table 1. Wind Speed Data for Five Locations in 2018 (365 days: Jan. 1st – Dec. 31st)

Locations
mean mode standard

deviation minimum maximum

Buffalo,
NY

Daily Maximums 20.4 mph 16.0 mph 6.2 mph 9.0 mph 47.0 mph
Daily Averages 7.8 mph 8.0 mph 3.9 mph 2.0 mph 25.0 mph
Daily Minimums 3.5 mph 0.0 mph 3.2 mph 0.0 mph 13.0 mph

Abilene,
TX

Daily Maximums 21.9 mph 23.0 mph 6.6 mph 7.0 mph 43.0 mph
Daily Averages 10.9 mph 0.0 mph 8.1 mph 0.0 mph 31.0 mph
Daily Minimums 3.8 mph 0.0 mph 3.7 mph 0.0 mph 17.0 mph

Oklahoma
City, OK

Daily Maximums 18.2 mph 15.0 mph 7.0 mph 0.0 mph 46.0 mph
Daily Averages 7.5 mph 4.0 mph 4.3 mph 0.0 mph 22.0 mph
Daily Minimums 3.9 mph 0.0 mph 4.1 mph 0.0 mph 18.0 mph

Wichita,
KS

Daily Maximums 22.9 mph 21.0 mph 7.2 mph 8.0 mph 47.0 mph
Daily Averages 8.6 mph 10.0 mph 4.9 mph 1.0 mph 24.0 mph
Daily Minimums 3.9 mph 0.0 mph 4.0 mph 0.0 mph 21.0 mph

Rochester,
MN

Daily Maximums 18.9 mph 9.0 mph 8.7 mph 4.0 mph 44.0 mph
Daily Averages 8.8 mph 7.0 mph 4.2 mph 2.0 mph 20.0 mph
Daily Minimums 1.8 mph 0.0 mph 2.6 mph 0.0 mph 12.0 mph

Table 2. Sample of Data Collected for January 1st, 2018 in Abilene, TX
 Date Wind Speed (mph)
Location Month Day Daily Maximum Daily Average Daily Minimum
Abilene, TX January 1 15 4 4

Figure 10. Engineering Process

Finds (outputs):
The output of your model must be a ranking of all the provided locations from best location for the company
to purchase land in for a wind farm to worst location. All locations must be ranked and there cannot be any
ties for any locations. You must ensure that a tie will not happen so make sure that you consider many
points in your data.

2. Draw a Diagram
Sometimes the problem will include a diagram; be sure to still draw your own diagram/s. This step will
help you better decipher the problem by visualizing it. This is the only step you are not required to do. If
you draw anything out to help you visualize this problem be sure to include your sketches.

3. Identify Relevant Theory
After determining the information that you know and need to find and drawing a diagram, you should start
to have an idea what theory and/or background information you need to solve the problem. In this step you
will identify the information (e.g., formulas, data) that you will need to create a solution to the given
problem. Some information has been provided for you.

The horizontal-axis wind turbines used for this project will operate according the specifications as described
and presented in Table 3 and Figure 2. Please note you are not given any formulas for power because you
will not need to calculate the power produced to solve this problem.

Table 3. Wind Turbine – Wind Speed vs. Power Output Explanation
Wind Speed Range (m/s) Explanation
Below 3.5 m/s (the cut-in
speed)

This wind speed will be insufficient to provide the necessary torque to rotate
the turbine blades (meaning no power will be generated).

Between 3.5 m/s (the cut-
in speed) and 14 m/s (the
rated output speed)

The wind turbine will produce more power with higher wind speeds, as
shown in Figure 2.

Between 14 m/s (the rated
output speed) and 25 m/s
(the cut-out speed)

The wind turbine will produce the same amount of power for all these wind
speeds because the limit of the electrical generator is reached.

Above 25 m/s (the cut-out
speed)

The wind turbine’s braking system will be initiated to stop the system form
moving to ensure the rotor is not damaged from excessive wind speeds
(meaning no power will be generated).

Figure 2. Wind Turbine Wind Speed vs. Power Output

Image retrieved from: http://www.wind-power-program.com/turbine_characteristics.htm

4. Assumptions
In this step you will communicate some ideas that you have assumed to simplify the problem. These are
things that you may try to address later to make your solution address a more realistic scenario. It is okay
if you cannot envision how you would solve the problem without the assumption, but try to think about this
for each assumption that you write.

You must write at least 3 assumptions you will make in coming up with a solution for this problem.
(EXAMPLE: The elevation of the location where the wind data was collected will be the same as the
elevation of the potential land the company will purchase. – you cannot use this as one of your assumptions,
but maybe this example will help you think of others.)

5. Solution Steps
This step requires solving for the finds using the givens and theory. For this step you will create equations
to solve the problem, but you will not plug in any numbers yet. Be sure to base your equations on variables
and NOT numeric values (unless they are a constant, such as pi). Be sure to also refer to your diagram and
assumptions to help you through this step. Throughout this step you may find it useful to go back and draw
another diagram or necessary to use another formula.

Before figuring out a ranking of locations for the provided data sets, determine your model. Define any
steps and/or calculations that you will do to determine the rankings. Once you have developed your model,
try it with the provided data set in Step 6. Evaluate your output and determine if you want to return to this
step to modify your model. Development of a good model involves iteration like this. Be sure to show all
your work.

6. Identify Results and Verify Accuracy
Now that you have solve the problem without plugging in values, you will plug in values for this step to
verify if your problem is accurate or not.

You must include the ranking that your model will output in your first submission. You must show every
step of your solution for the provided data to show how you get to this final ranking. You must also include
the ranking that your code outputs as a comment in your code for your second submission.

7. Algorithm and Code

Your solution steps will lay out the process that you will need to code. In complex problems that require
conditionals and/or repetition, it may be beneficial to draw out a flowchart, concept map, etc. or write out
bullet point or numbered steps. Doing this step can ensure you understand the flow of your code before you
start writing code in MATLAB.

Based on your work in Step 5, you should have a well-formed model that can be implemented as a program.
To ensure that you are prepared to start coding, develop an algorithm that clearly summarizes the steps you
will take in your program. You can do this with a flowchart, numbered steps, or other methods you may
have discussed in class. If your class has a designated algorithm format, you must use that for this step.
Keep in mind that your model in Step 5 will look very similar to what you complete for the algorithm in
this step.

Only for the second submission will you code your solution. When you code your solution, keep these
steps in mind and revisit any that may help you in further developing your solution. (Refer back to steps 5
& 6, you must also provide outputs commented in your code.)

Appendices B. Wind Farm Modeling Problem Rubric (Submission 4)

Criteria Ratings Pts

Reusability - Assumptions
Does the solution have at least 3 clearly
communicated assumptions? There
should be significantly more, but 3 is the
minimum. (Reminder: Assumptions are
not facts. Assumptions are things
assumed to solve the problem -
information that needs to be addressed to
move forward, but was not given.)
(EXAMPLE: The elevation of the
location where the wind data was
collected will be the same as the elevation
of the potential land the company will
purchase. – you cannot use this as one of
your assumptions, but maybe this
example will help you think of others.)

1.0 pts
Full
Marks

0.5 pts
partial
include 3 "assumptions", but are
facts not assumptions. OR include
less than 3 assumptions, but have at
least 1 valid assumption

0.0 pts
No
Marks

1.0
pts

Mathematical Model Complexity - Data
Set
Student took all of the available data into
account. A significant amount of the data
was used to help them evaluate the ranked
locations for a wind farm.

8.0 pts
Full
Marks
Used at
least 67%
of the data
for their
analysis
AND
some dist.
approach
OR if used
statistical
measurem
ents, used
at least 3.

6.5 pts
partial
Used at least 33%
of the data for their
analysis AND
some dist.
approach OR if
used statistical
measurements
(e.g., mean, mode,
stdev), used at least
2 with at least 2
data sets (daily
mins, maxs, avgs)
or at least 1 with all
3 data sets (daily
mins, maxs, avgs).

4.0 pts
attempted
did not
use much
of the data

0.0 pts
No
Marks

8.0
pts

Modifiability - Data Set (used data)
Student communicated what data were
using and why they were using this data.

1.0 pts
Full Marks

0.0 pts
No Marks

1.0
pts

Modifiability - Data Set (unused data)
Student communicated what data were
not using and why they were not using
this data.

1.0 pts
Full Marks

0.0 pts
No Marks

1.0
pts

Criteria Ratings Pts

Mathematical Model Complexity -
Number and Types of Locations
The model/code is not designed only for
the given data set. It would work for
different data. There are enough factors
considered that ties would not easily
happen. Also the code would work with a
different data file that contained different
locations and a different number of
locations (assume same file name).

3.0 pts
Full Marks
some
limitations
are to be
expected

1.5 pts
Many Limitations/Errors
Student clearly attempted to
ensure their model/code would
work for other data, but there
are many limitations/errors.

0.0 pts
No
Marks

3.0
pts

Modifiability - Number and Types of
Locations
Student clearly communicates the need to
ensure their model will work for other
scenarios. (e.g., adding additional steps
that may not matter for the provided data,
but adding them to ensure a potential tie
wouldn't happen given another scenario,
when considering different data this
added new steps to their model)

2.0 pts
Full Marks

0.0 pts
No Marks

2.0
pts

(CODE only) Data Correctly
Implemented in Code
Data set is uploaded into code correctly
(used xlsread function with correct return
variables). The data types are handled in
code appropriately (e.g.,: working with
cell arrays)

3.0 pts
Full
Marks

1.5 pts
partial
some errors throughout, but at least
some correct aspects demonstrated

0.0 pts
No
Marks

3.0
pts

Mathematical Model Complexity - Data
Type (Conversions/Units)
Any necessary conversion calculations
are done. Units are consistent. (For code,
any conversions from provided data
should be done in code and not in the
file.)

2.0 pts
Full Marks

0.0 pts
No Marks

2.0
pts

Mathematical Model Complexity -
Rated Output Speed/Power (from the
Power Output Chart)
Student shows a significant amount of
consideration of the rated output
speed/power on power output chart.

4.0 pts
Full
Marks

2.0 pts
partial
did not use this much, but at least
acknowledged in their solution.

0.0 pts
No
Marks

4.0
pts

Modifiability - Rated Output
Speed/Power
Student communicated where and how
the rated output speed/power was being
used within (a) rationale/s.

2.0 pts
Full Marks

0.0 pts
No Marks

2.0
pts

Criteria Ratings Pts

Mathematical Model Complexity - Cut-
in and/or Cut-out Speed (from the Power
Output Chart)
Student shows a significant amount of
consideration of either the cut-in or cut-
out speed from the power output chart.

4.0 pts
Full
Marks

2.0 pts
partial
did not use this much, but at
least acknowledged in their
solution.

0.0 pts
No
Marks

4.0
pts

Modifiability - Cut-in/Cut-out Speed
Student communicated where and how
the cut-in speed and/or cut-out speed were
being used within (a) rationale/s.

2.0 pts
Full Marks

0.0 pts
No Marks

2.0
pts

Shareability - Format/Communication
Student formats their solution in a way
that enables someone else to apply their
solution and replicate the same results.
The process is clearly communicated.

9.0 pts
Full
Marks

6.0 pts
partial
There is 1
error in the
code.

3.0 pts
attempted
There are 2+
errors in the
code.

0.0 pts
No
Marks

9.0
pts

(CODE only) Shareability - Outputs
The program clearly communicate to the
user what the results are (ranking of
locations for wind farm).

2.5 pts
Full Marks

0.0 pts
No Marks

2.5
pts

(CODE only) Sample Data
Student generated sample data to test their
solution. Excel file sample data provided.

3.0 pts
Full Marks

0.0 pts
No Marks

3.0
pts

Shareability - Sample
Calculations/Output
The sample outputs for the provided data
and generated data in student's code in
comments (comment block - identify
original and generated data sets).

2.5 pts
Full
Marks

1.5 pts
sample output only for
provided cities - not with
additional sample data

0.0 pts
No
Marks

2.5
pts

Total Points: 50.0

	Comparing students' solutions to an open-ended problem in an introductory programming course with and without explicit modeling interventions
	Recommended Citation

	Comparing Students’ Solutions to an Open-ended Problem in an Introductory Programming Course with and without Explicit Modeling Interventions

