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Abstract
Background: Studies of PM2.5 health effects are influenced by the spatiotemporal coverage and
accuracy of exposure estimates. The use of satellite remote sensing data such as aerosol optical
depth (AOD) in PM2.5 exposure modeling has increased recently in the US and elsewhere in the
world. However, few studies have addressed this issue in southern California due to challenges with
reflective surfaces and complex terrain.
Methods:We examined the factors affecting the associations with satellite AOD using a

two-stage spatial statistical model. The first stage estimated the temporal PM2.5/AOD relationships
using a linear mixed effects model at 1 km resolution. The second stage accounted for spatial
variation using geographically weighted regression. Goodness of fit for the final model was
evaluated by comparing the daily PM2.5 concentrations generated by cross-validation (CV) with
observations. These methods were applied to a region of southern California spanning from Los
Angeles to San Diego.
Results:Mean predicted PM2.5 concentration for the study domain was 8.84 µg m−3. Linear

regression between CV predicted PM2.5 concentrations and observations had an R2 of 0.80 and
RMSE 2.25 µg m−3. The ratio of PM2.5 to PM10 proved an important variable in modifying the
AOD/PM2.5 relationship (β= 14.79, p≤ 0.001). Including this ratio improved model performance
significantly (a 0.10 increase in CV R2 and a 0.56 µg m−3 decrease in CV RMSE).
Discussion: Utilizing the high-resolution MAIAC AOD, fine-resolution PM2.5 concentrations

can be estimated where measurements are sparse. This study adds to the current literature using
remote sensing data to achieve better exposure data in the understudied region of Southern
California. Overall, we demonstrate the usefulness of MAIAC AOD and the importance of
considering coarser particles in dust prone areas.

1. Introduction

Fine particulate matter, defined as a mixture of solid
particles or liquid droplets with aerodynamic dia-
meters of 2.5 µm or less (or PM2.5), is of particu-
lar concern. Sources of both primary and second-
ary PM2.5 are closely tied to anthropogenic emissions
such as power generation, transportation, industrial
processes, and biogenic emissions such as wildland

fires and dust storms [1–4]. While overall PM2.5 pol-
lution and severe acute PM2.5 events have decreased
in some areas of the world, events have also increased
dramatically in other regions and could continue to
increase in the coming decades due to increasing tem-
peratures and increases in the production of second-
ary pollutants [5–8]. Both chronic and acute expos-
ures to PM2.5 are of concern given the ability of the
fine particulates to travel deep into the respiratory
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tract and enter the bloodstream [9–17]. Numerous
studies have established associations between PM2.5

andmortality, cardiorespiratory outcomes, and neur-
ological disorders [18–20]. However, these studies are
largely limited by the availability of high-resolution
exposures due to sparsity of ground-level PM2.5 mon-
itors especially in rural areas[21].

In recent years, the use of satellite aerosol remote
sensing data in exposure science has greatly increased
[22–25]. Not only is use of satellite data a cost-
effective extension to ground monitoring data, it
inherently carries with it the ability to achieve wide
spatial coverage. Multiple satellites carry instruments
that retrieve aerosol optical depth (AOD), which is
a measure of the extinction of light due to aerosol
absorption and scattering in a specific atmospheric
column. AOD retrievals from the Moderate Resol-
ution Imaging Spectroradiometer (MODIS) sensor
have been used in multiple studies to estimate partic-
ulate matter concentrations at a spatial resolution of
10 km [25–30]. The Multi-Angle Implementation of
Atmospheric Correction (MAIAC) algorithm based
on MODIS observations generates AOD at 1 km spa-
tial resolution [31].

Growing evidence has shown good performances
of statistical or machine learning models to estimate
PM2.5 concentrations using satellite AOD in the East-
ern US or the whole US [32–42]. Although intense
anthropogenic emissions, dust, wildfire, and meteor-
ological inversions often cause severe air pollution
in the western US, satellite-based high-performing
regional models have rarely been reported in the liter-
ature for several reasons. The retrieval quality of satel-
lite AODmay deteriorate over bright surfaces such as
deserts and paved urban centers in southern Califor-
nia. Different particle composition (e.g. larger frac-
tions of organic carbon and nitrates) and size distri-
bution (e.g. more significant presence of dust) in the
Western US would result in different optical prop-
erties of PM2.5 from those in the Eastern US [43,
44]. Different land cover and weather patterns may
also cause models training in the Eastern US to per-
form less well in the Western US [45]. Therefore, it is
important to apply advancedmethods to augment the
coverage of satellite AOD. In this study, we evaluate
how individual predictors in a satellite-driven PM2.5

model may behave differently in Southern Califor-
nia using a two stage spatial statistical model driven
by AOD, meteorology, and land use variables. Our
goal is to understand the specific contribution of these
commonly used model predictors in the Western US
in order to improve model performance.

2. Methods

2.1. Study domain
The study area encompasses several counties in
southern California and includes the metropolitan
areas of Los Angeles, Long Beach, Riverside, and San

Diego. Our modeling domain measures approxim-
ately 460 km × 245 km adjacent to the U.S.-Mexico
border, with a total population of more than 15 mil-
lion. It contains a mixture of terrain including coastal
lowlands, highlands, mountain valleys, and both low-
land and highland deserts. Additionally, several areas
in the region tend to have higher concentrations of
pollution, including a few of the country’s most pol-
luted cities [46]. Some of these areas can be found
in inland urban centers (such as Riverside) and con-
strained valleys (i.e. Imperial Valley). A map of the
study area with corresponding cities, EPA ground
monitoring stations, and underlying topography is
shown in figure 1.

2.2. Model input data
All 24-hour average PM2.5 and PM10 con-
centrations in 2012 were acquired from
the EPA Air Quality System Data Mart
(http://www.epa.gov/ttn/airs/aqsdatamart) [47]. A
variable representing the ratio between PM2.5 and
PM10 concentrations was calculated for use in the first
stage of the modeling process to account for presence
of dust and other coarse particles. To date, PM10 has
yet to be regularly included in satellite-driven PM2.5
exposuremodels. AlthoughMODIS AOD is generally
most sensitive to smaller particles generally best char-
acterized as PM2.5, coarse particles may also scatter
or absorb light. As shown in this analysis, the south-
ern California domain appears to have consistently
high PM10 levels that warrant its inclusion as a pre-
dictor in our model to enhance PM2.5 predictions
[48–51] Primary PM2.5 emissions (tons per year)
and the number of major point sources for the study
area were acquired from the EPA National Emissions
Inventory and the total emissions were summed by
grid cell. The aerosol optical depth (AOD) data at
1 km spatial resolutionwere extracted from theNASA
MODIS Multi-Angle Implementation of Atmo-
spheric Correction (MAIAC, MCD19A2) product
(https://search.earthdata.nasa.gov/) [31, 52, 53]. The
meteorological data such as air temperature, wind
speed, and relative humidity were extracted from
the North American Land Data Assimilation System
Phase 2 (NLDAS-2) at 1/8-degree grid (~ 12 km) res-
olution [54]. Planetary boundary layer height data
were derived from the analysis fields of the North
American Regional Reanalysis (NARR) at ~ 32 km
spatial resolution and 3-hour temporal frequency.
NARR fields were spatially interpolated to the 1 km
grid and then temporally disaggregated to theNLDAS
hourly frequency [55].

Elevation was derived from the 3-arc-second
(90-meter) Shuttle Radar Topography Mission
(SRTM) dataset distributed byUSGS Earth Resources
Observation and Science (EROS) Data Center
(https://www.usgs.gov/centers/eros). Additional
land cover variables, including forest cover and
impervious surfaces, were retrieved from the
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Figure 1. Study Domain and EPA Monitors. Study domain and underlying terrain for the area included in the current analysis.
Location of EPA ground monitors are plotted, as well as major road networks.

2011 National Land Cover Database (NLCD,
https://catalog.data.gov/dataset/usgs-2011-national-
landcover). The spatial resolution of the NLCD cov-
erage is 30 × 30 m2. Coverage maps were gener-
ated for forest pixels (pixels assigned 1 for forest
and 0 for non-forest) and for percent impervious-
ness across the study area. Additional distance vari-
ables were included to account for potential effect
modifiers unique to the region, including distance to
the coastline and distance to Mexicali, Mexico. Road
length data were obtained from ESRI StreetMap USA
(Environmental Systems Research Institute, Inc. Red-
land, CA). The sum of the road segment lengths was
determined in ArcGIS for each modeling grid cell.
All model input data were mapped to the 1 km mod-
eling grid using a spatial averaging procedure. Each
PM2.5 monitoring site was matched to the nearest
cell AOD, temperature, relative humidity, and wind
speed. Land use variables were either averaged (forest
cover and elevation) or summed (emissions, roads,
point sources).

2.3. Modeling structure and cross validation
We calibrated the relationship between PM2.5 and
AOD using a two-stage modeling framework, which
allowed the relationship to vary in both space and
time [33, 56, 57]. In the first stage, a linear mixed
effects model (LME) was utilized with daily random
slopes and intercepts for AOD, relative humidity, and
wind speed. Since each of these variables are time
varying, their inclusion as random effects aids in
accounting for any temporal variation in the overall
relationship between AOD and PM2.5. In addition to
the random effects terms, the model included several

fixed effects. Fixed effects in the model help to estim-
ate the mean values and the included random effects
help to account for daily variability in the relation-
ship between dependent and independent variables.
We considered multiple land use and meteorological
predictors during the model selection process; how-
ever, we chose to eliminate some of the predictors
from the final model due to lack of significance. The
first stage of the model can be expressed by the fol-
lowing:

PM2.5,sd = (b0+ b0,d)+ (b1+ b1,d)AODsd

+(b2+ b2,d)RelHumiditysd

+(b3+ b3,d)WindSpeedsd + b4PMRatiosd

+ b5Tempsd + b7%Cultivateds + b8Forests

+ εst (b0,db1,db2,db3,d)∼ N [(0,0,0) , �]
(1)

where PM2.5,sd represents ground-level PM2.5 con-
centrations in µg m−3 at each site (s) for each day
(d); b0 and b0,d are respectively the fixed and ran-
dom intercepts for the model; AODsd denotes the
retrieved MAIAC AOD values at site s and day d
with fixed and random day-specific slopes (b1 and
b1,d); RelHumiditysd represents the measured relat-
ive humidity at site s and day d with fixed and ran-
dom day-specific slopes (b2 and b2,d); WindSpeedsd
is the average wind speed at site s and day d with
fixed and random day-specific slopes (b3 and b3,d);
PMRatiosd represents the ratio of PM2.5 to PM10 val-
ues; Tempsd is the average daily temperature at each
site;%Cultivateds is the percentage cultivated to non-
cultivated land at each site; Forests is an indicator vari-
able denoting pixel forest cover; b0,d, b1,d, b2,d, b3,d are
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multi-variate normally distributed and Ψ represents
the variance-covariancematrix for all random effects.
The specific fixed effects for AOD, relative humid-
ity, and wind speed aid in accounting for the aver-
age effects of these variables on the PM2.5 concentra-
tions and the random effects are included to account
for the daily variability between both the depend-
ent and independent variables. Other potential con-
founders were assessed (boundary layer height, emis-
sion point sources, heat index, etc.). However, these
did not influence the results and were omitted in the
final model.

The purpose of the first stage of the model is to
estimate the temporal PM2.5/AOD relationships with
included effects of added covariates. However, we
expect that the relationship will vary in space as well.
To account for this potential additional variation, we
added a second stage to themodel utilizing geograph-
ically weighted regression (GWR) methods to cre-
ate a continuous surface of estimates for paramet-
ers at each location. This incorporated using adapt-
ive bandwidth selection methods in order to minim-
ize the Akaike Information Criterion (AIC) value and
aid inmodel selection. TheGWRmodel structure can
be expressed as:

PM2.5.residualssd = β0,s +β1,sCoast.distance

+β2,sMexicali.distance

+β3,sElev+β4,sRoads+ εs (2)

where PM2.5.residuals represents the residual values
from stage one of the model at site s for each day
d; Coast.distance is the Euclidean distance calculated
from each site s to the coast;, Mexicali.distance repres-
ents the distance from each site to Mexicali, Mexico;
Elev is the elevation at each site s inmeters;; andRoads
is the sum of primary roads and highways within each
grid cell; β0,s, refers to the location-specific intercept
with β1,s, β2,s, β3,s, β4,s representing location-specific
slopes for each of the parameters. The results from the
second stage were then used as a calibration measure
for the measurements obtained from the first stage of
the model.

In order to assess the goodness of fit for the final
model, we compared the outcome of the fitted model
with the observed values using cross-validated coef-
ficients of determination (CV R2) and root mean
squared error (RMSE). A 10-fold cross-validation of
the model was done by first randomly splitting the
dataset into 10 equal subsets. Themodel was then run
10 times—each time one subset was kept in reserve as
a test sample while the other 9 subsets were used to
train the model. Since the calculation of the PMRa-
tio variable included interpolation of PM10 observa-
tions, we chose to recalculate the PMRatio parameter
for each of the 10 runs to avoid including informa-
tion from the left-out subset. We then estimated pre-
dicted values for the remaining subset. Finally, the

agreement between the predicted and observed val-
ues was then tested using theR2 and RMSE values and
a comparison was made between the cross-validated
model and the observations in order to assess agree-
ment and/or potential over-fitting. Additionally, we
conducted sensitivity analyses by running the full 2-
stage model leaving out key parameters (AOD and
PMRatio). We conducted all modeling and analyses
in R 3.6.0 (2019) and ESRI ArcGIS® 10.6 (2018).

3. Results

3.1. Descriptive statistics
The annual mean PM2.5 concentration for all monit-
oring sites was 10.7 µgm−3, with maximum values as
high as 78.8 µg m−3 present during the study period.
The coverage for AOD values was 62% and overall
mean AOD value was 0.08 with a maximum value of
2.96 during the study period. Maximum wind speeds
reached 18.30 m s−1 with mean annual wind speeds
measured at 4.78 m s−1. Additional parameters and
corresponding mean, standard deviation, and range
of the statistics are included in table 1.

3.2. Model fitting
The model was fitted and the fixed effects estim-
ated from the stage 1 linear mixed effects model are
provided in table 2. The contributions of the inter-
cept and parameters in the model are all significant
at α = 0.05 level. The positive β values are indic-
ative of a positive relationship between AOD, PM
ratios, temperature, relative humidity, and cultiv-
ated land cover. Negative β values shown for wind
speed and forest coverage suggest a negative relation-
ship with PM2.5 concentrations. β values represent
the change in the variable (keeping all others con-
stant) that would increase the PM2.5 concentration by
1 µg m−3.

3.3. Cross validation results
The first stage of themodel has aCVR2 of 0.77 (model
fitting R2 = 0.78) and CV RMSE of 2.41 µg m−3

(original model RMSE = 2.38 µg m−3). Compared
with the original model, the results from the CV sug-
gest slight model over-fitting as shown by the changes
in statistical measures of R2 and RMSE. The second
stage of the model (or full model) incorporates the
first stage and GWR methods and resulted in a CV
R2 increase to 0.80 (original model R2 = 0.85) and a
change in CV RMSE to 2.25 µg m−3 (original model
RMSE = 1.96). As shown in these validation results,
the second stage of the model improved the overall
prediction performance with a CV R2 increase of 0.03
from the first stage to the second stage of the model
and a 0.16 µg m−3 decreased CV RMSE between
the two stages. This improvement in accuracy could
indicate the ability of theGWRmethods for capturing
more of the spatial variation in the data than is pos-
sible with the LME stage alone. These results suggest
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Table 1. Descriptive Statistics of Considered Parameters.

Variable Mean Std. Deviation Minimum Maximum

PM2.5 (µg m
−3) 10.77 6.30 0.00 78.78

Aerosol Optical Depth 0.08 0.07 0.01 2.96
Boundary Layer Height (km) 1.68 1.15 0.06 5.83
Temperature (F) 78.67 16.63 20.7 1.19 x102

Relative Humidity (%) 27.28 21.38 2.70 99.20
Windspeed (m/s) 4.78 1.84 0.60 18.30
# of Point Sources 0.04 0.34 0.00 36.00
Average Emissions (tons per yr.) 44.47 1.84x102 0.00 4.12x105

Primary Road Length (km) 0.05 0.46 0.00 14.13
Elevation (m) 4.17x102 4.90x102 −71.4 3.35x103

Impervious Land Cover (%) 5.82 15.4 0.00 99.98
Distance to Coast (km) 1.05x102 84.62 0.00 3.22 x102

Distance to Mexicali (km) 2.01x102 98.35 0.00 4.25 x102

Table 2. First Stage Model Coefficients.

Variable β p-value

Intercept −7.03 < 0.00
AOD 9.92 <0.00
PM Ratio 14.80 <0.00
Temperature 0.14 <0.00
Relative Humidity 0.01 0.05
Wind Speed −0.18 <0.00
Forest Cover −2.92 < 0.00
Cultivated Land Cover 3.73 < 0.00

that adding a second stage to account for spatial as
well as temporal variability can substantially improve
model accuracy.

3.4. PM2.5 estimations
Annual mean PM2.5 at ground stations alone and
across the entire domain based on inverse distance
weighting can be seen in figure 2. This comparison
shows an increased coverage of exposure with this
simple interpolation technique; however, thismethod
lacks the spatial detail necessary to be confident in the
estimated exposures located at greater distances from
monitoring stations. For example, with the simple
interpolation method, major differences in PM2.5

concentrations can be found, such as those near the
Mexican border. The annual mean PM2.5 estimated
frommodel fitting for the 1 km× 1 km grid is shown
in figure 3, with figure 3(A) showing results of the
analysis including the PMRatio parameter and fig-
ure 3(B) showing results without including PMRatio.
As seen in figure 3(A), annual averaged PM2.5 tends
to result in high concentrations seen in population
centers, along some major highways, and in valleys
and canyons. Estimated concentrations align closely
with the topography of the surrounding areas (see fig-
ure 1). In the Los Angeles area, lower concentrations
of PM2.5 are seen on the coast, with increasing con-
centrations to inland population centers (i.e. River-
side). In San Diego, the same trends occur, but with
higher coastal PM2.5 than Los Angeles. The Imper-
ial Valley area is subject to higher concentrations due

to transport from Mexico, major highways, high air-
borne dust, and surrounding topography.

3.5. Importance of PM2.5/PM10 relationship in
Southern California
During the process of model fitting, it was found
that the presence of dust (or larger sizes of PM)
in the troposphere is an integral part of the AOD-
PM2.5 relationship in southern California (β= 14.79,
p ≤ 0.00). We accounted for this by adding a model
parameter representing the observed PM2.5 divided
by the monthly mean PM10 for each site. The pattern
of PM2.5 to PM10 ratio is shown by the location of EPA
monitoring stations in Supplemental figure 1. There
was a strong positive correlation between PMRatio
and observed PM2.5 (r = 0.7) and a weak negative
association with observed PM10 (r = −0.4, see Sup-
plemental table 1 for complete correlation results).
The importance of this parameter was also tested by
running the model with and without the PM2.5 to
PM10 ratio. In figure 3(A), the ratio of PM2.5 to PM10

was not included in themodel, resulting in full model
CV R2 was 0.70 with a CV RMSE of 2.81 µg m−3.
However, with the inclusion of this ratio parameter
in figure 3(B), accounting for larger particles signific-
antly improved the model performance, resulting in
the CV R2 = 0.80 and a RMSE = 2.25. Detailed res-
ults comparing the full model with models without
the PM2.5 to PM10 ratio and without AOD can be
seen in Supplemental table 1, and temporal patterns
of monthly AOD and the PM2.5 to PM10 ratio are
shown in Supplemental figure 2. Notably, the spatial
patterns of the PMRatio variable can change greatly
from monitor to monitor—even between monitors
relatively close in proximity to one another. This is
likely due to the shorter airborne residence time of
larger particles, which vary greatly depending on cur-
rent conditions.

Seasonality of PM2.5

Figures 4(A)–(D) illustrates the seasonal patterns
of PM2.5 concentrations in the study domain. The
mean predicted concentrations varied by quarter
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Figure 2. Interpolation of EPA Monitor Mean Annual PM2.5 Concentrations. Using ArcGIS, the top plot represents interpolation
at each EPA ground monitor using nearest neighbor averaging. The bottom plot shows the use of interpolation across the domain
surface using inverse distance weighting at each EPA ground monitor.

with a mean of 4.24 µg m−3 in the first quarter,
6.77 µg m−3 in the second, 7.37 µg m−3 in the third,
and 7.75 µg m−3 in the final quarter. Precipitation
during California’s rainy season (~ October-April)
can contribute to low PM2.5 concentrations, as
seen in the first and second quarter mean res-
ults. These means also follow the general pat-
terns of PM2.5 concentrations and temperature.
Maximum concentrations were found in the final
quarter (max = 22.77 µg m−3) and we see a
decrease in first and second quarterly overall PM2.5

compared to later levels. However, concentra-
tions surrounding populated areas may still be
pronounced.

4. Discussion

In this study, we sought to identify parameters
important for modeling PM2.5 levels in the South-
ern California region. Given the potential differences
between regions, it is important to characterize the
factors that contribute to PM2.5 concentrations in
multiple regions. Furthermore, understanding these
region-specific associations is especially important in

the Western US, where several cities experience some
of the worst air quality in the country. Thus, we opted
for a two-stage statistical model that allowed us to
evaluate the relative importance of model covariates.
Based on previous literature, several factors may con-
tribute to overall PM2.5 model performance [1, 21,
23, 24, 27, 28, 33, 58–61]. This is especially true if
these parameters differ by region. For instance, low
wind speeds have been shown to contribute to PM2.5

concentrations [62–64]. Wind speeds can also vary
greatly between regions; with areas like California
reaching lowest wind speeds in the fall and winter
months [65, 66]. Conversely, regions such as the
southeastern US experience lower mean wind speeds
in the summer—which could affect the seasonality of
PM2.5 [66]. In terms of relative humidity, a similar
pattern emerges with annual relative humidity overall
decreasing annually for the western US while annual
increases are evident in southeastern states [65]. Tem-
perature is also spatially dependent. This is evident
in a general increase in temperatures across the west,
southwest, south, and northeast regions of the US,
with states in the north central region exhibiting tem-
perature decreases [65].
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Figure 3. Predicted Annual Average PM2.5 Concentrations Utilizing PM2.5/PM10 Ratios. Predicted annual average PM2.5

concentrations using two-stage linear mixed effects and geographically weighted regression models at a resolution of
1 km× 1 km. Figure 3(A) depicts the model without inclusion of the PMRatio parameter. Figure 3(B) represents the full model
incorporating the PMRatio variable.

In light of these inherent meteorological differ-
ences and in an effort to identify which paramet-
ers are most important for southern California, we
adopt a simple two-stage model approach. Of all pos-
sible parameters, we chose to assess AOD, temper-
ature, wind speed, relative humidity, boundary layer
height, point sources, annual emissions, road length,
impervious land cover and distances to the coast and
Mexicali, Mexico. AOD is an optical measure of the

abundance of fine particles in the air, and significant
positive associations have been shown between PM2.5

and AOD. However, AOD coverage can vary between
regions and could contribute to differences found in
β-values and model performance. Secondly, temper-
ature has also been shown to have a positive rela-
tionship with PM concentrations in the troposphere.
Our results follow this trend, showing a significant
positive association with temperature. Associations

7
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Figure 4.. Quarterly Predicted Average PM2.5. Maps depicting the 4 calendar quarters in southern California and subsequent
mean PM2.5 concentrations. (A) January, February, March 2012, (B) April, May June 2012, (C) July, August, September 2012, (D)
October, November, December 2012. Lower concentrations tend to be seen in the cooler months with increasing means
throughout the year.

between PM2.5 and other covariates are also evid-
ent in our model results, including relative humid-
ity, wind speed, forest cover, and cultivated land. The
small positive beta value found for relative humidity
suggests a slight positive relationship with PM con-
centrations and humidity—which can greatly differ
from one location to another. An additional posit-
ive association was found between cultivated land
and PM2.5. Since cultivated land is defined as land in
use for farming (including land that is being actively
tilled), this parameter may intuitively account for a
portion of the PM concentrations in the air. Negat-
ive associations were shown for both wind speed and
forest cover, as one might expect. A negative associ-
ation for wind speed may be explained by a dilut-
ing effect on PM concentrations—especially at higher
wind speeds. These higher wind speeds can cause
rapid dispersion of particles and decrease concentra-
tions that may otherwise be found at specific loca-
tions. Forest cover can also exhibit a negative rela-
tionship with PM concentration—which may be due
to the settling and/or absorption of PM due to pres-
ence of trees. The boundary layer height (BLH), often
a strong predictor in PM2.5 models, was not included
in our final model. Generally, higher BLH is associ-
ated with lower PM2.5 concentrations as a result of
greater vertical mixing. However, if the BLH variable
has little variation or an irregular distribution, this
can contribute to less importance seen in the model
diagnostics. This is, in fact, the case in our modeling
structure (as shown in Supplemental figure 3), where
BLH has a bimodal distribution. This irregular distri-
bution is likely due to terrain variations in our study

domain ranging fromcoastal regions to inlandmoun-
tains.

While multiple national-level studies exist, it
is clear that many of these associations could be
region-specific. For example, Lee et al (2016), a
satellite/ground-based approach in the southeastern
US resulted in relatively highR2 values, withmeanCV
R2 estimates > 0.7. Similar results were found both
with and without a PM10 parameter [36]. However,
in other publications, similar models in the west-
ern US and California show lower performance. For
instance, Franklin et al (2017) showed that a spatio-
temporal model including similar parameters used
in our study resulted in a CV R2 of 0.51 without
accounting for PM10 [67]. While there could be mul-
tiple explanations for the differing model structures
for each region, perhaps the most significant predict-
ive variable in ourmodel was the presence of airborne
dust. As seen in other parameters, dust seems to be a
more important factor in the Southwest US than in
other areas [68]. This can be seen when models are
run both with and without accounting for airborne
dust, with significantly higher R2 values found in
when including a dust component. Thus, we sought
to create a variable that would help to control for
the effects of airborne dust by calculating the ratio of
PM2.5 to PM10 particles. In doing so, we utilized the
PM2.5/PM10 ratio as a proxy for dust, which greatly
enhanced our model results. Another approach could
include applying the current model structure to other
regions to serve as an additional source of model val-
idation. However, since our intention was an explor-
atory investigation concerning the characteristics of

8
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the US west coast, this approach was not applicable.
As mentioned, the fall months in this area experi-
enced the maximum PM2.5 concentrations. This is
likely due to a phenomenon that occurs in the late
fall in the southern California region called the Santa
Anawinds. SantaAnawinds are foehnwinds respons-
ible for some of the largest andmost devastating wild-
fires in California history [69]. These winds originate
from high-pressure inland systems that flow outward
to the west coast. Typically, the fuel sources during
these months are extremely dry and these prevailing
winds bring higher temperatures and lower humid-
ity to the surrounding atmosphere. Thus, not only
do the Santa Ana winds create better conditions for
fire ignition, their high speeds also provide a driv-
ing force for dust generation and entrainment.Hence,
the occurrence of the Santa Ana’s may be associated
with increased PM concentrations in the fall months
due to prolonged fire seasons driven by these seasonal
winds [69–73]. While our model is not able to cap-
ture smoke-specific PM2.5, we were able to show an
average increase in PM2.5/PM10 ratio during the fall
months.Wildfire smoke is generally composed of fine
mode particles and higher PM2.5/PM10 ratios are
indicative of higher amounts of smaller airborne par-
ticulates (see supplemental figure 2) (available online
at stacks.iop.org/ERL/15/094004/mmedia) [74, 75].
Thus, while particle speciation was beyond the scope
of this study, higher PM2.5/PM10 ratios during the
fall months may suggest higher wildfire activity.

Our study adds significantly to the current body
of research on the subject of using remote sensing data
to achieve better exposure data—especially in regions
with higher dust concentrations. To our knowledge,
this study is the first to utilize high-resolutionMAIAC
data to estimate PM2.5 concentrations in southern
California—giving much needed information on a
highly populated area with potential health risks due
to elevated pollutant exposures. As reported above, a
key finding of this study is the importance of account-
ing for the contribution of coarse particles to AOD.
Without a specific finemode fraction parameter from
MAIAC, we included the ratio between PM2.5 and
PM10 in the first stage of the model. Our results add
meaningful insight into the way to improve model
performance when study domains include areas with
high air-dust content. Due to the large number of
ground monitors in the southern California region,
we were able to develop an exposure model with con-
sistent model performance. While multiple years of
data are needed to better represent transient PM2.5
emissions sources such as wildfires, this was not the
focus of the current study. However, our finding that
the influence of PM10 to AOD needs to be con-
sidered suggests that coarse particles can significantly
affect the overall aerosol light extinction in Califor-
nia, thereforemodify the association between satellite
AOD and ground level PM2.5 concentrations. Thus,
with PMRatio as a model predictor, we believe our

model is generalizable to other dust-prone areas in
California.We acknowledge that there are areas where
AOD was missing due to cloud cover or other sur-
face albedo issues (AOD coverage = 62%). While
techniques for AOD gap-filling have been used else-
where, it was not the main goal of this study. Thus,
simpler gap-filling methods were used. Our intent
was to provide MAIAC AOD as an enhancement to
ground PM2.5 estimations over previous, lower resol-
ution products in the area of southern California.

5. Conclusion

Using southern California as an example, this
paper investigated the feasibility of using the high-
resolution MAIAC AOD to estimate ground-level
PM2.5 concentrations in the Western US. While the
two-stage model structure has been used in many
applications, it revealed the importance of consider-
ing larger particles in airborne dust-prone areas and
may be an underlying cause for previous poor model
performances. Further research may be needed to
explore other possible indicators of the coarse particle
contribution to AOD. Additional steps might include
more sophisticated gap-filling techniques and invest-
igations into additional land use, population, or met-
eorological parameters that may significantly affect
the PM2.5-AOD relationship in southern California.
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