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Abstract

We investigate finitely generated groups of cohomological dimension 2 and certain actions on

locally finite trees. Our setting includes examples of Daniel Wise, which possess two canonical

splittings. We show that under suitable hypotheses such a group cannot admit more than two

finite-index splittings, up to deformation.
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Chapter 1

Introduction

We are interested in groups acting on locally finite trees. By Bass-Serre theory this corresponds

to groups that split as a finite index graph of groups. When working with splittings there is

already a notion of similarity given by elementary deformations. We say two graphs of groups lie

in the same deformation space if they are related by a sequence of moves that transform edges

of the form A ˚C C to a vertex A or the reverse.

In order to have access to results from homological algebra and make the problem tractable we

restrict ourselves to cocompact actions where the stabilizers are groups of type FP. Property FP

along with FPn, FP8, and F are all related finiteness properties. We will only need Property FP;

for examples take groups G with cocompact finite dimensional KpG; 1q spaces. Our setting then

is finite index graphs of groups where the vertex and edge groups are FP and the quotient graph

is finite. (Note, finite index implies that if any stabilizer is FP then they all are)

One basic question to ask of a group is its cohomological dimension. Trivial groups have dimension

zero, non-abelian free groups have dimension one, and so on. Even at dimension two there are

interesting examples that fit within our setup. Daniel Wise invented a kind of 2-complex called

a VH-complex and used them to construct groups with no finite quotients [Wis96]. Burger and

Mozes produced infinite, finitely presented, torsion-free simple groups in the same class [BM00].

Our goal is to fix a group G of dimension two (as this is the first interesting case after free

groups) and give a uniqueness result on the number of splittings. Already, Wise has shown that

G comes with two splittings but there is no comment on uniqueness and indeed the torus shows

that Z ˆ Z has an infinite number of splittings all lying in different deformation spaces. We will
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show that for certain actions there are exactly two splittings up to deformation.

The proof proceeds by encoding two tree actions into a single square complex called Guirardel’s

core. Then, using a supposed third action we are able to construct a three dimensional complex

that can be built up from lower dimensional complexes in such a way that results of Bieri on

cohomological dimension apply. The result is an extended core with dimension three that G acts

on; this contradicts the original assumption that G only had dimension two.

By analogy with VH-complexes that come with a vertical and horizontal splitting thanks to the

work of Wise, our extended core will satisfy the VHD property (see 6.6.1, here “D” stands for

“Depth”) that we introduce below. Not all VHD complexes will have a third splitting but we show

our extended core does. Lastly, it’s possible to have a VHD-complex where the splittings are in

a sense degenerate for our purposes; essentially the splitting process can be iterated until only

graphs remain and we require at least one graph of positive rank. We call these primitive 6.6.2

VHD-complexes and account for them.

The main result is the following.

Theorem 1.0.1 (Main Theorem). If G is finitely generated and has dimension 2 then either G is

the fundamental group of a primitive VHD complex or there are at most two pairwise transverse

deformation spaces of finite type G-trees.

We conjecture that primitive VHD complexes all have a fundamental group of ZˆZ so the main

conjecture is the following.

Conjecture 1.0.2 (Main Conjecture). If G is finitely generated, dimension 2, and not Z ˆ Z,

then there are at most two pairwise transverse deformation spaces of finite type G-trees.
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Chapter 2

Preliminaries

This section collects general results and fixes terminology.

2.1 Actions on Trees

In this section we introduce G-trees, their equivalence with graphs of groups, and related results.

A graph Γ is a set of vertices V pΓq and edges EpΓq together with a fixed point free involution

on EpΓq denoted by e ÞÑ e and a map B0 : EpΓq Ñ V pΓq. Define B1 via B1peq :“ B0peq. An

edge e for which B0e “ B1e is called a loop. A finite sequence of edges e1; : : : ; en such that

B1pekq “ B0pek`1q for 1 ď k ď n ´ 1 is called a path. If additionally, ei`1 ‰ e i then it is a path

without reversals. A circuit is a path without reversals where the starting and ending vertex are

the same. A tree is a connected graph with no circuits.

A G-tree is an action of a group G on a simplicial tree without inversions. An element g P G is

elliptic if g fixes a vertex and hyperbolic otherwise. If g P G is hyperbolic then there is a line

called the axis that it acts on by translation. A subgroup H ď G is elliptic if there is a vertex

that is fixed by all elements of H. We denote the set of all elliptic subgroups by EpGq.

A graph of groups consists of a connected graph Γ, groups Gv indexed by V pΓq, groups indexed

by EpΓq satisfying Ge “ Ge , and injective homomorphisms ffie : Ge Ñ GB0peq indexed by edges.

Given a vertex v P V pΓq there is a notion of a fundamental group ı1pΓ; vq as defined in [Ser80].

A graph of spaces consists of a connected graph Γ, vertex spaces Xv indexed by V pΓq, edge

spaces Xe indexed by EpΓq that satisfy Xe “ Xe , and ı1-injective maps fe : Xe Ñ XB0peq indexed
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by edges. The total space of a graph of spaces is the quotient

¨

˝

ğ

vPV pΓq

Xv \
ğ

ePEpΓq

Xe ˆ r0; 1s

˛

‚

O

„

where „ is given by identifying the following:

Xe ˆ r0; 1s Ñ Xe ˆ r0; 1s by px; tq ÞÑ px; 1 ´ tq

Xe ˆ 0 Ñ XB0peq by px; 0q ÞÑ fepxq:

These definitions work well together in the following sense. Given a graph of groups with fun-

damental group G it is possible to construct a graph of spaces where the fundamental group of

the total space is also G. We also recover two special cases of interest. A graph of groups with

exactly two vertices and one edge corresponds to an amalgamated free product A ˚C B; should

the single edge be a loop then it corresponds to an HNN extension A˚C. These special cases can

be seen as applications of Van Kampen’s theorem.

Definition 2.1.1 (Minimal Action). We say a G-tree is minimal if there is no proper invariant

subtree.

Under the correspondence between G-trees and graphs of groups, minimality is equivalent to

requiring that every proper subgraph corresponds to a proper subgroup of G.

From [BF91] we have the following classification of G-trees. Note, any tree action can be made

to act without inversions by subdividing once.

Theorem 2.1.2 (G-tree Classification). Let G be a finitely generated group and T a minimal

G-tree acting without inversions. Then T satisfies exactly one of the following:

1. Elliptic: T is a point or equivalently every element of G is elliptic.

2. Dihedral: T is a line and there exists an epimorphism from G to the infinite dihedral group.
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3. Parabolic: T has one end fixed by G. Additionally, there is an epimorphism from G to Z.

4. Hyperbolic (or irreducible): There exists two axes in T with compact intersection. When

this happens, G contains a non-abelian free group.

Given a G-tree, or equivalently a graph of groups, a collapse move produces a new graph where

an edge corresponding to A ˚C C is collapsed to a vertex A. The reverse is called an expansion

move. An elementary deformation is a finite sequence of such moves. We say a G-tree is reduced

when one can no longer perform any collapse moves. For details and examples see [For02].

Definition 2.1.3 (Deformation Space). We say two G-trees T1 and T2 are in the same defor-

mation space if there is an elementary deformation from T1 to T2.

Lemma 2.1.4. If X is a G-tree that is reduced then it is minimal

Proof. One can show that if e is an edge outside of a G-invariant subtree, then it admits an

elementary collapse move. For details see [For02].

The following is a corollary of the main theorem from [For02] that relates elliptic subgroups and

deformations.

Theorem 2.1.5 (Forester). Let G be a group and let X and Y be cocompact G–trees. The

following conditions are equivalent.

1. X and Y are related by an elementary deformation.

2. X and Y have the same elliptic subgroups.

If all vertex stabilizers are finitely generated then we may also include:

3. X and Y have the same elliptic elements.

Example 2.1.6. An important example: The Torus has infinitely many graph of spaces decom-

positions each lying in a different deformation space. To see this, note that simple closed curves

on the torus correspond to graph of spaces decompositions with the curve as the edge space. Up
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to homotopy, such curves correspond to extended rationals e.g. r/s, 1/0, and 0/1 each telling

you how many times a curve wraps around both directions of the torus. The wrapping numbers

correspond to coordinates of Z ˆ Z, so r/s corresponds to the cyclic subgroup xpr; sqy ď Z ˆ Z.

With this perspective, Z ˆ Z can be viewed as an HNN extension (i.e. a graph of groups with

exactly one edge and one vertex) where the vertex and edge groups are xpr; sqy. The elliptic

subgroups are exactly the vertex group and its subgroups therefore by 2.1.5 each splitting is in a

different deformation space.

If one G-tree contains the elliptic subgroups of another it is possible to produce a G-map between

the two trees. This map in turn can be analyzed using Stallings folds as in 2.2.7.

Proposition 2.1.7 (Equivariant Map equivalent to elliptic subgroup containment). Suppose X

and Y are simplicial G-trees. Then the following are equivalent:

1. EpXq Ď EpY q

2. There exists a simplicial G-map from a subdivision of X to Y .

Proof. For (1)ñ(2) we will construct a G-map. As in 6.3.1 we start by defining a map on

representatives of vertex orbits and extending equivariantly. Pick a vertex x P X, by (1) Gx is

also elliptic in Y and so fixes at least one vertex, say y . Define f pxq “ y and f pgxq “ gy for all

g P G. Next, we check that the resulting map is well-defined.

Indeed, if gv “ hv then g´1h “ v which means g´1h P Gv . Then by the definition of f the

element g´1h fixes f pvq P Y . Hence,

f pgvq “ gf pvq “ gpg´1hqf pvq “ hf pvq “ f phvq:

Once defined on vertices, define on edges by sending the edge vw to the unique path in Y from

f pvq to f pwq. To make this definition work on edges it may be necessary to subdivide the edge

vw P X. If the endpoints of an edge go to the same vertex, send the entire edge to that vertex.
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For (2)ñ(1), suppose f : X Ñ Y was a simplicial G-map. Consider a vertex group of X, say Gx .

Let g P Gx , then g ¨ f pxq “ f pg ¨ xq “ f pxq a vertex in Y since the map is simplicial. Hence, Gx

also fixes the vertex f pxq P Y . Hence, every vertex group for X fixes a vertex of Y . Therefore,

every elliptic subgroup for X is also elliptic for Y .

Bass-Serre Theory is responsible for the correspondence between G-trees and graph of groups

decompositions of G. The original construction creates a tree from cosets but the following

definition is inspired by the topological reformulation given by Scott and Wall in [SW79].

Definition 2.1.8 (Bass-Serre Map). The universal cover of a graph of spaces is a tree of spaces.

Define a map to the underlying tree taking Xv to the vertex v and Xe ˆ I to the edge e by

collapsing onto the second factor. This map is called a Bass-Serre map.

Here we list some technical definitions that are not part of the standard background for G-trees

but are needed here or appear in results we cite.

To start, we are most interested in G-trees of the following type.

Definition 2.1.9 (Finite Type). We say a G-tree is of finite type if the tree is locally finite, the

vertex stabilizers have property FP, and the quotient is a finite graph.

Next, we fix terminology for discussing Guirardel’s work from [Gui05].

Definition 2.1.10 (Directions and Halfspaces). A direction based at a point p P T where T is a

tree is a connected component of T r p. If p is a midpoint of an edge then we call the resulting

directions halfspaces.

A halfspace in a product of trees is a preimage of a direction of a tree under projection. A

quadrant in T1 ˆ T2 based at px; yq is the product of two directions at x and y respectively or

equivalently the intersection of two halfspaces, one from each factor. An orthant in T1 ˆT2 ˆT3

based at px; y ; zq is the product of three directions at x and y and z respectively or equivalently

the intersection of three halfspaces, one from each factor.
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Finally, there is a notion of a geometric action on an R-tree. The full details do not concern us

but [LP97] gives a condition 2.1.11 that applies when specialized to our setup.

Lemma 2.1.11 (Geometric Condition). (Theorem 0.6 in [LP97]) A minimal simplicial action of

a finitely generated group is geometric if and only if all edge groups are finitely generated.

2.2 Folding

Here we define a special kind of map between G-trees called a fold, first introduced by Stallings

in [Sta83]. Later we will factor G-maps into a sequence of folds and analyze each fold separately.

Definition 2.2.1 (Folding). Folding is an operation on G-trees without inversions. Essentially,

two edges sharing a vertex are folded together followed by folding their translates together equiv-

ariently. After folding a new G-tree is produced, denote it by T {„. It may happen that T {„

inverts some edge but this can be remedied by first subdividing the original G-tree T .

Let e1 and e2 be edges with a common vertex v and denote the vertices opposite to v by u1 and

u2 respectively. Suppose that in the quotient, e1 and e2 are not loops, that is v R Gu1 Y Gu2.

Then folding e1 and e2 together will be called a type A fold. The other types of folds will not

concern us as they are all compositions of type A folds and subdivisions. For details see [BF91]

and 2.2.2.

Example 2.2.2 (Type IA). Suppose the orbit map embeds e1 Y e2. Then the fold will force a

new identification. See figure 2.2.2.

Example 2.2.3 (Type IIIC). Suppose there exists some g P G that identifies e1 with the reverse

of e2, then the new edge e1{„ “ e2{„ is inverted by G. This can be avoided by first subdividing.

8



Figure 2.1: The left side shows T and T {G. The right side shows the new G-tree T {„ and the
resulting quotient pT {„q{G after a type IA fold. Stabilizers are written in blue.

Definition 2.2.4 (Morphism). A morphism is a map between graphs where vertices go to vertices

and edges go to edges. (Alternatively, this is a simplicial map where no edges are collapsed)

Definition 2.2.5 (Collapse Map). A collapse map is a map between two trees obtained by

quotienting each connected component of a union of subtrees to a point. (Alternatively, it’s a

simplicial map where the preimage of every vertex is connected)

We need a result from Bestvina and Feighn on factoring morphisms.

Theorem 2.2.6 (Bestvina-Feighn [BF91]). Let G be a finitely generated group. Suppose that

¸ : T 1 Ñ T is a simplicial equivariant map from a G-tree T 1 to a minimal G-tree T such that

no edge in T 1 is mapped to a point by ¸. If all edge stabilizers of T are finitely generated and if

T 1{G is finite, then ¸ can be represented as a finite composition of folds.

The following lemma lets us fully factor our G-maps.

9



Lemma 2.2.7. Every surjective G-map between trees factors as a collapse map, followed by a

morphism.

Proof. Consider all edges that map to vertices. The connected components of this set of edges

constitutes a forest which gives the collapse map.

2.3 Cohomological Dimension and Groups of Type FP

We write A to mean an arbitrary ring with a unit. Take R to be a non-zero commutative ring with

a unit. A resolution of a module M is a sequence of modules pPkq0ďkď8 and homomorphisms

pffikq0ďkď8 where

¨ ¨ ¨ Ñ P0
ffi0
Ñ M

is exact. We say a resolution

¨ ¨ ¨ 0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ M

has length n if n is the greatest integer such that Pn is a non-zero module.

Definition 2.3.1 (Projective Module). A module P is projective if for every surjective module

homomorphism f : N Ñ M and for every module homomorphism g : P Ñ M there exists a

module homomorphism h : P Ñ N such that f h “ g .

Definition 2.3.2 (Projective Resolution). A projective resolution pPkq0ďkď8 of a module M is

a resolution of M where all the Pk are projective modules.

Definition 2.3.3 (Cohomological Dimension). The cohomological dimension of a group G is

given by:

cdpGq “ inftn | The trivial ZG-module Z admits a projective resolution of length n over ZGu
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Definition 2.3.4 (Property FPn for a Module). A module M over A has property FPn with

0 ď n ď 8 if there is a projective resolution pPkq0ďkď8 of M where the Pk are finitely generated

for all 0 ď k ď n.

Remark 2.3.5. The property FPn generalizes familiar properties. For a module M, being finitely

generated is equivalent to having property FP0, being finitely presented is equivalent to having

property FP1.

Definition 2.3.6 (Property FPn for a Group). A group G has property FPn over a ring R with

0 ď n ď 8 if the trivial RG-module R is of type FPn as an RG-module.

For our purposes we will only need the case where R is the integers Z and will therefore omit the

ring. Our resolutions will then be taken over the group ring ZG.

Proposition 2.3.7. A group G is finitely generated if and only if G is of type FP1 over R.

Definition 2.3.8 (Property FP). A module is of type FP if there exists a finitely generated

projective resolution of finite length. This is equivalent to being of type FP8 and having finite

cohomological dimension.

2.4 VH-complexes

A cube complex is a CW-complex consisting of cubes glued together via isometries between their

faces. Here an n-cube is a copy of r´1; 1sn with the Euclidean metric, a k-face is a subset of an

n-cube where all but k coordinates are restricted to ´1 or 1, a midcube of a cube r´1; 1sn is the

result of restricting exactly one coordinate to zero. A hyperplane of a cube complex comes from

taking a single midcube and extending it along glued faces of the cube complex to include other

midcubes. More specifically, a hyperplane is a minimal closed subset whose intersection with any

closed cube is a union of midcubes. For details see [?], [HW08].

There are several notions of what it means for a space to have non-positive curvature. For a cube

complex there is a local combinatorial condition.
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Definition 2.4.1 (Link of a vertex). Let X be a cube complex. The link of a vertex v is the

complex formed by taking a small spherical neighborhood of the vertex v .

Definition 2.4.2 (Flag simplicial complex). A simplicial complex K satisfies the flag simplicial

property if every complete subgraph of the 1-skeleton of K bounds a simplex

Definition 2.4.3 (Non-positively curved (NPC)). A cube complex X is non-positively curved

(NPC) if the link of every vertex is simplicial and satisfies the flag condition. If X is also simply

connected then we say it is CAT(0).

Definition 2.4.4 (Square Complex). A square complex is a 2-complex whose 2-cells are attached

by combinatorial paths of length 4.

Definition 2.4.5 (VH-complex). A square complex X is a VH-complex if the following hold,

1. the link at each vertex is simplicial;

2. each edge is labelled vertical or horizontal;

3. each hyperplane is two-sided;

4. attaching maps alternate between horizontal and vertical edges.

Let V and H denote the set of vertical and horizontal edges. Take VX “ V Y Xp0q and HX “

H Y Xp0q to be the vertical and horizontal skeletons.

Remark 2.4.6. Note that the link of every VH-complex is a bipartite graph; this follows from

conditions (2) and (3), see also remark 1.4 from Wise [Wis96]. In dimension 2 the NPC property

for a cube complex is equivalent to requiring that all links be simplicial graphs i.e. no double

edges or loops. Wise does not require his VH-complexes to be NPC. However, for convenience,

we assume property (1) and so our VH-complexes will be NPC. The link condition also generalizes

to an object we need later called a VHD-complex (see 6.6.1).

Definition 2.4.7 (Two-sided Hyperplanes). A hyperplane is two-sided if there is a choice of

orientation on each edge dual to the hyperplane that is consistent across squares.

12



Remark 2.4.8. An embedded hyperplane H is two-sided if and only if the open cubical neigh-

borhood is homeomorphic to H ˆ p´1; 1q. This orientation condition can always be achieved by

subdividing a cube complex twice which allows us to avoid any twisting (e.g. Mobius bands) and

ensures our cube complex will decompose easily into a graph of spaces.

The following is necessary to state an important result of Wise about the existence of splittings

for VH-complexes. The notion of a foliation will appear in Guirardel’s work as well.

Definition 2.4.9 (Decomposition Graph). Given a VH-complex X we define a map ȷ : X Ñ ΓX

from X to a graph. The vertices of ΓX are defined to be the connected components of VX which

we call vertex spaces and the edges are given by the connected components of X r VX . After

foliating each square with vertical segments, given x P X define Vx to be the smallest subset of X

that contains x and any vertical segment that it intersects. Because X has two-sided hyperplanes

there are no singular leaves and Va and Vb are parallel to each other if a and b lie in the interior

of the same horizontal edge. The set of all Vx then gives a foliation of X. Collapsing each leaf

of the foliation is enough to define a map to ΓX viewed as a 1-dimensional cell complex.

The following is a restatement of theorem 2.16 [Wis96] from Wise:

Theorem 2.4.10 (Wise Graph Decomposition). Suppose X is a VH-complex. Then the vertical

and horizontal decomposition graphs 2.4.9 each determine a splitting of ı1pXq as a graph of free

groups.

13



Chapter 3

Locally finite trees and elliptic

subgroups

In this section we prove various utility lemmas related to locally finite trees. We also give a key

sufficient condition for when elliptic subgroup containment can be upgraded to equality.

Proposition 3.0.1 (Hyperbolic gives unique minimal tree). If G is acting on a tree X and

contains a hyperbolic element then there is a unique minimal subtree equal to the union of all

hyperbolic axes. In particular it is non-empty.

Proof. See Proposition 3.1 from [Bas93].

Proposition 3.0.2 (Commensurable groups have the same minimal tree). Suppose G acts on a

tree X and H and K are commensurable subgroups. If H contains a hyperbolic element, then so

does K and the minimal subtrees for H and K are equal.

Proof. This follows from 3.0.1, for details see Corollary 7.7 from [Bas93].

The reader should think about a sequence of folds from 2.2.6 while reading the statements of

3.0.3, 3.0.5, and 3.0.6. Combined these lemmas allow us to inductively push properties across

folds.

Proposition 3.0.3 (Folding preserves properties). Suppose X and Y are G-trees. In addition

suppose Y has a locally finite minimal subtree that is not a point. Let ffi : X Ñ Y be a type A

fold. Then if an element of G is hyperbolic for X it is also hyperbolic for Y .
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Proof. For the fold ffi pick two edges e and e 1 that are folded and adjacent to some v . The

element g is hyperbolic and so comes with an axis that has a positive translation length, hence

Gv , the orbit of v is infinite. Because ffi is a type A fold, Gv is taken injectively to Y . That is,

Gpffipvqq is infinite. If Gpffipvqq intersects Ymin then Gpffivq is entirely contained in Ymin because

minimal trees are G-invariant. However, g is elliptic in Y and we are acting by isometries so the

infinte set Gpffipvqq lies within a bounded distance of ffipvq in Ymin; but this is impossible becauase

Ymin is locally finite. That is, Gpffipvqq Ă Y r Ymin.

Consider the images of the folded edges e and e 1 along with their orbits. Folds preserve adjacency

so every edge in Gpffipeqq (which is equal to Gpffipe 1qq) is adjacent to a vertex in Gpffipvqq. In

particular, this means at least one vertex of each edge in Gpffipeqq and Gpffipe 1qq is outside of

Ymin. Therefore, Gpffipeqq and Gpffipe 1qq are not contained in Ymin. Said differently, ffipGe Y Ge 1q

is disjoint from Ymin.

Finally, since Ymin is not a point, it contains an edge, call it f . Consider an edge f̂ that maps to

f . Since f is contained in Ymin it is disjoint from ffipGe Y Ge 1q and therefore f̂ is not part of a

fold and therefore Gf̂ goes injectively. But this is impossible because then Gf is an infinite set

within a bounded distance of a single point in a locally finite tree.

Lemma 3.0.4. Let X and Y be G–trees in the same deformation space and suppose that X

contains a locally finite subtree that is G–invariant. Then Y also contains a G–invariant locally

finite subtree.

Proof. It suffices to consider a single elementary collapse move q : X Ñ Y along the edge

e P EpXq with GB0peq “ Ge . First suppose that X has a G–invariant subtree X 1. Let Y 1 “ qpX 1q,

a G–invariant subtree of Y . If e R X 1 then X 1 maps isomorphically to Y 1, and so Y 1 is locally finite.

Otherwise, the restriction q : X 1 Ñ Y 1 is an elementary collapse. In the proof of [For02, Theorem

7.3] it was observed that q is a p3; 2{3q–quasi-isometry, and that 1
3
pdpx; x 1q´2q ď dpqpxq; qpx 1qq

for all x; x 1 P X 1. It follows that the pre-image of a ball of radius 1 is contained in a ball of radius
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5 in X 1. The latter is finite, and so every ball of radius 1 in Y 1 is finite.

Next consider the same collapse move q : X Ñ Y but suppose that Y contains a locally finite

G–invariant subtree Y 1. We wish to find the same in X. Let Z Ă X be the G–invariant subgraph

whose edges are te 1 P EpXq ´ pGe Y Geq | qpe 1q P EpY 1qu. If Z is connected then let X 1 “ Z;

it maps isomorphically to Y 1 by q and hence is locally finite.

Otherwise, B0peq is in Z. We define X 1 to be ZYpGeYGeq “ q´1pY 1q. For any vertex v P V pX 1q

consider the ball Bv p1q of radius 1 at v . Edges of Z in Bv p1q map injectively to Y 1, so there are

finitely many. It remains to bound the number of edges of Ge Y Ge in Bv p1q. Note that each

component of Ge YGe is a cone on some subset S Ă GB0peq (with cone point in GB1peq). Each

vertex of S is incident to an edge of Z and these edges are all distinct. Hence S is finite, because

collapsing e results in a locally finite tree. Hence Ge Y Ge is locally finite, and therefore Bv p1q

is finite.

From the above lemma we get the following corollary.

Corollary 3.0.5. If X and Y are in the same deformation space and Ymin is is locally finite then

Xmin is also locally finite.

Lemma 3.0.6 (Collapse map preserves hyperbolic elements). Suppose X Ñ Y is a collapse map

with Y locally finite. Suppose Y is not a single point. Then, if an element is hyperbolic for X it

is also hyperbolic for Y .

Proof. Suppose for sake of a contradiction that g P G were hyperbolic for X and elliptic for Y .

Let y P Y be some vertex fixed by the elliptic element g and Gy it’s stabilizer. Since Y is not

a single point, there is another vertex y ‰ z P Y . Because Y is locally finite, Gy and Gz are

commensurable. For G-maps, pre-images are invariant. By the construction of a collapse map,

the preimage of vertices are connected and non-empty. Putting these together we have that the

preimages of vertices are invariant trees. This means that the minimal subtrees of Gy and Gz

acting on X are contained in the disjoint preimages of y and z respectively. However, since they
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are commensurable and Gy contains the hyperbolic element g , these minimal trees are non-empty

and equal by 3.0.2. This is a contradiction.

We already saw that being in the same deformation space is equivalent to having the same elliptic

subgroups. This further reduces the problem to having the same elliptic elements.

Theorem 3.0.7 (Elliptic elements determine elliptic subgroups). Let X and Y be cocompact

G-trees with finitely generated vertex groups. Then the following are equivalent:

1. X and Y define the same partition of G into elliptic and hyperbolic elements.

2. X and Y have the same elliptic subgroups.

Proof. By Proposition 2.6, Theorem 4.2, and Corollary 4.3 of [For02].

Remark 3.0.8. For an interesting example of how the conclusion of 3.0.7 may not hold when a

group fails to be finitely generated consider a particular subgroup of the Baumslag-Solitar group

BSp1; 2q acting on a trivalent tree with a fixed end. One can produce a group isomorphic to

the dyadic rationals along with two tree actions where every element is elliptic but the elliptic

subgroups differ. For details see [For02].

The following is used whenever we need to apply Bieri’s results on dimension iteratively. This

happens once during the transverse construction 4.0.8 as well as part of the final argument 6.7.4

in the proof of the main theorem. The proof works by factoring a tree map into a sequence of

folds and showing that the decomposition of the group into elliptic and hyperbolic elements is

preserved across folds. In our setting, this decomposition is enough to force the elliptic subgroups

to be preserved as well.

Theorem 3.0.9 (Elliptic containment implies equality). If X and Y are locally finite cocompact

G-trees with finitely generated vertex and edge stabilizers and Y has no global fixed point then

EpXq Ď EpY q ùñ EpXq “ EpY q.

17



Proof. Let X and Y as in the hypotheses. Without loss of generality we may assume that X and

Y are reduced and therefore minimal by 2.1.4. By 2.1.7 there exists a G-map from X to Y . This

G-map is onto because Y is minimal and the image of a G-map is an invariant set. Using 2.2.7

we can factor the G-map into a collapse map followed by a morphism. Apply 2.2.6 to factor the

morphism into a finite sequence of folds. From a remark in [BF91] after possibly subdividing we

can take all of the folds to be of type A. Collapse maps and folds preserve the finite generation of

vertex and edge stabilizers. In the next step we repeatedly apply 3.0.5. Using 3.0.6 and 3.0.3 we

see each stage of the composition starting from the right preserves the property of hyperbolicity

for an element g P G. Hence, X and Y partition G into the same elliptic and hyperbolic elements.

Under our setup 3.0.7 applies, therefore X and Y have the same elliptic subgroups as needed.
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Chapter 4

Transverse deformation spaces

In this section, we introduce the transverse property and use it to construct a VH-complex with

two predetermined splittings. This will be the first step in bootstrapping the construction of the

extended core.

Definition 4.0.1 (Transverse). We say that two locally finite G-trees X and Y are transverse if

they are not in the same deformation space and there exist two vertex stabilizers, one for each

tree, such that their intersection has Property FP.

Remark 4.0.2. The definition of transverse does not depend on the vertices chosen and remains

unchanged up to deformation. From the definition of transverse one gets that Gx XGy is FP for a

specific x and y . Consider Gx 1 . Local finiteness of X implies that Gx 1 and Gx are commensurable

so they share a finite index subgroup. Taking the subgroup diagram and intersecting everything

with Gy and checking the inclusions are still of finite index gives that Gx 1 XGy is commensurable

with Gx X Gy and so also must be FP. A similar argument works for vertices y 1 in the second

tree. An elementary deformation either pulls a subgroup out into a new vertex group or pushes

one back in. In either case, the tree remains transverse to the same trees.

Given two tree actions one can take their product and use the diagonal action to obtain a new

object that can fail to be cocompact. Guirardel’s theorem below gives a way to find a cocompact

subset in this situation. It’s worth noting that the problem of finding a compact subset that carries

the fundamental group of a space isn’t always solvable. For a graph with a finitely generated

fundamental group one can find a compact core but Wise was able to find a 2-complex in [Wis02]

where no compact subcomplex carried the fundamental group.
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Theorem 4.0.3 (Guirardel Core Theorem). Let T1, T2 be two minimal actions of G on R-trees

having non-homothetic length functions, or being irreducible (see 2.1.2). Assume that T1 and

T2 are not the refinement of a common simplicial non-trivial action. Then there exists a subset

C Ď T1 ˆT2 which is the smallest non-empty closed invariant connected subset of T1 ˆT2 having

convex fibers. Moreover, C is CAT(0) for the induced path-metric, and T1 ˆ T2 equivariantly

deformation retracts to C. We call C the core of T1 ˆ T2.

Remark 4.0.4. As Guirardel explains after Theorem 8.1 in [Gui05], if T1 and T2 are simplicial

trees then the core from 4.0.3 is cocompact.

Definition 4.0.5 (Refinement). For G-trees T1 and T2 we say that T1 is a refinement of T2 if

there is an equivariant collapse map from T1 to T2.

Lemma 4.0.6 (Not refinements of a common tree). Let X and Y be two locally finite G-

trees that lie in different deformation spaces. Then X and Y are not refinements of a common

non-trivial simplicial G-tree.

Proof. Suppose the two trees were refinements of a common non-trivial simplicial G-tree. This

would mean there is an edge in the common tree that has an edge above it in both trees. Let K

be the stabilizer of this edge. It appears in all three trees. Since X and Y are locally finite, the

vertex groups of X are commensurable to each other, similarly for Y . But the property of fixing a

point is invariant under commensurability. Therefore, all vertex groups of the first tree are elliptic

in the second tree and vice versa. Hence, both actions have the same elliptic subgroups which

means they are in the same deformation space which contradicts our initial assumptions.

Lemma 4.0.7 (Bass finitely generated conditions). Consider a group G acting on a tree X

1. If X{G is finite and Gx is finitely generated for all x P X then G is finitely generated

2. If G is finitely generated and acts minimally on X then X{G is finite

Proof. For details see Proposition 7.9 in [Bas93].
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The following should be thought of as a prequel to the main theorem 1.0.1. In one of the

implications below we take two trees, impose a condition on its vertex stabilizers, apply the

Guirardel Core machinery 4.0.3, and finally produce a compact 2-dimensional complex with a

prescribed fundamental group. In the proof of the sequel, we will take three trees, impose a

similar condition on vertex stabilizers, carefully arrange that a key lemma of Guirardel 5.0.6

applies, and finally produce a compact 3-dimensional complex.

Theorem 4.0.8 (Transverse Construction). Let G be a group of cohomological dimension 2. If

X and Y are non-trivial minimal G-trees of finite type that are in different deformation spaces

then the following are equivalent:

1. X and Y are transverse;

2. Gx X Gy “ t1u for all vertices x P V pXq; y P V pY q;

3. There exists a compact VH-complex K with ı1pKq – G whose horizontal and vertical

splittings are X and Y .

Proof. 1 ñ 2: Fix x0 P V pXq. Let y P V pY q. Then Gx0 X Gy “ pGx0qy . By (1) X is transverse

to Y hence Gx0 X Gy is FP. Since the choice of y P V pY q was arbitrary, the vertex groups of the

Gx0 action on Y are FP. Note, Y locally finite implies its edge groups are finite index subgroups

of its vertex groups. Hence the edge groups are also FP.

We claim that the action of Gx0 on Y is non-trivial. We will apply Bieri 6.7.3 twice. The third

equality below comes from applying Bieri to the action of Gx0 on Y restricted to the minimal

subtree. To know this action is cocompact we use 4.0.7.

2 “ dG

“ dGx0 ` 1

“ dpGx0qy ` 1 ` 1

“ dpGx0 X Gy q ` 2
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The equation shows that dpGx0 X Gy q “ 0 so Gx0 X Gy is trivial.

Claim. The action of Gx0 on Y is non-trivial.

Proof. Suppose the action were trivial. That is, there exists some y P V pY q such that pGx0qy “

Gx0 . Hence, Gx0 is elliptic for the action of G on Y . By the local finiteness of Y , for all x P V pXq,

Gx acts elliptically on Y . Hence, EpXq Ă EpY q. Again by local finiteness we can promote this

using 3.0.9 to EpXq “ EpY q which by Theorem 2.1.5 gives X „ Y contradicting the fact that X

and Y were assumed to be in different deformation spaces.

2 ñ 1: Trivial groups are FP.

2 ñ 3: Take X ˆ Y and give it the VH-structure where X and Y correspond to horizontal and

vertical edges respectively. We first check a few conditions.

First note that X and Y are minimal G-trees by assumption.

If our trees had homothetic length functions (i.e. the length functions were a constant multiple

of each other) then they would vanish on the same elements, which would imply they had the

same elliptic elements. Our trees are cocompact with FP vertex groups, and FP implies finitely

generated so we can apply 2.1.5 of [For02] which says in this case having the same elliptic

elements is enough to conclude that the elliptic subgroups are also the same. Hence, both trees

lie in the same deformation space, a contradiction. Therefore, X and Y have non-homothetic

length functions. By 4.0.6 our trees are not refinements of a common non-trivial simplicial G-tree.

Apply the Guirardel Core Theorem 4.0.3 to obtain C a certain subset of X ˆ Y that we call

the core. The core C has convex fibers. It’s also CAT(0). Our G-trees are simplicial so C is

a subcomplex. Condition (2) says that G acts freely on the vertices of the product X ˆ Y and

therefore also on the the vertices of the core, a subset of X ˆ Y . Since the G-trees are simplicial

and the product action is free on vertices, and the VH property rules out rotating a square by

90 degrees, and the product action prevents rotations by 180 degrees (a rotation by 180 degrees
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would invert an edge in the projection) we get that the product action on the cell complex C will

be a covering space action.

We also need that C{G is VH. Is it enough to observe that the product action respects the tree

factors. The edge partition on the cover C descends to a well-defined edge partition on the

quotient and attaching maps constructed in the standard way for the quotient alternate between

vertical and horizontal edges as needed.

From Guirardel, C is CAT(0) and therefore NPC. We also get compactness from 4.0.4. However,

NPC is a local condition and under a covering map it descends to C{G. Following Wise in [Wis96]

the VH-complex C{G has a decomposition into vertex and edge spaces. The NPC condition

ensures the attaching maps are ı1-injective, hence C{G is a graph of spaces with horizontal and

vertical splittings.

Because C Ď X ˆ Y the leaves of C coming from the vertical foliation as a square complex are

equal to the connected components of the fibers from projecting C to the X coordinate, however

by Guirardel the latter are connected. Collapsing leaves then is the same as collapsing connected

fibers which gives projection to the X factor. On the other hand, as C is a cover of C{G we

get that C is also a graph of spaces. In this case, the edge and vertex spaces of C correspond

to certain fibers from the foliation. Therefore, the Bass-Serre map from C given by collapsing

vertex spaces to a point and mapping edge spaces to edges is the restriction of the projection

map. With the product action projection is G-invariant and X is minimal so the image of the

Bass-Serre map is all of X. Hence, the G-tree X matches the Bass-Serre tree for the horizontal

splitting of C{G where we collapse the vertical fibers. In a similar way, Y is the Bass-Serre tree

of the vertical splitting of C{G.

3 ñ 2:

We have rK and its vertical and horizontal foliations. Collapsing leaves to points gives G-maps

rK to X and rK to Y . These are the Bass-Serre maps. The product map gives a map from rK to

X ˆ Y .
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Claim. This map is 1-1.

Proof. It’s enough to be 1-1 on vertices. Suppose v , v 1 go to the same vertex of X ˆ Y . This

means v , v 1 are on the same leaf of the vertical foliation, and are also on the same leaf of

the horizontal foliation. Call these leaves Vv and Hv . By Lemma 3.7 of Wise in [Wis07], the

intersection of Vv and Hv is at most one point. (Remark: the lemma says exactly one point, for

rK a Complete Square Complex (CSC). But for "at most one point", it only needs that rK is VH

and CAT(0), not complete.) Hence v “ v 1.

Both rK and X ˆ Y are CAT(0) square complexes, and we regard rK as a subcomplex that is

invariant under the product G-action on X ˆ Y . The action on rK is free because it is a covering

space action.

By Cor 5.2 of Haglund in [Hag07] if G acts on a CAT(0) cube complex X without inversions then

every element either has a fixed vertex or a combinatorial axis, and not both.

Now take any non-trivial g P G. Acting on rK, it has a combinatorial axis L, because the action

is free. But L is also a combinatorial axis in XˆY . By the lemma, g acting on XˆY cannot fix

a vertex. So, no non-trivial element fixes a vertex of X ˆ Y . Hence Gx X Gy “ 1 for all vertices

x P X, y P Y .
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Chapter 5

Notions of convexity in products of

trees

This section develops the definitions for fibers, filling, and quadrant convexity along with the

tools needed to apply them during the construction of the extended core.

Definition 5.0.1 (Quadrant Convex). A subset S Ă T1 ˆ T2 is quadrant convex if the comple-

ment is the union of quadrants. The quadrant hull of a set S is the smallest quadrant convex

subset containing S i.e. it’s the intersection of all quadrant convex subsets containing S. Equiv-

alently, it’s the complement of the union of all quadrants disjoint from S.

The following proposition is the first important application of quadrant convexity. Guirardel uses

it to prove that his core is simply connected and later we will use it to show that the hyperplanes

in our extended core are simply connected as a step towards showing the entire space is also

simply connected.

Proposition 5.0.2 (Quadrant Convex implies Deformation Retraction). Let T1 and T2 be sim-

plicial trees, and S a connected quadrant convex subset of T1 ˆ T2, then there is a deformation

retraction from p1pSq ˆ p2pSq onto S.

Proof. This follows from the proof of proposition 4.17 from Guirardel [Gui05].

Remark 5.0.3. Later we will find subsets S where pipSq is a tree for i P t1; 2u and we will

conclude S is simply connected.
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Definition 5.0.4 (Fibers in trees). A fiber of a product of trees is the inverse image of a point

under a projection map; e.g. ı´1
1 pxq “ txu ˆ Y is a fiber of Xˆ Y . A one-dimensional fiber of a

product of three trees is the inverse image of a point under a map ıjk : T1 ˆ T2 ˆ T3 Ñ Tj ˆ Tk

given by p “ pp1; p2; p3q ÞÑ ppj ; pkq. We use similar terminology for subsets of tree products,

that is a one-dimensional fiber of a subset of a product of trees is the intersection of that subset

with a one-dimensional fiber of the product.

Next, we give an equivalence between connected fibers and quadrant convexity. The forward

direction gives the second important application of quadrant convexity. During the construction

of the extended core we will show a set has connected fibers, is quadrant convex, and simply

connected with each proving the next in turn.

Lemma 5.0.5 (Guirardel Lemma 5.4, Corollary 5.5). Let T1; T2 be two R-trees and let F be a

nonempty connected subset of T1 ˆT2 with convex fibers. Then the complement of F is a union

of quadrants. That is, F is also nonempty, connected, and has convex fibers.

Theorem 5.0.6 (Equivalent Quadrant Convex Condition). Let X and Y be two simplicial trees

and F Ă X ˆ Y a closed subset. Then F is quadrant convex if and only if all of its fibers are

connected.

Proof. Follows immediately from 5.0.5 and the fact that quadrant convex implies connected

fibers.

Keeping the above theorem in mind, we generalize the notion of quadrant convexity to three

dimensions.

Definition 5.0.7 (Orthant Convexity). A subset S Ď T1 ˆ T2 ˆ T3 is orthant convex if S has

convex one-dimensional fibers.

26



5.1 Building the orthant hull

In this section we work by analogy with Guirardel’s results on connected fibers and quadrant

hulls. To create a quadrant hull one can either work subtractively by taking away quadrants or

additively by connecting fibers with new material. We will work additively one dimension up and

build an object by filling in fibers.

Proposition 5.1.1 (Slices are connected). Put f “ f1 ˆ f2 ˆ f3 : X Ñ T1 ˆ T2 ˆ T3 and

J “ Impf q. Then J X T1 ˆ T2 ˆ tzu “ Imf pf3
´1

pzqq.

Proof. Let p “ pp1; p2; p3q P T1 ˆ T2 ˆ T3. Then we have the following,

p P LHS ðñ p P Impf q ^ p3 “ z

ðñ Dx P Xpf pxq “ p ^ f3pxq “ zq

ðñ Dx P Xpf pxq “ p ^ x P f ´1
3 pzqq

ðñ p P Imf pf
´1
3 pzqq:

The following definition serves only to give a name to an object created by Guirardel during the

proof of the extension lemma 6.3.2.

Definition 5.1.2 (Subgraph Coning). Let X be a 2-complex with a G-action. Let T be a

simplicial G-tree. Let f : X Ñ T be a map. Let K be a subgraph of the 1-skeleton of X. Then

the subgraph cone of f with K denoted Λpf ; Kq is the set

X \ pG ˆ CKq
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modulo the relation sending pg; px; 0qq to g ¨ x where CK is the set

K ˆ r0; 1s

modulo the relation that glues px; 1q to px 1; 1q if and only if f pxq “ x 1.

Definition 5.1.3 (Filling). Given S Ď X :“ X1 ˆ X2 ˆ X3 define Sk for k P t1; 2; 3u via:

p P Sk ðñ D q; r P S @j P t1; 2; 3u : j ‰ k ùñ ppj “ qj “ rj and pk P cvxhullkptqk ; rkuqq

where cvxhullk is the convex hull operation on subsets of Xk .

For us, when we apply the above definition, the factor spaces will be trees and therefore the filling

operation that produces, say S3 from S Ă X1 ˆ X2 ˆ X3 is ensuring the one-dimensional fibers

of ı12 : S3 Ñ X1 ˆ X2 are connected. In the case of a tree, fibers are connected by drawing

unique geodesics between points and connectedness and convexity are equivalent properties.

Definition 5.1.4 (Connected in coordinate planes (CCP)). Let S Ď X1 ˆ X2 ˆ X3. Then S is

connected in all coordinate planes (CCP) if S X ı´1
k ppq path is connected for all p P Xk for all

k P t1; 2; 3u.

Lemma 5.1.5 (Coning Connected Fibers). Let f : K Ñ T be a map from a 2-complex K to a

simplicial tree T with connected fibers. Let Γ be a connected subgraph of Kp1q, the 1-skeleton

of K. Pick t0 P f pΓq. Define F : Γ ˆ I Ñ T by,

F px; sq “ ‚f pxq;t0psq

where ‚x;y is the embedded path between x; y P T with domain r0; 1s of constant speed or a

constant map if x “ y . Then the map F is continuous and points have connected preimages.

Proof. Let px; sq be an arbitrary point in Γ ˆ I. Put t :“ F px; sq. We will show there is a path
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in Γ ˆ I from px; sq to some px 1; 0q P Γ ˆ I that stays inside of the point preimage F´1ptq. This

is enough because f already has connected preimages in K and F px; 0q “ f pxq.

If s “ 0 then the constant path at px; sq suffices.

If s “ 1 then t “ F px; sq “ F px; 1q “ ‚f pxq;t0p1q “ t0. We can take a path that runs along

the top of Γ ˆ I and then goes down using a vertical fiber. Since t0 P f pΓq there exists some

z P Γ such that F pz; 0q “ t0 “ t. Take g to be the concatenation of a path from px; 1q to pz; 1q

contained in Γ ˆ t1u and the path pz; 1q to pz; 0q given by t Ñ pz; 1 ´ tq. When restricted to a

vertical fiber, F is either injective or a constant map. Since F pz; 0q “ F pz; 1q “ t0 “ t we have

the image of our path lies in F´1ptq as desired.

Suppose 0 ă s ă 1. Consider the image of x ˆ I, a fiber of the product Γ ˆ I, under F . Denote

the map ‚f pxq;t0 by ‚. From the definition of ‚, the fiber x ˆ I is either sent to a single point or

goes injectively to T . In the former, we take g to be the straight path from px; sq to px; 0q.

Finally, suppose the fiber x ˆ I goes injectively to T . In this case, F px ˆ Iq “ p‚q, recall ‚

is a reparameterized geodesic between two points in pf q which by the continuity of f is both

connected and convex in T . Hence, t P pf q by convexity. This means f ´1ptq is a non-empty

closed subset of K. Let x 1 P f ´1ptq be a point that minimizes dKpx; x 1q. The distance cannot

be zero because our fiber goes injectively. Hence, the distance is positive, so x ‰ x 1.

Take ” to be an geodesic path in K from x to x 1. The image of ” is disjoint from f ´1ptq.

Hence for r P r0; 1s, the geodesic from f ”prq to t0 contains t. In fact, dT pf pkq; tq ` dT pt; t0q “

dT pf pkq; t0q for k P p”q. Define a function g : p”q Ñ I by gpkq “ dT pf pkq; tq{dT pf pkq; t0q. The

function g is continuous and so the graph of g is connected, contained in F´1ptq, and contains

px; sq and px 1; 0q. That is, the path ”prq ˆ gp”prqq connects our preimage point to a connected

fiber below.

Lemma 5.1.6 (Reduction to vertical subpath). Suppose S Ď T1 ˆT2 ˆT3 is a subcomplex with

CCP. Let p; q; r P S satisfy
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1. r R S

2. p; q P S

3. p2 “ q2 “ r2 and p3 “ q3 “ r3

4. r1 P cvxT1ptp1; q1uq

then there is a path ff : r0; 1s Ñ S between p and q such that ffptq is contained in SXpT1ˆtr2uˆ‹q

where ‹ is an open direction in T3 at r3 provided t ‰ 0; 1.

Proof. Property CCP implies that SXpT1 ˆtr2uˆT3q is path connected. Let ff be a path in that

set from p to q. Consider the pre-image of T1 ˆ r2 ˆ r3 by ff, call it K. Note that the complement

of K is a countable disjoint union of open intervals in r0; 1s – we will choose one later. Each

Figure 5.1: Possible configuration when T1 and T3 are both R. Note, interval length on the
LHS may not correspond to path length on the RHS. The curve may not even be rectifiable. In
general, the set on the LHS may not be discrete as drawn; it may include limit points or closed
intervals.

open interval is connected so considering projection and the fact that r3 is separating in T3 we

have that under ff each open interval is mapped so the third coordinate lies in a single direction

of T3 at r3. After identifying, K maps into T1. Color the points of K by which direction at r1 in

T1 they map into. (See figure 5.1 and 5.3.) Here we use the fact that ff is a path that is disjoint

from r . In fact, because S is a subcomplex it is closed and so there is an open neighborhood of

r that is disjoint from S and therefore also ff. (As in figure 5.2.) Intersecting this neighborhood

with T1 ˆ r2 ˆ r3 gives an open neighborhood in T1 that is disjoint from ff. The upside is that
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Figure 5.2: The path ff avoids a neighborhood of r .

Figure 5.3: Sketch of a possible configuration. This generalizes the diagram from figure 5.1.

each monocolored subset of K is closed by looking at the image of ff in the slice and taking

intersections with a closed halfspace pointing away from r1. Take the smallest pairwise distance

between the finite number of colored closed sets. This distance is non-zero because ff is disjoint

from a neighborhood of r1 in T1. Consider two points in K that achieve that distance. There

cannot be any points of K between them because we chose the smallest distance. This picks out

an interval with endpoints that map to different directions as needed.

Lemma 5.1.7 (Switching). Let S Ď T1 ˆ T2 ˆ T3 be a subcomplex that is connected in all
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coordinate planes 5.1.4. Then Sx ; Sy ; and Sz are as well.

Figure 5.4: The goal is to show the vertical green interval contained in the xy -plane between r
and r 1 lying on ff is in Sx . This connects points in yz-planes to S.

Proof. Without loss of generality, consider Sx , note that Sx will be connected in all xy and xz

planes because S was. Consider the yz-planes in Sx , if there were no new points added then the

planes are connected and we are done. Suppose that r P pSx r Sq, we need to connect r to a

point in S. We will show that there is a path in Sx X ı´1
2 pr2q between r R S and some point

r 1 P S as in 5.4.

Since r is in SxrS there exist distinct points p and q in S that agree in all coordinates except the

first where we have that r1 P cvxhullT1ptp1; q1uq. Now, because S is connected in all coordinate

planes there is a path ff from p to q that lies in SXı´1
2 pr2q. In fact, we can take ff to be a path

that begins at p and ends at q with T3 coordinates lying in exactly one closed direction of T3 at

r3. We have factored out this situation into claim 5.1.6.

Take ff as in the claim 5.1.6. Consider D “ r1 ˆ r2 ˆ ‹ a closed set. Let A be the set of points

where ff crosses D. Note, A does not include the root of ‹. This is a closed set so we can

consider the preimage under ff and look at the complement in r0; 1s. Color each interval by the

direction in T1 at r1 that ı1ff takes it to. Now, identifying D with a closed direction at r3 in T3
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we say that the colors at x P D are the set of colors of intervals that the preimage of x under

ı3ff hits. (See figure 5.5.)

Figure 5.5: A possible configuration

Figure 5.6: A finite number of monocolored points separating the root from A.

Our goal is to find a geodesic from the root of D to a point in A that is multicolored. (See figures

5.6 and 5.7.) Note, because points in trees are separating, if the image of a continuous map

contains two points it also contains the geodesic between those points. Suppose the claim were

false. Then between every point of A and the root there is a point that is monocolored. A finite

number of these points suffices to separate all of A from the root. Consider the first interval,

it must cross one of these points. There must be another interval that eventually leaves that

33



Figure 5.7: Continuing from 5.6. Note, the left branch is not multicolored. A particular multi-
colored path is highlighted.

half space and enters a halfspace not entered yet. Because the geodesics have one color, and we

always cross a monocolored point upon leaving, each segment has the same color. Including the

last segment that goes back to the root. But this is impossible because we assumed the path

begins and ends in different directions in T1 at r1.

Let T1 and T2 be trees with x2 P T2. Then

T1 ˆ x2 “
ď

‹PDpx1q

‹ ˆ tx2u:

Proposition 5.1.8.

pT1 ˆ T2q r pT1 ˆ x2q “
ď

‹PDpx2q

T1 ˆ ‹

Lemma 5.1.9 (Slice Switching). If R Ď T1 ˆ T2 is connected then pRxqy “ pRy qx where x

corresponds to T1 and y corresponds to T2 in the definition of filling 5.1.3.
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Proof. We first show that pRxqy has connected 1-dimensional fibers. The set pRxqy has connected

x-fibers, this follows from the definition of filling in the y -direction. That is, pRxqy X tx0u ˆ T2

is connected for all tx0u in T1. It remains to show that pRxqy has connected y -fibers.

For sake of a contradiction, suppose pRxqy had a disconnected y -fiber at y0, denoted F . That

is, there exists y0 such that F “ pRxqy X T1 ˆ ty0u is disconnected. Because we are working in

a tree we can find a point x0 P T1 such that px0; y0q separates F . Using 5.1 we proceed by cases

on how many directions meet Rx . Specifically, subtract px0; y0q from both sides of 5.1 to obtain

a disjoint union of sets and ask how many intersect F X Rx .

1. zero: Suppose F XRx X p‹ˆy0q “ ? for all ‹ P Dpx0q then by 5.1, Rx XF “ ?. However,

the fiber is still disconnected so must intersect some of pRxqy . This means there exists

p P pF X pRxqy q r Rx . That is, p was obtained by filling in the vertical (y , T2) direction.

There exist ”1; ”2 P Dpy0q such that F X Rx X pp1 ˆ ”kq ‰ ? for k “ 1; 2. By 5.1.8

F X Rx X pp1 ˆ ”1q Ă T1 ˆ ”1 and F X Rx X pp1 ˆ ”2q Ă T1 ˆ ”2 are disjoint. Pick out

points in each, since they are in Rx they are either already in R or were obtained by filling

in the x-direction. Hence, F X Rx X pT1 ˆ ”1q and F X Rx X pT1 ˆ ”2q both intersect R.

However, these are disjoint and R is connected a contradiction.

2. at least two: Suppose F XRx X p‹k ˆ y0q ‰ ? for k “ 1; 2 with ‹k P Dpx0q. Then because

Rx has connected y -fibers we have that px0; y0q P Rx Ă pRxqy which is a contradiction

since px0; y0q separates F .

3. exactly one: Suppose F X Rx X p‹0 ˆ y0q ‰ ? but is ? for all ‹k P Dpx0q where k ‰ 0.

(See figure 5.8 for a diagram of this case) Since ‹0 ˆ y0 intersects Rx it also intersects R.

Consider the sets px0 ˆ ”q for ” P Dpy0q, at most one intersects Rx . If more than one did

then because pRxqy has connected x-fibers we would have px0; y0q P pRxqy a contradiction

since px0; y0q separates F . Because F is disconnected, there exists ‹1 P Dpx0q with ‹1 ‰ d0

and p‹1ˆy0qXF ‰ ?. Combined with our assumption, pick a point p P p‹1ˆy0qXF rRx .

Now, p P pRxqy rRx so there exist directions ”1; ”2 P Dpy0q such that pp1 ˆ”iq XRx ‰ ?
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for i “ 1; 2. From above, take ”1 to be one of the directions such that px0 ˆ”1q XRx “ ?.

Suppose q P pp1 ˆ ”1q X Rx . If q P R take x 1 “ q1. If q R R then we use the fact

that q P Rx r R to find a point in R. We can take x 1 P ! where ! denotes a direction

in Dpp1q “ Dpq1q that does not contain ‹0 with the property that px 1; q2q P R. Then

px 1; q2q P ‹1ˆ”1 and px 1; q2q P R, however the boundary of the quadrant p‹1ˆy0qYpx0ˆ”1q

does not intersect Rx and so separates px 1; q2q P R from a point in R X p‹0 ˆ y0q. This is

a contradiction since R is connected.

Hence, the set pRxqy has connected 1-dimensional fibers. By Guirardel 5.0.5 then the comple-

ment of pRxqy is a union of quadrants and so QHpRq Ă pRxqy Ă QHppRxqy q. Next note that

QHppRy qxq “ QHpRy q “ QHpRq “ QHpRxq “ QHppRxqy q. Therefore, pRxqy “ QHpRq “

pRy qx .

Figure 5.8: Illustrating case 3 of Lemma 5.1.9

5.2 Cocompactness of orthant hulls

Lemma 5.2.1 (Filling preserves cocompactness). Let T1; T2; T3 be simplicial G-trees that are

pairwise transverse and S Ă T1 ˆ T2 ˆ T3 an invariant cocompact subcomplex. Then Sx is also
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cocompact.

Proof. Observe that S Ď T1 ˆB where B “ ı23pSq. Under the product action B is an invariant

set. Projection is a continuous map so B is cocompact. Next, consider a one-dimensional fiber

of S above a point, that is S1 “ S X pT1 ˆ tbuq where b P B is a vertex. Because T2 and T3

are transverse the stabilizer of b is trivial. Hence, the quotient map on the one-dimensional fiber

S1 is an embedding into a compact set S{G. Hence, S1 is also compact. For each vertex b P B

consider the one-dimensional fiber SXpT1 ˆtbuq, the action in T1 is by simplicial automorphisms

so distances are preserved. Hence, every one-dimensional fiber in an orbit has the same finite

diameter. Because B is cocompact there are a finite number of vertex orbits and therefore a

universal bound on the diameters of one-dimensional fibers above vertices. After identifying a

one-dimensional fiber with T1 we see that each vertex of Sx is obtained by filling in the convex

hull of some one-dimensional fiber; more precisely, if v P Sx then for some b P B a vertex,

v1 P cvxpı1pS X pT1 ˆ tbuqqq where v1 is the first coordinate of v . In particular, Sx is contained

within a bounded neighborhood of S with the product metric. Since S was a subcomplex, so is

Sx . Hence, Sx is cocompact.
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Chapter 6

Proof of main theorem

Starting with the hypotheses from the main theorem, this section breaks the proof into pieces.

6.1 Setup

Suppose for sake of a contradiction that there were three non-trivial G-trees T1, T2, and T3 of

finite type 2.1.9 that are pairwise transverse 4.0.1 and no two are in the same deformation space.

Transversality and finite quotients are preserved by deformations. Therefore, by 2.1.4, without

loss of generality we may assume that these are minimal G-trees after performing a sequence of

elementary collapses.

6.2 Construct square complex with two splittings and

given fundamental group

Applying the transverse construction lemma 4.0.8 we obtain X12. For now think of X12 as a

square complex that encodes the two G-trees T1 and T2 with fundamental group G.

6.3 Construct CCP set

So far we have only used T1 and T2 to define X12. We need to include our third action.

Lemma 6.3.1 (Affine Equivariant Map). Suppose that G acts freely on a simplicial complex

K and acts on a simplicial tree T . Then there exists an equivariant map f : K Ñ T where
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the connected components of the fibers of f are the leaves of a measured foliation and f is an

isometry on edges transverse to F .

Proof. Construct an equivariant map.

We start by defining f on Kp0q the 0-skeleton. It is enough to define the map on a single vertex

in each vertex orbit, and extend equivariantly. These choices can be arbitrary. Next we check

that the resulting map is well-defined.

Indeed, if gv “ hv then g´1h “ 1 by freeness and so

f pgvq “ gf pvq “ gpg´1hqf pvq “ hf pvq “ f phvq:

Next we define the map on the 1-skeleton by mapping each edge. If vw is an edge, map it to

the unique geodesic rf pvq; f pwqs in T .

Lastly, for 2-cells we use the standard fibration coming from mapping triangles to tripods. There

are four cases based on where the 3 vertices land in T . See figure 6.1.

Figure 6.1: Possible fibrations for each simplex

To obtain a transverse measure, take a small arc ¸ that is transverse to the leaves of the foliation.

The length of ¸ is defined to be the length of f ˝ ¸ in the tree. Hence, by construction f is an

isometry on edges transverse to F .
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Let ĄX12 denote the universal cover of X12. Applying the affine equivariant map construction 6.3.1

to the actions on ĄX12 and T3 gives an equivariant map and a foliation that we denote by f123 and

F123 respectively.

The content of the next lemma is that a map from a 2-complex that is constant on leaves can

be extended to a map with connected leaves by enlarging the 2-complex.

Lemma 6.3.2. (Guirardel’s Extension Lemma) Consider a geometric action of a finitely generated

group G on an R-tree T , and let X be a 2-complex endowed with a free properly discontinuous

cocompact action of G. Let F be a G-invariant measured foliation on X. Consider a map

f : X Ñ T which is constant on leaves of F , and isometric in restriction to transverse edges of

X. Then there exists a 2-complex X 1 containing X, endowed with a free properly discontinuous

cocompact action of G, a measured foliation F 1 extending F , and which induces an isometry

between X 1{F 1 and T . Moreover, the inclusion X Ď X 1 induces an epimorphism of fundamental

groups.

Next, we check that the extension lemma can be used within our setting.

Lemma 6.3.3 (Technical assumptions for Guirardel). The following properties hold for ĄX12 and

the map f123 : ĄX12 Ñ T3 constructed via 6.3.1. The action of G on T3 is geometric. The action

of G on X12 is free, properly discontinuous, and cocompact. (Compare to 6.3.2)

Proof. Our trees are simplicial and the actions are minimal, hence by 2.1.11 they are also geo-

metric. The action on X12 is a covering space action from 4.0.8 and is therefore free, properly

discontinuous, and cocompact.

With 6.3.3 we now have everything needed to apply the Guirardel Extension Lemma 6.3.2 to ĄX12,

f123 and F123 in order to obtain ĄX12

`

and f `
123 and F`

123 respectively. Having connected the fibers

for f123 we continue with work on the other functions.

Next, let f121 and f122 denote the Bass-Serre 2.1.8 maps from ĄX12 to T1 and T2 respectively.
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Remark 6.3.4. The following is an informal sketch of what the Bass-Serre maps f122 and f121

look like. In our case ĄX12 is a VH-complex so edge and vertex spaces are graphs. Each square

has a vertical and horizontal foliation. When x is a vertex or a point on a horizontal edge, call

the subset we get from extending the vertical foliation Vx (recall 2.4.9). Then collapsing all the

Vx spaces to a point gives the map to T1 called f121 defined above as the Bass-Serre map.

Our goal is to produce a map from the extended complex ĄX12

`

to T1 ˆ T2 ˆ T3. The map

f `
123 defined on ĄX12

`

is already determined by the extension lemma, so it remains to extend the

Bass-Serre maps f121 and f122 from ĄX12 to ĄX12

`

.

By construction, ĄX12

`

has the form Λpf123; Kq from 5.1.2 for some choice of graph K.

Remark 6.3.5. The following is an explanation of how the graph K from applying 6.3.2 in

Guirardel’s paper is used. In short, for G finitely presented Guirardel’s proof picks a specific

compact subgraph of the 1-skeleton K that is large enough to make ĄX12

`

simply connected.

Strictly speaking, we do not need to know the nature of K, only that the extension has some

graph coning structure so we can extend the Bass-Serre maps.

Once we know that the extension has this graph coning structure we can extend the Bass-Serre

maps to ĄX12

`

by applying 5.1.5. Denote the resulting extensions by f ^
121 and f ^

122 and foliations

by F^
121 and F^

122.

Form the product map f :“ f ^
121 ˆ f ^

122 ˆ f `
123. Finally, define J :“ Impf q Ă T1 ˆ T2 ˆ T3. Each

map is equivariant so G acts on J. Since J is the image of a cocompact set under a continuous

G-map it is cocompact.

Finally, by 5.1.1 J has property CCP.

6.4 Take cellular neighborhood

Lemma 6.4.1 (Cell Respects Slices). If A Ă T1 ˆ T2 ˆ T3 is CCP and A is path connected then

cellpAq is also CCP.
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Proof. Let z P T3. Pick p; q P cellpAq X pT1 ˆ T2 ˆ tzuq. For a product of trees, the closure of a

cell is a subcomplex. For all p in cellpAq there exists a cell P and a point p1 P A such that p1 P P

and p is in the topological closure of P . Similarly for q, q1, and Q. Since p and p1 are contained

in a closed n-cube but p in P , we have that dT3pp3; p1
3q ă 1. Throughout, remember that if p1

3 is

a vertex, then p1
3 “ z . Similarly for q1

3. This ensures that later when points are pushed along an

edge the result remains within cellpAq. Note, closed cubes project to closed cubes in T3. Since

p3 “ q3 “ z the projections of clpP q and clpQq are closed cubes in T3 both containing z .

Let ”1 be a path in A from p1 to q1. The goal is to create a modified path ” such that

dT3pı3”ptq; zq ă 1. Points in ı3”
1 that are not vertices of T3 but lie in A can be pushed to

a new path ” in cellpAq X pT1 ˆ T2 ˆ tzuq.

Using the CCP property of A, for a given point r P T3 we can note the first and last time a path

enters the slice T1 ˆT2 ˆ tru and replace that (possibly degenerate) segment by a path contained

in AXT1 ˆT2 ˆ tru. Call this a path snip. (For the degenerate case, concatenate paths instead)

Consider the following cases.

1. p1
3 “ q1

3: Use the CCP property of A to draw a path ” contained in the slice A X pT1 ˆ

T2 ˆ tzuq.

2. p1
3 ‰ q1

3 and z “ p1
3 or z “ q1

3: Snip at p1
3 and at q1

3. This limits the path to one edge and

prevents it from wandering when z is a vertex of T3.

3. p1
3 ‰ q1

3 and z P rp1
3; q

1
3s r tp1

3; q
1
3u: As before, begin by snipping at p1

3 and q1
3. This case

includes the situation where z is a vertex of T3 lying between p1
3 and q1

3. This allows a path

to wander arbitrarily far from z in T3. To prevent this, we also snip at z .

If necessary, use the open cells containing p1 and q1, to draw paths to p and q. Require the

interior of their domains to map to P and Q respectively so their T3 coordinates remain close

to z . Concatenate with ”1 to create a new path from p to q. Denote this path by fi and

form t Ñ pfi1ptq; fi2ptq; zq a path from p to q contained in cellpAq as fi was contained in A and
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remained close to z .

Next, define K :“ cellpJq. As J is G invariant so is K. Because our trees are locally finite and

a cellular neighborhood is contained in a bounded neighborhood we have that K is cocompact.

Taking a cellular neighborhood respects slices by 6.4.1 so K has property CCP as well.

6.5 Filling

Filling is a way to ensure an object has connected 1-dimensional fibers; at least in the direction

of the filling. Each time you fill, material is added that could in principle create disconnected

fibers in the other two directions. The worry is that attempting to refill will simply create more

disconnected fibers so no amount of repeated fillings will be enough. We will apply the switching

lemma 5.1.7 in the context of the extended core construction so this does not happen and we

will obtain an object with connected 1-dimensional fibers.

We are now ready to complete the construction of the extended core. Let E :“ ppKxqy qz be

the extended core. Repeatedly apply lemma 5.2.1 and use the fact that filling preserves CCP

by construction to see that E is cocompact and has CCP. By the switching lemma 5.1.7 E has

connected 1-dimensional fibers.

6.6 Topological properties of the Extended Core

Here we verify that E is a universal cover and that E{G has three honest graph of spaces

decompositions.

Definition 6.6.1 (VHD-Complex). We say X is a VHD-complex if it is a 3 dimensional cube

complex with simplicial links and two-sided hyperplanes where edges are labelled one of V, H, or

D, parallel edges have the same label, and incident edges of square have different labels.
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Definition 6.6.2 (Primitive). A VHD complex is primitive if its 1-skeleton contains no non-trivial

circuit with edges of the same label. That is, for each label, the subgraph spanned by edges with

that label is a forest.

To start, T1 ˆ T2 ˆ T3 has a natural VHD-complex structure given by labelling T1 edges with V ,

T2 edges with H and T3 edges with D. The product T1 ˆ T2 ˆ T3 contains E as a G-invariant

subset. The action is a product action so orbits of edges remain in the same parallelism class,

therefore the quotient inherits the VHD-complex labeling. The tree actions do not have any

inversions and therefore E and the quotient E{G have two-sided hyperplanes. Hence, E and

E{G are VHD-complexes.

Remark 6.6.3. Our definition of VHD-Complex does not require that hyperplanes are injective

on fundamental groups, only that hyperplanes are two-sided. The injectivity property is however

needed to obtain an honest graph of groups decomposition. For the VHD-Complex E{G we are

considering the injectivity property follows from fact that there is a universal cover E with simply-

connected hyperplanes. For comparison, in dimension two, in a VH-Complex the ı1-injectivty of

hyperplanes follows automatically from the two-sided requirement and the vertex link requirement.

This lemma and the next one ensures E{G will have fundamental group G.

Lemma 6.6.4. The action of G on E is a covering space action.

Proof. Consider the product action of G on T1 ˆ T2 ˆ T3. The trees T1; T2; and T3 are mutually

transverse which tells us that the action on the vertices of a product of any two trees is free;

hence free on the vertices of the product of all three trees. Acting by simplicial automorphisms

with finite vertex stabilizers (in our case trivial) gives a PD action.

For a cube of any dimension, if you fix a point on it’s interior then that cube is taken to itself.

Being a product action rules out rotations of cubes or squares and disallowing edge inversions

rules out reflections.
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Hence, no non-trivial element takes a cube to itself. Thus, the action is free. This implies that

the product action is a covering space action.

Lastly, E Ď T1 ˆ T2 ˆ T3 is a G-invariant subset and therefore the action of G on E is also a

covering space action.

Lemma 6.6.5 (Extended Core is simply connected). The Extended core E is simply connected.

Proof. We will show that E is the total space of a graph of spaces where the edge and vertex

spaces are simply connected and the underlying graph is a tree. The edge spaces are hyperplanes

and the vertex spaces are the connected components of the complement of the corridors of the

hyperplanes. Now, E is a subset of a product so hyperplanes are embedded and two-sided and

come with maps to each side of their corridor.

The hyperplanes of E are the connected components of the intersections of fibers (e.g. ı´1
1 ppq)

with E. By Property CCP then, the hyperplanes are path connected. Since the fibers are

separating, the hyperplanes are also separating. This means the underlying graph is a tree.

Because E has connected 1-dimensional fibers the hyperplanes also have connected 1-dimensional

fibers and so are quadrant convex by Guirardel 5.0.6 and so are also simply connected. Hence,

E is a tree of simply connected spaces and is therefore simply connected.

Proposition 6.6.6 (Injective on fundamental groups). Let A Ď X and ȷ : rX Ñ X the universal

cover of X. Then the inclusion map of A into X is ı1-injective if and only if the connected

components of ȷ´1pAq are simply connected.

The final topological property we need is for the hyperplanes of E{G to be ı1-injective. Fortu-

nately, during the proof of 6.6.5 we show that the hyperplanes of E are simply connected. This

combined with 6.6.6 gives the injectivity property. As a corollary, E{G has three splittings with

Bass-Serre trees T1, T2, and T3.
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6.7 Bieri dimension argument

At this stage the construction of E{G is complete. It’s a three dimensional complex that splits in

three ways over 2-dimensional VH-complexes. By Wise, VH-complexes themselves come with two

splittings over 1-dimensional graphs. Lastly, graphs are themselves splittings over trivial groups.

Using a result of Bieri, we show this iterated splitting pushes the cohomological dimension of G

higher which gives the final contradiction needed for the proof of the main theorem.

In order to use our assumptions we need to show the first iteration of splittings coming from the

VHD complex E correspond exactly to the original trees.

Earlier we proved that E is a graph of spaces, essentially because it sits within a product of trees.

With this setup, after identification, the Bass-Serre maps that collapse vertex spaces to points

and fibers of edge space products to points are projection maps. We’re acting via a product

action so projection maps are equivariant maps which means the image of E under projection is

invariant. Lastly, our G-trees are minimal so the Bass-Serre maps from E map onto the original

trees.

Next, we restate corollaries of Bieri’s results.

Lemma 6.7.1. (See Corollary 6.5, Bieri, p87) Let G “ G1 ˚H G2 be an amalgamated product of

groups of type FP8 over R, with H a proper subgroup of finite index in both factors. Then for

k “ 1; 2 we have:

cdRpGq “ cdRpGkq ` 1:

Lemma 6.7.2. (See Corollary 6.7, Bieri, p92) Let G “ G1˚H;ffi be an HNN extension where G1

is of type FP8 over R with subgroups H and ffipHq of finite index in G1. Then

cdRpGq “ cdRpG1q ` 1:

The following result is not proved as a direct consequence of the previous lemmas, instead Bieri
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is able to run the argument again to obtain a similar result for general graphs of groups. This is

the version we will be applying.

Theorem 6.7.3 (Bieri dimension plus one). (Exercise p.93 from Bieri [Bie77]) For a non-trivial

cocompact locally finite simplicial G-tree with FP8 vertex and edge groups we have that the

dimension of G is exactly one more than the dimension of any vertex or edge group.

The following lemma shows that the second step in the iterative splitting is non-trivial.

Lemma 6.7.4 (Iterated Splitting). Let T1 and T2 be two non-trivial locally finite G-trees in

different deformation spaces. Then the vertex groups of each tree act non-trivially on the other

tree.

Proof. Suppose x were a vertex of T1, Let K be it’s stabilizer. Now K is a subgroup of G

and so also acts on T2. If K had a global fixed point in T2 then by local finiteness of T1 every

vertex group of T1 would as well. Then by 3.0.9 T1 and T2 are in the same deformation space; a

contradiction. Therefore, K acts non-trivially on T2 as needed.

We will now iterate the splitting process and then apply Bieri. To begin, by assumption each of

the original splittings T1, T2, and T3 are non-trivial. Now, without loss of generality, consider a

vertex group Gv from the T3 splitting corresponding to cutting along the D edges. By lemma

6.7.4, Gv acts non-trivially on T1 and T2. These non-trivial actions are the second iteration of

the splitting process. The vertex group Gv is the fundamental group of the vertex space Xv , a

VH-complex with two splittings from 2.4.10; in fact Xv is a graph of spaces where the vertex and

edge spaces are also graphs. Cut along the horizontal edges of Xv to obtain a splitting where

each vertex space is a graph composed entirely of edges with a vertical label. Let w be a vertex

in the graph of groups splitting and Γw the corresponding vertex space. The graph Γw can be

regarded as a splitting over the trivial group – but is it a trivial splitting? It could happen that

Γw has trivial fundamental group. Here we need to assume that at least one sequence of iterated

splittings ends in a graph with positive rank. Suppose this were the case for Gv , that is when
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Xv splits there is a vertex space Γ which is a graph of positive rank. The fundamental group

of Γ is a non-abelian free group and therefore has dimension one. This fact can also be seen

as an application of Bieri to Γ where Γ is viewed as a non-trivial splitting over the trivial group.

In this case the trivial group has dimension zero, so Bieri gives that ı1pΓq has dimension one.

After a second application of Bieri we get that Gv must have dimension two. Finally, after a third

application of Bieri’s dimension theorem 6.7.3 we know G has dimension 3, a contradiction. This

completes the proof of the main theorem.
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