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To Light

Not the laser light using which I conducted all the work reported here. But to the light of the world. To Him,
through whom I live, move and have my being.
”In him was life and that life was the light of all mankind. The light shines in the darkness, and the darkness

has not overcome it” [John 1:4].
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Abstract

Quantum entanglement is a pure quantum mechanical phenomena with no classical counterpart. The strong non
locality of multipartite entangled states makes it suitable for application of quantum mechanics towards quan-
tum computing, quantum key distribution and quantum interferometry. Many methods have been proposed for
the generation of scalable multipartite entangled states in the frequency domain and by time-bin multiplexing.
However, these are not suitable for long distance quantum communication. To build a long distance quantum
network, we need a spatially separable multipartite entangled system. In this thesis, we focus on the use of
a quantum interferometer, known as the SU(1,1) interferometer formed using a two mode squeezed quantum
state, to generate a multipartite entangled quantum system in the spatial domain.

We start with an introduction to the basic properties of quantum states of light and entangled systems. Later, we
expand on the scheme proposed for the generation of multipartite entangled system. We go over the experimental
implementation of this scheme and experimentally verify the existence of multipartite quantum correlated state.
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Chapter 1

Introduction

Quantum states of light, such as squeezed and entangled states, that contain correlations beyond the classical
limit are attractive on several fronts. For example, the reduced noise properties of squeezed states allow high
precision measurements[1], enhanced resolution for quantum imaging applications[2,3], and enhanced sensitivity
of measurements with optical devices[4,5]. On the other hand, the strong nonlocality of entangled states makes
them a key ingredient in quantum information science[6].
A composite quantum system consisting of more than two entangled subsystems is called a multipartite entangled
state. These states carry shared information and hence its advantageous for applications such as secure quantum
communication and quantum computing[6]. Different techniques for the generation of multipartite entangled
states have been theoretically proposed and experimentally implemented both in the discrete variable (DV)
regime by exploiting the properties of individual photons and in the continuous variable (CV) regime that
treats optical field as waves. In contrast to the DV regime where the measurements are probabilistic, in CV
regime operations can be deterministically performed for quadrature variables of the electromagnetic field.
Squeezed light is a valuable ingredient for CV entanglement as we can generate quantum correlations between
the quadratures of different modes through the process of squeezing.
A standard technique for the generation of CV multipartite entanglement (CVME) is based on mixing squeezed
states on linear beam splitters[7,8] or using cascaded amplifier networks[9]. However, these techniques are not
easily scalable, as the correlations can degrade due to mode mismatch or optical losses. To overcome these
limitations, one or two quantum states composed of multiple modes can be used. This approach has been
experimentally implemented with temporal modes from a parametric oscillator[10]. Entangled multimodes have
also been generated for different spatial regions in a single beam[11]. Additionally, a scalable technique for the
generation of genuine CVME has been demonstrated through the use of time bin multiplexing of squeezed light
sources in the temporal domain[12].
Prior work from our group proposed a theoretical scheme for the generation of genuine scalable CVME based
on spatial modes[13]. This proposal consists of a SU(1,1)-like interferometer with two four wave mixing (FWM)
processes serving as the source and mixing elements for the multiple spatial modes contained in two optical
beams. The setup contains only two active elements and provides a more straightforward and scalable technique
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for the generation and verification of genuine multipartite entanglement in the spatial domain. In this report,
we present our preliminary experimental results on the implementation of this technique.
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Chapter 2

States of the Electromagnetic Field

In the CV regime, the measurable quantities associated with an optical field are the quadratures of the electric
field. To better understand their quantum properties, we first introduce the uncertainties and noise properties
satisfied by these quadratures. We then present the properties of different states, such as coherent states and
squeezed states of light.

2.1 Uncertainities in field quadratures

By expanding the vector potential of the EM field in terms of cavity modes we can quantize the field using
harmonic oscillators corresponding to every individual cavity mode. An EM field with angular frequency l

confined in a cavity of volume V, can be expressed in the quantized form as[14]

⇢̂ (I, C) = ⇢0(0̂4�8lC + 0̂†48lC). (2.1)

Here ⇢0 =
q
\l
+ , and 0̂ and 0̂† are the annihilation and creation operators of the number of photons in the field.

Since photons are bosons, they obey the bosonic commutation relation [0̂, 0̂†] = 1. This expression can be
conveniently rewritten as

⇢̂ (I, C) = n ( -̂ coslC + .̂ sinlC). (2.2)

where the real and imaginary parts -̂ and .̂ respectively are also called the quadratures of the field. These
quadratures are the experimentally measurable quantities of the field. The field quadratures in terms of the
bosonic field operators are given by -̂ = 1

2 (0̂ + 0̂†) and .̂ = 1
28 (0̂ � 0̂†) [15]. They satisfy the commutation

relation [-̂ , .̂ ] = 8
2 and it can be shown that they obey the uncertainty relation,

h�-̂2ih�.̂2i � 1
16

. (2.3)
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The variance of the operators gives a measure of the noise associated with the measurement of observables -̂

and .̂ for that quantum state and this uncertainity limits the noise associated with the corresponding state. A
state containing no photons, called the vacuum state, minimizes the uncertainity product in Eq. 2.3 with equal
noise in both quadratures .i.e.,

h�-̂2i = 1
4
= h�.̂2i. (2.4)

The noise level of this state with equal fluctuations in both quadratures is called the standard quantum limit
(SNL). The SNL is the minimum noise limit acheivable with a classical state of light. Quantum correlations
can lead to uncertainties beyond their corresponding classical counterpart in one quadrature at the expense of
increased noise in the other quadrature.

2.2 Coherent states

An appropriate basis state to represent an optical field involving large number of photons is a coherent state,
denoted by |Ui. This state minimizes the uncertainty relation given in Eq. 2.3 with equal uncertainties in each
of the quadratures. That is, for a coherent state, the quadrature variances are h�-̂2i = h�.̂2i = 1

4 . This shows
that coherent states have quadrature fluctuations equal to those of a vacuum state.
A classical phase space diagram gives us the trajectory of a particle with respect to its position and momentum.
Similarly, we can visualize the field using a phase space diagram where the trajectory is drawn with respect to
the in phase, -̂ , and out of phase, .̂ , components of the field. The equality in quadrature variances will lead to
an isotrophic phase space diagram for a coherent state as shown in Fig. 2.1a. The x axis and y axis represent the
amplitude and phase quadratures respectively. The distance from the origin gives the amplitude and phase of
the field and the distribution of circle gives the noise arising due to uncertainty. Unlike in classical mechanics,
the state at a particular time is not confined to a single point due to the uncertainity in measurements of the field
quadratures.

Coherent states can be generated by displacing a vacuum state using the unitary displacement operator, ⇡̂ (U),
such that

|Ui = ⇡̂ (U) |0i (2.5)

with complex amplitude U = |U |48q and ⇡̂ (U) given by

⇡̂ (U) = 4(U0̂
†�U⇤0̂) [15]. (2.6)

In phase space, a vaccum state can be represented by a circle centered at the origin, whereas the coherent state
is displaced from the origin by a magnitude |U | and an angle q. In Fig. 2.1a, a state with q = 0 is shown. The
real part of U will give us the expectation value of the -̂ quadrature, whereas the imaginary part of U gives the
mean value of the .̂ quadrature.
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Figure 2.1: Electric field as a function of time and the corresponding phase space diagram showing the
uncertainty in the phase and amplitude quadratures for a) a coherent state b) a phase squeezed state c) an
amplitude squeezed state (Adapted from[16]).
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2.3 Single mode squeezed state

It is possible to reduce the noise in one quadrature below that of a coherent state at the expense of increased
noise in the other quadrature so as to still satisfy the uncertainty relation in Eq. 2.3. A squeezed state is such
a state. As shown in Fig. 2.1b if the noise in the phase quadrature is reduced at the expense of increased noise
in the amplitude quadrature the state is called a phase squeezed state. On the other hand, if the fluctuations in
the amplitude are decreased with increased fuctuations in the phase, the state is called an amplitude squeezed
state, Fig. 2.1c.
The unitary operator to generate a single mode squeezed state, (̂(n) is defined as[15]

(̂(n) = exp
✓
1
2
n⇤0̂2 � 1

2
n 0̂†2

◆
(2.7)

where n = A48\ is the squeezing parameter, A is the degree of squeezing, and \ is the squeezing phase. The
amount of squeezing depends on the value of A. From the expression for the squeezing operator, it is evident
that squeezing requires the production or annihilation of photons in pairs. If -̂ is the squeezed and .̂ is the
antisqueezed quadrature, then

h�-̂2i < 1
4

and h�.̂2i > 1
4
.

Apart from this, if the product of uncertainities satisfy the equality sign in Eq. 2.3, it is a minimum uncertainty
state and is called an ideal squeezed state. For a squeezed state, the compression and elongation along two axes
lead to an uncertainty ellipse in the phase space as shown in Figs. 2.1b and 2.1c.

2.4 Two mode squeezed state

Instead of squeezing a single mode of the electromagnetic field, two or more modes of the field can exhibit
squeezing in joint quadratures. The simplest example is the two mode squeezed state. Analogous to the single
mode squeezing operator, we can define a two mode squeezing operator, which acts on both modes of the state
according to[15]

(̂01 (n) = exp
⇣
n⇤0̂1̂ � n 0̂†1̂†

⌘
(2.8)

with the operators, 0̂ and 1̂, being the annihilation operators of two different modes. In this process, two photons
are emitted simultaneously into two different modes of the field. These operators satisfy the commutators
[0̂, 0̂†] = 1, [1̂, 1̂†] = 1, [0̂, 1̂] = 0, [0̂†, 1̂†] = 0, [0̂, 1̂†] = 0, [0̂†, 1̂] = 0. In contrast to single mode squeezing,
here squeezing does not exist in individual modes, but in the correlated states described by the combination of
modes (two in this case)[14]. If we measure the noise in the individual quadratures of each mode, it will go
above the SNL level, that is
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h�-̂0
2i > 1

4
, h�-̂1

2i > 1
4

and h�.̂0
2i > 1

4
, h�.̂1

2i > 1
4
, (2.9)

so that each mode by itself is not squeezed. Here -̂0, .̂0 and -̂1, .̂1 corresponds to the quadratures of modes 0̂
and 1̂, respectively.
Additionally, the two mode squeezing operator (̂01 (n), given in Eq. 2.8, cannot be written as the product of two
single mode squeezing operators (̂0 (n) and (̂1 (n) of the individual modes. However, we can rewrite (̂01 (n) as
a factorized product of two single mode squeezing operators of new modes, such that[17]

exp (n 0̂†1̂† � n⇤0̂1̂) = exp
⇣ n
2
3̂†2 � n⇤

2
3̂2
⌘

exp
⇣�n

2
2̂†2 + n⇤

2
2̂2
⌘
. (2.10)

Here 2̂ and 3̂ are commuting operators that are linear combinations of 0̂ and 1̂, such that 2̂ = 0̂�1̂p
2

and 3̂ = 0̂+1̂p
2

with [2̂, 2̂†] = 1, [3̂, 3̂†] = 1, [2̂, 3̂] = 0, [2̂†, 3̂†] = 0, [2̂, 3̂†] = 0, [2̂†, 3̂] = 0 From Eq. 2.10 it is evident that in
two mode squeezed state, squeezing exists between different combinations of quadratures. Therefore, in order
to observe squeezing we need to define the combined quadratures

-̂ =
-̂0 � -̂1p

2
, .̂ =

.̂0 + .̂1p
2

. (2.11)

Since the commutator of these joint -̂ and .̂ quadratures vanishes, they are simultaneously measurable and will
both be squeezed. For displacement of the two modes in phase space along x axis and \ = 0, the reduced noise
in the joint quadrature is given by,

h�-̂2i = exp(-2r) and h�.̂2i= exp(-2r) .
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Chapter 3

Quantum Entanglement

The properties of a quantum system depend on the interaction through which it is generated. Such interactions
can lead to an interesting quantum mechanical phenomenon called entanglement. Sometimes, when two or
more physical systems interact with each other certain nonclassical correlations emerge between the systems,
that can persist even if the systems are separated in space (spatial separation) or time (temporal separation). In
other words entanglement describes an ensemble of systems that are not independent with respect to one or
more of its properties, such as position, momentum, or spin.
Now, the next fundamental question to ask is which states are entangled and which ones are not. There are
certain criteria that are necessary and sufficient to prove the presence of entanglement. In this chapter, we look
at the definition of entanglement and identify multimode squeezed state as a source of entanglement. Along
with that we will briefly discuss some criteria to be tested for the existence of entanglement in two or more
squeezed modes, followed by the method adopted for the generation of scalable multipartite entanglement.

3.1 Entangled states

Consider two subsystems � and � with associated Hilbert state spaces ⌥� and ⌥�. The composite system
�+� is associated with the tensor product space ⌥�⌦⌥�. Some state vectors of the composite system can
be decomposed into a tensor product of two vectors, one describing the state of the susbsystem � and other
describing the state of the subsystem � , e.g.,

| i = |�i ⌦ |⌫i . (3.1)

Such a state is called a separable state and here, the subsystems are independent of each other. However, if the
two subsystems were not prepared independently and in total isolation from each other, a decomposition of | i
in the form given in Eq. 3.1 is not always possible and the state is called an inseparable or entangled state. The
most famous example of such a bipartite entangled state is the state of two spin 1/2 particles with the total spin
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Figure 3.1: Possible bipartitions in a tripartite system. The inseparability in each case confirms the full
inseparability of the composite system. (Adapted from[18]).

angular momentum zero,
| i = 1p

2
[| "i ⌦ | #i + | #i ⌦ | "i] .

The kets | "i and | #i represent the spin up and spin down states, respectively, along the arbitrary direction.

Multipartite Entanglement

If a composite system involves more than two subsytems that are entangled, it is called a multipartite entangled
(ME) system. The quantum state of one of the subsystems of an entangled pair has to be described by a density
operator, which is linear in ⌥. This density opeartor can be associated with any subsystem, regardless of the
existence of a state vector associated with that subsystem. By generalizing Eq. 3.1 in terms of the density
matrix, d =

Õ
= ?= | =ih = | a composite system consisting of n subsystems is fully separable if we can write

the total density operator as
d̂ =

’
=

?= ˆd=1 ⌦ ˆd=2 ⌦ ˆd=3..... ⌦ ˆd=< .

Here, ?= � 0 is the probability for the system to be in the state of | =i and
Õ

= ?= = 1. For the particular case
of a state described by a state vector | i 2 ⌥, the density operator is the outer product of the state

d̂ = | ih |.

By inspecting a system for inseparability we can verify whether it is entangled. If a ME system is inseparable
with respect to all possible bipartitions, such a system is called genuine multipartite entangled (GME).

9



The simplest case of ME is the tripartite entangled state. In such a system, the density operator of the form

d̂ =
’
=

?= d̂=,12 ⌦ d̂=,3

implies that it is in a mixture of states n. This density operator suggest that among the three parties (modes) 1,
2 and 3, the two parties 1 and 2 may be entangled or not, but 3 is not entangled with the rest. This particular
bipartition is represented as (12, 3) and the permutations of 1, 2 and 3 covers all possible bipartitions. These
three possible bipartitions in the case of a tripartite system are shown in Fig. 3.1. If the state of each of these
bipartitions cannot be defined by a density operator of the form given above, we can confirm that it is a fully
inseparable tripartite system.

3.2 Multimode squeezing and entanglement
A physically realizable and the simplest example of continuous variable bipartite entangled state is the two mode
squeezed vaccum (TMSV). Here, the two subsystems � and � are localized modes of the electromagnetic field
with corresponding bosonic operators 0̂ and 1̂. These can be prepared through a nonlinear process such as four
wave mixing, which is discussed in detail in the following section. The quadrature wavefunctions of the TMSV
state can be written as[6]

k( -̂1, -̂2) =
r

2
c

exp[�4�2A ( -̂1 + -̂2)2/2 � 42A ( -̂1 � -̂2)2/2] (3.2)

k(.̂1, .̂2) =
r

2
c

exp[�4�2A (.̂1 � .̂2)2/2 � 42A (.̂1 + .̂2)2/2] . (3.3)

They approach the limit ⇠X(-1 � -2) and ⇠X(.1 + .2) respectively for infinite squeezing A ! 1. These states
describe correlated relative -̂ and total .̂ quadratures. This is analogous to the famous EPR entangled state
treated in[19].
In order to experimentally investigate the entanglement in this system, Duan et al. [20] showed that the violation
of an inequality involving the variances of sum and difference quadratures is sufficient to prove bipartite
entanglement for a CV system. The inequality takes the form,

h[�( -̂1 � -̂2)]2i + h[�(.̂1 + .̂2)]2i � 2|h[-̂ , .̂ ]i | (3.4)

with [-̂8, .̂9 ] = 8X8 9
2 . The LHS of Eq. 3.4 is always less than the RHS for any two mode squeezed state with

a finite degree of squeezing, thereby proving that it is a bipartite entangled state. The squeezing parameter r,
which determines the degree of squeezing, also determines the strength of the entanglement. In the limit of
infinite squeezing, i.e., A ! 1, this state will become a perfectly correlated or maximally entangled state, which
is unphysical and unnormalizable. However, for a finite amount of squeezing, we will have an experimentally
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achievable entangled state.
Instead of two localized modes, a large number of modes of the EM field can be jointly squeezed. For an
arbitrary number of modes described by the bosonic operators,

0̂: = -̂: + 8.̂:

(: = 1, 2, ..., #) the correlations between the output quadratures can be verified by the reduced noise below the
SNL in the relative -̂ ( -̂8 � -̂8+1) and total .̂ (.̂8 + .̂8+1 + .... + .̂# ) quadratures[21].

[-̂8, .̂9 ] =
8X8 9
2

.
h[�( -̂8 � -̂ 9 ]]2i = 1

4
exp(�2A)

and
h[�(.̂1 + .̂2 + .... + .̂# )]2i = 1

4
exp(�2A)

for 8 < 9 (8, 9 = 1, 2, ....#)
Hence for an N-partite entangled system, N-1 pairs of relative X and total Y quadratures will be squeezed. The
sign difference in the joint quadratures of conjugate variables -̂ and .̂ is due to the fact that the reduced noise
in one quadrature implies excess noise in the other to satisfy Heisenberg’s uncertainity principle. To verify
multipartite entanglement in such a system, Loock and Furusawa[22] showed that it is necessary to measure
the violations of all biseparable pairs individually. These inequalities are expressed in terms of variances of
squeezed quadrature combinations as

h[�( -̂1 � -̂2)]2i + h[�(.̂1 + .̂2 + 63.̂3 + · · · + 6#.̂# )]2i > 1 (3.5)

...

h[�( -̂#�1 � -̂# ]2i + h[�(61.̂1 + 62.̂2 + 63.̂3 + · · · + 6#�2.̂#�2 + .̂#�1 + .̂# )]2i > 1 (3.6)

In the above equations, -̂8
0
B and .̂8

0
B are the two quadratures of different modes, and the 608 B are arbitrary

coefficients that can be used to minimize the sum in the .̂ quadrature linear combinations. The commutator of
these particular combinations of joint quadratures vanishes, thereby allowing arbitrarlily good violations and the
existence of simultaneous eigenstates of these combinations allows them to be simultaneously measurable. For
a specific bipartition, a set of inequalities from the above equations needs to be violated to show that its density
matrix cannot be decomposed. The inequalities coincide for some bipartitions and hence for the experimental
verification of N-partite entanglement, only N-1 inequalities need to be violated given by Eq. 3.5 through Eq.
3.6.
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Figure 3.2: Double lambda configuration for FWM in 85Rb. Two pump photons, P (purple), are absorped to
simultaneously generate a probe, pr (red), and conjugate, c (yellow), photon.

3.3 Generation of squeezed light

The response of a nonlinear medium to an external field can be written in terms of the electric dipole moment
per unit volume or polarization, %̃(C), as[23]

%̃(C) = n0 [j(1) ⇢̃ (C) + j(2) ⇢̃2(C) + j(3) ⇢̃3(C) + · · · ] . (3.7)

where j is the susceptibility of the medium. The first term on RHS is the linear response, whereas the second,
third, and other higher-order terms indicate the nonlinear response of the medium. Depending on the nonlinear
coefficients of a medium and the strength of the electric field, different nonlinear effects contribute to the
behavior of the medium.
The second-order nonlinear response occurs only in a medium that does not display inversion symmetry[23].
In our experiments, we are using a nonlinear process called four wave mixing (FWM) to generate squeezed
light. Due to the inversion symmetry of atoms, the j(2) term vanishes, and hence we need to use a third-order
nonlinear process such as FWM that arises due to the contribution of the third term in the RHS of Eq. 3.7. The
efficiency of the FWM process depends on the strength of the nonlinearity of the medium.
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Figure 3.3: Effective phase matching condition in FWM process between pump (purple), probe (red) and
conjugate (yellow) by tuning the angle \ between the beams. After the FWM process the twin beams will
symmetrically move away from each other with respect to pump.

3.3.1 Four wave mixing

In the FWM process an intense light beam called the pump with frequency l% interacts with an atomic medium,
resulting in the absorption of two pump photons and the simultaneous generation of a probe and conjugate
photon. The generated beams are also called twin beams. For a single input pump beam, conservation of energy
dictates that the frequencies of the annihilated and created photons satisfy

2lP = lpr + lc, (3.8)

where lP, lpr and lc are the frequencies of the pump, probe, and conjugate, respectively. Fig. 3.2 shows
the double lambda configuration for the FWM process in the D1 line of 85Rb that we use in our experiment.
The difference in frequency between the pump and probe fields is equal to the two-photon detuning X, plus the
frequency difference between the ground hyperfine levels; i.e., l% � l?A = l�� + X where l�� is the energy
difference between hyperfine levels F=2 and F=3 of the ground state 5(1/2. Efficient FWM happens when
the frequency of the probe field is on resonance with the atomic transition (red) shown in Fig. 3.2. However,
absorption, a linear process, suppress the nonlinear FWM on resonance. To avoid this, we slightly detune the
frequency of the pump by � as shown in Fig. 3.2.
It is possible to not seed the process (vacuum seed), seed with either probe or conjugate, or both beams simul-
taneously. If the process is not seeded, then we will have a TMSV state. However, if we seed the FWM process
with an input probe, we will get a squeezed coherent state, which contains a higher number of photons. Hence,
this two mode squeezed state is called a bright two mode squeezed state (bTMSS).

3.3.2 Multi-spatial mode nature of twin beams

The FWM process is a parametric process, which means that the state of the atoms before and after the process
is the same. In other words, the momentum and energy are conserved by the fields. Momentum conservation
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Figure 3.4: Red and yellow circle indicates probe and conjugate respectively. In the near field, corresponding
regions(either shaded or unshaded) of probe and conjugate will be correlated.

Figure 3.5: The mutli-spatial mode nature of the twin beams can be used to make spatially independent regions
within the twin beams. This is acheived by encoding different patterns in the probe beam.

is more generally written in terms of wave vectors, : . For the double lambda configuration shown in Fig. 3.2,
momentum conservation takes the form

�: = 2:% � :pr � :c. (3.9)

Here :%, :pr and :c are the momentum vectors of the pump, probe, and conjugate, respectively. For �: = 0 the
FWM occurs effectively. However, in general cases �: < 0 and the efficiency of FWM is reduced. The phase
mismatch �: is due to the propagation angle of the twin beams and the change in the effective refractive index
of the medium as seen by a beam as it propagates through the medium. This is a consequence of the dispersive
behavior of the medium. Because of this, we can rewrite the phase matching condition in a more explicit form.
Taking into account these factors, when the two photons from the pump are copropagating, the phase matching
condition can be written as,

�: = 2:% � =?A :pr cos \ � :c cos(�\). (3.10)

which is shown in Fig. 3.3. This implies that the twin beams generated by the FWM process will have equal but
opposite angles, which will be symmetric with respect to pump[24]. This phase matching condition also governs
the spatial distribution of the twin beams and leads to position-dependent quantum correlated subregions. The
smallest correlated subregions of the twin beams is called the coherence area. Assuming that the FWM process
occurs at a plane at the center of Rb cell, the plane that is an image of this cell center is called near field. Since
the twin beams are generated on top of each other, in the near field the corresponding subregions of probe and
conjugate will be correlated as shown in Fig. 3.4.
Typically the FWM process generates a single pair of entangled probe and conjugate beams. Taking advantage
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Figure 3.6: Modes a and c of the probe (red) get entangled with b and d of the conjugate (yellow) after FWM1
respectively. Modes a and c are then switched through a 180° rotation using a dove prism (DP). A second
FWM, then entangles new combinations of modes, c-b and d-a, while preserving the entanglement between
pairs a-b and c-d.

Figure 3.7: Four pairs of probe and conjugate modes get entangled through the first FWM process, i) a-b ii) e-f
iii) g-h and iv) c-d. After displacing each probe mode to the location of next mode by a 90°rotation using DP,
four new pairs get entangled through the second FWM process, thereby forming a connected graph.

of the multi-spatial mode nature of the twin beams, higher number of entangled probe-conjugate pairs can be
generated through a single FWM process. This is acheived by making the spatial subregions independent of
one other, which results in independently correlated pairs of subregions in the probe and conjugate after the
FWM process. For this purpose, we are encoding spatial patterns with independent spatial regions in the probe
beam that is used as the seed for the FWM process.

3.4 Generation of scalable multipartite entanglement
As described in Section 3.2, the twin beams generated through the FWM process are bipartite entangled. From
previous discussions we saw that it is possible to generate multiple bipartite entangled pairs from a single FWM.
It is possible to connect these bipartite entangled pairs to form quadrapartite or higher order entanglement via
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a combination of rotation and a second FWM process[13]. For example, consider the simplest case of the probe
being encoded with a pattern consisiting of two independent spatial regions as shown in Fig. 3.5. For ease
of tracking, let’s call the left circle a, right circle b and the corresponding conjugates as c and d, respectively,
as shown in Fig. 3.6. The correlations introduced by FWM1 are shown by solid black lines. After FWM1
modes a and c are switched whereas the ordering of conjugate modes is unaltered. The switching is achieved
by rotation using a Dove Prism (DP). Switched probe and unrotated conjugate are used to seed a second FWM
process. The pairs of twin beams otherwise not entangled are entangled through the second process, thereby
forming a connected graph.
This can be scaled up to higher number of modes by increasing the number of independent spatial regions
encoded in the probe beam. Fig. 3.7 depicts the scenario of a four circle seed pattern. In this case, each probe
mode is moved clockwise to the position of the next mode.
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Chapter 4

Experimental Implementation and Results

In this chapter we discuss the experimental details and show preliminary results of intensity-intensity correlations
betweens the pairs connected through the first (black) and second (blue) FWM processes and the lack of
correlations for other pairs as expected. We also show that without any rotation from the DP, the pairs
connected through the second process do not show any correlations, thereby verifying that the second set of
connections is obtained by swtiching the modes. The beams required for the FWM process are generated from
a CW Ti: Sapphire laser. A portion of the beam is separated using a beam sampler and passed through an
acoustic optical modulator space (AOM) tuned to generate the probe beam at the desired frequency. The probe
beam (red) and the intense pump beam (purple) are then passed through single mode optical fibers to obtain a
clean spatial mode before the FWM process.
The setup consists of two FWM process with a DP in between for switching the modes as shown in Fig. 4.1.
The probe coming out of the fiber is projected onto a Digital Light Processor (DLP) with a size of 3 mm in
diameter to encode multiple spatial regions on a single beam. The DLP is a digitally controlled micromirror
device that is also a spatial light modulator (SLM). The DLP can be programmed and controlled using its
computer interface to encode an arbitrary pattern in the probe. The size of the probe is kept large at the plane
of DLP so that all the active area of the DLP is illuminated by the incident probe. The beam reflected from the
DLP is imaged to the first cell center using a 4f imaging system consisting of lenses !1=500 mm and !2=500
mm as shown in Fig. 4.1.
The orthogonally polarized intense pump beam with a beam size of 1.2 mm in diameter, and the weak probe
beam reflected from the DLP intersect at an angle \ [24] inside the center of the cell. The cell is 12 mm long, and
its temperature is kept high to increase the atomic density to provide enough atoms to participate in the process.
As a result of FWM, the probe beam (red) will experience gain and simultaneously the conjugate (yellow) is
generated.
After FWM1, the pump, probe and conjugate are further imaged to the center of a second cell using another 4f

system consisting of !3=500 mm and !4=500 mm. Using a dove prism, the position of the probe modes (red
circles) is switched between the cells as shown in the Fig. 4.1. Since the rotation is done in a symmetric way,
the degree of rotation is given by 360

= , where n is the number of modes in each beam. A piezo is used to control
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Figure 4.1: Modified SU(1,1) setup. The probe reflected from the DLP is imaged to the first cell center. The
amplified probe (red), generated conjugate (yellow), and pump (blue) are imaged from the center of the first cell
to the center of the second cell using another 4f imaging system. The spatial locations of circles in the probe
are switched by rotating the beam by 180° using a dove prism in between the two processes.

the relative phase between the probe and conjugate. The system is locked at the maximum output power so
that all measurements are taken at the same phase. For the two stage FWM process, the one photon detuning is
scanned while the two photon detuning of the process is kept fixed. The optimum level of squeezing is obtained
for a pump power of 150 mW, two photon detuning of X = 5 MHz and cell temperatures , T1 = T2 = 112°.

4.1 Measurements of intensity-intensity correlations

The spatially separated modes enables us to select each pair of entangled modes individually and to measure
quantum correlations. This is done by clipping the beam to select individual modes and then sending them into
a detector connected to a spectrum analyzer to measure Intensity Difference Squeezing (IDS). For clipping,
we need a clear cut image of both beams, which is achieved in the imaging plane. Hence, after the second
FWM the beams are further imaged using another 4f imaging system consisting of two 500 mm lenses to yet
another plane where they are clipped to select particular modes. The IDS results are shown in Figs. 4.2, 4.3
and 4.4. In Fig. 4.2, we can see the correlations between the different pairs of probe and conjugate modes.
The SNL for a particular IDS trace is obtained by measuring the noise of a coherent state at the same power
level. The IDS traces are then normalized with respect to their corresponding SNL. A squeezing of 4.2 dB is
achieved without any clipping. The level of squeezing decreases for a single pair of modes, as expected when
we are clipping, since we are breaking correlations between the selected and unselected pairs of modes thereby
introducing additional noise. Multiple parameters such as pump power, temperature of the cell, intersecting
angle, and detuning were optimized to obtain an efficient FWM. For the data plotted in Figs. 4.2, 4.3 and 4.4, all
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Figure 4.2: Correlation measurements of different pairs. The black trace corresponds to the IDS of the whole
probe and conjugate after FWM2. The blue, green, red, and magenta traces correspond to IDS of the pairs
shown on the right side with same color coding.

parameters affecting the FWM were kept constant to make the comparison accurate. The data was taken for a
pump power of 150 mW and a cell temperature of 112°C for both cells which led to a gain of 2.5 for the second
and 3 for the first FWM process. The contrast, also called the visibility determines the interference efficiency
of the twin beams. The modified SU(1,1) had a contrast of 0.78 for the probe and 0.82 for conjugate.

4.2 Measurements of noise between uncorrelated modes
In contrast, if we measure the noise of uncorrelated pairs, that are not directly connected via either process, their
individual noises add in quadrature. Figs. 4.3 and 4.4 show the noise spectra of the two modes in the probe
and conjugate respectively, which are not correlated. As there are no correlations between the probe-probe and
conjugate-conjugate modes, the noise of the individual modes added should match up with the noise measured
directly from the uncorrelated pair. The peaks at the lower frequency is the noise introduced by the DLP, which
is classical noise.
To verify that the correlations introduced by the second FWM (blue) are due to the rotation from the DP, we
also measured the noise of different pairs without any DP rotation. As expected, when there is no switching of
modes due to the DP, the pairs a-d and b-c are uncorrelated, as shown in Fig. 4.5.
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Figure 4.3: Noise traces for joint probe mode measurements. The two probe modes are not correlated with
each other. The blue and magenta traces show the noise of the two probe modes. The dotted black trace is the
noise of the uncorrelated pair measured using the detector. The green trace is given by blue and magenta traces
added in quadrature, verifying that the noises of uncorrelated pair adds in quadrature .

Figure 4.4: Noise traces for joint conjugate mode measurements. The two conjugate modes are not correlated
with each other. The blue and magenta traces shows the noise of the two conjugate modes. The dotted black
trace is the noise of the uncorrelated pair measured using the detector. The green trace is given by blue and
magenta traces added in quadrature, verifying that the noises of uncorrelated pair adds in quadrature.
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Figure 4.5: Correlation measurements without probe mode switching. The modes otherwise connected through
the second FWM are uncorrelated without any DP rotation. The two figures shows the absence of correlation
between the modes c-b and a-d without switching spatial locations. The dotted black line is the noise of the
uncorrelated pair measured using the detector. The green trace is given by the blue and magenta traces added
in quadrature, verifying that the noises of uncorrelated pair adds up in quadrature.
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Chapter 5

Conclusion and future work

Through our experiment, we produced multi spatial mode correlations using a two stage FWM process. A
squeezing of 4.2 dB is acheived and correlations are measured for expected entangled mode pairs. The
results demonstarted in this report are for two modes in the probe and two in the conjugate. We also have
the corresponding results for correlations for four modes in each beam, which shows the scalability of this
technique. The DLP used for the spatial modulation works for any arbitrary pattern and hence this method can
be used for scaling further to higher number of modes. However, the scaling is limited by the active area of
DLP available to encode patterns. This technique for the generation of multiple modes within a single beam
helps to reduce the losses introduced via cascaded FWM processes to a more compact and scalable platform.
Eventhough squeezing can be evaluated using intensity-intensity difference measurements, we need another
approach to verify entanglement. To prove ME, different combinations of quadratures must be measured
simultaneously through a method called homodyne detection. For implemenation of this detection technique we
need a local oscillator (LO) that can be used as a reference beam. The LO should have the same mode, phase, and
frequency as the probe and conjugate. Hence, we will require multiple local oscillators for homodyne detection.
After the measurement of quadratures, the inequality violations discussed in Chapter 3 can be examined for the
verification of entanglement. Eventhough the detection process is tedious, the generation process is scalable and
the multi spatial mode correlations are a promising resource for multi channel quantum communications[6].
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