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ABSTRACT 

To design a ground heat exchanger, simulations are frequently used. One way to perform simulations is to use the well-known g-functions to obtain the 

ground temperature. These functions are usually obtained by analytical or numerical models, which limits the precision or takes long simulation time. Recent 

advances show that the short-term g-functions can also be retrieved by a deconvolution algorithm. However, the known deconvolution algorithm is only 

validated for a set of operating parameters and duration of less than 10 days. A first objective of this article is to demonstrate that longer g-functions can 

be retrieved with such an algorithm. Then, a second objective is to extend the application of the deconvolution to consider time varying operating parameters 

throughout a ground heat exchanger's operation. To achieve those objectives, the deconvolution will be first applied to various numerical year-long simulations 

of a ground source heat pump system with stationary conditions. Then, an extended multi-signal deconvolution will be applied to a non-stationary thermal 

response test of 30 days. Both tests show adequate temperature reconstruction with RMSE of less than 0.05 °C and 0.2 ᵒC for the first and second 

scenarios respectively. 

INTRODUCTION 

Employing a geothermal heat pump connected to a ground heat exchanger (GHE) can significantly reduce a building’s 

heating and cooling energy consumption, affecting positively the building sector’s carbon emission (Omer, 2008; Sarbu 

& Sebarchievici, 2014). To design a GHE, simulations employing g-functions are commonly performed to compute the 

ground temperature (Eskilson, 1987). These functions describe the time evolution of the ground temperature along the 

borehole length to a unit impulse signal, and are generally used to find the borehole temperatures under a varying heating 

load (Zanchini & Lazzari, 2014). Various methods were developed to compute these functions. They rely on analytical 

(Cimmino & Bernier, 2013; Marcotte & Pasquier, 2014; Nguyen & Pasquier, 2021; Wei et al., 2016), polynomial 

(Zanchini & Lazzari, 2014), numerical (Robert & Gosselin, 2014) or block matrix (Dusseault et al., 2018) methodology. 

All these methods have limitations in some ways, either by assumption on analytical model or high computation cost to 

retrieve the site-specific g-function. 

Recent advances have made it possible to use a deconvolution algorithm to obtain the short-term g-function (STgF) 

from the experimental data of a thermal response test (TRT) (Beier, 2020; Dion et al., 2022). Such an algorithm does 

not require a direct analytical or numerical model and directly uses the experimental data to obtain the STgF. Another 

advantage is that defining the STgF at the borehole outlet, as done by Dion et al. (2022), incorporates the thermal 

conductivity and capacity of the ground and of the GHE (e.g., casing, grout, pipe, and fluid). Such deconvolution 
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algorithm performs an inversion on a set of nodes, so that the convolved temperatures are closest to their experimental 

counterparts. At publishing time, the deconvolution algorithm has not been used to obtain g-functions longer than 

periods or time representative of TRTs (e.g., 3 to 10 days). 

Often, the heating power and the flow rate will vary to accommodate a heating demand, creating a system that is non-

stationary through time. Recent advances in convolution algorithms allow to consider such non-stationary conditions 

and hands high quality results with both flow rate and heating power variations (Beaudry et al., 2021). To resolve such 

situations, several transfer functions are used (one for each state encountered) and convolved under the assumption of 

non-stationarity. Using such an approach, Beaudry et al., (2022) observed that including non-stationarity can ensure 

adequate ground temperatures and reduce peak demand to the electricity network. 

On currently operating systems, temperatures at the inlet and outlet of a GHE are often available. However, matching 

these temperatures with a model is usually difficult because the input parameters used to design the GHE are often 

inaccurate, obtained with erroneous assumptions or do not consider heterogeneity. Therefore, using a calibrated model 

to evaluate the future response of a GHE under various operating parameters, analyze the performance and durability 

of a GHE or understanding a GHE’s interaction with a nearby system is still a challenge. An alternative could be to use 

the experimental long-term g-function of a GHE and use it for simulations. Obtaining such experimental long-term g-

function has never been done before. 

The goals of this article are twofold: first to apply the single-deconvolution algorithm of Dion et al., (2022) to long 

GSHP system operation to obtain long-term g-function. Second, to provide an extension to the deconvolution algorithm 

of Dion et al. (2022) to recover a set of transfer functions corresponding to the different operating parameters in a 

GHE, occurring during the operation of a GSHP system. 

METHODOLOGY 

A deconvolution algorithm is simply the inverse of a convolution. Both convolution and deconvolution are usually only 

applied to stationary systems (e.g., a GHE with constant flow and bleed rates). It is, however, possible to consider non-

stationarity, for which the specific case is stationarity. This section first presents the non-stationary convolution used 

for GSHP system and then, the deconvolution algorithm. 

Non-Stationary Convolution (forward problem) 

The forward model is based on the convolution equation, which is described with the equation: 

 𝑇𝑜ut(𝑡) − 𝑇0 = (𝑓 ∗ 𝑔)(𝑡) = ∑ 𝑓(𝑡𝑗) ∙ 𝑔(𝑡𝑖−j+1)i
j=1  (1) 

In this equation, 𝑓 in is the excitation function and corresponds to the heating power change 𝑓 = 𝑄(𝑡𝑖) − 𝑄(𝑡𝑖−1). 𝑇0 is 

the initial ground temperature and 𝑇𝑜𝑢𝑡 is the GHE borehole outlet temperature. The variable 𝑔 is a transfer function, 

which corresponds to the variation of a system to a unit impulse. In the case of a GSHP system, it is the GHE response 

to an impulse of 1W throughout the length of the operation period. Hence, by normalizing 𝑓 by 1W, the units of 𝑔 are 

°C, which differs from the dimensionless g-function of Eskilson (1987). Hereinafter, the expression transfer function 

will be used to avoid misunderstanding but the underlying concept is the same.  

Eq. (1) is valid for a steady circulation flow or bleed rate, which describes the state of the GHE operation. To account 

for state changes, during operation, Beaudry et al. (2021) incorporated a time dependence to the transfer function of 

Eq. (1), 𝑔(𝑡𝑖−𝑗+1, 𝑡). In that way, the convolved borehole outlet temperature becomes a combination of the excitation 

function convolved by the corresponding transfer function. In that form, the combination results in discontinuous 

signal at the state changes. To correct the signal, a correction function is added to the convolution so that, for each state 
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transition, a corresponding state variation is applied. To the interested reader, the non-stationary convolution is 

described in greater details in Beaudry et al. (2021). 

It is worth mentioning that the accuracy of the non-stationary convolution is within a mean-absolute-error of less than 

0.06 °C on the operating temperature of a GSHP system. Hence, the method has a high accuracy, but is not an exact 

solution, as would be a stationary convolution. 

Stationary or Non-Stationary Signal Deconvolution (inverse problem) 

The deconvolution algorithm is akin to an optimization problem, in which the parameter to be optimized is the transfer 

function in Eq. (1). This section presents an extension to the algorithm of Dion et al., (2022) to deconvolve a set of 

transfer functions for the non-stationary case instead of a single one in a stationary scenario. The algorithm is closely 

related to the original one and can also be used for single-signal deconvolution. 

Using a non-stationary convolution, multiple transfer functions can be obtained. To achieve that, a set of nodes 𝜏𝑗 

(between 20 and 40 per function), spaced logarithmically on each transfer function, are selected as the optimization 

parameters. To reconcile the nodes 𝜏𝑗 and the time array 𝑡 of the GSHP system operation, a piecewise cubic Hermite 

interpolation polynomial (PCHIP) is performed on each transfer function before the non-stationary convolution. The 

goal of the inversion is then to optimize the nodes values of each transfer function, so that the non-stationary 

convolution is close to the experimental operation temperatures 𝑇 = 𝑇𝑜𝑢𝑡 − 𝑇0. The goal to attain is: 

 �̂�𝑆𝑒𝑡(𝑡) = 𝑎𝑟𝑔 min
�̂�(𝜏𝑗)

(‖(�̂� − 𝑇𝐸𝑥𝑝)(𝑡)‖
2

|𝐶1, 𝐶2) (2) 

In the previous equation, 𝑔𝑠𝑒𝑡 is the estimated transfer functions obtained by deconvolution, 𝜏𝑗 are the nodes selected 

on each transfer function, 𝑡 is the time vector, �̂� is the estimated temperature obtained by non-stationary convolution, 

𝑇𝐸𝑥𝑝 is the experimental temperature. Finally, ‖∙‖2 is the 𝑙2 norm. 

In Eq. 2, the parameters 𝐶 are positive derivative and negative second derivative constraints applied to each node of 

each transfer function. The first constraint is to impose the fact that the transfer function must be increasing with time. 

The second constraint reflects the general observation that the temperature is slowly reaching a steady state under a 

constant heating power. This is enforced by constraining the slope of the transfer function’s first derivative to be strictly 

negative after a certain point. The two following equations describe the constraints, which are implemented in the 

optimization as linear inequality equations on the nodes. 

𝐶1 0 < ĝ(𝜏𝑗) < ĝ(𝜏𝑗+1) ∀ 𝑗 ∈ [0, 𝑛 − 1] (3) 

𝐶2 �̂�′(𝜏𝑗+1) < �̂�′(𝜏𝑗) ∀ 𝑗 ∈ [𝑧, 𝑛 − 1] (4) 

where 𝑧 is the node 𝜏𝑗 from which the first derivative has a negative slope. 

To ensure faster convergence, a first approximation of the optimization problem is required. Here, an initial guess of 

the transfer function set used by the main optimization algorithm is obtained with the use of 2 subsequent inversion 

problems. The first one assumes a stationary state and fits a single transfer function based on an exponential integral 

equation, of the form �̃�0(𝑥1, 𝑥2, 𝑡) = 𝑥1 ∫
𝑒−𝑡 

𝑡
𝑑𝑡

 

𝑥2
  with 𝑥1 and 𝑥2 being the optimization parameters, to the experimental 

temperature: �̂�0(𝑡𝑖) = min
𝑥1,𝑥2

‖(𝑓(𝑡) ∗ �̃�0(𝑥1, 𝑥2, 𝑡)) − 𝑇𝐸𝑥𝑝(𝑡)‖
2. The temperatures with this method are not well 

reproduced in a non-stationary scenario, since only one set of circulating flow and bleed rates (i.e., state) is considered. 

To enhance the fit, one transfer function per state 𝑔𝑠 can be obtained by scaling the initial function 𝑔0 by coefficients 

𝑎𝑠, i.e., 𝑔𝑠(𝑡) = 𝑎𝑠 ∙ 𝑔0(𝑡). The coefficients 𝑎𝑠 are obtained through the minimization with non-stationary convolution: 
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𝑎𝑠 = min
𝑎𝑠

‖(𝑓 ∗ (𝑎(𝑠) ∙ �̂�0))(𝑡) − 𝑇𝐸𝑥𝑝(𝑡)‖
2
. The main optimization will then use the set of �̂�𝑠(𝜏𝑗) evaluated at nodes 𝜏𝑗 

for each state 𝑠 as the initial solution. 

VALIDATION SCENARIOS 

To assess the performance of the proposed deconvolution algorithm and to fulfill the objective of the paper, two test 

cases are used. The first one is a set of four year-long numerical simulations with different sets of constant operating 

parameters of a GSHP system using a SCW. This case will be used to obtain long-term transfer functions with the 

stationary deconvolution. The second case is a field TRT of 30 days with time-varying circulating flow and bleed rates. 

This case will employ the deconvolution to retrieve an experimental set of transfer functions with the non-stationary 

deconvolution. 

The stationary case is made using the numerical model based on the work of Beaudry et al., (2022) on a system with 5 

SCWs. The recordings have time steps of one hour, over a year of operation. Four simulations were generated, each 

using different constant sets of operating circulating flow and bleed rates, as described in Table 1. Each state is described 

by its respective numerically generated transfer function. Then, temperatures 𝑇𝑜𝑢𝑡 are generated by applying a 

superposition principle (or convolution) to the known ground heating power profile and the numerical transfer 

functions. These signals are then used in a stationary deconvolution to obtain the long-term transfer function. 

The non-stationary case has samplings at every minute and is performed on the SCW site described by Beaudry et al. 

(2018, 2019), which was built in Varennes, Quebec. The SCW is 215 m deep and an injection well of 150m was dug at 

about 10 m from the main well to receive the bled flow rate. The TRT was performed in July 2019 and varies the heating 

power, the circulating and bleed rates to stimulate the well under non-stationary operating conditions. In total, 4 

successive states occur during the TRT and are described in Table 1. Two different circulating flow rates are used, and 

a bleed flow rate of approximately 10% is activated in the middle of each sequence. To minimize the impact of high 

frequency noise on the data, a moving average filter with a window of 10 points was used on both the temperature and 

heating power of the field TRT. For both test cases, the physical parameters are reported in Table 2. 

 

Table 1. Circulating flow and bleed rates for the four different states used for the 

stationary and non-stationary cases. 
Test case Flow rate 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 
Stationary Circulating (L/min) 326 408 489 568 

Bleed (L/min) 65 82 98 170 

Non-stationary Circulating (L/min) 71 71 145 145 

Bleed (L/min) 0 7 0 15 

 

Table 2. Thermal properties of the numerical model used for the stationary (left) and 

non-stationary (right) cases. 

Parameter Symbol Unit Ground Pipe Water 

Volumetric Heat Capacity 𝜌Cp kJ m-3 K-1 2160 | 2070 2000 | 2174 4187 | 4176 

Porosity n - 0.01 | 0.02        0 | 1e-05 1 | 1 

Thermal Conductivity k W m-1 K-1 3.99 | 2.78 0.45 | 0.42 0.57 | 0.59 

Hydraulic Conductivity K m s-1 6.5e-5 | 5.7e-7   1e-9 | 1e-09 1000 | 1000 

Specific storage Ss m-1    1e-4 | 6.4e-4   4e-6 | 4e-10   4e-6 | 4e-10 
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RESULTS 

Stationary case – Simulated temperatures 

In Figure 1, the results of the stationary deconvolution applied to four different simulations are presented. It can be 

noted that both the transfer functions and the temperature are reproduced with great accuracy. The RMSE of the 

various transfer functions are all less than 0.001 ᵒC/W and the RMSE of the 4 temperature fits are of less than 0.044 

ᵒC. In all cases, the constraints 𝐶1 and 𝐶2 are always respected. Indeed, each case shows strictly growing transfer 

functions and strictly downward first derivative slope from the beginning of the transfer functions, showing that the 

value 𝑧 in the constraint 𝐶2 can be taken as the first hour of operation. The larger deviations on the curves are at the 

end of the functions and mostly visible on the derivatives. All the stationary deconvolution converged in under 30 

seconds. 

Figure 1. Stationary deconvolution results on 4 numerical test cases using the same heating power profile. a) and c) 
Deconvolved and numerical transfer functions and their derivatives respectively. b) Convolved and simulated 

temperatures. d) Heating power profile used in each deconvolution. The dots in a) show the nodes 𝜏𝑗 . The RMSE 

for the 4 cases are respectively: 0.04, 0.04, 0.03 and 0.01 ᵒC. 

a) 

c) d) 

b) 
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Non-Stationary Case – Experimental Temperatures 

In Figure 2, the results of the non-stationary deconvolution applied to the TRT experimental data are shown, with the 

associated temperature RMSE being of 0.19 ᵒC. One can notice that the transfer functions are not all the same length. 

Instead, they are only illustrated on their respective activation time. This means that, for example, the function 

corresponding to the first state (i.e., flow rate of 71 L/min and bleed rate of 0 L/min) is only used for the first 8 days 

of the TRT. The second function, corresponding to the second state (i.e., flow rate of 71 L/min and bleed rate of 7 

L/min), is used on the first 16 days since the first 8 days impact the temperature between 8 and 16 days. The vertical 

lines on Figure 2 shows the ending moment of each transfer function. 

The algorithm converged in only 57 iterations and 35 minutes but had difficulty to enforce the 𝐶2 constraint, as can be 

seen in Figure 2 c). This could be explained by the difficulty of the algorithm to find a global minimum due to the large 

number of nodes to optimize. Indeed, each function has 22 nodes, which amount to 88 parameters to estimate on a test 

composed of 43200 data points. 

 

Figure 2. Non-stationary deconvolution result on an experimental TRT with 4 successive states. a) and c) Length 
dependent deconvolved transfer functions and their derivatives respectively. b) Convolved and experimental 
temperatures. d) Heating power (Q) profile, circulating flow (V) and bleed (β) rates used in each deconvolution. 

The dots on the curves in a) show the location of the nodes 𝜏𝑗 . The temperature RMSE is 0.19 ᵒC. 

a) 

c) d) 

b) 
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DISCUSSION 

The results show that both the stationary and non-stationary deconvolution algorithms are quite good at reproducing 

the temperature of either the year-long simulation or the long field TRT. This stems from the use of the temperature as 

the sole factor in the objective function of Eq. 2. In the stationary deconvolution algorithm, the transfer functions show 

a great fit with the numerical ones. Although the experimental ones are not available for the TRT, the transfer functions 

are not as smooth as expected. This could stem from the way the optimization problem is set to optimize only the 

temperature fit. Note, however, that the fluctuations of the first derivative appear visually exaggerated using a log-log 

scale. One way to smooth the transfer function could be to add regularization terms to the objective function. 

Also, it is noticeable that the constraint 𝐶2 described at Eq. 4 is not always respected during the non-stationary 

deconvolution. This is apparent by the slope of the transfer function first derivatives that are not always negative after 

around 3 hours of test. This last value was taken arbitrarily, to ensure that the TRT was in a relative steady state. In that 

section of the transfer function, the first derivative’s slope should be strictly downward, as can be seen in the stationary 

deconvolution in Figure 1. In Figure 2, some functions show positive first derivative at long times, even if the nodes 

show a downward trend for these times. Indeed, PCHIP interpolation ensures that g is increasing but not that its 

derivative behaves as desired. This shows the complexity of the inversion problem, and that further work is needed to 

obtain in non-stationary case transfer functions with all the desired properties. 

It is worth noting that for both stationary and non-stationary deconvolution, the measurement errors of the flow and 

bleeding flow rates are simplified to continuous or step signals. The flow rates shown in Figure 2 are segmented averages 

of their measured signals. However, these signals are affected by natural variation and measurement errors. This 

simplification is used to ensure that a limited number of transfer functions are deconvolved. Otherwise, there could be 

as much transfer functions as data point in the flow rates signals. The impacts of such a simplification are hard to 

estimate but are to be considered when analyzing deconvolution results. 

Finally, an aspect limiting the fit in the non-stationary case is the precision of the forward model. In Beaudry et al.( 

2021), it is mentioned that the non-stationary convolution method has higher residuals within the fluid residence time 

due to slight imprecision in the correction function. Also, vertical temperature profiles are not considered in the current 

application of the forward model. This could represent an additional error since it was demonstrated that it has a 

significant influence on the groundwater temperature along the borehole wall in SCW operations (Beaudry et al., 2019). 

CONCLUSION 

In this article, a deconvolution algorithm was used both in stationary and non-stationary conditions to recover transfer 

functions related to the operating parameters occurring in the GHE. The stationary deconvolution showed that long-

term transfer functions can be obtained, and the application of non-stationary deconvolution was demonstrated on an 

experimental test case. It has been shown that the experimental temperature can be recovered with temperature fits 

with accuracies of less than 0.05 °C with stationary deconvolution and 0.2 °C with non-stationary deconvolution. 

This algorithm has the potential to help GHE response simulation by providing a way to obtain experimental transfer 

functions on both stationary and non-stationary scenarios. The extension of the deconvolution toward non-stationary 

situations makes the algorithm more flexible and applicable to a larger set of situations that can be encountered in field 

application, such as GSHP systems that have been operating for several years or with time-varying flow rates. In this 

case, the deconvolution can be applied to validate the performance of the system. 
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NOMENCLATURE 

𝑎 =  Scalar weights to roughly adjust �̂�0,𝑆𝑒𝑡 (-) 

β =  Bleed flow rate (L/min) 

𝐶 =  Constraint applied on the nodes in the 
optimization problem (-) 

𝐸 =  Objective function to evaluate (-) 

𝑓 =  Incremental heating power function (W) 

𝑔 =  Transfer function (°C/W) 

𝜏 =  Nodes used as optimization parameters (-) 

𝑄 =  Heating power (W) 

𝑇 =  Temperature (°C) 

𝑉 =  Circulating flow rate (L/min) 

Subscripts 

Exp =  Experimental 

0 =  Initial 

out =  Borehole outlet 

s =  State identifier 

Set =  Group of transfer functions 
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