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Comparing Students’ Solutions to an Open-ended Problem in an 
Introductory Programming Course with and without Explicit 

Modeling Interventions 
 
Abstract 
 
Engineers must understand how to build, apply, and adapt various types of models in order to be 
successful. Throughout undergraduate engineering education, modeling is fundamental for many 
core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching 
modeling, particularly in the first years of an engineering program. The research questions that 
drove this study are: (1) How do students’ solutions to a complex, open-ended problem (both 
written and coded solutions) develop over the course of multiple submissions? and (2) How do 
these developments compare across groups of students that did and did not participate in a course 
centered around modeling?. Students’ solutions to an open-ended problem across multiple 
sections of an introductory programming course were explored. These sections were all divided 
across two groups: (1) experimental group - these sections discussed and utilized mathematical 
and computational models explicitly throughout the course, and (2) comparison group - these 
sections focused on developing algorithms and writing code with a more traditional approach. 
All sections required students to complete a common open-ended problem that consisted of two 
versions of the problem (the first version with  smaller data set and the other a larger data set). 
Each version had two submissions – (1) a mathematical model or algorithm (i.e. students’ written 
solution potentially with tables and figures) and (2) a computational model or program (i.e. 
students’ MATLAB code). The students’ solutions were graded by student graders after 
completing two required training sessions that consisted of assessing multiple sample student 
solutions using the rubrics to ensure consistency across grading. The resulting assessments of 
students’ works based on the rubrics were analyzed to identify patterns students’ submissions 
and comparisons across sections. The results identified differences existing in the mathematical 
and computational model development between students from the experimental and comparison 
groups. The students in the experimental group were able to better address the complexity of the 
problem. Most groups demonstrated similar levels and types of change across the submissions 
for the other dimensions related to the purpose of model components, addressing the users’ 
anticipated needs, and communicating their solutions. These findings help inform other 
researchers and instructors how to help students develop mathematical and computational 
modeling skills, especially in a programming course. This work is part of a larger NSF study 
about the impact of varying levels of modeling interventions related to different types of models 
on students’ awareness of different types of models and their applications, as well as their ability 
to apply and develop different types of models. 
  
Introduction 
 
Engineers must understand how to build, apply, and adapt various types of models, including 
mathematical and computational models, to be successful. Modeling is fundamental for many 
core undergraduate engineering courses, though it is rarely explicitly taught [1]. There are many 
benefits to teaching modeling or using modeling projects, particularly in the first years of the 
engineering curriculum  [1-3]. There are some well-developed pedagogies that demonstrate the 
successes of doing this. Model-eliciting activities (MEAs) are an impactful example of a 



pedagogical approach used in first-year engineering to teach mathematical modeling skills [3]. 
Even though there are some established approaches, there is still a need for more meaningful 
ways to teach modeling throughout the engineering curricula and especially in first-year 
engineering courses [1].  
 
Developing computational thinking skills is something that has been emphasized in engineering 
education more recently and aligns with this call for curriculum that explicitly teaches 
mathematical and computational modeling skills [4]. Computational thinking skills involve 
abstraction, analysis, automation, and modeling [5]. Again both the objectives of developing 
students’ computational thinking skills and explicitly teaching modeling present similar 
underlying goals. 
 
Many modeling interventions have been proven effective based on research conducted within the 
Computational Adaptive Expertise (CADEX) [2] and Models and Modeling Perspective 
(M&MP) [6] frameworks. Carberry, McKenna, Linsenmeier, and Cole [7] conducted research 
within the CADEX framework and found that a modeling intervention caused a significant shift 
in senior engineering students’ concepts of models, including discussing more predictive models. 
Carberry and McKenna [1] expanded their research within the CADEX framework to gain a 
greater understanding of modeling conceptions and found more students discussed mathematical 
and predictive models when they were taught an explicit mathematical modeling module. 
Research efforts within the M&MP have focused around a mathematical modeling building 
intervention called MEAs [3]. Some of this research has focused on how students develop 
mathematical model solutions to MEAs (e.g., [8, 9]) and how MEAs are incorporated in 
engineering courses (e.g., [10, 11]). Also this research has been conducted in various settings 
including research in large first-year engineering courses (e.g., [12]) and upper division 
engineering courses (e.g., [13, 14] ). There is also some research about a modeling application 
intervention called model-adaptation activities (MAAs) within the M&MP framework [15]. 
 
Models are fundamentally systems based on real-world systems [16]. There are various types of 
models used in engineering. Physical models (e.g., prototypes, drawings) are the most common 
type of models that engineering students identify as a type of model and discuss as a model used 
in the design process [1, 17]. Although physical models are one type of model that engineers use, 
there are other critical types of modeling, including mathematical models [3, 6, 18] and 
computational models [19, 20]. Within engineering curricula, various types of models need to be 
explicitly introduced to enhance students’ definitional knowledge and implemented to develop 
students’ modeling skills. Interventions need to focus on types of models, model application, and 
model development in engineering curricula, especially on mathematical and computational 
models [1, 3, 15, 19].  
 
Mathematical models and computational models were the two types of models focused on in this 
study. Mathematical models utilize mathematics to quantify and explain a real-world system 
[16]. As aforementioned, MEAs are a pedagogical approach to help students develop 
mathematical modeling skills [18]. MEAs are a mathematical modeling problem that require 
students to create a model to meet particular criteria and constraints for a stakeholder based on 
provided, relevant data, where there are multiple good possible solutions [3]. Computational 
models are based on mathematical models and utilize computer programs to enable users to 



interact with the underlying model [15-16]. A specific type of computational model are 
simulations, which require a visualization of outputs in addition to the manipulable user inputs 
(e.g., [15, 21-23]). Simulations are more commonly being implemented in courses as a tool to 
enable more exploration of concepts (e.g., [19]). When tools are implemented in courses, it is not 
as common to see an emphasis on computational models nor the development of these tools. 
Rodgers [15] discussed the use of MAAs to challenge students to apply models in computer 
programs (specifically MATLAB). The structure presented by Rodgers [15] of having students 
develop a simulation based on a mathematical model built through a MEA motivated the design 
of the problems utilized in this study.  
 
This study focused on embedding a modeling problem in a programming course. Programming 
courses typically focus primarily on syntax, but there is a need to teach students how to 
effectively develop an algorithmic solution to create good programs [24, 25]. Most engineering 
education studies on computer programming focus on other pedagogical approaches, such as 
paired programming (e.g., [26]) or extreme programming (XP) (e.g., [27]). This study focused 
specifically on modeling development in a first-year programming course and built off a similar 
previous study [28].  
 
Rodgers et al. [28] found that students participating in a programming course explicitly teaching 
mathematical and computational modeling consistently improved their demonstrated modeling 
abilities across four submissions of a modeling problem. In the same study, students in the same 
programming course that did not explicitly teach modeling did not demonstrate consistent 
improvement [28]. Based on these findings, this study investigated similar research questions in 
a later semester with similar conditions.  
 
Research Purpose and Questions 
 
The research questions that drove this study are: (1) How do students’ solutions to a complex, 
open-ended problem (both written and coded solutions) develop over the course of multiple 
submissions? and (2) How do these developments compare across groups of students that did and 
did not participate in a course centered around modeling?. 
 
Methods 
 
Setting and Participants 
 
In Spring 2019, 348 students enrolled in an introductory computer programming course for 
engineers across 16 sections at a medium-sized, private, STEM+Business university. MATLAB 
is the programming language for the course. All mechanical, civil, and aerospace engineering 
students are required to take this course. The electrical and computer engineering students take a 
similar course that uses Java as the programming language. This course is open to other students 
at the university and required by some non-engineering degree programs, such as the astronomy 
and astrophysics program and the unmanned aircraft systems (UAS) science degree. Even with 
these additional requirements, sections are made up of mostly engineering students and more 
specifically aerospace engineering students. The focus of the course is to teach engineering 



students how to develop effective computer programs for solving engineering problems. The 
learning objectives of the course are to: 

1. Demonstrate understanding of the role of software design when solving problems using 
the computer. 

2. Apply knowledge of mathematics and computer programming to communicate ideas 
when solving computational problems. 

3. Design and implement algorithmic solutions to problems requiring user input/output 
(I/O), data processing, control structures, arrays, and file input/output (I/O). 

4. Solve problems of intermediate complexity requiring the use of non-numerical data such 
as characters and strings. 

5. Apply a top-down design methodology to problems of intermediate complexity using 
functions. 

 
Two of the 16 sections were taught by one instructor that explicitly incorporated modeling 
throughout the course materials by developing various levels of modeling problems for all the 
homework assignments and in-class activities. The revised course was designed to scaffold 
students from solving more close-ended modeling problems to more open-ended modeling 
problems across the semester. Students were presented different approaches to solve problems 
throughout the course. They were challenged to see how there can be multiple good approaches 
and solutions depending on the problem. The language of the class focused on mathematical and 
computational models, in addition to the more common computing language of algorithms and 
computer programs. There was a total of 47 students enrolled in these two sections. The other 14 
sections taught by four other instructors were not significantly modified from previous iterations 
of the course. There was a total of 301 students enrolled in these 14 sections. These sections 
focused more on syntax and used close-ended problems with one correct answer for most of their 
assignments. Most sections use a seven step problem solving process in the class (demonstrated 
in the modeling problem shown in Appendix A). One step of this process prompts the students to 
identify assumptions they are making that simplify the problem in developing their solution.  
 
The students from all sections of this course were required to complete one common modeling 
problem with two different versions individually. Each version consisted of two submissions – 
the first submissions were students’ written solutions potentially with tables, figures, and 
flowcharts (i.e. their mathematical model) and the second submission were students’ MATLAB 
code with comments, as specified (i.e. their computational model). The four submissions are 
summarized in Table 1. One important change in this implementation in comparison to the 
previous semester (Fall 2018 – [28]) is students were required to incorporate comments 
throughout their code, whereas before they could attach their previously submitted written 
model. The problem explicitly stated, “You are required to comment your assumptions (for Step 
4) and all your justifications for each step throughout your code” (see Appendix A). 
 

Table 1: Description of the four submissions for the modeling problem 
Submission Modeling Problem Assigned Submission Type 
Submission 1 Version 1 (table of data) Written solution 
Submission 2 Version 1 (table of data) Coded solution (.m file) 
Submission 3 Version 2 (Excel file with a larger data set) Written solution 
Submission 4 Version 2 (Excel file with a larger data set) Coded solution (.m file) 

 



The modeling problem was developed using the six design principles of the M&MP theoretical 
framework [6]. The second version of the problem contained more data than the first version to 
prompt the students to reevaluate their solutions based on successful implementations of MEAs 
[3]. The intention of the second version was also to ensure more iterations in their model 
development process and capture how their demonstrated modeling skills changed across the 
course. The written submission for the problem was similar to a MEA [3] in that the students had 
to interpret a problem and data to develop a model. The coded submission followed the concept 
of a MAA [6, 15] in that the students had to apply the model they developed through the first 
submission.  
 
The modeling problem challenged students to develop a model to rank possible wind farm 
locations from best to worst based on historical wind data and a relevant graph about power 
output vs. wind speed for an alternative engineering company. The first version of the modeling 
problem is provided in Appendix A. In the first version, the students were provided a table 
summarizing a year of wind data for five different locations. In the second version of the 
problem, the students were provided an Excel file of data that contained the minimum, average, 
and maximum windspeed for every day of the year of 2018 for seven different locations. The 
larger data set for the second version contained the raw data for the original five locations and 
two additional locations.  
 
Data Collection 
 
The 46 students in the two sections taught by the one professor with the revised modeling 
curriculum make up the experimental group for this study. Out of the 14 sections taught by the 
four instructors (i.e. the comparison group), only two instructors both implemented the 
assignment consistent with the way it was developed and ensured the assessment of the 
assignment was consistent. One instructor taught four sections with 74 students (Comparison 
Group – Instructor 1) and the other instructor taught four sections with 85 students (Comparison 
Group – Instructor 2). The data collected for this study were the students submitted solutions for 
all four of the modeling problem submissions, summarized in Table 1. Out of the 205 students 
across the 10 sections, 192 students completed at least one submission, summarized in Table 2. 
All of these students submissions were included in this study. 
 

Table 2: Summary of the number of student submissions per group 

Group and instructor Total number of  
students in the group 

Students submitted  
at least one submission 

Experimental Group 46 45 (97.8%) 
Comparison Group – Instructor 1 74 69 (93.2%) 
Comparison Group – Instructor 2 85 78 (91.8%) 

 
Data Analysis 
 
To assess the quality of students’ models in each of the submissions, a rubric was developed. The 
rubric consisted mostly of items based on the four dimensions established for assessing students’ 
solutions to MEAs [8, 29]. The other additional rubric items were included to assess the quality 
of students’ code for the coding submissions. The already established dimensions are 
mathematical model complexity, modifiability, reusability, and shareability [8, 29]. The purpose 



of the mathematical model complexity dimension is to assess students’ ability to address the 
complexity of the problem in an elegant solution [8, 29]. Items related to this category consisted 
of meaningful utilization of the provided data and relevant facts, as well as proper conversion of 
units. There was a total of five items developed within this category. The purpose of the 
modifiability dimension is to ensure a student’s model is generalizable by evaluating the 
student’s rationale for each step in their model [8, 29]. There was a total of five items created 
that focused on students’ rationale for five major components of their models. The purpose of the 
reusability dimension is to assess students’ understandings of the given problem and their client 
or user (i.e., problem scoping) [8, 29]. There was one item created that focused on students’ 
ability to identify assumptions they are making in solving the problem. The purpose of the 
shareability dimension is to evaluate students’ ability to communicate their solution [8, 29]. 
There were two items that assessed this dimensions; these items related to how the students 
communicated the written model and the provided sample results. These 13 rubric items were 
used to assess students’ models in all four submissions.  
 
The entire rubric used for the fourth submission is provided in Appendix B. All the scores for the 
rubric items shown in the appendix are based on the fourth submission scoring used for assigning 
students’ grades. For the data analysis all the rubric items for were assigned a possible score 
based on how many levels there were for each item. Every rubric item consisted of either two, 
three, or four options for each grade with points and options as summarized in Table 3.  
 

Table 3: Description of the four submissions for the modeling problem 
Number of Options 
for Rubric Items 

Submission Scores/Levels 

2 options (levels) demonstrated – 1 point; or not – 0 points 
3 options (levels) fully – 2 points; partially – 1 point; or not demonstrated – 0 points 
4 options (levels) fully – 3 points; some – 2 points; less – 1 point; or not demonstrated – 0 points 

 
In the development of this rubric, reflection on the previous implementation of a similar problem 
were considered – findings discussed by Rodgers et al. [28]. The two biggest changes were: (1) 
rubric items related to the shareability dimension were incorporated in and (2) some rubric items 
had more levels rather than having as many dichotomous rubric items. The first change was to 
add another dimension of analysis in the study. The second change was primarily based on the 
different context of the problem aligned better with more levels for some rubric items. 
 
The students’ solutions to the modeling problem included in this study were graded by two 
student graders. The graders completed a required training that consisted of assessing multiple 
sample student solutions using the rubrics to ensure consistency across grading. There were two 
different trainings – one for each version of the modeling problem. In this training, the graders 
practiced applying the rubric for both the model and code submissions after a detailed 
explanation of each item.  
 
The resulting assessments of students’ works based on the 13 modeling items of the rubric was 
analyzed using descriptive statistics and t-tests, when fitting [30]. The t-tests were used to 
determine statistically significant differences between the first and last submission within each 
group, where further investigation was of interest. 
 



Findings 
 
Mathematical Model Complexity – Comparing Groups/Instructors 
 
The average scores for all the mathematical model complexity rubric items across all four 
submissions for all three instructors (the one teaching students in the experimental group and the 
other two teaching students in the comparison group) are presented in Figure 1. Along the 
mathematical model complexity dimension, the students across all sections improved from the 
first written model (submission 1) to second written model (submission 3) and from the first 
coded solution (submission 2) to second coded solution (submission 4). Only the average scores 
for the students in the experimental group improved from the first submission (first written 
model) to the last submission (second coded solution). 
 
 

 
Figure 1: Average of students’ scores on Mathematical Model Complexity items  

 
 
As demonstrated in Table 4, the only statistically significant change in the average scores was 
from submission 1 (first written model) to submission 3 (second written model) for the students 
from the experimental group. There were no other statistically significant changes at a 0.05 level 
of significance across the submissions. The next closest to statistically significant change was the 
change in the average scores from the first to the last coding submission (submissions 2 to 4) for 
the students from the experimental group. 
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Table 4: Mathematical model complexity – All instructors – Difference between submissions 
Section Submissions p-value 

Comparison Group - Instructor 1 

1 (model v.1) to 2 (code v.1) 0.32 
1 (model v.1) to 3 (model v.2) 0.21 
1 (model v.1) to 4 (code v.2) 0.94 
2 (code v.1) to 4 (code v.2) 0.37 

Comparison Group - Instructor 2 

1 (model v.1) to 2 (code v.1) 0.39 
1 (model v.1) to 3 (model v.2) 0.70 
1 (model v.1) to 4 (code v.2) 0.51 
2 (code v.1) to 4 (code v.2) 0.84 

Experimental Group 

1 (model v.1) to 2 (code v.1) 0.35 
1 (model v.1) to 3 (model v.2) 0.00* 
1 (model v.1) to 4 (code v.2) 0.31 
2 (code v.1) to 4 (code v.2) 0.10 

* statistically significant difference between first and last submissions 
 
Figure 1 presents the change in students’ average scores summed up across all the various rubric 
items. The following figures show the students’ average scores for each of the five individual 
rubric items for the mathematical model complexity dimension. 
 
The students’ average scores for the utilizing data set rubric item are shown in Figure 2. The 
students from the experimental group started with a much higher average than the students from 
the two comparison groups. By the third submission, all the groups had more similar scores. The 
two comparison groups showed the most improvement across the submissions. 
 
 

 
Figure 2: Average of students’ score on a Mathematical Model Complexity item 
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The students’ average scores for the two rubric items regarding students ability to ensure their 
solution works for a varying number of locations and implementation of appropriate unit 
conversions are presented in Figures 3 and 4, respectively. 
 
 

  

 
Figure 3: Average of students’ scores on a 

Mathematical Model Complexity item 
Figure 4: Average of students’ scores on a 

Mathematical Model Complexity item 
 
 
The students’ average scores for the rubric items related to students implementing provided 
relevant theory about wind turbines are shown in Figures 3 and 4. The average scores for 
students from all three groups did much better implementing the relevant theory in their written 
models than their coded solutions. 
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Figure 5: Average of students’ scores on a 

Mathematical Model Complexity item 
Figure 6: Average of students’ scores on a 

Mathematical Model Complexity item 
 
Modifiability – Comparing Groups/Instructors 
 
The average scores for all the modifiability rubric items across all four submissions for the 
experimental group and two comparison groups are presented in Figure 7. All groups scored 
higher on the written submissions than the coding submissions. One of the comparison groups 
(Group 1) had the most consistent average scores between the written and coded solutions. The 
experimental group was the only group that had a later submission (submission 3) with a higher 
average score than the first submission.  
 

 
Figure 7: Average of students’ scores on Modifiability items 
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As presented in Table 5, there was a statistically significant negative change from the first to the 
last submission across all three groups (both comparison groups and the experimental group). 
There was also a statistically significant negative change across the two written submissions for 
one of the comparison groups (Group 2). There were no other statistically significant changes at 
a 0.05 level of significance across the analyzed submissions. 
 

Table 5: Modifiability – All instructors – Difference between submissions 
Section Submissions p-value 

Comparison Group - Instructor 1 1 (model v.1) to 3 (model v.2) 0.09 
1 (model v.1) to 4 (code v.2) 0.05* 

Comparison Group - Instructor 2 1 (model v.1) to 3 (model v.2) 0.03* 
1 (model v.1) to 4 (code v.2) 0.00* 

Experimental Group 1 (model v.1) to 3 (model v.2) 0.16 
1 (model v.1) to 4 (code v.2) 0.00* 

* statistically significant difference between first and last submissions 
 
Reusability – Comparing Groups/Instructors 
 
The average scores for the reusability rubric items across the submissions for the experimental 
group and two comparison groups are presented in Figure 8. The students had similar average 
scores across all the groups for both the written solutions. The experimental group had the 
highest scores across all the submissions, although it was extremely close to one of the 
comparison group’s scores (Group 2) on the written submissions.  
 

 
Figure 8: Average of students’ scores on Reusability items 
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other hand, there was also a statistically significant positive change across the two written 
submissions for all three groups.  
 

Table 6: Reusability – All instructors – Difference between submissions 
Section Submissions p-value 

Comparison Group - Instructor 1 1 (model v.1) to 3 (model v.2) 0.02* 
1 (model v.1) to 4 (code v.2) 0.00* 

Comparison Group - Instructor 2 1 (model v.1) to 3 (model v.2) 0.01* 
1 (model v.1) to 4 (code v.2) 0.00* 

Experimental Group 1 (model v.1) to 3 (model v.2) 0.01* 
1 (model v.1) to 4 (code v.2) 0.00* 

* statistically significant difference between first and last submissions 
 
Shareability – Comparing Groups/Instructors 
 
The average scores for the shareability rubric items across the submissions for the experimental 
group and two comparison groups are presented in Figure 9. The experimental group had the 
highest average scores across all four submissions, but also had the largest negative change from 
the third to the fourth submission. One of the comparison groups (Group 1) received higher 
average scores on their coded solutions (submissions 2 and 4) than the written solutions 
(submissions 1 and 3).  
 

 
Figure 9: Average of students’ scores on Shareability items 

 
As demonstrated in Table 7, there were no statistically significant changes related to the 
shareability dimension at a 0.05 level of significance across the analyzed submissions. 
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Table 7: Shareability – All instructors – Difference between submissions 
Section Submissions p-value 

Comparison Group - Instructor 1 1 (model v.1) to 3 (model v.2) 0.78 
1 (model v.1) to 4 (code v.2) 0.26 

Comparison Group - Instructor 2 1 (model v.1) to 3 (model v.2) 0.88 
1 (model v.1) to 4 (code v.2) 0.32 

Experimental Group 1 (model v.1) to 3 (model v.2) 0.31 
1 (model v.1) to 4 (code v.2) 0.33 

* statistically significant difference between first and last submissions 
 
Summary 
 
As demonstrated in the figures above, the students from the experimental group were 
consistently receiving higher scores on the mathematical model complexity, reusability, and 
shareability dimensions than the comparison groups. The modifiability dimension was the only 
area the comparison groups typically outperformed the experimental group. Although the 
students across all three instructors had similar scores on the reusability dimension, especially on 
their written submissions. The comparison groups had fairly similar scores across most of the 
dimensions; the greatest consistent difference across the comparison groups was on the 
mathematical model complexity dimension.  
 
Also shown in the figures, the experimental group scores consistently improved across the two 
written submissions for all four dimensions. For the experimental group, there was a statistically 
significant difference between students’ scores on the first and third submissions for the 
mathematical model dimension. All groups had statistically significant improvements across the 
written submissions for the reusability dimension. As demonstrated in the figures above, the 
students’ scores in the two comparison groups were not consistently improving nor declining; 
their scores typically fluctuated across the four submissions.  
 
Conclusions 
 
The results identified differences that exist in the mathematical and computational model 
development between students who were exposed to the revised modeling language and 
examples (experimental group) compared to those students who were not (comparison groups). 
There were four dimensions in the modeling rubric that were analyzed for this study: 
mathematical model complexity, modifiability, reusability, and reusability [8, 29]. The 
dimensions of the rubric were analyzed separately to capture the nature of the differences 
between the experimental and comparison groups. Since this study complemented the work of a 
previous study [28], these results are compared where relevant.  
 
Rodgers et al. [28] found that students in the experimental group demonstrated statistically 
significant improvements across all three analyzed dimensions (i.e. mathematical model 
complexity, modifiability, and reusability), while the comparison group only demonstrated 
statistically significant improvement across the reusability dimension. In this study, the 
experimental group demonstrated statistically significant improvements from across their written 
submissions on the mathematical model complexity and reusability dimensions, while the 



comparison groups only demonstrated statistically significant improvement on the reusability 
dimension (across the two written submissions). There were no other positive statistically 
significant changes. The change in submission requirements that students had to add comments 
in their code seemed to have a huge impact on students’ lower scores on coded submissions for 
the reusability and modifiability dimensions. 
 
Although there was not as consistent improvement seen in students’ coded solutions, the students 
in the experimental group presented higher scoring ideas in their written mathematical models 
than the implemented in their computational models (i.e. coded solutions). There is a need for 
further investigation into how to help students improve their computational models. Future 
research will integrate in revisions to enhance computational thinking skills into the course to 
hopefully help enable students to better improve their computational models (coded solutions). 
 
The students who were exposed to the revised modeling language and materials had the only 
statistically significant gains across the course of the semester in their ability to address the 
complexity of the problems (mathematical model complexity). The experimental group had the 
greatest improvement on their written solutions in their ability understand the application of the 
model and potential for adaptation (modifiability). Again for the coded submissions, the students 
had to comment their rationale in their code. This may have caused the much lower scores on the 
coded submissions. One of the comparison groups had the most consistent grades between the 
written and coded solutions. The instructor for the this group has the most specific requirements 
for the format and comments in students’ code submissions. These requirements may have 
positively contributed these students’ higher average scores on this dimension and the 
shareability dimension.  
 
All the groups scored similarly with high scores in their ability to address the users’ anticipated 
needs by identifying assumptions they made in solving the problem (reusability). This 
improvement in both groups could be attributed to the fact that emphasizing writing code for a 
given user and understanding your assumptions in solving a problem to know when the solution 
is applicable is embedded in the course. Identifying assumptions is something that all three 
instructors require their students to do in various homework assignments. This may have 
contributed to the consistently high students’ scores on this dimension.  
 
The students who were not exposed to the modeling language nor given the opportunity to 
engage in modeling activities beyond the assigned modeling problem did not demonstrate as 
much improvement on the mathematical model complexity dimension. Their completion of the 
two versions of the one modeling problem could have had some impact on their demonstrated 
modeling abilities. Although, the additional course materials seemed to be much more 
fundamental in leading to the success seen by the experimental group. These findings help 
inform other researchers and instructors how to help students develop modeling skills, 
specifically modeling skills related to mathematical model complexity, modifiability, reusability, 
and shareability dimensions. This research will build upon this idea by further analyzing impact 
of the revised modeling language in more courses and covering more types of modeling, 
including physical and business models. 
 
 



Acknowledgements 
 
This work was made possible by a collaborative research grant from the National Science 
Foundation (DUE 1827392; DUE 1827600; DUE 1827406). Any opinions, findings, and 
conclusions or recommendations expressed in this material are those of the author and do not 
necessarily reflect the views of the National Science Foundation. 
 
 
 
References 
  
[1] A. R. Carberry and A. F. McKenna, "Exploring student conceptions of modeling and 

modeling uses in engineering design," Journal of Engineering Education, vol. 103, no. 1, 
pp. 77-91, 2014. 

[2] A. McKenna, R. Linsenmeier, and M. Glucksberg, "Characterizing computational 
adaptive expertise," in 2008 ASEE Annual Conference and Exposition, 2008. 

[3] J. S. Zawojewski, H. A. Diefes-Dux, and K. J. Bowman, Models and modeling in 
engineering education: Designing experiences for all students. Sense Publishers, 2008. 

[4] J. M. Wing, "Computationalthinking," in Communications of the ACM, vol. 49, no. 3, p. 
33-35. 2006. 

[5] U. Ilic, H. I. Haseski, and U. Tugtekin, "Publications trends over 10 years of 
computational thinking research," in Contemporary Education Technology, vol. 9, no. 2, 
p. 131-153, 2018. 

[6] R. Lesh and H. M. Doerr (Eds.). Beyond constructivism: Models and modeling 
perspectives on mathematics problem solving, learning, and teaching. Lawrence Erlbaum 
Associates Publishers, 2003. 

[7] A. R. Carberry, A. F. McKenna, R. A. Linsenmeier, and J. Cole, "Exploring senior 
engineering students' conceptions of modeling," in 118th ASEE Annual Conference and 
Exposition, 2011. 

[8] H. A. Diefes-Dux, M. A. Hjalmarson, and J. S. Zawojewski, "Student Team Solutions to 
an Open-Ended Mathematical Modeling Problem: Gaining Insights for Educational 
Improvement," Journal of Engineering Education, vol. 102, no. 1, pp. 179-216, 2013. 

[9] H. A. Diefes-Dux, K. Bowman, J. S. Zawojewski, and M. Hjalmarson, "Quantifying 
aluminum crystal size part 1: The model-eliciting activity," Journal of STEM Education: 
Innovations and Research, vol. 7, no. 1/2, p. 51, 2006. 

[10] H. A. Diefes-Dux, M. A. Hjalmarson, T. K. Miller, and R. Lesh, "Chapter 2: Model-
eliciting activities for engineering education," Models and modeling in engineering 
education: Designing experiences for all students, pp. 17-35, 2008. 

[11] E. Hamilton, R. Lesh, F. Lester, and M. Brilleslyper, "Model-Eliciting Activities (MEAs) 
as a Bridge between Engineering Education Research and Mathematics Education 
Research," Advances in Engineering Education, vol. 1, no. 2, p. n2, 2008. 

[12] H. A. Diefes-Dux and P. Imbrie, "Chapter 4: Modeling activities in a first-year 
engineering course," Models and modeling in engineering education: Designing 
experiences for all students, pp. 37-92, 2008. 



[13] R. M. Clark, L. J. Shuman, and M. Besterfield-Sacre, "In-Depth Use of Modeling in 
Engineering Coursework to Enhance Problem Solving," in Modeling Students' 
Mathematical Modeling Competencies: Springer, 2010, pp. 173-188. 

[14] T. P. Yildirim, L. Shuman, M. Besterfield-Sacre, and T. Yildirim, "Model eliciting 
activities: assessing engineering student problem solving and skill integration processes," 
International Journal of Engineering Education, vol. 26, no. 4, pp. 831-845, 2010. 

[15] K. J. Rodgers, "Development of First-Year Engineering Teams' Mathematical Models 
through Linked Modeling and Simulation Projects" (2016). Open Access Dissertations. 
838. https://docs.lib.purdue.edu/open_access_dissertations/838 

[16] R. Lesh and G. Harel, "Problem solving, modeling, and local conceptual development," 
Mathematical thinking and learning, vol. 5, no. 2-3, pp. 157-189, 2003. 

[17] A. R. Carberry and A. F. McKenna, "Engineering student's conceptions of model uses in 
design," in 2011 Research in Engineering Education Symposium, REES 2011, 2011. 

[18] R. Lesh, M. Hoover, and A. Kelly, "Equity, assessment, and thinking mathematically: 
Principles for the design of model-eliciting activities," Developments in school 
mathematics education around the world, vol. 3, pp. 104-130, 1993. 

[19] O. B. J. Daniel K. Howe, "Developing an Interactive Computer Program to Enhance 
Student Learning of Dynamical Systems," in 2016 ASEE Annual Conference & 
Exposition, 2017. 

[20] A. J. Magana, "Modeling and Simulation in Engineering Education: A Learning 
Progression," Journal of Professional Issues in Engineering Education and Practice, vol. 
143, no. 4, p. 04017008, 2017. 

[21] A. J. Magana, S. P. Brophy, and G. M. Bodner, "Instructors' intended learning outcomes 
for using computational simulations as learning tools," Journal of Engineering 
Education, vol. 101, no. 2, pp. 220-243, 2012. 

[22] A. Stefan, "A Computer Model of Cell Dynamics Using Agents," in American Society for 
Engineering Education, 2010: American Society for Engineering Education. 

[23] J. P. A. Omer Farook, Athula Kulatunga, Ashfaq Ahmed P.E., Wangling Yu, Yoonill 
Lee, Hassan Abdullah Alibrahim, "Freshman Experience Course in Electrical and 
Computer Engineering Technology Emphasizing Computation, Simulation, Mathematical 
Modeling, and Measurements," in 2017 ASEE Annual Conference & Exposition, 2017. 

[24] A. El-ZEin, T. Langrish, and N. Balaam, "Blended Teaching and Learning of Computer 
Programming Skills in Engineering Curricula," Advances in Engineering Education, vol. 
1, no. 3, p. n3, 2009. 

[25] H. Fangohr, "A comparison of C, MATLAB, and Python as teaching languages in 
engineering," in International Conference on Computational Science, 2004: Springer, pp. 
1210-1217. 

[26] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, "The impact of pair 
programming on student performance, perception and persistence," in Software 
Engineering, 2003. Proceedings. 25th International Conference on, 2003: IEEE, pp. 602-
607. 

[27] L. Williams and R. Upchurch, "Extreme programming for software engineering 
education?," in Frontiers in Education Conference, 2001. 31st Annual, 2001, vol. 1: 
IEEE, pp. T2D-12. 

[28] K. J. Rodgers, J. C. McNeil, M. A. Verleger, and F. Marbouti, "Impact of a modeling 
intervention in an introductory programming course," presented at the 2019 ASEE 



Annual Conference & Exposition Tampa, Florida, 2019. [Online]. Available: 
https://peer.asee.org/32918. 

[29] H. A. Diefes-Dux, J. S. Zawojewski, and M. A. Hjalmarson, "Using educational research 
in the design of evaluation tools for open-ended problems," International Journal of 
Engineering Education, vol. 26, no. 4, p. 807, 2010. 

[30] J. M. Stonehouse and G. J. Forrester, "Robustness of the t and U tests under combined 
assumption violations," Journal of Applied Statistics, vol. 25, no. 1, pp. 63-74, 1998. 

  



Appendix A. Modeling Problem Assignment (Version 1 – Submission 1 and 2) 
 

Modeling Problem v.1 – Wind Farm Development 
Problem: 
Zee’s Alternative Energies was founded in 2000 to increase the use of alternative energies across the 
United States. The company has been extremely successful with their development of solar energy 
farms. They are expanding and looking to develop a wind farm of horizontal-axis wind turbines. 
 
You have been hired by Zee’s Alternative Energies to develop a reusable computational model that 
will determine the best location to build a wind turbine farm based on historical wind data. The 
company has provided you with some descriptive statistics for a few locations that they are considering. 
They will send more data for potentially more locations later for further analysis. You must first 
provide a written solution (description of your model) and then later provide a coded solution 
(implementation of your model). Keep in mind your solution must be developed in a way that it will 
work for various locations (meaning your solution should make sense for locations with different values 
and it should be easy to change the data in your code).  
 
Submissions: 
Please note that the submission for this assignment is different than any of your homework 
assignments. (It is worth 5% of final grade, hence requires more work than usual.). A written model 
will be due for this problem in about one week and then your code for your solution will be due 
about one week later (refer to Canvas for exact dates). 
 

• (Part1 due now): Your model – for this submission you must complete the Engineering 
Process (steps 1 to 7a only) either typed or handwritten as described in the document. You 
must also follow these additional guidelines: Keep in mind assumptions will be very 
important for your user to understand the constraints and limitations for using your 
solution. For your solution steps (Step 5), you must explain why you went about solving 
the problem the way you did – meaning you must explain your rationale for designing the 
steps the way that you did (refer to the example provided in the bullet point below). In 
addition to your written model, you must provide the outputs of your model based on the 
provided data.  

 

o Example of some steps and justifications in italics (keep in mind some parts of these examples may 
be wrong – we can't give you all the answers! J): (EXAMPLE 1) The locations for which "the 
maximum of the daily maximum wind speeds are between the rated output speed and cut-out speed"  
are ranked towards the top. I want the wind turbine to run within the rated output power most of the 
time. I have decided that having the maximum at within this range will help ensure the wind speeds 
of the selected location are more likely within the rated power output. - . (EXAMPLE 2) The locations 
that have a mean average wind speed closest to the cut-out speed without going over the cut-out speed 
are ranked towards the top. I want the wind turbine to run within the rated output power as much as 
possible. I have decided the closer that the mean is to being within that range the better, but I have 
eliminated above the cut-out speed because I want to ensure the data is not above the specified range 
for the rated output power. 

 

• (Part2 due later): Your code (or computational model) – your code will be based on the 
model that you submitted above. It is natural to modify your model (and algorithm) 
throughout the coding process. You are required to comment your assumptions (for Step 
4) and all your justifications for each step throughout your code. In addition to your code, 
you must provide outputs for your code (as specified in Steps 5&6). 



Solution: 
Below are the 7 steps of the engineering process. They are also shown 
in Figure 1. These steps can be used to guide you through solving a 
problem. Sometimes you will cycle through these steps, as shown by 
the arrows in Figure 1. You are required to show your work for all 
of these steps, as specified under each step.  
 

1. Decipher Problem Statement 
The first step is to decipher the problem and identify the information 
(or variables) given and what information you need to find (or display 
to the user at the end of your program).  
 

Givens (inputs): 
The user has told you that they have provided you with historical wind data to use for your sample output 
(shown in Table 1). The data consists of some descriptive statistics about the daily maximum, daily average, 
and daily minimum wind speed for the entire year of 2018 for five locations. An example of what the raw 
data (before the descriptive statistics were found) looked like for one day is shown in Table 2. The relevant 
data that you decided to use will be hardcoded in your code (computational model), but be sure to code it 
in a way that it is easy to change the data later. Be sure to clearly state what data you plan on using and 
why. If you do not use any data, be sure to clearly state what data you are not using and why you are not 
using that data. 

Table 1. Wind Speed Data for Five Locations in 2018 (365 days: Jan. 1st – Dec. 31st) 

Locations  
mean mode standard 

deviation minimum maximum 

Buffalo, 
NY 

Daily Maximums 20.4 mph 16.0 mph 6.2 mph 9.0 mph 47.0 mph 
Daily Averages 7.8 mph 8.0 mph 3.9 mph 2.0 mph 25.0 mph 
Daily Minimums 3.5 mph 0.0 mph 3.2 mph 0.0 mph 13.0 mph 

Abilene, 
TX 

Daily Maximums 21.9 mph 23.0 mph 6.6 mph 7.0 mph 43.0 mph 
Daily Averages 10.9 mph 0.0 mph 8.1 mph 0.0 mph 31.0 mph 
Daily Minimums 3.8 mph 0.0 mph 3.7 mph 0.0 mph 17.0 mph 

Oklahoma 
City, OK 

Daily Maximums 18.2 mph 15.0 mph 7.0 mph 0.0 mph 46.0 mph 
Daily Averages 7.5 mph 4.0 mph 4.3 mph 0.0 mph 22.0 mph 
Daily Minimums 3.9 mph 0.0 mph 4.1 mph 0.0 mph 18.0 mph 

Wichita, 
KS 

Daily Maximums 22.9 mph 21.0 mph 7.2 mph 8.0 mph 47.0 mph 
Daily Averages 8.6 mph 10.0 mph 4.9 mph 1.0 mph 24.0 mph 
Daily Minimums 3.9 mph 0.0 mph 4.0 mph 0.0 mph 21.0 mph 

Rochester, 
MN 

Daily Maximums 18.9 mph 9.0 mph 8.7 mph 4.0 mph 44.0 mph 
Daily Averages 8.8 mph 7.0 mph 4.2 mph 2.0 mph 20.0 mph 
Daily Minimums 1.8 mph 0.0 mph 2.6 mph 0.0 mph 12.0 mph 

 

Table 2. Sample of Data Collected for January 1st, 2018 in Abilene, TX 
 Date Wind Speed (mph) 
Location Month Day Daily Maximum Daily Average Daily Minimum 
Abilene, TX January 1 15 4 4 

Figure 10. Engineering Process              



Finds (outputs): 
The output of your model must be a ranking of all the provided locations from best location for the company 
to purchase land in for a wind farm to worst location. All locations must be ranked and there cannot be any 
ties for any locations. You must ensure that a tie will not happen so make sure that you consider many 
points in your data. 
 

2. Draw a Diagram 
Sometimes the problem will include a diagram; be sure to still draw your own diagram/s. This step will 
help you better decipher the problem by visualizing it. This is the only step you are not required to do. If 
you draw anything out to help you visualize this problem be sure to include your sketches. 
 

3. Identify Relevant Theory 
After determining the information that you know and need to find and drawing a diagram, you should start 
to have an idea what theory and/or background information you need to solve the problem. In this step you 
will identify the information (e.g., formulas, data) that you will need to create a solution to the given 
problem. Some information has been provided for you. 

 

The horizontal-axis wind turbines used for this project will operate according the specifications as described 
and presented in Table 3 and Figure 2. Please note you are not given any formulas for power because you 
will not need to calculate the power produced to solve this problem. 
 

Table 3. Wind Turbine – Wind Speed vs. Power Output Explanation 
Wind Speed Range (m/s) Explanation 
Below 3.5 m/s (the cut-in 
speed) 

This wind speed will be insufficient to provide the necessary torque to rotate 
the turbine blades (meaning no power will be generated). 

Between 3.5 m/s (the cut-
in speed) and 14 m/s (the 
rated output speed) 

The wind turbine will produce more power with higher wind speeds, as 
shown in Figure 2. 

Between 14 m/s (the rated 
output speed) and 25 m/s 
(the cut-out speed) 

The wind turbine will produce the same amount of power for all these wind 
speeds because the limit of the electrical generator is reached. 

Above 25 m/s (the cut-out 
speed) 

The wind turbine’s braking system will be initiated to stop the system form 
moving to ensure the rotor is not damaged from excessive wind speeds 
(meaning no power will be generated). 

 

 
Figure 2. Wind Turbine Wind Speed vs. Power Output 

Image retrieved from: http://www.wind-power-program.com/turbine_characteristics.htm 



4. Assumptions 
In this step you will communicate some ideas that you have assumed to simplify the problem. These are 
things that you may try to address later to make your solution address a more realistic scenario. It is okay 
if you cannot envision how you would solve the problem without the assumption, but try to think about this 
for each assumption that you write.  
 

You must write at least 3 assumptions you will make in coming up with a solution for this problem. 
(EXAMPLE: The elevation of the location where the wind data was collected will be the same as the 
elevation of the potential land the company will purchase. – you cannot use this as one of your assumptions, 
but maybe this example will help you think of others.) 
 

5. Solution Steps 
This step requires solving for the finds using the givens and theory. For this step you will create equations 
to solve the problem, but you will not plug in any numbers yet. Be sure to base your equations on variables 
and NOT numeric values (unless they are a constant, such as pi). Be sure to also refer to your diagram and 
assumptions to help you through this step. Throughout this step you may find it useful to go back and draw 
another diagram or necessary to use another formula.  
 

Before figuring out a ranking of locations for the provided data sets, determine your model. Define any 
steps and/or calculations that you will do to determine the rankings. Once you have developed your model, 
try it with the provided data set in Step 6. Evaluate your output and determine if you want to return to this 
step to modify your model. Development of a good model involves iteration like this. Be sure to show all 
your work. 
 

6. Identify Results and Verify Accuracy 
Now that you have solve the problem without plugging in values, you will plug in values for this step to 
verify if your problem is accurate or not.  
 

You must include the ranking that your model will output in your first submission. You must show every 
step of your solution for the provided data to show how you get to this final ranking. You must also include 
the ranking that your code outputs as a comment in your code for your second submission.  

 
7. Algorithm and Code 

Your solution steps will lay out the process that you will need to code. In complex problems that require 
conditionals and/or repetition, it may be beneficial to draw out a flowchart, concept map, etc. or write out 
bullet point or numbered steps. Doing this step can ensure you understand the flow of your code before you 
start writing code in MATLAB.  
 

Based on your work in Step 5, you should have a well-formed model that can be implemented as a program. 
To ensure that you are prepared to start coding, develop an algorithm that clearly summarizes the steps you 
will take in your program. You can do this with a flowchart, numbered steps, or other methods you may 
have discussed in class. If your class has a designated algorithm format, you must use that for this step. 
Keep in mind that your model in Step 5 will look very similar to what you complete for the algorithm in 
this step. 
 

Only for the second submission will you code your solution. When you code your solution, keep these 
steps in mind and revisit any that may help you in further developing your solution. (Refer back to steps 5 
& 6, you must also provide outputs commented in your code.) 
 
 
 
 



 
Appendices B. Wind Farm Modeling Problem Rubric (Submission 4) 
 

Criteria Ratings Pts 

Reusability - Assumptions 
Does the solution have at least 3 clearly 
communicated assumptions? There 
should be significantly more, but 3 is the 
minimum. (Reminder: Assumptions are 
not facts. Assumptions are things 
assumed to solve the problem - 
information that needs to be addressed to 
move forward, but was not given.) 
(EXAMPLE: The elevation of the 
location where the wind data was 
collected will be the same as the elevation 
of the potential land the company will 
purchase. – you cannot use this as one of 
your assumptions, but maybe this 
example will help you think of others.) 

1.0 pts 
Full 
Marks 

0.5 pts 
partial 
include 3 "assumptions", but are 
facts not assumptions. OR include 
less than 3 assumptions, but have at 
least 1 valid assumption 

0.0 pts 
No 
Marks 

 

1.0 
pts 

Mathematical Model Complexity - Data 
Set 
Student took all of the available data into 
account. A significant amount of the data 
was used to help them evaluate the ranked 
locations for a wind farm. 

8.0 pts 
Full 
Marks 
Used at 
least 67% 
of the data 
for their 
analysis 
AND 
some dist. 
approach 
OR if used 
statistical 
measurem
ents, used 
at least 3. 

6.5 pts 
partial 
Used at least 33% 
of the data for their 
analysis AND 
some dist. 
approach OR if 
used statistical 
measurements 
(e.g., mean, mode, 
stdev), used at least 
2 with at least 2 
data sets (daily 
mins, maxs, avgs) 
or at least 1 with all 
3 data sets (daily 
mins, maxs, avgs). 

4.0 pts 
attempted 
did not 
use much 
of the data 

0.0 pts 
No 
Marks 

 

8.0 
pts 

Modifiability - Data Set (used data) 
Student communicated what data were 
using and why they were using this data. 

1.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

1.0 
pts 

Modifiability - Data Set (unused data) 
Student communicated what data were 
not using and why they were not using 
this data. 

1.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

1.0 
pts 

  
 
 

 



Criteria Ratings Pts 

Mathematical Model Complexity - 
Number and Types of Locations 
The model/code is not designed only for 
the given data set. It would work for 
different data. There are enough factors 
considered that ties would not easily 
happen. Also the code would work with a 
different data file that contained different 
locations and a different number of 
locations (assume same file name). 

3.0 pts 
Full Marks 
some 
limitations 
are to be 
expected 

1.5 pts 
Many Limitations/Errors 
Student clearly attempted to 
ensure their model/code would 
work for other data, but there 
are many limitations/errors. 

0.0 pts 
No 
Marks 

 

3.0 
pts 

Modifiability - Number and Types of 
Locations 
Student clearly communicates the need to 
ensure their model will work for other 
scenarios. (e.g., adding additional steps 
that may not matter for the provided data, 
but adding them to ensure a potential tie 
wouldn't happen given another scenario, 
when considering different data this 
added new steps to their model) 

2.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

2.0 
pts 

(CODE only) Data Correctly 
Implemented in Code 
Data set is uploaded into code correctly 
(used xlsread function with correct return 
variables). The data types are handled in 
code appropriately (e.g.,: working with 
cell arrays) 

3.0 pts 
Full 
Marks 

1.5 pts 
partial 
some errors throughout, but at least 
some correct aspects demonstrated 

0.0 pts 
No 
Marks 

 

3.0 
pts 

Mathematical Model Complexity - Data 
Type (Conversions/Units) 
Any necessary conversion calculations 
are done. Units are consistent. (For code, 
any conversions from provided data 
should be done in code and not in the 
file.) 

2.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

2.0 
pts 

Mathematical Model Complexity - 
Rated Output Speed/Power (from the 
Power Output Chart) 
Student shows a significant amount of 
consideration of the rated output 
speed/power on power output chart. 

4.0 pts 
Full 
Marks 

2.0 pts 
partial 
did not use this much, but at least 
acknowledged in their solution. 

0.0 pts 
No 
Marks 

 

4.0 
pts 

Modifiability - Rated Output 
Speed/Power 
Student communicated where and how 
the rated output speed/power was being 
used within (a) rationale/s. 

2.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

2.0 
pts 



Criteria Ratings Pts 

Mathematical Model Complexity - Cut-
in and/or Cut-out Speed (from the Power 
Output Chart) 
Student shows a significant amount of 
consideration of either the cut-in or cut-
out speed from the power output chart. 

4.0 pts 
Full 
Marks 

2.0 pts 
partial 
did not use this much, but at 
least acknowledged in their 
solution. 

0.0 pts 
No 
Marks 

 

4.0 
pts 

Modifiability - Cut-in/Cut-out Speed 
Student communicated where and how 
the cut-in speed and/or cut-out speed were 
being used within (a) rationale/s. 

2.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

2.0 
pts 

Shareability - Format/Communication 
Student formats their solution in a way 
that enables someone else to apply their 
solution and replicate the same results. 
The process is clearly communicated. 

9.0 pts 
Full 
Marks 

6.0 pts 
partial 
There is 1 
error in the 
code. 

3.0 pts 
attempted 
There are 2+ 
errors in the 
code. 

0.0 pts 
No 
Marks 

 

9.0 
pts 

(CODE only) Shareability - Outputs 
The program clearly communicate to the 
user what the results are (ranking of 
locations for wind farm). 

2.5 pts 
Full Marks 

0.0 pts 
No Marks 

 

2.5 
pts 

(CODE only) Sample Data 
Student generated sample data to test their 
solution. Excel file sample data provided. 

3.0 pts 
Full Marks 

0.0 pts 
No Marks 

 

3.0 
pts 

Shareability - Sample 
Calculations/Output 
The sample outputs for the provided data 
and generated data in student's code in 
comments (comment block - identify 
original and generated data sets). 

2.5 pts 
Full 
Marks 

1.5 pts 
sample output only for 
provided cities - not with 
additional sample data 

0.0 pts 
No 
Marks 

 

2.5 
pts 

Total Points: 50.0 
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