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Abstract 

 

Electrical Submersible Pump (ESP) failures are unanticipated but common occurrences in 

oil and gas wells. It is necessary to detect the onset of failures early and prevent excessive 

downtime. This study proposes a novel approach utilizing multi-class classification machine 

learning models to predict various ESP specific failure modes (SFM’s). A comprehensive dataset 

and various machine learning algorithms are utilized. The prediction periods of 3 hours to 7 days 

before the failure are evaluated to minimize false alarms and predict the true events.  

The ML models are based on field data gathered from surface and downhole ESP 

monitoring equipment over five years of production of 10 wells. The dataset includes the failure 

cause, duration of downtime, the corresponding high-frequency pump data, and well production 

data. According to these data, most ESP operational failures are characterized as electrical failures. 

Four modeling designs are used to handle the data and transform them into actionable 

information to predict various ESP failure modes at different prediction periods. Several ML 

models are tested and evaluated using precision, recall, and F1-score performance measures. The 

K-Nearest Neighbor (KNN) model outperforms the other algorithms in forecasting ESP failures. 

Some other tested models are Random Forest (RF), Decision Tree (DT), Multilayer Perceptron 

(MLP) Neural Network, etc. The findings of these ML models reveal that as the prediction period 

extends beyond three days, it becomes more challenging to predict the true failures. Furthermore, 

all tested designs show similarly good performances in predicting ESP specific failures. The design 
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that integrates the impacts of gas presence and pump efficiency while minimizing the number of 

input variables is suggested for general use. 

Based on the field data, a Weibull model is built to estimate the probability of failure. The 

mean time between failure (MTBF) values are utilized as inputs to the Weibull analysis. The 

Weibull shape and scale parameters are estimated using Median Rank Regression. Then the 

Weibull Probability plots are generated with high R2 values (86.5-99.4%) and a low p-value for 

all wells. The results show increases in pump unreliability with time for all the wells. 

By integrating the outcomes of the ESP Failure prediction ML model with the Weibull 

unreliability model, a powerful tool is provided. This tool allows the engineers to detect failures 

early, diagnose potential causes, and propose preventive actions. It is crucial in aiding the operators 

in transitioning from reactive to proactive and predictive maintenance of artificial lift operations.  
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Chapter 1 Introduction 

 

Various Artificial Lift technologies (AL) are used to raise a hydrocarbon well's production 

rate and alter its bottomhole pressure. Nearly half of the world's 2 million oil wells are supported 

by artificial lift methods, demonstrating the widespread use of this technology (Lea, 2007). 

According to Mordor Intelligence (2022), recent market research indicates that the AL systems 

will expand at a compound annual growth rate (CAGR) of around 4.5% between 2022 and 2027. 

As of 2021, a significant portion of global oil and gas production comes from mature fields, 

necessitating an artificial lift system to improve the recovery rates (Takacs, 2017). Asia-Pacific is 

among the fastest-growing AL markets, while North America led the global AL systems market 

in 2021 (Mordor Intelligence, 2022). As shown in Figure 1-1, North America is likely to dominate 

the market due to its many mature oil and gas reserves and expanding energy demand. 

 
Figure 1-1: Artificial Lift Systems Predicted Growth Across the World (Mordor Intelligence, 2022) 
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Electrical submersible pumps (ESPs) are the best option for boosting production rates in 

major oil wells that have reached or exceeded their peak oil productions. ESPs are a common 

artificial lift method in the petroleum industry, particularly in high-flow rate oil wells. They are 

anticipated to dominate the market owing to their adaptability and technological advancements. 

However, ESP failures are unanticipated and common occurrences in the oilfield, with significant 

financial impacts for the operators. ESPs made up 49% of the $10.9 billion artificial lift industry 

in 2012, making their failures a significant financial loss owing to lost production and replacement 

or intervention costs (Donner et al., 2014). GE Oil & Gas conducted a study, assessing the yearly 

cost of lost production and intervention due to ESP shutdowns at $3 million and $1 million per 

well per year, respectively (Carrillo, 2013). Developing analytical models to detect and mitigate 

ESP failures is critical in lowering the downtime and extending the life of an ESP. 

This study uses an extensive dataset from several years of production of multiple wells to 

train a comprehensive set of machine learning algorithms and predict ESP failures before they 

happen. The results of the proposed data-driven models are crucial in aiding the operators toward 

transitioning from reactive event-based maintenance to proactive and predictive maintenance of 

artificial lift operations. This approach increases the life and efficiency of the ESP by boosting the 

uptime, lowering the intervention costs, and optimizing the production. 

 

1.1 Objectives 

This study has the following main objectives: 

• Conduct a comprehensive literature review to determine the development of ESP failure 

prediction through time and the systems necessary to assist in the process of predicting 

failures at early stages. 
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• Conduct a statistical analysis on the field data gathered from the surface and downhole ESP 

monitoring equipment to classify and characterize the mechanisms of ESP failure.  

• Construct machine learning models (ML) to handle the high frequency ESP data and 

predict various ESP failure modes at different prediction periods. Utilize performance 

metrics to validate the models. 

• Insert the physical aspects of ESP operations in the developed machine learning model to 

provide a hybrid approach for failure prediction. Identify the best model with the highest 

accuracy in forecasting ESP failures. 

 

1.2 Scope of Work 

This study uses the field data acquired from Kuwait Oil Company (KOC) assets, including 

over five years of production from ten operational wells. The recorded data involves different field 

conditions, including dynamic, static, and historical data. The dynamic high-frequency (per 

minute) data from surface and downhole ESP monitoring equipment are collected (variable speed 

drive, pump, and wellhead). The static data include the well completion, ESP design, and reservoir 

fluid information. The data were collected from wells with high ESP failure rates to investigate 

the general ESP failures and their specific failure modes. Additionally, historical operational data 

are included in the study. 

The first step in constructing a machine learning model is data preparation to clean, 

organize, and categorize raw data prior to use by the model. Then comes the pre-processing step, 

which involves managing missing values, detecting anomalies, splitting the data into training and 

testing sets, normalizing the data, and optimizing hyperparameters. These steps account for 80% 

of the overall time. Consequently, the tuned parameters are used to construct the new ML model. 



4 

 

This model will then be evaluated using the test dataset in order to assess the performance of the 

ML algorithms. 

In addition, generating several features for the machine learning model is essential for 

developing a hybrid approach to failure prediction that accounts for the physical aspects of ESP 

operations. This study investigates the gas interference in the ESP system and evaluates pump 

performance based on field data. Additionally, a detailed technique is described for estimating the 

fluid properties based on the field data and using it to assess gas interference in the pump. 

The specific failure mode (SFM) is predicted utilizing ESP-labeled datasets as inputs. A 

supervised multiclass classification model is used. Several ML models are developed to handle the 

high frequency of ESP operational data and predict the ESP failure modes throughout prediction 

periods. The best model with the highest accuracy in predicting ESP failures is then determined 

based on the performance measures. 

 

1.3 Outline 

This work is divided into eight chapters. To begin, Chapter 2 contains a thorough review 

of the literature on the evolution of ESP failure prediction through time, as well as a detailed review 

of ESP pump performance and gas interference. Chapter 3 describes the ESP failures statistical 

analysis and a detailed ESP failure overview utilizing field data. Then, the approach for 

quantifying the probability of failure, the economic effect, and the ensuing NPV losses are 

presented in Chapter 4. Chapter 5 contains a full discussion of the data analytics approaches 

implemented to diagnose and predict the SFMs. This chapter discusses the various designs 

constructed and the various applied machine learning algorithms. Chapter 6 summarizes and 

contrasts the results of the machine learning models for each developed design. Chapter 7 provides 
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an overview of the future implementations of machine learning models in the live field conditions. 

Finally, Chapter 8 concludes this study by highlighting the significant findings and recommends 

some noteworthy subsequent works that might potentially improve the research.  



6 

 

  

Chapter 2 Literature Review 

 

This chapter includes a review of the available literature on this study’s primary research 

topic. First, a general review is conducted on Electrical Submersible Pumps (ESPs) as one of the 

most widely used artificial lift techniques in the petroleum industry. Then, a thorough review is 

provided of the literature on the evolution of ESP failure prediction through time, followed by a 

detailed review of ESP pump performance and gas interference calculations. 

 

2.1 Electrical Submersible Pump 

With the ever-declining production rates from oil and gas fields worldwide, the demand 

for efficient artificial lift techniques is increasing every day to enhance the production (Igwilo et 

al., 2018). The selection of a suitable artificial lift technique for a given well is a function of various 

operational parameters (Nguyen, 2020). The goal is always to maximize the profit from the well 

by increasing the production while maintaining the artificial lift-related expenses and downtime to 

a minimum. This is what makes a thorough understanding of an artificial lift technique's operating 

ranges, limitations, and failures vital prior to its application. 

Electrical Submersible Pumps (ESPs) are one of the most widely used artificial lift 

techniques in the petroleum industry, especially for highly productive oil wells (Fakher et al., 

2021). They can provide noticeable increases in a well’s production if looked after and maintained 

within their optimum operating ranges. However, ESP failures are usually sudden and 

unanticipated and could become common occurrences. These failures cause significant financial 

impacts for the operators due to oil production deferments and high intervention costs (Takacs, 
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2009). In addition, excessive shutdowns and trips significantly reduce the run-life of an ESP (El 

Gindy et al., 2015). 

An ESP system comprises both surface and downhole components (Takacs, 2009). The 

main downhole components consist of a multistage centrifugal pump, gas separator, electric motor, 

seal section, power cable, and downhole sensors. The main surface components are variable speed 

drive (VSD), transformers, surface electric cable, junction box, and wellhead. Figure 2-1 illustrates 

the standard setup of an ESP system. 

 

Figure 2-1: A Representative ESP System Schematic (Hughes, 2020) 

 

The Electrical Submersible Pump system consists of multiple stages of centrifugal pumps 

stacked in series and coupled to a submersible electric motor. Variable speed drives (VSDs) 

enhance the ESP performance by altering the pump's operating frequency and, therefore, its speed. 
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The junction box connects the VSD cable to the downhole electrical cable and permits the venting 

of wellbore gas. The motor receives electrical power from the surface controls through the 

electrical cable, transforms it to mechanical energy, and transmits it to the pump impellers via a 

coupled shaft. Motor cooling is achieved as the produced fluid passes the motor housing. The 

shaft’s mechanical energy is conveyed to the pump stages (Takacs, 2009). 

Depending on the well's operational needs and completion design, the number of pump 

stages required for the desired flow rate may vary. Each stage is equipped with a rotating impeller 

and stationary diffusers. Figure 2-2 illustrates a multistage ESP system with a rotating impeller 

and a stationary diffuser at each stage. Figure 2-3 depicts a single-stage ESP pump with an impeller 

and a diffuser. By spinning the blades, the impeller promotes fluid flow and delivers kinetic energy 

to the fluids (Takacs, 2017). The fluid's kinetic energy is transformed to pressure potential at the 

diffuser. This process is carried out at each stage of the pump, as illustrated in Figure 2-4. 

 
Figure 2-2: ESP Pump Cutaway (Hughes, 2020) 
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Figure 2-3: ESP Pump Stage-Impeller and Diffuser (Hughes, 2020) 

 

 
Figure 2-4: ESP Pump Stage-Impeller and Diffuser (Hughes, 2020) 

 

The ESP seal section between the pump intake and the downhole electric motor provides 

many benefits to the system. It has thrust bearings that sustain the axial thrust generated by the 

pump (Hughes, 2020). In addition to isolating and protecting the motor from well fluids, the seal 

also equalizes the pressure in the wellbore and within the motor.  

Free gas may be present in fluids produced from wells with low bottomhole pressures and 

high gas-oil ratios (GOR). Due to operational difficulties, such as cavitation or gas locking for 

gassy wells, ESPs may have a shorter run-life (Zhu and Zhang, 2018). Therefore, a gas separator 

is installed at the pump's intake in these wells to separate the free gas from the produced fluid. 

Production monitoring and surveillance of ESP wells help extend their run life. 

Furthermore, an ESP monitoring system is highly beneficial to record a pump’s performance and 
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acquire valuable data of the downhole conditions. These data are used to analyze and predict 

failures before they occur. They involve a vast range of field conditions, including dynamic, static, 

and historical data. They are the key factors for data-driven models predicting ESP system failures 

(Abdelaziz et al., 2017).  

 

2.1.1 ESP Advantages and Limitations 

Utilizing ESP systems as an artificial lift technique has several operational advantages, 

including lower noise levels and a smaller surface footprint than other artificial lift methods. These 

systems may accommodate deviated or horizontal wells with doglegs of up to 10°/100 ft, but the 

pump must be installed in the straight section. ESPs excel at producing high liquid volumes (200-

100,000 BPD) from moderate depths with a range of 1,000’-15,000’ TVD (Fakher et al., 2021). 

ESP operations provide several challenges. ESP run life may be significantly influenced 

under high sand and solids conditions, even though ESP systems can be built using specific 

abrasion-resistant materials (El Gindy et al., 2015). Production of highly viscous fluids (> 1,000 

cp) and the presence of large amounts of free gas (> 5%) within the pump have negative impacts 

on performance (Barrios and Prado, 2009). Furthermore, precise well inflow data must be used in 

the design process, and the unit's capacity must match the well's deliverability. If not, expensive 

workover activities will be necessary to operate the pump (Williams et al., 2003). 

 

2.2 Evolution of ESP Failure Prediction Over Time 

Mohrbacher and Tabe (1984) discussed the ESP installation, operation, maintenance, and 

issues, including a system failure analysis. From the 1990s through 2010, several authors used 

statistical models to examine ESP problems. There were comparisons of failure distributions 
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among the system components (Higgs, 1994), different equipment types and models 

(Venkataraman, 1994), or different companies, platforms, and fields (Oliveira et al., 1997). In 

addition, historical trends have been used to assess the evolution of ESP run life through time. The 

authors Oliveira et al. (1997), Patterson (1993), and Venkataraman (1994) presented statistical 

distributions fitted to historical data to forecast future failure frequencies. Sawaryn et al. (1999) 

emphasized the need to include all the ESP system parts in the study. They suggested that the 

simulation time be extended to encompass the whole life of a field and appropriately measure ESP 

reliability. Furthermore, Alhanati et al. (2001) provided a standardized ESP failure analysis that 

included a list of all ESP-related failure types, failed items, failure descriptors, and root causes. 

The failure rates of ESPs across an oilfield have been shown to vary significantly (Sawaryn 

et al., 2002). Given the number of ESPs installed in a given oilfield, ESP failure prediction research 

is mainly concentrated on computing population-level estimations and failure causes (Sawaryn 

and Ziegel, 2001). Sawaryn (2003) came up with analytic terms to describe failure patterns at a 

population level. Liu et al. (2010) also modified the data mining classification techniques for rod 

pump and tubing failures. 

Despite significant academic research on ESP lifetime prediction, a few practitioners have 

employed predictive modelling in their works. Guo et al. created a binary classification model 

using support vector machine algorithm (SVM) to predict ESP failures using electrical and 

frequency data (Guo et al., 2015). Only the data from ESP sensors were utilized, with the most 

important characteristics being current, voltage, frequency, and duration of operation. 

Gupta et al. (2016a) and Abdelaziz et al. (2017) used the principal component analysis 

(PCA) method as unsupervised machine learning model to detect patterns of stable and unstable 

ESP functioning. Following that, Andrade Marin et al., (2019) investigated various approaches 
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and opted to utilize a random forest as binary classification model as an example, which resulted 

in a high degree of accuracy and recall. Bhardwaj et al. (2019) used the principal component 

analysis (PCA) methodology and the gradient boosting technique (XGBoost) for the first time to 

discover anomalies. Subsequently, a short-term failure prediction using binary classification model 

was presented by Khabibullin et al. (2020) based on XGBoost, CatBoost, and LightGBM as the 

key models. Table 2-1 summarizes prior works on ESP Failure Prediction. 

 

Table 2-1: Evolution of ESP Failure Prediction Over Time 

Researchers Dataset Size  ML Model Applied Predicted Parameter 

Guo et al., 

2015 

• High frequency data 

• No physical model used 

Support Vector Machine 

(SVM) 

• Prediction of anomalous 

operation  

•  Failure modes 

Gupta et al., 

2016a 
• High frequency data* 

Principal Component 

Analysis (PCA) 

• Prediction of anomalous 

operation 

 Abdelaziz et 

al.,  

2017 
• High frequency data* 

Principal Component 

Analysis (PCA) 

• Prediction of anomalous 

operation 

 

Andrade 

Marin et  

al., 2019 

• 165 cases 

• High frequency data**  

• For 3 years of operation  

Random Forest (RF) 
• Long-term failure prediction 

(30 days). 

Bhardwaj et 

al.,  

2019 

• 6 cases 

• 2 samples*** 

• PCA 

• XGBoost (extreme 

Gradient Boosting) 

• Prediction of anomalous 

operation 

• Failure modes 

Khabibullin et 

al., 2020 

• 397 cases 

• For 4 years of operation 

• High frequency data are not 

available 

• XGBoost 

• CatBoost 

• LightGBM 

• Short-term failure prediction 

models (7 days) 

*The data frequency is 1 per minute. 

** The data frequency is 2 times per hour. 

*** The data frequency is once a day and once a minute. 

 

2.3 Evolution of ESP Monitoring System Over Time 

The monitoring levels of ESP systems have changed over time. The first and simplest 

method of diagnosing an ESP system’s failure is by using ammeter charts to measure and record 

the current drawn by the downhole motor (Takacs, 2009). The wellhead pressure is then utilized 
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to calculate the pump's head, followed by fluid shots to measure the fluid level in the casing. Fluid 

shots are useful but may be inaccurate owing to factors like foamy crude or completion 

configuration (Takacs, 2017). Recently, it is possible to safeguard an ESP by forcing the pump 

shutdown in case of underload or overload current values, which are signs of poor operating 

conditions.  

The variable speed drive (VSD) was a major step in the growth of the ESP technology. This 

equipment gives operators an extra means of controlling an ESP’s functions, while also protecting 

pumps and motors from electrical stress. The main advantage of a VSD is that it allows the operator 

to modify the ESP's speed in response to variations in the well's productivity index or changing 

well conditions (Williams et al., 2003).  

The introduction of ESP Downhole Monitoring System was also a significant step in the 

evolution of ESP monitoring. This system gathers and transmits data from the downhole system 

to the surface, where it may be recorded and researched to optimize system performance and 

longevity. This helps to improve the accuracy of the most crucial production metrics. Downhole 

monitoring is becoming more prevalent, with a growing number of new installations being 

equipped with it (El Gindy et al., 2015). It analyzes well characteristics and delivers pump data, 

with the goal of improving ESP efficiency and reserve recovery rates (Sherif et al., 2019). It helps 

to keep track of some key operational parameters, as indicated in Table 2-2. 
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Table 2-2: Main Parameters Recorded in an ESP Downhole Monitoring System (Sherif et al., 2019; Gupta et 

al., 2016a) 

Parameter To determine: 

Pump Intake Pressure (𝑷𝒊), psi Static and flowing bottom hole pressures  

Pump Intake Temperature (𝑻𝒊), °F Gas Volume Fraction at pump intake 

Pump Discharge Pressure (𝑷𝒅), psi Head and efficiency of the pump 

Pump Discharge Temp (𝑻𝒅), °F Optional 

Motor Temperature (𝑻𝒎), °F Operating temperature rise (Tm –Ti) 

Current Leakage (mA) Indication of impending ground fault conditions 

Vibration (Vx & Vy) 
Bearing mechanical wear and frequency that cause 

excessive vibration (Resonance).  

Motor Frequency, Hz  Motor speed 

Motor Current (𝑰𝒎), Amps Changes in fluid density and power consumption 

 

The aforementioned parameters indicate the most relevant aspects to consider when 

analysing ESP failures (Adesanwo et al., 2016; Bermudez et al., 2014; Grassian et al., 2017). Even 

though appropriate monitoring helps delay system failures, they may still happen for a variety of 

reasons (Takacs, 2017). Because the electrical system is typically the weakest link in an ESP 

system, most failures are electrical, usually resulting from a mechanical problem as the underlying 

cause of the failure (Pennel et al., 2018). Each failure must be fully probed, and its fundamental 

reason must be determined. Mubarak et al. (2003) researched ESP failures in Wafra field over a 

four-year period and discovered that the most common causes of ESP failures include motor 

failures (40%), pump failures (22%), cable failure (26%), and others (12%). Furthermore, 

according to Al-Sadah (2014), the most common reasons for ESP failures are burnt motor (28%), 

damaged cable/MLE (27%), and damaged penetrator (24%) based on the Dismantle, Inspection 

and Failure Analysis (DIFA) results. In Chapter 3, a comprehensive set of data from multiple oil 

wells with ESP systems is used to further analyse the ESP failures over time and explain the root 

physical causes. 
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2.4 ESP Performance and Gas Interference 

This section discusses the methods used to analyze the gas interference in the ESP system. 

The pump performance evaluation and efficiency calculations will also be discussed here.  

 

2.4.1 Gas Interference in ESP Systems 

Free gas has a significant effect on the performance of ESP’s. Earlier research has shown 

that the gas involvement reduces the ESP’s hydraulic head. Unlike the diffuser, the performance 

of an ESP impeller is strongly influenced by the free gas entering the pump. The presence of free 

gas in the impeller lowers the effective area available for liquid flow, increases hydraulic losses in 

the stage, and decreases the pump’s head produced (Takacs, 2017). In gaseous conditions, ESP 

flow behaviors such as surging, and the development of gas pockets worsen the ESP pressure 

boosting. Vibration and limited-service life might arise from surging, and gas pockets can 

significantly restrict liquid production rates (Zhu and Zhang, 2018).  

A typical pump performance curve is seen in Figure 2-5. Barrios and Prado (2009) and Zhu 

and Zhang (2014), among many others, investigated the influence of free gas on the impeller 

performance using experiments and Computational Fluid Dynamics (CFD) simulations. 

According to them, pump performance was not significantly changed when the free-gas phase was 

evenly dispersed in the liquid. The free gas increases the total volume of fluid that the pump must 

handle. As a result, the pump’s operating range moves to the right on its performance curve, 

decreasing its head (Barrios and Prado, 2009).  
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Figure 2-5: Typical ESP Performance Curve (Hughes, 2020) 

 

The impeller flow is heterogeneous with gas, because of the considerable density difference 

between the two phases (Takacs, 2017). Since liquid particles are significantly denser than gas 

particles, they have higher kinetic energy and flow faster through the vane openings of the 

impeller. As a result, centrifugal forces overcome the turbulence and separate the gas and liquid 

particles at the vane opening (Takacs, 2017), resulting in gas bubble coalescence. 

The low-pressure sides of the impeller vanes are more favorable to gas flow, while the 

high-pressure sides are more favorable to liquid flow. When modest amounts of gas reach the 

pump, the liquid flow drags little gas bubbles toward the diffuser without phase slip (Zhu and 

Zhang, 2018). Bubbles in the impeller intake grow due to increased free gas at the pump suction 

and the accumulation of smaller bubbles already present. Gas is trapped at the impeller intake 

when bubbles reach a critical value, resulting in further bubble generation and the creation of a gas 

pocket (Barrios and Prado, 2009). A gas lock may occur if these pockets become large enough to 

obstruct the liquid flow through the impeller. As a result, the ESP system is put at risk, as shown 

in Figure 2-6. 
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Figure 2-6: After Barrios and Prado (2009); A) Stagnant Bubbles at Channel Intake. B) Gas Pockets at 

Channel Intake Causing Surging 

 

2.4.2 ESP Performance Evaluation 

In 1986, Turpin et al. established the first and a commonly used model for estimating ESP 

performance in the presence of gas. They employed the Turpin correlation parameter (ɸ) to 

determine ESP operating conditions based on gas volumetric fraction and pump intake pressure. 

When (ɸ > 1), the ESP surge condition is formed. This approach is often used to assess an ESP’s 

stable operating limitations. As shown in Figure 2-7, the ESP is stable below the Turpin curve, but 

unstable above the curve due to the possibility of gas interference (Turpin et al., 1986). 
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Figure 2-7: Turpin Curve (Hughes, 2020) 

 

Later, Dunbar (1989) proposed an empirical correlation, agreeing with Turpin that the 

pump intake pressure impacts gas volumetric fraction (GVF) estimation. Cirilo (1998) devised an 

empirical model to calculate the critical GVF for the ESP surge initiation stage. In 2003, Duran 

and Prado created an empirical model to predict stage pressure increments of bubble flow. They 

proposed that the surging correlation be extended to include gas and liquid densities as well. This 

correlation is more often employed in pump design than in monitoring. 

The multiphase impact on ESP performance has recently been examined by Zhu et al. 

(2019). ESP gas-liquid flow patterns were analyzed using a novel mechanistic model that 

correlates critical gas fraction, angular speed, surface tension, liquid flow rate, impeller volume, 

and rotor radius. This approach is mostly concerned with ESP design. According to prior research, 

pump intake pressure strongly impacts the GVF estimation in the ESP. The surging correlations in 

the literature are summarized in Table 2-3. 
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Table 2-3: Surging Correlations in Literature 

Study Correlation Equation 

Turpin et al., 

1986 

Φ =
2000 𝑞𝑠

3 𝑃𝑖𝑄
  

𝜆𝑐 =
𝑞𝑠

𝑞𝑠 + 𝑄
 

Where: 

• Φ is Turpin correlation parameter (psi-1 ) 

• 𝑞𝑠 is gas volumetric flow rate (BPD) at pump intake 

• Q is liquid volumetric flow rate (BPD) at pump intake 

• 𝑃𝑖 is pump intake pressure (psi) 

• 𝜆𝑐 is gas volumetric fraction, GVF  

2-1 

 
2-2 

 

Cirilo, 1998 𝜆𝑐 = 0.0187 𝑃𝑖
0.4342 2-3 

Duran and 

Prado, 2003 

𝑄𝑔

𝑄𝑚𝑎𝑥

= (5.580 ×
𝜌𝑔

𝜌𝑙

+ 0.098) (
𝑄𝑙

𝑄𝑚𝑎𝑥

)
1.421

 

 
Where: 

• 
𝑄𝑔

𝑄𝑚𝑎𝑥
 and 

𝑄𝑙

𝑄𝑚𝑎𝑥
 are normalized gas and liquid rates (estimated at surging 

initiation) 

• 𝑄𝑚𝑎𝑥is maximum pump rate  

 

2-4 

Zhu et al., 2019 

 

𝜆𝐺 =
𝑑𝑚𝑎𝑥

10.056 (
𝜎
𝜌𝑐

)
0.6

(
∆𝑃𝑝𝑢𝑚𝑝𝑄𝑙

𝜌𝑐  𝑉
)

−0.4

(
𝜌𝑐

𝜌𝑑
)

0.2
 

Where: 

• 𝜆𝐺  is the gas volumetric fraction, GVF 
• 𝜎 is surface tension (N/m) 

• 𝑉 is impeller volume (m3) 

• ∆𝑃𝑝𝑢𝑚𝑝 is pressure increment of the single-stage ESP 

• Subscripts c and d denote the continuous and dispersed phases. 
• 𝑑𝑚𝑎𝑥  is maximum bubble size in turbulent flow field 

 

𝜆𝑐𝑟 =

2 [
0.4 𝜎

(𝜌𝑙 − 𝜌𝑔) Ω2𝑅1

]

0.5

10.056 (
𝜎
𝜌𝑙

)
0.6

(
∆𝑃𝑝𝑢𝑚𝑝𝑄𝑙

𝜌𝑙  𝑉
)

−0.4

(
𝜌𝑙

𝜌𝑔
)

0.2
 

 
Where: 

• 𝜆𝑐𝑟 is the critical GVF at which ESP surging initiates 

• Ω is Angular speed (rad/s) 

• 𝑅1is rotor radius (m)  

• The numerator represents the critical bubble diameter in multiphase 

flow 
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2.5 Literature Review Summary 

This chapter has presented a detailed review of the available literature on this study’s 

primary topic. While providing a comprehensive overview of ESP systems' key advantages and 
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limitations, the discussion focuses on how ESP failure prediction and system monitoring have 

progressed through time and explores the gas interference in the ESP system further. 

Over time, the ESP monitoring techniques have evolved, leading to the development of the 

ESP downhole monitoring systems. These systems are essential for real-time monitoring to meet 

operational needs, delivering reliable data on pump and reservoir performance to improve ESP 

system performance and longevity. Furthermore, ESP failure prediction has developed through 

time, particularly in the last few years. As seen in Table 2-1, most prior studies used unsupervised 

ML models to predict anomalies within the normal ESP operating time. In contrast, the remainder 

employed supervised binary classification to predict an ESP failure with limited parameters. Prior 

research has mostly focused on detecting ESP failure and has neglected to investigate and predict 

the root cause of ESP failures. Predicting the fundamental cause of ESP failure is essential to 

choose the most effective course of action to mitigate it. It is however nearly impossible to 

physically model the performance of a complete ESP setup, considering the multitude of electrical, 

mechanical, and fluid-related components coupled to form an integrated ESP system. 

This study proposes a novel approach utilizing supervised multi-class classification models 

to construct a predictive tool for ESP specific failure modes (SFMs) utilizing a comprehensive 

dataset and various machine learning algorithms. Also, this study investigates the gas interference 

in the ESP system and the pump efficiency based on the field data. The proposed ML models 

incorporate the physical aspects of ESP operations to provide a hybrid approach for failure 

prediction. The best model with the highest accuracy in forecasting ESP failures is identified. In 

addition, several prediction periods are compared in terms of the model performance. 
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Chapter 3 Statistical Analysis 

 

This chapter describes the statistical analysis and a detailed ESP failure overview utilizing a 

set of field data on ESP failures. In addition, two case studies from Kuwait Oil Company assets 

are discussed in depth to explore the failure types and their implications on the ESP and well 

production. First, the available data are detailed. 

 

3.1 Operational Field Data Overview 

This research is based on actual field data from Kuwait Oil Company (KOC) assets. For the 

evaluation, these data are categorized into static, dynamic, and historical data from over five years 

of production of 10 active wells. The dynamic high-frequency data (per minute) were obtained 

from surface and downhole ESP monitoring equipment (VSD, pump, and wellhead). The static 

data include the well completion, ESP design, and reservoir fluid information. Historical 

operational data are used to supplement the analysis. The data were collected from wells with high 

ESP failure rates to investigate the general ESP failures and their specific failure modes.  

Large amounts of high-frequency ESP operational data (~24.4 MM data points) were 

acquired to test and validate the approach and assess the robustness of various methods in this 

research. The dataset includes 10 essential ESP information variables to create analytical models 

and predict failures. The ESP data variables supplied by the VSD, and the well are shown in Table 

3-1. 
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Table 3-1: ESP Data Variables  
 

Variables Description 

1 WHP [psi] Wellhead pressure, psi 

2 CHP [psi] Casing head pressure, psi 

3 FLP [psi] Flowline pressure, psi 

4 I_MOTOR Motor current, Amps 

5 V_MOTOR Motor voltage, Volts 

6 MOT_FREQ Motor frequency, Hz 

7 Pi [psi] Pump intake pressure, psi 

8 Pd [psi] Pump discharge pressure, psi 

9 Ti [Deg F] Pump suction temperature, °F 

10 Tm [Deg F] Motor temperature, °F 

 

All of the wells in this research had identical ESP systems setup, including a multistage 

centrifugal pump, gas separator, electric motor, seal section, power cable, downhole sensors, VSD, 

transformers, surface electric cable, junction box, and wellhead. The number of ESP pump stages 

required to achieve the target flow rate vary based on the well's operating requirements and 

completion design. Moreover, both radial and mixed flow ESP pumps are included. The smaller 

flow pumps often have a radial design, while the larger flow pumps typically have a mixed design. 

The ESP motors used in this study are typically two-pole, three-phase induction motors 

with squirrel cages. The motors operate at a nominal speed of 3500 rpm at 60 Hz or 2915 rpm at 

50 Hz due to their two-pole configuration. The motors operate on three-phase power between 230 

and 5,000 volts and between 12 and 200 amps. The diameter and length of the motors determine 

their horsepower ratings, and since there are no wires running along their length, the motors may 

be built somewhat larger than the pumps. These wells are vertical, shallow (TVD of 4,500-5,500 

ft), and producing medium oil (27-31°API). The ranges of physical parameters of these wells are 

shown in Table 3-2. 



23 

 

Table 3-2:Well’s Fluid Characteristics 

Fluid Characteristics 
Range 

From To 

Stock tank Oil Gravity, °API 27 31.5 

Gas Oil Ratio, GOR (SCF/STB) 425 900 

Initial Dissolved Gas-Oil-Ratio, 𝑹𝒔𝒊 (SCF/STB) 425 450 

Formation Volume Factor at bubble point, 𝑩𝒐𝒃 

(RB/STB) 
1.22 1.23 

Reservoir Temperature, 𝑻𝒓𝒆𝒔 (ᵒF) 131 141 

Bubble Point Pressure, 𝑷𝒃 (psi) 1478 1690 

Gas Specific Gravity, γg 0.81 0.95 

Gas Formation Volume Factor, 𝑩𝒈 (ft3/SCF) 0.005888 0.006928 

 

3.2 Statistical Failure Data Evaluation  

The findings of the statistical analysis are depicted Figure 3-1, after dividing the failures into 

a few main categories. In addition, Figure 3-2 shows a more specific division of the most 

statistically important causes for ESP failures as labeled by the field engineers. The detailed 

specific failures are depicted and described for electrical failures, motor failures, gas effects, and 

other failures in Table 3-3, Table 3-4, Table 3-5, and Table 3-6, respectively. Some of the most 

witnessed general failure roots are: 

• Electrical Failure (61%): including power fail, under-voltage, over-voltage, phase 

unbalance, and overcurrent. 

• Motor Failure (18%): including motor voltage unbalance. 

• Gas Effect (13%): excessive gas content locked in the pump causing the current to drop 

rapidly because of motor underload. 
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Figure 3-1: ESP Failure Statistical Analysis-General Descriptor 

 

 
Figure 3-2: ESP Failure Statistical Analysis-Specific Failure Mode 

 

Table 3-3: The Likely Specific Causes of ESP Electrical Failures 

Specific Failure Mode Likely Cause 

Power Fail Electrical issues with the power supply. 

Under-Voltage Intermittent under voltages and over voltages can be caused by a 

poorly controlled primary power supply or wiring problems. Over-Voltage 

Phase Unbalance Unbalanced power input 

Overcurrent 

Over/undervoltage 

Excess flow 

Bad bearings 

Foreign material in the pump 

Jammed pump 
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Table 3-4: The Likely Specific Causes of ESP Motor Failures 

Specific Failure Mode Likely Cause 

Voltage/ Current Unbalance 
Unbalanced power input resulting in overheating and reduced 

motor life 

Motor Overload 

Loads exceed the motor design 

Mechanical failure of the downhole equipment 

An increase in the density of the fluid being pumped. 

A change in the supply voltage 

Debris in the pump causing impeller drag (locked rotor) 

Low Speed High torque 

Motor Stall 

The motor's speed will automatically decrease if the load exceeds 

the motor's capacity, at which point the motor will slow down or 

stop spinning. 

Overheat Motor’s rotor overheating due to improper cooling 

High 𝑇𝑚 High Motor Winding Temperature 

 

Table 3-5: The Likely Specific Causes of ESP Gas Effect Failures 

Specific Failure Mode Likely Cause 

 Motor Undercurrent/ Underload 

Restricted flow 

Lack of liquid to pump (reduced load on the motor). 

Broken shaft coupling or belt 

Gas locking causes underload shutdown 

Intake pressure fluctuation High gas production from the reservoir 

 

Table 3-6: The Descriptions of the Other ESP Specific Failures 

Specific Failure Mode Description 

Broken Shaft 
A broken ESP shaft is categorized as a mechanical 

failure  

High 𝑇𝑖 
High pump suction temperature due to the high fluid 

temperature entering the pump 

MTR Cable A power cable failure caused by high temperature 

Plugged with sand 
External substances (sand) interference with the ESP 

assembly 

Sensor Failure 
Downhole sensor failure results in no sensor readings at 

the surface. 

 

3.3 ESP Specific Failures Overview 

In this study, several distinct ESP failures are analysed with regards to the early warning 

signs prior to the actual failures. The trends in the data are depicted with time, starting from two 

weeks before each specific failure mode (SFM). Common warning signs are assessed using ten 
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samples from each SFM presented in this section. The objective is to have a general understanding 

of the data trends associated with each SFM. 

 

3.3.1 SFMs Associated with Electrical Failures: 

ESP electrical failures are prevalent and have been attributed with both surface and 

downhole issues (Alhanati et al., 2001). Increased downhole pressure and temperature often induce 

surface system failures by straining the electrical supply, resulting in failure of electrical 

components (Fakher et al., 2021). Moreover, the downhole system fails if any of the electrical 

components in the ESP assembly fails, including the power cable, motor (i.e., stator), or the 

downhole sensor. As shown earlier, electrical failures account for 61% of all ESP operational 

failures. The trends in the acquired data prior to some of the ESP electrical failures are shown in 

this section. 

 

i. Under-Voltage: 

The under-voltage specific failure is caused by a main power supply with inadequate 

control or a wiring problem. This SFM has the potential to cause the pump motor to overheat, 

resulting in motor failure. Multiple ESP variables were explored to identify the patterns prior to 

the actual failure. Figure 3-3 illustrates a sample of ten under-voltage ESP specific failure 

occurrences from five wells, illustrating failure impacts on motor current prior to the actual 

failures. These figures illustrate two under-voltage failures for each of the five wells at separate 

intervals throughout the operating life of the wells (the second failure is designated by "*"), all of 

which are preceded by an increase in motor current. For under-voltage, the average time before 

failure (TBF) when motor current exhibits early warning signs is 1.4 days.  
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Figure 3-3: Under-voltage Specific Failure Effects on Motor Current  

 

From this point on, only two of the analyzed cases will be presented for each failure, for 

the purpose of brevity. Figure 3-4 depicts motor voltage and motor current data for two weeks 
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prior to two examples of under-voltage failures in Wells 2 and 4 of our datasets. The x-axis 

indicates the time before failure (TBF) in days. Both voltage and current diverge from their typical 

trends at almost the same time in both wells. The voltage of the motor in Well 2 begins to drop 0.8 

days prior to failure and continues to decline until the actual failure. The motor current rises almost 

in synch with the voltage decline until the failure. For Well 4, a reduction in voltage is first seen 

2.1 days before failure, while the motor current increases. As the voltage of the motor drops, the 

motor draws greater current, which causes the motor to overheat, resulting in sudden failure. These 

wells display early warning indicators of a condition requiring immediate attention. 

 
Figure 3-4: Under-voltage Specific Failure Effects on Motor Current and Voltage 

 

ii. Power Fail: 

A power fail occurs due to unbalanced phases, voltage spikes, presence of harmonics 
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Figure 3-5 depicts examples of motor voltage, motor current, and wellhead pressure for two 

weeks prior to two power failures in Wells 3 and 6. The figure shows the declining trend of 

wellhead pressure within a day before failure for both wells. In addition, voltage spikes (surges) 

are seen in Well 3 beginning 0.78 days before failure. Similar trends are found for the Well 6 case, 

where the spikes start 2.9 days before the failure. Voltage surge is the rapid increase in voltage 

over a very brief period in a power system (Takacs, 2009). In addition, the motor current in Well 

3 exhibits an increasing trend three days before failure. Similar observation is made for Well 6, 

starting 2.8 days before the failure, exhibiting early warning signs of a problem that demands 

attention. 

 
Figure 3-5: Power Fail Specific Failure Effects on Motor Voltage, Current and Wellhead Pressure 

 

-14 -12 -10 -8 -6 -4 -2 0

TBF (Days)

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

-6 -5 -4 -3 -2 -1 0

M
o

to
r 

V
o

lt
ag

e,
 V

o
lt

s

TBF (Days)

Well 3

61

61.5

62

62.5

63

63.5

64

M
o

to
r 

C
u

rr
en

t,
 A

m
p

s

250

255

260

265

270

275

280

285

290

295

-6 -5 -4 -3 -2 -1 0

W
el

lh
ea

d
 P

re
ss

u
re

, p
si

TBF (Days)

346

347

348

349

350

351

352

353

-14 -12 -10 -8 -6 -4 -2 0

M
o

to
r 

V
o

lt
ag

e,
 V

o
lt

s

TBF (Days)

Well 6

23.5

24

24.5

25

25.5

26

26.5

M
o

to
r 

C
u

rr
e

n
t,

 A
m

p
s

0

100

200

300

400

500

600

W
el

lh
ea

d
 P

re
ss

u
re

, p
si



30 

 

3.3.2 SFMs Associated with Motor Failures: 

Most ESP motor failures are due to electrical issues (Alhanati et al., 2001). Based on the 

investigated field data, voltage/current unbalanced, motor overload, and high motor winding 

temperature are some of the motor related failures.  

The ESP motors utilized in this study are generally two-pole, three-phase AC induction 

motors, as detailed in Section 3.1. Since a three-phase power system is designed to function with 

the phases (Lines) balanced, phase imbalance occurs if one or more of the line-to-line voltages in 

the system are mismatched (Hughes, 2020). High current unbalance is caused by voltage unbalance 

at the motor terminals, which in turn increases vibration, causes the motor to overheat, and shortens 

its lifespan. An unstable utility supply, an improperly balanced transformer, an uneven distribution 

of single-phase loads on the same electrical system, or faulty wiring might all contribute to phase 

unbalance (Takacs, 2017). As shown earlier, motor failures account for 18% of all ESP operational 

failures. The trends in the acquired data prior to some of the ESP motor failures are shown in this 

section. 

i. Motor Overload: 

An overload specific failure happens when the motor draws an excessive amount of 

current, resulting in excessive power consumption. As a result, the motor may overheat, leading 

to motor damage (Alhanati et al., 2001). There are various factors that may contribute to an 

overload, including an improperly sized motor, an unexpectedly high fluid specific gravity raising 

the Total Dynamic Head (TDH) over the design value, and inconsistent motor voltage (Sawaryn 

et al., 2002). Figure 3-6 depicts wellhead pressure, motor current and motor temperature trends for 

two weeks prior to two cases of overload failures in Wells 3 and 10. The x-axis indicates the time 

before failure (TBF) in days. The figure shows the declining trend of wellhead pressure as failure 
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time approaches for both wells. Moreover, the motor current in Well 3 suddenly increases 3 days 

before failure. The trend is similar for Well 10, where the deviation begins 1.8 days before the 

failure. The motor temperature also rises as the failure approaches, beginning 2.7 days in advance 

for Well 10 case and 2.1 days before for Well 3. These wells may exhibit early warning signs of a 

problem that demands attention. 

 
Figure 3-6: Motor Overload Specific Failure 

 

ii. High Motor Temperature: 

A high motor temperature happens when excessive voltage supply or drawn motor current 

lead to overheating issues (Takacs, 2009). Overheating is a primary cause of motor failure, 

particularly when the motor is forced to work harder or is placed under an unexpected load. As the 

speed of the motor and, by extension, the rotation of the pump's shaft rises, the moving components 

get overheated due to the increased friction (Betonico et al., 2015). Figure 3-7 displays motor 

voltage, motor current, and motor temperature prior to two cases of motor temperature failure in 

50

100

150

200

250

300

350

-14 -12 -10 -8 -6 -4 -2 0

W
el

lh
ea

d
 P

re
ss

u
re

, p
si

TBF (Days)

Well 3

0

50

100

150

200

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

W
el

lh
ea

d
 P

re
ss

u
re

, p
si

TBF (Days)

Well 10

28

29

30

31

32

33

34

35

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

M
o

to
r 

Cu
rr

en
t,

 A
m

p

TBF (Days)

140

150

160

170

180

190

200

210

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

M
o

to
r 

Te
m

p
er

at
u

re
, °

F

TBF (Days)

54

56

58

60

62

-14 -12 -10 -8 -6 -4 -2 0

M
o

to
r 

Cu
rr

en
t,

 A
m

p

TBF (Days)

140

141

142

143

144

145

146

147

148

149

150

-14 -12 -10 -8 -6 -4 -2 0

M
o

to
r 

Te
m

p
er

at
u

re
,  

F

TBF (Days)



32 

 

Wells 8 and 1. The x-axis represents the TBF in days. The graph depicts the increasing trend of 

motor current as the failure time for both wells’ approaches. In addition, the motor voltage in Well 

8 surges rapidly 0.6 days before the failure. Similar observation is made for Well 1, where the 

deviation starts one day before the failure. As the failure nears, the motor temperature also begins 

to increase, starting 0.8 days before failures in both wells. These wells display early warning 

signals of a serious situation. 

 
Figure 3-7: High Motor Temperature Specific Failure 
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failure (TBF). The figure shows the rising trend of pump intake pressure as failure time approaches 

for both wells. Moreover, the motor current in Well 8 deviates from its regular pattern at 6.3 days, 

with a decreasing trend as the failure approaches. Similar observation is made for Well 9, where 

the deviation begins 1.8 days prior to the failure.  

 
Figure 3-8: Underload Specific Failure 
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Figure 3-9 displays motor voltage and motor current during the two weeks prior to two 

cases of high temperature cable failure in Wells 2 and 9. The x-axis represents the time before 

failure (TBF). The graph depicts a sharp increase in motor current around one day before the failure 

for both wells. In addition, the motor voltage deviates from its normal pattern and increases with 

many spikes 1.2 days ahead of the failure in Well 2 and one day prior to the failure in Well 9. 

 
Figure 3-9: High MTR Temperature Specific Failure 
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In sandy wells, system shutdown causes the solids to descend and settle on top of the pump, 

causing damage to the ESP's internal components. A hard/ rock start happens when an ESP is 

restarted with substantial quantities of sand laying on top of it, causing wear, reduced efficiency, 

and shorter run life. A broken shaft, motor burnout or an electrical failure owing to excessive 

current may come as results of this specific failure (Williams et al., 2003). 

Figure 3-10 depicts motor current during the two weeks prior to two cases of sand failure 

events in Wells 10 and 2. The x-axis indicates TBF in days. The graph illustrates the behavior of 

the motor current during multiple brief shutdowns and hard starts in Well 10. For Well 2, similar 

observations are made 1.7 days before the failure. These wells exhibit early warning signs of severe 

sand interference, which might lead to shaft failure with time. 

 
Figure 3-10: Plugged with Sand Specific Failure 
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vibration, and the system's electrical integrity (El Gindy et al., 2015). A sensor failure refers to a 

loss of communication with the ESP downhole assembly, which may be disastrous. Any electrical 

component failure in the ESP assembly, high temperature, hydrogen sulfide and carbonic acid 

corrosion may cause downhole sensors to fail (Medina et al., 2012). To mitigate sensor failure or 

malfunction, sensors must be designed to resist harsh downhole conditions (Medina et al., 2012). 

Figure 3-11 illustrates motor voltage during the two weeks prior to two sensor failure 

occurrences at Wells 5 and 6. The graph depicts motor voltage spikes worsening with time, 

beginning 2.8 days before the failure for Well 5 and 1.2 days before the failure in Well 6. For this 

SFM, the only variable with early symptoms is the motor voltage. 

 
Figure 3-11: Downhole Sensor Failure Specific Failure 
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severe vibration are cavitation, exceeding the critical speed, passing vane frequency, and operation 

outside of the optimal efficiency range. As a result, the pump's bearings deteriorate, enabling the 

shaft to bend and finally break. Due to the absence of vibration parameters, detecting the symptoms 

proceeding broken shaft failures is not possible based on the available data of this study. Hence, 

no broken shaft early warning signs were detected from the available data. 

 

3.3.4 SFMs Summary: 

Table 3-7 summarizes the described ESP specific failure modes with their early warning 

signs in the ESP parameters. The average time before the failure (TBF), when each sign starts to 

appear, is also included based on the ESP failure data of this study. These qualitative observations 

can be used as a general guideline to identify the ESP operational issues earlier and with less effort. 

Table 3-7: Each ESP SFM with their Early Warning Signs, Based on the Data of This Study 

SFM Early Signs 
Average TBF 

(Days) 

Standard 

Deviation of 

TBF 

Broken Shaft Vibration data not available - - 

High Motor Temperature 

Motor current increases 1.1 0.64 

Motor voltage increase 1.7 1.56 

Motor temperature increases 0.8 1.83 

High Cable Temperature 
Motor voltage increases 1.1 1.11 

Motor current increase 1 0.92 

Overload 

Wellhead pressure drops 3.1 1.22 

Motor current increase 2.4 0.53 

Motor temperature increase 2.4 0.94 

Plugged with sand Hard start followed by motor current spikes 2.5 0.66 

Power Fail 

Voltage spikes  1.85 1.35 

Current increases 2.9 0.91 

Wellhead pressure drops 0.7 1.45 

Sensor Failure Motor Voltage spikes and continue increasing 1.5 1.62 

Under Voltage 
Motor voltage drops  3.7 0.43 

Motor current Increases 1.4 0.75 

Underload 
Pump intake pressure increases  2.5 0.65 

Motor current decreases 3.9 0.59 
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3.4 Case Studies 

In this section, two specific case studies will be presented in detail to discuss the failures and 

their corresponding effects on the ESP and the well’s production. The ESP in Well #1 experienced 

electrical failure, specifically phase unbalance. Well #2, however, experienced electrical failures 

induced by overcurrent. Both cases share a common general reason for failure but have different 

underlying causes of failure. Each case includes the failed ESP's history, outcomes of the 

Dismantle Inspection and Failure Analysis (DIFA), and the underlying cause of failure.  

3.4.1 Well #1 Case Study 

A downhole ESP pump is being used to produce oil from this vertical oil well with API 

gravity of 29°, average liquid production of 2,200 BPD, 76% water cut, and a gas-oil ratio (GOR) 

of 545 SCF/bbl. This ESP was first installed and run in the well for 290 days (9 months). Figure 

3-12 depicts the wellbore schematic for Well #1. The system was suffering from unstable intake 

pressure (𝑃𝑖) and fluctuations in all running parameters (wellhead pressure, flowline pressure, 

Vibration, Amps, etc.). A week before the failure, the downhole sensor readings were lost, and the 

system tripped on overload after around eight hours. The preliminary cause of failure for this ESP 

was diagnosed as electrical failure resulting in a burn in the Motor Lead Extension (MLE) as seen 

in Figure 3-13. The rest of the system is still good. 
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Figure 3-12: Well #1 Wellbore Schematic 

 

During the DIFA, a hole was discovered on the housing at the 8th stage from the top. The 

housing was dismantled, and a severe wear was discovered on all stages, as well as a scale-like 

material on the outside of the diffuser, emulsion/foamy fluid on the outside of the top 16 diffusers, 

and a hole on the diffuser due to severe wear. Figure 3-14 shows the pictures of multiple stages 

with the above issues highlighted. With regards to electronics, the MLE cable was blown out 24 ft 

above the pothead, and the main power cable had a thick layer of scale-like material on it, as shown 

in Figure 3-13. Apart from the MLE cable, the cable was verified to be electronically sound. The 

rest of the system was also still functional. 
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Figure 3-13: MLE Cable Dismantle Findings (Well #1) 

 

 
Figure 3-14: Findings from the Dismantled Pump (Well #1) 
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Many factors contributed to the wear of the pump’s stages over its lifespan, including fluid 

type, scale/solids, backpressure, and down-thrust. The formation's scale-like material caused 

severe wear, resulting in power overload. Overload increased current draw, resulting in 

overheating and the cable blowing out. This wear caused a hole in the pump, and as a result, the 

MLE cable at the hole location was shorted. Table 3-8 summarizes the failure analysis results for 

Well #1 based on the DIFA report. The root cause of the failure in this situation was found to be 

the well’s Reservoir Performance. A workover was performed to selectively re-perforate the 

formation based on Pulsed Neutron Capture (PNC) log results for water saturation and 

hydrocarbon layers. The well was then re-completed with a new ESP.  

 

Table 3-8: Well #1 Failure Analysis Clarifications 

Reason for Pull – General: Electrical 

Reason for Pull – Specific: Phase Unbalance 

Primary Failed Item: ESP Cable 

Secondary Failed Item: Motor Lead Extension 

General Failed Descriptor: Electrical 

Specific Failed Descriptor: Short Circuit 

General Failure Cause: Reservoir or Fluids 

Specific Failure Cause: Reservoir Performance 

 

3.4.2 Well #2 Case Study 

A downhole ESP pump is being used to produce oil from a vertical oil well with API 

gravity of 30°, average liquid production of 3,000 BPD, 60% water cut, and a gas-oil ratio (GOR) 

of 428 SCF/bbl. This well was run with an ESP for 102 days (3 months). Figure 3-15 depicts the 

wellbore schematic for Well #2.  
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Figure 3-15: Well #2 Wellbore Schematic 

 

The well faced electrical failure due to overcurrent. During the pull out of hole (POOH) 

process, it was discovered that the pump shaft was stuck, the motor was unbalanced and grounded. 

In addition, the ESP cable was split and received in two parts. The lower side had satisfactory 

insulation resistance results, while the upper section suffered considerable mechanical damage 

during the POOH process, which damaged the cable's insulation layers. The remaining equipment 

were in good condition. 

The motor had two melted leads and was grounded, as shown in Figure 3-16. During the 

POOH, the cable suffered some mechanical damage, and its upper side had less insulation 

resistance, as shown in Figure 3-17. The impellers and sleeves of the pump showed radial wear, 
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as shown in Figure 3-18, with some fallback debris on the upper side. In addition, the pump stage 

washers had light upthrust wear.  

Table 3-9 summarizes the Failure Analysis results for Well #2, based on the DIFA report. 

The most likely root cause of failure was diagnosed as filter clogging with foreign material, 

resulting in reduced flow along the items inside the shroud and poor cooling. On the housing, there 

was an overheat warning, indicating that the Motor had overheated, resulting in electronic failure. 

As a result, a gravel pack was advised for installation. 

Table 3-9: Well #2 Failure Analysis Clarifications 

Reason for Pull – General: Electrical 

Reason for Pull – Specific: Overcurrent 

Primary Failed Item: ESP Motor 

Secondary Failed Item: Motor End Connectors (Y-point/Leads) 

General Failed Descriptor: Material 

Specific Failed Descriptor: Melted / Damaged 

General Failure Cause: Reservoir/Fluids 

Specific Failure Cause: Sand/ Mud 

 

 

Figure 3-16: Motor Dismantle Observations (Well #2). A) upper side terminal leads melted, B) upper side 

terminal leads cleaned out. 
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Figure 3-17: MLE Cable Dismantle   servati  s  Well # ), A) ca le’s exter al c  diti  ,  ) ca le ar  r’s 

c  diti  , C) a sp t i  the ar  r at 9  ’ fr      , D)  pe i   i  the ca le ar  r, the lead i sulati   

pressed. 

 

 
Figure 3-18:  u p Sta es Dis a tle Fi di  s  Well # ), A)  ase diffuser’s c  diti  ,  )  iddle diffuser’s 

c  diti  , C) head diffuser’s  ear, D) sleeve’s c  diti   at the head,  ) de ris f u d i  the pu p head  

 

3.5 The need for Machine Learning 

Due to a variety of factors such as large gas loads, elevated temperatures, and corrosive 

conditions, ESP output usually deteriorates steadily, eventually resulting in service interruption 

(Gupta et al., 2016b). Failure of an ESP has a significant financial impact due to lost production 

and replacement or intervention expenditures. In 2012, ESPs accounted for 49% of the $10.9 

billion artificial lift market, according to Spears & Associates (Donner et al., 2014). In a study, 
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GE Oil & Gas estimated the annual expense of both lost production and intervention due to ESP 

shutdowns. Their estimated cost of lost production was up to $3 million, while the cost of 

intervention could be up to $1 million per well per year (Carrillo, 2013). Their conclusions and 

findings are summarized Table 3-10. 

Table 3-10: Assumptions and Results from a GE Study on ESP failure costs (Carrillo, 2013) 

Lost production Costs 

Price of oil barrel $100 

Typical production 500 bbl/d 

Water cut 70% 

Estimated downtime 2 days 

Estimated incidents/year 10 

Estimated costs 500 bbl/d × 20 × 0.3 × $100 = $3MM 

Intervention Costs 

Onshore conventional wells $5K to $25K per intervention 

Onshore unconventional wells $150K to $250K 

Offshore wells Up to $1MM 

 

Due to such enormous costs for ESP failures, operators are progressively investing in real-

time monitoring systems that use the downhole data to track the ESP performance and provide 

alerts for tripping or failure occurrences. Unfortunately, such systems act only after an incident 

happens. Hence, there is a necessity to harness the huge amounts of data received in real time from 

ESP operations to build solutions that shift from a reactive to a proactive approach (Brulé, 2013). 

With both static and dynamic data being collected in real-time, the energy industry now has data-

driven approaches at its disposal to improve the efficiency of its operations (Bravo et al., 2014). 

These solutions aid in early detection of failures, identification of reasons, and recommendation 

of corrective actions (Gupta et al., 2016c). 

Operators may avoid failures, reduce downtime, and increase the lifetime of ESP’s by 

implementing analytical models to identify ESP failures. These models may be based on the first 

principal approaches incorporated into monitoring procedures, thereby supporting, and enhancing 

decision-making (Stone, 2007). Additional analytics-based Artificial lift monitoring models will 
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become viable in the future, assisting operators in their goal of shifting from reactive event-based 

maintenance to proactive predictive maintenance of artificial lift operations (Gupta et al., 2016c). 

Chapters 5 and 6 describe my attempt to reach this objective using the available tools of this study. 
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Chapter 4 ESP Reliability and Financial Evaluation 

 

This chapter discusses the ESP reliability analysis and the financial consequences of ESP 

failures. The probability of ESP failure is a crucial indicator in reliability studies. Accurate 

assessment and forecast of ESP failure probability aids in a better understanding of financial 

consequences and helps to prioritize a well's intervention requirements.  

 

4.1 ESP Reliability 

Mean time between failures (MTBF) quantifies the average time required for a system to 

fail. MTBF measurements may be used to evaluate the ESP performance, design, and reliability. 

The MTBF is defined as the arithmetic mean value of the reliability function, R(t), which may be 

written as the predicted value of the time till failure density function, f(t) (Birolini, 2018). 

 

𝑀𝑇𝐵𝐹 =  ∫ 𝑅(𝑡)𝑑𝑡 =
∞

0

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

0

 

Where 𝑅(𝑡) is the reliability function and f(𝑡) is the failure density function 

4-1 

𝑓(𝑡) =  𝜆𝑒−𝜆𝑡 

Where 𝜆 is the failure rate 

4-2 

 

 

For a given well, Equation 4-3 may be used to calculate the MTBF as the average time 

between consecutive failures. In addition, Equation 4-4 may be used to calculate the failure rate. 

𝑀𝑇𝐵𝐹 =  
∑(𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 –  𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑈𝑝𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑙𝑎𝑠𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠
  

4-3 
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𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 =  
1

𝑀𝑇𝐵𝐹
× 100  4-4 

 

The ESP’s MTBF trend for the 10 studied wells over the five-year period is shown Figure 

4-1. All wells have their maximum MTBF values initially, with times ranging between 46 and 354 

days. In 2017, Well 1 has the longest MTBF of 354.5 days, while the lowest was 46 days for Well 

6. The MTBF decreases with time, particularly in the third year of operation (2019), until it reaches 

its lowest value in 2021. In this year, Well 8 has the longest MTBF of 38 days, whereas Well 3 

has the shortest duration of 10.93 days. 

 
Figure 4-1:  S ’s    F f r All Wells Over 5 Years of Production 

 

The failure rates of ESPs in the 10 wells throughout the five-year production period are 

shown in Figure 4-2. The trends are inverse of the trends observed in the previous figure for MTBF. 

The failure rate increases each year until it reaches a peak of 12.6% in the fourth year (2020). The 

failure rates of Wells 6 and Well 7 are consistently greater than those of the other wells. 
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Figure 4-2: ESP Failure Rates with Time for the 10 Tested Wells 

 

In this chapter, I am focusing on wells 6 and 7 due to their higher failure rates. Figure 4-3 

depicts the general failure categories for Well 6, with electrical failures accounting for 80% of the 

failures, 15% for reservoir, and 5% for gas effects. Figure 4-4 shows the specific failure modes by 

subcategory. Power failure accounts for 71% of all SFMs, while the remaining 29% is almost 

evenly split across MTR cable, overload, undervoltage, and underload. 

 
Figure 4-3: Well 6 –  S ’s General Failure Modes Over the 5 Years of Production 
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Figure 4-4: Well 6 –  S ’s Specific Failure M des  SF ’s) Over the 5 Years of Production 

 

Figure 4-5 depicts the general failure categories for Well 7, with electrical failures 

accounting for 86% of the failures. Figure 4-6 shows the specific failure modes by subcategory, 

with power failure accounting for 72% of all SFMs, while overload is 15%, undervoltage is 9%, 

and overvoltage is 4%. 

 
Figure 4-5: Well 7 –  S ’s General Failures Over the 5 Years of Production 
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Figure 4-6: Well 7 –  S ’s Specific Failure Modes (SFM) Over the 5 Years of Production 

 

4.2 Weibull Analysis 

Failure data may be modelled using a wide variety of distributions, including normal, 

exponential, Rayleigh, Weibull, gamma, lognormal, and along with others (Sawaryn et al., 2002). 

Weibull Analysis is an efficient statistical data analysis technique for assessing the reliability 

features and trends of failure data. The two-parameter Weibull distribution is defined as follows 

(Sawaryn et al., 2002): 

𝑓(𝑡) =
𝛽

𝜂
 (

𝑡

𝜂
)

𝛽−1

𝑒
−(𝑥

𝜂⁄ )
𝛽

  

 

4-5 

Where 𝛽 is the shape factor, 𝜂 is the scale parameter, and t represents the value to be 

evaluated. The shape factor (𝛽 ) determines the distribution's behaviour. The failure rate drops 

with time if 𝛽 < 1, meaning that the ESP gets more trustworthy as it matures. Manufacturing or 

installation errors may be a cause of this. The failure rate increases if  𝛽 > 1, which is commonly 

due to pump wear. Finally, if 𝛽 =1, it denotes a consistent failure rate that is time independent. 

Based on the field data from the 10 wells, a Weibull model was built to estimate the 

probability of failure. The previously estimated MTBF values were utilized as inputs to the 

Weibull analysis model. The Weibull shape and scale parameters were estimated using Median 

Power Fail
72%

Overload
15%

Over Voltage
4%

Under Voltage
9%
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Rank Regression. Then the Weibull Probability plots were generated. These plots depict 

unreliability on a logarithmic scale, which is defined as the probability of failure (%) vs. time after 

the previous failure (days). The legend indicates the number of MTBF points (5 points for five 

years), Weibull parameter estimates (β and η), confidence limits (Beta-Binomial Bounds), and the 

degree of confidence (90%). 

Figure 4-7 and Figure 4-8 illustrate Well 6's and Well 7's unreliability plots, respectively. 

The Weibull line accurately fits the MTBF points in both plots with R2 values of 99.4% and 86.5%, 

respectively, and low p-values. The predicted Weibull parameters for Well 6 are β of 1.538 and η 

of 28. The 𝛽 > 1 value is a sign of pump wear and increasing failure rate with time. According to 

the plot, the ESP in Well 6 has a 50% probability of failure 20 days after the last failure, 75% 

probability of failure 35 days after it, and 90% probability of failure 75 days afterwards. The 

maximum probability of failure occurs 80 days after the previous failure with 99% probability. 

 
Figure 4-7: Weibull ProbabilityPlot of Well 6 
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From Figure 4-8, the predicted Weibull parameters for Well 7 are β of 0.835 and η of 52.87, 

a possible indicator of manufacturer errors. According to the plot, the ESP has a 50% probability 

of failure 32 days after the last failure, 75% probability of failure 65 days afterwards, and 90% 

probability of failure after 190 days. The maximum predicted failure probability occurs in 300 

days with 99% chance. Comparing both ESP wells, well 7 is more reliable than well 6, as the 90 

percent probability of failure occurs after 190 days vs. 75 days in well 6. The Weibull unreliability 

plots for the remaining wells are shown in Figure A-1 through Figure A-8 in appendix A. 

 
Figure 4-8: Weibull Probability Plot of Well 7 

 

4.3 Financial Evaluation of Well Interventions 

There are very few wells that can produce continuously from the time they are drilled until 

the time they are shut permanently. The system begins to fail when the pump, seals, tubulars, 
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sensors, and formation pressures deteriorate. Operators depend on well intervention to handle these 

issues. There are two general types of interventions, light and heavy. Workers descend equipment 

or sensors into a live well while maintaining surface pressure for minor operations. On the other 

hand, there are times when heavy interventions for large modifications in the well structure result 

in the well's suspension of production. 

Engineers must evaluate the expense of intervention against the benefit of greater oil 

production when deciding whether to intervene. Typically, intervention is prioritized for the well 

with the greatest oil production rate, providing additional revenue for the whole oil field. The field 

engineer usually creates a list to prioritize the intervention timetable for the down wells. These 

lists are constructed depending on the well's production rate, downtime duration, and needed well 

testing (if any) while waiting for the intervention. 

This section provides financial assessment methods for assessing the financial effect of 

ESP failure interventions and improvement decision making. Net cash flow, discounted cash flow, 

and net present value are the most common metrics to achieve these objectives. 

1. Net Cash Flow (NCF): 

The term "net cash flow" refers to the money gained after all costs have been met for a 

certain year or period. Annual NCF is calculated by subtracting cash outflows (costs) from cash 

inflow (revenue) over the course of a year (Equation 4-6). 

 

𝑁𝐶𝐹 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝐶𝑎𝑠ℎ 𝐼𝑛𝑓𝑙𝑜𝑤) − 𝐶𝑜𝑠𝑡 (𝐶𝑎𝑠ℎ 𝑂𝑢𝑡𝑓𝑙𝑜𝑤) 4-6 

Revenue is generated by the sale of crude oil, natural gas, or condensate, and other 

operations. Since this study is based on Kuwaiti assets, prices for the "Kuwait Export Blend 

(KEB)" over the past five years are used. The variation in the international market price of KEB 

is shown in Figure 4-9.  
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Figure 4-9: Kuwait Export Blend Prices ($/bbl) 

 

There are two types of costs: capital expenditure (CAPEX) and operating expenditures 

(OPEX). CAPEX refers to exploration and development expenses, whilst OPEX refers to the 

operational costs. The distribution of field expenditures, CAPEX and OPEX, is influenced by a 

company's strategy, project objectives, and reservoir type. Because the data of this study are from 

shallow vertical wells, the anticipated CAPEX and OPEX for each well are estimated as $4 million 

and $7 per barrel, respectively. 

2. Discounted Cash Flow (DCF): 

Discounted cash flow is a strategy for converting the time value of money to a present 

value reference by discounting net cash flows (Mian, 2011). The discounted cash flow at the end 

of the year is denoted by the following: 

𝐷𝐶𝐹𝑦 =
𝑁𝐶𝐹𝑦

(1 + 𝑖)𝑦
  

Where 𝑁𝐶𝐹𝑦 is the Net Cash flow at the end of year y. i is the discounted rate, while y is the number of years (y=0,1,2,…Y ) 

4-7 

3. Net Present Value (NPV): 

The net present value (NPV) of a project is the summation of its discounted yearly cash 

flows (Mian, 2011). The NPV is expressed as follows: 
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𝑁𝑃𝑉 = ∑ 𝐷𝐶𝐹𝑦

𝑌

𝑦=0

  

Where 𝐷𝐶𝐹𝑦 is the Discounted Cash flow at the end of year y. y is the number of years (y=0,1,2,…) 

 

4-8 

When the NPV is positive, there will be a return on the project. If the net present value of 

the project is negative, it indicates that cash inflow will be less than cash outflow. If the NPV 

equals zero, then the revenues and expenses are identical. The degree of risk involved with a 

project should be considered before making a decision. As a matter of corporate policy, 10% is the 

discount rate utilized to compute net present value in financial analysis.  

4. Lost Production and Intervention Costs: 

As explained in Section 3.5 and using the assumptions in Carrillo's (2013) GE Study on 

ESP failure costs (Table 3-10), the costs of lost production and intervention are computed. The 

cost of a workover is estimated to be $66,000 per day for a shallow vertical well. The cost of 

onshore intervention ranges between $5,000 and $25,000. Carrillo (2013) provided the following 

estimate for the cost of lost production: 

𝐿𝑜𝑠𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 ($) = 𝑂𝑖𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 × ∑ 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒  × 𝑂𝑖𝑙 𝑃𝑟𝑖𝑐𝑒 

Where Downtime is the duration of shutdown due to failure per year (days), Oil Production is in 

BPD, and Oil Price is in $/bbl 

4-9 

As shown earlier, Wells 6 and 7 have higher failure rates than the other wells. Their data 

are utilized in financial analysis to assess the intervention priority for these two wells with highest 

failure probabilities, distinct oil production rates and comparable mean times between failures. As 

seen in Figure 4-10, Well 7 produces more oil than Well 6, with around 3,500 bpd on average, 

compared to 950 bpd for Well 6. 
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Figure 4-10: A Comparison of the Oil Production Rates of Wells 6 and 7 

 

The cash flow diagrams of the two wells were created using Equation 4-9, 4-6, and 4-7. 

The cash flow of Well 6 is shown in Figure 4-11, where revenue declines year after year due to an 

increase in ESP failures in 2019 (3rd year of operation), leading to a shorter MTBF as explained in 

Section 4.1. As the MTBF decreases, the frequency of ESP failures increases, resulting in an 

increase in the cost of lost production and intervention costs. As a result, the NCF reduces over 

time because of increased expenses, as well as a decline in revenue. This results in an overall net 

present value (NPV) of $45.273 MM for Well 6. 

 
Figure 4-11: Well 6 Cash Flow Diagram 
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The cash flow for Well 7 is shown in Figure 4-12, where a similar pattern of revenue 

declines exists owing to the reduced production and an increase in ESP failures (shorter MTBF 

over time). Because of higher expenditures and a loss in revenue, the NCF decreases over time. 

This generates a total NPV of $143.210 MM for Well 7. 

 
Figure 4-12: Well 7 Cash Flow Diagram 

 

A Multi-Criteria Decision Analysis (MCDA) framework was used as a decision-support 

tool to assist in ranking wells for intervention. This technique acts as a prioritizing strategy, giving 

a systematic framework to objectively analyze issues and support the field engineer in making 

decisions. This strategy is very advantageous when used across an entire field including hundreds 

of wells that need intervention at the same time, with a limited number of intervention units/ 

workover rigs.  

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a subset of 

MCDA, was applied. This method selects the alternative with the lowest Euclidean distance to the 

ideal solution and the largest distance to the negative ideal solution. It is based on the relative 

weights and influences (positive or negative) of the specified factors.  
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The TOPSIS tool was applied to the ten oil wells on the assumptions that all wells need 

intervention concurrently and no well testing is necessary. Using the findings of the Weibull failure 

probability plots and the financial impact of well intervention, Figure 4-13 was constructed. A 

comparison of the net present values (NPV), times of 90% unreliability, and anticipated oil 

productions of all wells is shown in Figure 4-13. 

 
Figure 4-13: Prioritization Factors for Well Interventions 

 

A multiple linear regression model (Least Squares method) was run to determine the weight 

of each of the introduced factors. Multiple linear regression investigates the linear connection 

between the dependent variable and independent variables. The dependent variable is NPV, and 

the independent variables are unreliability time and anticipated oil production. Coefficients are 

produced with high R2 and adjusted R2 values of 86% and 82%, respectively, and a low p-value, 

as summarized in Table 4-1.  

Table 4-1: Multiple Linear Regression Results 

Independent 

Variables 
Coefficient 

Standard 

error 
t P>|t| [0.025 0.975] 

Time @ 90% 

Unreliability 

(days) 

-0.0276 0.059 -0.467 0.653 -0.164 0.109 

Anticipated Oil 

Production, BPD 
0.0452 0.01 4.304 0.003 0.021 0.069 
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The anticipated oil production is proportional to the NPV, due to the significant influence 

of future revenue on NPV growth. The decision criteria are as follows: wells with a greater net 

present value, a higher anticipated oil production rate, and a shorter period for 90% unreliability 

are prioritized. Using the TOPSIS ranking approach, wells are ranked according to the specified 

decision criteria. The proposed intervention sequence for the wells of this study is depicted in 

Figure 4-14. 

 
Figure 4-14: Wells Intervention Sequence 

 

Based on the well intervention ranking tool, the field engineer may decide to prioritize the 

well with the greatest net cash flow for future intervention before others. The recommended 

intervention sequence is dictated by the Well's NPV and unreliability. To further customize the 

well intervention ranking tool for a specific field, additional information is required, such as the 

availability of intervention units/workover rigs on the field, possible need for well testing, the 

well's location (constructed or unconstructed roads), the weather conditions (such as sandstorms), 

and the wellsite's readiness for intervention unit/rig (surface lines are disconnected).  

Well 7 Well 1 Well 3 Well 6 Well 4

Well 5 Well 8 Well 2 Well 9 Well 10
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Chapter 5 Data Analytics Design 

 

Chapter 5 presents a set of machine learning models (ML) to handle the high frequency (1-

minute frequency) of ESP operational data and transform them into actionable information to 

predict failures. These models allow petroleum engineers to detect problems early, diagnose 

potential causes, and propose preventative actions. The models are based on field data gathered 

from the surface and downhole ESP monitoring equipment over five years of production of 10 

wells.  

Developing and implementing a machine learning model involves several stages, as shown 

in Figure 5-1. Problem definition, raw data acquisition, data pre-processing and preparation, the 

construction of various ML models, and introducing the performance metrics are among the ML 

stages covered in this chapter. In Chapter 6, the evaluation results for each constructed ML model 

are presented and thoroughly analyzed. 

 
Figure 5-1: Machine Learning Model Workflow 

 

5.1 Data Exploratory Analysis 

A preliminary analysis of the ESP operational data shows several interesting trends. First, 

graphing each variable against time to visualize the data and failure trends is necessary. The 

wellhead pressure in Figure 5-2 exhibits standard patterns over one year of an oil well’s flow, with 

noticeable spikes owing to ESP pump failure. The analysis is focused on these spikes since they 
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reflect the ESP failure mechanisms that must be recognized, studied, and forecasted. This pattern 

is reproduced for all the other ten variables across all the wells.  

 
Figure 5-2: Wellhead Pressure with Time (Well #1) 

 

Figure 4-3 provides a statistical summary of the analysed data in this study using boxplots. 

The plots show a few extreme values that may indicate pump failures and need to be included in 

the data evaluation. As a result, the dataset includes a substantial number of outliers that have not 

been eliminated to capture all the data trends during ESP failures. 

 
Figure 5-3: Boxplots of ESP Data Variables 
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A matrix scatter plot showing the relationships between a few of the measured quantities 

is shown in Figure 5-4. While the relationships are not necessarily linear, there is some association 

between the variables. For a qualitative analysis of the relationship between the ESP variables, a 

correlation matrix was created, as shown in Figure 5-5. 

 
Figure 5-4: Scatter Plots of ESP Data Variables. a) Flowline Pressure vs. Wellhead Pressure, b) Pump 

Discharge Pressure vs. Wellhead Pressure, and c) Motor Voltage vs. Motor Frequency. 

 

Figure 5-5 depicts a significant positive correlation between the wellhead pressure and the 

discharge pump pressure, flowline pressure, motor temperature, and motor frequency. The 

flowline pressure, on the other hand, shows a strong positive correlation with the motor frequency, 

pump’s intake and discharge pressures, suction temperature, and motor temperature. There is also 

a strong positive correlation between the motor voltage and motor frequency. Motor frequency is 

shown to be strongly related to the pump’s suction and discharge pressures and temperatures. 

Overall, there are no variables with zero correlation (all positive values), and all the parameters 

are correlated to some degree. 
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Figure 5-5: ESP Variables Correlation Heatmap Matrix 

 

5.2 Data Pre-processing  

The initial stage in developing a machine learning model is data preparation, which serves 

as a kick-off. High-frequency data are commonly imprecise, inconsistent, erroneous, and devoid 

of specific attribute values. As a result, data preparation is introduced, assisting in cleaning, 

organizing, and classifying raw data before usage by the machine learning models. 

Missing values are a severe concern in any dataset and can considerably impact the model's 

quality. Frequently, they are NaNs, blanks, or other notations. Many missing values were identified 

and eliminated in this research, while ensuring no valuable information was eliminated. Most of 

the removed data occurred when the variable speed drive (VSD) stopped capturing high-frequency 

data due to operational concerns. The second most significant issue that arises during data analysis 

is outliers. An outlier is an observation that deviates from the overall trend. However, the outliers 

in this study represent the ESP failure modes that must be kept, identified, studied, and forecasted. 

The train-test splitting technique is used in this research to evaluate the performances of 

machine learning algorithms when applied to data not used to train the model. This technique 

assists in comparing the effectiveness of machine learning algorithms when faced with a predictive 
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modelling task. At this study, the data was stratified and divided into training and testing datasets, 

with 80 % of the data used to train the models and the remaining 20 % used to test them.  

Machine learning methods perform better when numerical input variables are scaled to a 

normal distribution. Normalization is a data organization technique used to organize the data in a 

database without changing the original data distribution. It minimizes duplication and evenly 

weighs each variable, guaranteeing that no variable dominates model performance because of 

greater values. It separately adjusts each input variable to the 0-1 range, while preserving value 

range variations. Hence, data normalization was performed on the entire dataset using the MinMax 

approach.  

Using hyperparameters enhances the performance of machine learning (ML) models; 

hence, GridSearchCV was also used to optimize hyperparameters. Grid Search-Cross Validation 

is a strategy that attempts all conceivable parameter value combinations (Grid Search) and delivers 

the optimum hyperparameters to improve the model performance. When training a model, 

GridSearchCV not only employs Grid Search, but it also does the cross-validation (K-Fold cross-

validation). The K-Fold cross-validation shuffles the data randomly, divides the training dataset 

into K folds (5 folds), and then trains the model K times, each time excluding a different fold from 

the training data and utilizing it as a validation set. Consequently, the tuned parameters are used 

to construct the ML model. The ML model was then evaluated using the test dataset to assess the 

performances of the ML algorithms. 

 

5.3 Features Generation 

Generating physical features is essential for the machine learning model to develop a 

hybrid failure prediction approach and account for the physical aspects of ESP operations. This 
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study investigates the gas interference in the ESP system and evaluates pump performance based 

on the field data. After highlighting the impact of free gas on ESP performance (Section 2.4), this 

section describes the methods used to estimate the gas volumetric fraction at the intake conditions 

and details the pump efficiency calculations. A detailed technique is described for estimating the 

fluid properties based on the field data and using it to calculate the gas void fraction in the pump. 

For the ESP efficiency estimation, the general form of pump efficiency (Takacs, 2017) is 

defined as:  

𝜂𝑝𝑢𝑚𝑝 =
𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝐻𝑜𝑟𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 (𝐻𝐻𝑃)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑝𝑢𝑡 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
× 100 

5-1 

𝐻𝐻𝑃 = 7.37 × 10−6𝑄𝑜𝐻𝑟𝑒𝑞𝛾𝑜 5-2 

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑝𝑢𝑡 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = 𝑀𝑜𝑡𝑜𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑀𝑜𝑡𝑜𝑟 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 × 1.341 5-3 

Where HHP and total input electrical power are expressed in horsepower (HP), oil flow 

rate (𝑄𝑜) is expressed in BPD, and 1.341 is a conversion factor to convert kW to HP. Additionally, 

the motor current (𝐼𝑚) is expressed in Amperes (A) and the motor voltage (𝑉𝑚) is expressed in 

Volts (V). 𝐻𝑟𝑒𝑞 is defined as follows: 

𝐻𝑟𝑒𝑞 =
∆𝑃𝑝

0.433 𝛾𝑜 
 

5-4 

By rearranging Equation 5-4 and substituting Equation 5-2, 5-3, and 5-4 into Equation 5-1, 

the efficiency of the ESP pump becomes: 

𝜂𝑝𝑢𝑚𝑝 =
7.37 × 10−6𝑄𝑜∆𝑃𝑝

0.433 × 1.341 ×  𝐼𝑚𝑉𝑚
× 100 5-5 

 

The daily production data were utilized to calculate the efficiency of the ESP pump using 

Equation 5-5. 
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As discussed in Chapter 2 (Section 2.4), when evaluating pump performance in multiphase 

flow, the Turpin correlation is a commonly utilized correlation. This correlation was used to 

analyze the ESP data in this research. Estimating the Turpin correlation (ɸ) parameter (Equation 

5-9) requires the gas volumetric flow rate at the pump intake (𝑞𝑠), liquid volumetric flow rate at 

the pump intake (Q), and the gas volumetric fraction (𝜆𝑐). Under the pump intake conditions, these 

parameters can be estimated as follows: 

𝑞𝑠 =
𝑄𝑜 (𝐺𝑂𝑅 − 𝑅𝑠)𝐵𝑔

5.615
  

Where 𝑞𝑠 is the free gas rate in RB/D, 𝑄𝑜 in STB/D, GOR and 𝑅𝑠 in SCF/STB, and 𝐵𝑔 in ft3/SCF. 

5-6 

𝑄 = 𝑄𝑜 𝐵𝑜 

Where Q is the oil rate in RB/D and 𝐵𝑜 in RB/STB 

5-7 

𝐺𝑉𝐹 =  
𝑞𝑠

𝑞𝑠 + 𝑄
× 100 = 𝜆𝑐 5-8 

Φ =
2000 𝑞𝑠

3 𝑃𝑖𝑄
 

Where Φ is in psi-1 

𝛷 < 1 indicates stable operating region, and 𝛷 > 1 indicates unstable operating region (severe gas 

interference) 

5-9 

In order to evaluate gas interference in the pump, a set of fluid properties are required. 

These properties are determined based on the field data, as described below. 

5.3.1 Fluid Characteristics Estimation 

The ESP data were obtained from wells classified as black oil reservoirs (Figure 5-6). 

Hence, Black oil models were used to estimate in-situ fluid properties. The range of physical 

parameters utilized as inputs is shown in Table 3-2. These parameters are used to calculate the 

fluid properties at pressures above and below the bubble point. Each of the fluid characteristics 

listed below is assessed at ESP’s intake pressure, 𝑃𝑖, and temperature, 𝑇𝑖. 
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Figure 5-6: Typical Black Oil Model Phase Diagram (Ahmed, 2010) 

 

Several correlations are used to compute the oil formation volume factor (𝐵𝑜) in a black oil 

reservoir. Standing (1947) developed one of the most widely used correlations for determining Bo 

using the fluid temperature, solution gas-oil ratio at bubble point pressure, and oil and gas gravities. 

This method yields accurate results at pressures above the bubble point. Numerous following 

researchers, most notably Velarde (1996), attempted to enhance the Standing correlation by 

considering pressures below the bubble point (𝑃 < 𝑃𝑏). Standing (1981) and Velarde (1996) both 

assert that the oil formation volume factor (𝐵𝑜) is strongly related to the solution gas-oil-ratio (𝑅𝑠), 

reservoir temperature (𝑇𝑟𝑒𝑠), gas specific gravity (𝛄𝑔), and oil API gravity. The following fluid 

properties were derived using the field data listed in Table 3-1. 

i. Determination of Solution Gas Oil Ratio (Rs): 

The solution gas-oil ratio (𝑅𝑠) or gas solubility refers to the quantity of gas dissolved in 

oil. It ranges between 0 to nearly 2,000 SCF/ STB in black oil systems. At a given reservoir 

temperature, solution gas-oil ratio stays constant at pressures greater than the bubble point pressure 

(𝑃 > 𝑃𝑏), indicating that all accessible gases are dissolved in the oil and the gas solubility is at its 
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maximum value (𝑅𝑠 = 𝑅𝑠𝑖). When the pressure drops below 𝑃𝑏, the gas starts to evolve from the 

solution, increasing its saturation and decreasing the RS value, as illustrated in Figure 5-7. 

 
Figure 5-7: Typical Solution Gas-Oil-Ratio Diagram (Ahmed, 2006) 

 

The solution gas-oil ratio below 𝑃𝑏 is estimated using the Velarde (1996) correlation. First, 

the reduced pressure (𝑃𝑟)  and the reduced solution gas-oil-ratio ( 𝑅𝑠𝑟 ) are calculated using 

Equation 5-10 and Equation 5-11, respectively.  

𝑃𝑟 =  
𝑃𝑖

𝑃𝑏
 

5-10 

𝑅𝑠𝑟 =  𝑎1𝑃𝑟
𝑎2 + (1 − 𝑎1)𝑃𝑟

𝑎3 
5-11 

Where 𝑃𝑟  is dimensionless, 𝑅𝑠𝑟 is in SCF/STB, and 𝑎1, 𝑎2, and 𝑎3 are as follows: 

𝑎1 = 9.73 × 10−7 𝛾𝑔
1.672608 𝐴𝑃𝐼0.929870𝑇𝑖

0.247235𝑃𝑏
1.056052 

5-12 

𝑎2 = 0.022339 𝛾𝑔
−1.00475 𝐴𝑃𝐼0.337711𝑇𝑖

0.132795𝑃𝑏
0.302065 5-13 

 

𝑎3 = 0.725167 𝛾𝑔
−1.485480 𝐴𝑃𝐼−0.16471𝑇𝑖

−0.091330𝑃𝑏
0.047094 

5-14 

Where 𝛾𝑔 and 𝐴𝑃𝐼 are the gas specific gravity and oil gravity, respectively 

𝑇𝑖  : Pump suction temperature (°F), 𝑃𝑏: Bubble point pressure (psi) 
 

Equation 5-11 is used to determine the reduced solution gas-oil-ratio at any 𝑃𝑖 < 𝑃𝑏 . After 

calculating the 𝑅𝑠𝑟 , the solution gas-oil-ratio (𝑅𝑠), SCF/STB, is determined using Equation 5-15. 

The 𝑅𝑠𝑏 (SCF/STB) is the solution gas-oil-ratio at bubble point pressure. To determine the 𝑅𝑠, the 
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𝑅𝑠𝑏 must be calculated. Standing’s (1947) correlation was used to determine the solution gas-oil-

ratio at bubble point pressure (Equation 5-16). 

𝑅𝑠 =  𝑅𝑠𝑟 𝑅𝑠𝑏 
5-15 

𝑅𝑠𝑏 = 𝛾𝑔 [(
𝑃𝑏

18.2
+ 1.4) 10(0.0125𝐴𝑃𝐼−0.00091𝑇𝑖)]

1.2048

 5-16 

 

ii. Determination of Oil Formation Volume Factor (Bo): 

The amount of oil at reservoir pressure and temperature required to produce one stock tank 

barrel of oil is referred to as the oil formation volume factor ( 𝐵𝑜 ). Because oil is slightly 

compressible, the 𝐵𝑜 slightly increases as the reservoir pressure declines due to liquid phase 

expansion at 𝑃 > 𝑃𝑏. When the 𝑃 < 𝑃𝑏, the 𝐵𝑜decreases due to gas phase evolution, as illustrated 

in Figure 5-8. 

 

Figure 5-8: Typical Oil Formation Volume Factor Diagram (Ahmed, 2010) 

 

For pressure above the bubble point, 𝑃𝑖 >  𝑃𝑏 , the oil formation volume factor ( 𝐵𝑜)  is 

estimated using Standing’s (1947) correlation: 

𝐵𝑜 =  𝐵𝑜𝑏 𝑒𝑥𝑝{−𝐶𝑜 (𝑃𝑖 − 𝑃𝑏)} 
5-17 
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Where 𝐵𝑜𝑏 is the formation volume factor at bubble point (RB/STB), and 𝐶𝑜 is the oil 

compressibility (𝑝𝑠𝑖−1). The Vazques-Beggs (1980) empirical correlation was used to determine 

the oil compressibility, 𝐶𝑜 : 

𝐶𝑜 =
−1433 + 5𝑅𝑆 + 17.2𝑇𝑖 − 1810 𝛄𝑔 + 12.61 𝐴𝑃𝐼

105𝑃𝑖
 

5-18 

Where 𝑅𝑠  is equal to 𝑅𝑠𝑖  (SCF/STB) at 𝑃𝑖 >  𝑃𝑏 . For pressures below the bubble point, 

𝑃𝑖 <  𝑃𝑏, the oil formation volume factor (𝐵𝑜) is estimated using Velarde (1996) correlation: 

𝐵𝑜 = 1.023761 + 0.000122 [𝑅𝑆
0.413179 𝛾𝑔

0.210293𝐴𝑃𝐼0.127123 +

0.019073𝑇𝑖]
2.465976

  
5-19 

where the solution gas-oil-ratio, 𝑅𝑠, (SCF/STB) is described by Equation 5-15. Thus, the 𝐵𝑜 is a 

function of pressure, temperature, gas solubility, and the bubble point pressure. 

iii. Determination of Gas Formation Volume Factor (Bg): 

To estimate the free gas formation volume factor (𝐵𝑔) for the Black oil reservoirs (Equation 

5-29), the following parameters must be estimated: the gas compressibility factor (z) using the 

Brill and Beggs (1991) correlation (Equation 5-20), the pseudocritical properties (Ppc and Tpc) 

using the Brown et al. (1948) correlation (Equation 5-25 and 5-26), and pseudoreduced properties 

(Ppr and Tpr) using Standing and Katz (1942) correlation (Equation 5-27 and 5-28). These equations 

are as follows: 

𝑧 = 𝐴 + (1 − 𝐴)𝑒−𝐵 + 𝐶 𝑃𝑝𝑟
𝐷  

5-20 

𝐴 = 1.39(𝑇𝑝𝑟 − 0.92)
0.5

− 0.36 𝑇𝑝𝑟 − 0.1 
5-21 

𝐵 = (0.62 − 0.23 𝑇𝑝𝑟)𝑃𝑝𝑟 + [
0.066

𝑇𝑝𝑟 − 0.86
− 0.037] 𝑃𝑝𝑟

2 +
0.32𝑃𝑝𝑟

2

109 (𝑇𝑝𝑟−1)
 

5-22 
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C = 0.132 − 0.32 log10(𝑇𝑝𝑟) 
5-23 

𝐷 = 10(0.3106−0.49𝑇𝑝𝑟+0.1824 𝑇𝑝𝑟
2) 

5-24 

𝑃𝑝𝑐 = 709.604 − 58.718 𝛾𝑔 

Where 𝑃𝑝𝑐 in psi. Valid for H2S < 3%, N2 < 5%, and total content of inorganic compounds < 7%. 

5-25 

 

 

𝑇𝑝𝑐 = 170.491 + 307.344 𝛾𝑔 

Where 𝑇𝑝𝑐 in ᵒR. Valid for H2S < 3%, N2 < 5%, and total content of inorganic compounds < 7%. 

5-26 

 

 

𝑃𝑝𝑟 =
𝑃𝑖

𝑃𝑝𝑐
 

Where 𝑃𝑖  is the pump intake pressure, psi 

5-27 

 

 

𝑇𝑝𝑟 =
𝑇𝑖

𝑇𝑝𝑐
 

Where 𝑇𝑖  is the pump suction temperature, ᵒR (ᵒF+460=ᵒR) 
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𝐵𝑔 = 0.0283 
𝑧𝑇𝑖

𝑃𝑖
 

Where 𝐵𝑔in ft3/SCF 
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5.4 Modelling Approach 

This section addresses the machine learning approaches used to fulfil the research goals. 

The objective is to enable computers to detect patterns within the data and utilize it as a basis for 

predicting ESP failures. The research aimed to use ESP labelled datasets as inputs to predict 

multiple specific failure modes (SFM). A supervised multi-class classification model was used. 

The following sections detail the construction and description of the five modelling designs 

developed, as presented in Figure 5-9. These designs differ in the input variables that are used to 

train the models. Next, the ML models constructed for all the designs and validated using the 

performance measures are detailed. The best model with the highest accuracy in forecasting ESP 

Failures was then identified. The results and discussions are presented in Chapter 6. 
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Figure 5-9: The Categories of Machine Learning Designs Constructed 

 

5.4.1 Design A 

Design A made use of all the ESP variables listed in Table 3-1. No changes were made in 

the data before the analysis. All these data give insight into the pump's motor efficiency, wellhead, 

and surface parameters, as well as the downhole pump’s performance.  

 

5.4.2 Design B 

In Design B, the objective was to introduce physics into the analytical approach and reduce 

the number of variables. Several changes were made to the dataset utilized in design A. Pressure 

and temperature differences were calculated and used to replace the original parameters. Table 5-1 

presents the calculated variables for Design B. All the original data were eliminated from the 

analysis except the motor frequency. The analysis must consider the speed of the motor, which is 

reflected in motor frequency. 
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Table 5-1: Design B - Utilized Variables 

Calculated Variable Relationship Representing 

∆𝑷𝒑𝒖𝒎𝒑 𝑃𝑑 − 𝑃𝑖 Pressure difference in pump, psi 

∆𝑷𝒕𝒖𝒃𝒊𝒏𝒈 𝑃𝑑 − 𝑃𝑤ℎ Pressure loss in tubing, psi 

∆𝑷𝒇𝒍𝒐𝒘𝒍𝒊𝒏𝒆 𝑃𝑤ℎ − 𝑃𝑓𝑙  Pressure loss in flowline, psi 

∆𝑷𝒂𝒏𝒏 𝑃𝑖 − 𝑃𝑐𝑠𝑔 Pressure loss in annulus, psi 

OP. Temp 𝑇𝑚 − 𝑇𝑖 Operating Temperature, °F 

Motor Frequency From VSD Motor frequency, Hz 

 

5.4.3 Design C 

To get a better understanding of the relationship between 𝜂𝑝𝑢𝑚𝑝 and GVF, as well as their 

influence on ESP failure prediction, Design C was developed. This design is a classification model 

that predicts the SFM using the GVF and 𝜂𝑝𝑢𝑚𝑝 as input variables, among other factors. Design C 

makes use of all the ESP variables listed in Table 3-1, in addition to 𝜂𝑝𝑢𝑚𝑝 (Equation 5-5) and 

GVF (Equation 5-8). In essence, it adds these two variables to Design A. 

5.4.4 Design D 

Design D, like Design B, seeks to incorporate physics into the analytical approach and 

reduce the number of variables compared to Design C. The input variables of this design are 

indicated in Table 5-2. They include the variables from Design B, coupled with the computed 

pump efficiency (Equation 5-5), and GVF (Equation 5-8) to serve as this model's input variables. 

Table 5-2: Design D-Input Variables 

Input Variables 

∆𝑃𝑝𝑢𝑚𝑝 

∆𝑃𝑡𝑢𝑏𝑖𝑛𝑔 

∆𝑃𝑓𝑙𝑜𝑤𝑙𝑖𝑛𝑒  

∆𝑃𝑎𝑛𝑛 

OP. Temp 

Input Electrical Power 

Motor Frequency 

GVF % 

Pump Efficiency % 
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5.4.5 Design E 

In Design E, the ESP-labelled datasets were utilized as inputs, and a supervised regression 

model was employed to forecast the pump efficiency (𝜂𝑝𝑢𝑚𝑝). Daily production and ESP data 

were used to estimate the fluid properties, as discussed in Section 5.3.1, and determine the pump 

efficiency (𝜂𝑝𝑢𝑚𝑝 ). The estimated GVF was combined with the production and ESP data to 

provide the input for the regression model, as shown in Table 5-3. Next, several ML models were 

constructed and validated using the regression performance measures. The best model with the 

highest accuracy to predict the output variable (pump efficiency) was identified. 

 Table 5-3: Design E-Input Variables 

Variables Description 

MOT_FREQ Motor frequency, Hz 

∆𝑷𝒑𝒖𝒎𝒑 Pressure difference in pump, psi 

∆𝑷𝒕𝒖𝒃𝒊𝒏𝒈 Pressure loss in tubing, psi 

∆𝑷𝒇𝒍𝒐𝒘𝒍𝒊𝒏𝒆 Pressure loss in flowline, psi 

∆𝑷𝒂𝒏𝒏 Pressure loss in annulus, psi 

OP. Temp Operating Temperature, °F 

I_MOTOR Motor current, Amps 

V_MOTOR Motor voltage, Volts 

GVF Gas Volumetric fraction, %  

𝑸𝒐 [bbl/d] Oil production rate, BPD, low frequency data (daily) 

 

5.5 Prediction Periods Determination 

The goal of this study was to predict the specific failure modes of the ESP before they 

occur. The research tested several prediction periods to train the classifier and predict the given 

SFM’s before they happen. The prediction period is defined as the time duration before the failure 

occurs when the model predicts the failure. It is reasonable to assume that forecasting true failure 

becomes more difficult as the prediction period lengthens (Khabibullin et al., 2020). In order to 

avoid over or under engineering, the selection of the right prediction period is crucial. Early repair 
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and maintenance may help minimize downtime and production losses due to ESP failure by early 

diagnosis and implementing suitable action plans. Longer prediction periods, however, may lead 

to excessive maintenance costs and resources (Takacs, 2017), and lower reliability of the failure 

predictions due to higher rates of false alarms. To use the machine learning models in the most 

efficient way, one must first find the optimal prediction period. 

The ideal prediction period depends on the type of the ESP failure. In some cases, little to 

no early signs may be observed in the data prior to the failure. In some other cases, the symptoms 

can be captured in the data long before the failure is detected at the surface, as summarised in 

Table 3-7. These early warning indicators may show that the system is losing its efficiency. 

Therefore, ML models are used to aid in distinguishing the actual ESP failures from false alarms. 

A field engineer's judgment on the type of failure is the final arbiter of the reasonable time frame 

for early failure prediction, based on the field history and the availability of resources.  

In this study, all designs were used with prediction periods (PP) of three hours, one day, 

and three days. In addition, durations of 5 and 7 days were examined only for design A and 

analyzed, as detailed in Section 6.1.1. 

 

5.6 ML Algorithms  

Several ML models were constructed for each design and validated using the performance 

measures. The best model with the highest accuracy to forecast the ESP Failure was identified. 

The supervised classification and regression models investigated are as follows (Pedregosa et al., 

2011):  

1. Random Forest (RF): The RF employs several decision trees on distinct subsets of a given 

dataset and averages them to enhance the dataset's prediction accuracy. 
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2. Decision Tree (DT): In DT, the dataset is divided into groups depending on the values of 

each attribute. The “Decision Node” and the “Leaf Node” are the two nodes. Decision 

nodes are used to make decisions and have many branches, while Leaf nodes result from 

such decisions and have no more branches. 

3. Multilayer Perceptron (MLP) Neural Network: The MLP is a deep learning artificial neural 

network that generates outputs from a set of inputs. Multiple layers of input nodes are 

linked as a directed graph between the input and output layers. MLP uses backward 

propagation of errors to train the network. 

4. K-Nearest Neighbor (KNN): Despite its simplicity, the K-neighbors is the most extensively 

used and straightforward technique. The KNN algorithm is a data categorization approach 

that calculates the likelihood that a data point will belong to one of two groups based on 

the involvement of the data points closest to it. The appropriate K value is a user-defined 

constant, strongly depending on the data. 

5. Multinomial Logistic Regression (LR): The LR is a classification technique that assigns 

data to a set number of classes. Probability values are generated from its output using the 

logistic sigmoid function. 

6. Gaussian Naive Bayesian Classification (GNB): In the case of GNB, each class is assumed 

to have a normal distribution. Predictive modeling may benefit significantly from this 

approach, despite its simplicity. 

7. Support Vector Regression (SVR): Similar to the support vector machine (SVM), the SVR 

predicts discrete values. It is the primary goal of SVR to discover the hyperplane with the 

greatest number of points. 



78 

 

8. Least Absolute Shrinkage and Selection Operator (LASSO): LASSO is a linear regression 

approach that employs variable selection and regularization to increase the accuracy and 

interpretability of the prediction. It employs L1 regularization, which penalizes coefficients 

in accordance with their absolute magnitude. 

9. Ridge Regression: Ridge method is a way to create a parsimonious model when the number 

of predictor variables in a set exceeds the number of observations, or when a data set has 

multicollinearity. It employs L2 regularization, which applies an L2 penalty equal to the 

square of coefficient magnitude. 

10. Polynomial Regression: In this method, the relationship between the independent variable 

x and the dependent variable y is modeled as an nth-degree polynomial in x. 

 

5.7 ML Performance Metrics 

Performance metrics are critical components of every machine learning model. They aid in 

evaluating the model's performance and monitoring the system (Grandini and Visani, 2020). This 

section discusses the performance metrics used to evaluate multi-class classification and regression 

models. The results of this section are presented and discussed in Chapter 6. 

 

5.7.1 Multi-class Classification Metrics 

The objective is to develop and choose a highly accurate model to predict ESP specific 

failure modes (SFM’s). Several classification metrics were used to analyze the model and evaluate 

its performance. The classifications metrics are as follows: 

1. Normalized Confusion Matrix: The normalized confusion matrix was constructed to 

analyze and illustrate the outcomes of the machine learning model. As illustrated in 
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Figure 5-10, each column represents the model's SFM predictions, while each row 

represents the actual SFM classifications in the data. Dividing a row element by the total 

number of the whole row produces the normalized confusion matrix. Therefore, the final 

normalized matrix indicates the class making the best forecast for a true label.  

 
Figure 5-10: Multi-class Classification Confusion Matrix 

 

2. Precision: Precision indicates the proportion of correct predictions genuinely belong to 

a specific class. A model with a high precision does not produce too many false alarms. 

Table 5-4 shows the numerical definitions for all the parameters. 

3. Recall: Recall expresses the ratio of correct positive predictions produced from all 

positive instances in a dataset. A model with a high recall, does not miss many positive 

occurrences 

4. F1 Score: The F1 Score is the mean of precision and recall. It accounts for both false 

positives and false negatives. As a result, it performs well on an imbalanced dataset. 

When both Precision and Recall are low, a model has a low F1 score, and a high F1 score 

is achieved when both Precision and Recall are high. 

A

B

C

A B C

A
c
tu

a
l 

C
la

ss

Predicted Class



80 

 

Table 5-4: Typical Classification Metrics Description (Pedregosa et al., 2011) 

Metrics Descriptions 

Precision = TP / (TP + FP), a trade-off value to Recall. 

Recall = TP / (TP + FN), a trade-off value to Precision. 

F1 Score = 2TP / (2TP + FP + FN), a balanced metric between Precision and Recall. 

*TP: True Positive, TN: True Negative, FP: False Positive, and FN: False Negative 

 

5. Cohen’s Kappa Statistic (κ): Cohen's kappa is a statistical measure of inter-rater 

agreement for qualitative items (McHugh, 2012). The performance of the classifier is 

determined by evaluating the level of agreement between the predicted and actual values. 

It is often regarded as a more robust measure than simple accuracy computation due to 

its capacity to manage multi-class and imbalanced class classifications. The 

interpretation of the Kappa result is given in Table 6-7. 

Table 5-5: Kappa’s  esult   terpretati  s 

Kappa Results  Indication 

values ≤ 0 No agreement 

0–0.20 None to minor agreement 

0.21–0.40 Moderate agreement 

0.41–0.60 Significant agreement 

0.61–0.80 Substantial agreement 

0.81–1.00 Almost perfect agreement 

 

5.7.2 Regression Metrics 

The objective of Design E is to develop and choose a highly accurate model to forecast the 

𝜂𝑝𝑢𝑚𝑝 (Section 5.4.5). Several regression metrics were used to analyze the model and evaluate its 

performance. The regression metrics are summarized in Table 5-6. All these metrics will be shown 

in the analysis of Design E in Chapter 6. 

Table 5-6: Typical Regression Metrics Description (Pedregosa et al., 2011) 

Metrics Description 

RMSE Root Mean Squared Error of the test dataset (a lower value is better). 

MAE Mean Absolute Error of the test dataset (a lower value is better). 

R2 R2 of the test dataset (a higher value is better). 

EV Test Explained Variance of the test dataset (a higher value is better). 
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Chapter 6 Results and Discussion 

 

The results of the ESP multi-failure ML models are investigated in this chapter, using 

various machine learning models across the three-hour to 7-day prediction periods. This chapter 

summarizes and discusses the findings of the five modelling designs described in Chapter 5. 

 

6.1 Design A 

Design A is intended to use all the raw ESP variables that provide insight into the pump's 

motor efficiency, surface parameters, and downhole pump parameters. As described in Data Pre-

processing (Section 5.2), GridSearchCV was used to optimize hyperparameters to improve the 

performance of each ML model. GridSearchCV employs both Grid Search and K-Fold cross-

validation (5 folds) to tune the model's hyperparameters. These parameters are then used to 

construct a new ML model. Table 6-1 details the tuned parameters for each ML model in Design 

A.  
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Table 6-1: Design A-Hyperparameters Optimization Results 

ML 

Models 

Hyperparameter to be Tuned Tuned 

Hyperparam

eter 
Hyperparameters Different Values 

RF 

max_samples 
Maximum number of samples in 

each tree 

[1000, 2000, 3000, 

4000, 5000] 
5000 

n_estimators Number of trees in the forest [200, 500, 1000, 2000] 1000 

max_depth 
The longest path between the root 

node and the leaf node 
[3,4,5,6] 6 

min_samples_split 
Min number of data points placed 

in a node before the node is split 
[5,10,15] 5 

DT 

max_leaf_nodes 
Maximum number of leaf nodes a 

decision tree can have 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 

10] 
10 

min_samples_split 
Minimum number of samples 

required to split an internal node 
[9, 10] 9 

MLP 

hidden_layer_sizes 
Number of layers and nodes in 

the Neural Network (NN) 

[(50,50), (50,100), 

(100,1)] 
(50,100) 

Activation Function 

It defines how the weighted sum 

of the input is transformed into an 

output from a node(s) in a layer of 

NN 

[relu, tanh, logistic] relu 

Alpha 

It combats overfitting by 

constraining the size of the 

weights 

[0.0001, 0.05] 0.0001 

learning_rate It controls the weights of NN [constant, adaptive] adaptive 

Solver 
The solver iterates until 

convergence 
Adam Adam 

KNN K values 
The count of the nearest 

neighbours 
From 1 to 100 10 

GNB var_smoothing 

Portion of the biggest variation 

among all variables that is added 

to other variances to ensure 

computation stability. 

From 1 to 10−9 1.0 

LR C Penalty to reduce overfitting 
[0.001,0.01, 0.1, 1.0, 

10] 
0.001 

 

Figure 6-2 summarizes a comparison of average F1-score results of the tested ML models 

for Design A. In this design, K-Nearest Neighbor (K=10) is the best model for predicting ESP 

failures over all the prediction periods in terms of precision, recall, and consequently the F1-

score.The accuracy, precision and recall results for each SFM are compared for various K values 

in Figure B- 4, Figure B- 5, Figure B- 6, Figure B- 7, and Figure B- 8 (appendix B). It is reasonable 

to conclude that K=10 provides the maximum precision, recall, and F1-score.  
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Figure 6-1: Design A- Summary of Model Performance (F1-Score) 

 

When dealing with multi-class classification for imbalanced classes, Cohen's Kappa Coefficient 

is more instructive than the overall accuracy. Figure 6-2 summarizes a comparison of Cohen's 

Kappa Coefficients (κ) of the tested ML models for Design A. The KNN model achieves the 

highest Kappa (κ) among the other models for all the PP’s (κ ~ 0.7-0.86), indicating substantial to 

almost-perfect agreements between the actual and predicted SFMs, as described in Table 5-5.  

 
Figure 6-2: Design A- Summary of Cohen's Kappa Coefficient (κ) Results
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Table 6-2 highlights the performance of Design A's best model, KNN, for the tested prediction periods and for each ESP specific 

failure. As observed, the KNN model demonstrates a high degree of precision and recall across multiple SFMs, indicating that the 

algorithm is performing effectively.  

Table 6-2: Design A-KNN Results over All Prediction Periods 

  
Prediction Period of 3 

hours 

Prediction Period of 1 

Day 

Prediction Period of 3 

Days 

Prediction Period of 5 

Days 

Prediction Period of 7 

Days 

SFM 
Precisi

on 
Recall 

F1-

score 

precisio

n 
Recall 

F1-

score 

precisio

n 
Recall 

F1-

score 

precis

ion 
Recall 

F1-

score 

precis

ion 
Recall 

F1-

score 

Broken 

Shaft 
1 0.21 0.35 1 0.21 0.35 1 0.21 0.35 0.89 0.17 0.28 0.83 0.10 0.18 

MTR 

Cable 
0.95 0.97 0.96 0.94 0.97 0.96 0.96 0.97 0.97 0.77 0.84 0.8 0.68 0.77 0.72 

High Tm 0.61 0.74 0.67 0.62 0.68 0.65 0.59 0.71 0.64 0.58 0.67 0.62 0.58 0.54 0.56 

Plugged 

with sand 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.87 0.89 0.88 0.85 0.72 0.78 

Unknown 

SFM 
0.77 1 0.87 0.77 1 0.87 0.77 1 0.87 0.67 0.87 0.76 0.68 0.69 0.68 

Overload 0.99 0.75 0.85 0.99 0.75 0.85 0.99 0.75 0.85 0.86 0.69 0.77 0.84 0.61 0.71 

Power Fail 0.98 0.62 0.76 0.98 0.62 0.76 0.98 0.62 0.76 0.91 0.54 0.69 0.78 0.49 0.60 

Sensor 

Failure 
0.94 0.64 0.76 0.94 0.64 0.76 0.94 0.64 0.76 0.83 0.55 0.66 0.69 0.46 0.55 

Under 

Voltage 
0.93 0.96 0.95 0.93 0.96 0.95 0.93 0.96 0.95 0.86 0.87 0.86 0.81 0.70 0.75 

Underload 0.77 0.84 0.8 0.77 0.81 0.79 0.8 0.83 0.82 0.67 0.68 0.67 0.68 0.53 0.59 

Normal 1 0.98 0.99 1 0.98 0.99 1 0.98 0.99 0.99 0.95 0.96 0.99 0.93 0.96 

Cohen's 

Kappa 

Coefficient 

Score 

0.8696 0.8691 0.8708 0.7850 0.6925 
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6.1.1 Prediction Period Effects 

As indicated before, the KNN algorithm is the best ML model in terms of precision, recall, 

and the F1-score for predicting ESP Failure over all prediction periods. Figure 6-3 depicts the F1-

score for the KNN model (Design A) for each ESP specific failure mode across the five tested 

prediction periods. The F1-score decreases as the duration of the forecast period increases, 

particularly for the intervals of 5 and 7 days. In addition, as seen in Figure 6-2, the Cohen's Kappa 

Coefficient Score for the KNN model (Design A) decreases when the prediction period extends 

past 3 days.  

 
Figure 6-3: Design A- F1-Score for Every SFM Across All PP 

 

Figure 6-4 shows the KNN model’s normalized confusion matrix for a three-day prediction 

period. The matrices for the prediction periods of three hours and one day are also shown in 

appendix B, Figure B- 1 and Figure B- 2. The True positive rate is the highest for the cases shown 

in dark blue. The matrices demonstrate that the model correctly predicts most ESP specific failures, 

while exhibiting a low rate of false alarms. The SFM with the worst prediction performance is 

"Broken Shaft", which is correctly predicted only 21% of the overall count. In all other cases, the 
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broken shaft failure is predicted by the model, but the cause is predicted as “Unknown SFM”. As 

discussed in Section 3.3.3, the lack of vibration parameters makes it difficult, based on the 

available data in this study, to recognize the symptoms preceding broken shaft failures. 

 
Figure 6-4: Design A-KNN Normalized Confusion Matrix (3 Days PP) 

 

Figure 6-5 depicts the KNN normalized confusion matrix with a 7-day prediction period. 

As shown in Figure 6-5, the model successfully predicts only three ESP specific failures (70-77%) 

with moderate average F1-score of 64 % and κ of 0.69, while exhibiting a greater rate of false 

alarms than the previously presented prediction periods, as shown in Table 6-2. Figure B- 3 
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displays slightly better, yet similar results for the KNN normalized confusion matrix for a 5-day 

prediction period with average F1-score of 70% and κ of 0.78. These findings align with the 

statement of Khabibullin et al. (2020) that forecasting true failure becomes more difficult as the 

prediction period lengthens. For the next designs, only the better performing prediction periods 

(three hours, one day, and three days) are included in the analysis to avoid lower reliability of 

failure predictions due to increasing false alarm rates. 

 
Figure 6-5: Design A-KNN Normalized Confusion Matrix (7 Days PP) 
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6.1.2 Variables Significance Evaluation 

In machine learning, feature or variable importance gives a score to input variables based 

on how well they predict a target variable. It provides information on the data, the model, and the 

feature selection that may increase the efficiency and effectiveness of ML prediction models. The 

Random Forest classifier is a typical method for quantifying variable importance; consequently, it 

was used to estimate and illustrate the variable importance. 

According to the variable importance presented in Figure 6-6, five variables have the most 

significant influence on predicting failures: motor current, motor frequency, wellhead pressure, 

flowline pressure, and motor voltage. Motor current and frequency are the most effective indicators 

for forecasting ESP specific failures with a total of 62 % influence on forecasting failures. This 

finding is consistent with the observation that electrical failure is the most common cause of 

operational failures in this study, making motor current and voltage the most impacted variables.  

 
Figure 6-6: Design A-Variables Importance 

 

The five mentioned variables were examined in greater detail to ascertain their relationship, 

as shown by a correlation matrix in Figure 6-7. Figure 6-7 depicts a significant positive correlation 
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for wellhead pressure with the flowline pressure and motor frequency. A variable speed drive 

(VSD) is often used to control the rotation speed of a pump motor and mitigate pressure 

fluctuations at the wellhead. Figure 6-7 also demonstrates a strong positive correlation between 

the motor voltage and frequency. Under a constant load (torque), the motor's speed is proportional 

to the supply voltage (Takacs, 2017). 

 
Figure 6-7: ESP Variables Correlation Heatmap Matrix-Selected Variables 

 

6.2 Design B 

In Design B, pressure and temperature differences are calculated and used as the correlating 

variables, together with motor frequency. The objective is to reduce the number of data and keep 

only the more significant variables. Table C- 1 details the tuned parameters for each ML model in 

Design B. K-Nearest Neighbor (K=10) is the best model with the greatest F1-score for predicting 

ESP Failures across all SFMs and throughout all prediction periods. Figure 6-8 summarizes a 

comparison of average F1-scores for the tested ML models for Design B. The K value is chosen 

based on the outcomes of Figure B- 11, Figure B- 12, and Figure B- 13, with K=10 providing the 

highest precision, recall, and F1-score.  
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Figure 6-8: Design B- Summary of Model Performance (F1-Score) 

 

Figure 6-9 summarizes a comparison of Cohen's Kappa Coefficient (κ) results of the tested 

ML models for Design B. The KNN model achieves the highest Kappa (κ) among all the models, 

corresponding to an almost perfect agreement between the actual and predicted SFMs (> 0.86).  

 
Figure 6-9: Design B- Summary of Cohen's Kappa Coefficient (κ) Results 

 

Due to their unsatisfactory performance in this study, Gaussian Naive Bayes (GNB) and 

Multinomial Logistic Regression (LR) will not be employed in Designs C and D. While GNB is 
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straightforward and simple to construct, its lower performance may be the result of the unrealistic 

assumption that all features are independent, limiting its practical use. Moreover, it is challenging 

to simplify complicated relationships when using LR since this approach thrives when the dataset 

is linearly separable. 

Table 6-3 describes the performance of Design B's best model, KNN, for all the prediction 

periods and for each ESP specific failure. The KNN model demonstrates a high degree of precision 

and recall across multiple SFMs, indicating that the algorithm is performing effectively. Overall, 

design B can provide a failure prediction accuracy, almost as good as design A, without the need 

to use many variables. 

According to the variable importance plot in Figure 6-10, motor frequency has the most 

significant impact on predicting failures (66%) in Design B. This finding is consistent with the 

variable importance of Design A. The ∆𝑃𝑓𝑙𝑜𝑤𝑙𝑖𝑛𝑒 is the second most significant variable, as it is 

physically a strong function of flowrate produced through the pump. The correlation heatmap in 

Figure B- 14 clearly illustrates that ∆𝑃𝑡𝑢𝑏𝑖𝑛𝑔 and ∆𝑃𝑝𝑢𝑚𝑝 have a high positive correlation with 

motor frequency (65-80%). 

 
Figure 6-10: Design B-Variables Importance 
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Table 6-3: Design B-KNN Results over Three Prediction Periods 

 Prediction Period of 3 

hours 
Prediction Period of 1 Day 

Prediction Period of 3 

Days 

SFM Precision Recall 
F1-

score 
precision recall 

F1-

score 
precision recall 

F1-

score 

Broken Shaft 1 0.21 0.35 1 0.21 0.35 1 0.21 0.35 

MTR Cable 0.97 0.94 0.96 0.96 0.94 0.95 0.97 0.94 0.96 

High Tm 0.58 0.67 0.62 0.6 0.59 0.6 0.61 0.54 0.57 

Plugged with 

sand 
0.99 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.98 

Unknown 

SFM 
0.77 1 0.87 0.77 1 0.87 0.77 1 0.87 

Overload 0.97 0.74 0.84 0.96 0.74 0.84 0.97 0.73 0.84 

Power Fail 0.96 0.61 0.75 0.95 0.61 0.74 0.96 0.61 0.74 

Sensor 

Failure 
1 0.6 0.75 1 0.6 0.75 0.93 0.56 0.7 

Under 

Voltage 
0.92 0.95 0.94 0.92 0.96 0.94 0.92 0.96 0.94 

Underload 0.78 0.85 0.82 0.78 0.83 0.8 0.83 0.78 0.81 

Normal 1 0.98 0.99 1 0.98 0.99 1 0.98 0.99 

Cohen's 

Kappa 

Coefficient 

Score= 

0.8689 0.8681 0.8697 

 

The KNN normalized confusion matrix shown in Figure 6-11 shows the performance of 

the Design B for a three-day prediction period. Figure B- 10 and Figure B- 9 show similar plots 

for three-hour and one-day prediction periods, respectively. The results indicate that the model 

predicts each ESP failure accurately, while exhibiting a low percentage of false alarms. Each value 

shows the rate of true positives the model has accurately identified based on its recall measure.  

Similar to design A, the broken shaft failure is poorly identified owing to the absence of 

vibration data. Moreover, this design incorrectly classified two SFMs: High Tm and Sensor 

Failure. Based on Table 3-7, we can infer that the motor current and motor voltage are the primary 
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early warning signals indicators for these two SFMs, hence their possible absence from the Design 

B input variables might be the cause of this issue. 

 
Figure 6-11: Design B-KNN Normalized Confusion Matrix ( 3 Days PP) 

 

6.3 Design C 

Design C is a classification model that predicts the SFM’s across the three prediction 

periods using the GVF and 𝜂𝑝𝑢𝑚𝑝 as input variables, added to the other factors in Design A. This 

design makes use of all the ESP variables listed in Table 3-1, and includes 𝜂𝑝𝑢𝑚𝑝 and GVF. 

Using boxplots, Figure 6-12 offers a statistical overview of the ranges for the pump 

efficiency, GVF, and Turpin correlation parameter (ɸ) data. As observed, the GVF values are less 
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than 50%, indicating that the influence of free gas at the intake conditions for the data in this study 

is small. In addition, ɸ values are smaller than unity, supporting the observation of the small 

influence of the free gas at intake conditions, as stable ESP operation is anticipated when (ɸ <1), 

as described in Section 2.4.2.  

 
Figure 6-12: Boxplots of the Computed Variables 

 

Figure 6-13 is a scatter plot matrix illustrating the relationships between GVF and pump 

efficiency with a few of the flow parameters. It reveals a positive linear relationship with the 

Turpin parameter (ɸ) and a negative linear relationship with pump intake pressure (𝑃𝑖) for GVF. 

Both the wellhead pressure and the pump discharge pressure are directly related to the pump's 

efficiency. 

 
Figure 6-13: Scatter Plots of the Computed Variables 
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For a qualitative analysis of the relationship between the ESP variables, a correlation 

matrix was developed, as shown in Figure 6-14. Figure 6-14 illustrates a statistically significant 

positive correlation between pump efficiency and pump discharge pressure, motor frequency, and 

wellhead pressure. This result agrees with the concept that the pump efficiency is a function of the 

production rate, discharge pressure, intake pressure, motor current, and motor voltage (Equation 

5-8). Additionally, reducing wellhead pressure and raising discharge pressure are results of the 

increased fluid velocity in the tubing and a higher production rate and enhanced efficiency. 

A considerable inverse correlation is observed between the pump efficiency and motor 

voltage, GVF, and ɸ. The higher the GVF, the greater the amount of free gas entering the pump 

intake (𝑃𝑖 < 𝑃𝑏), which in turn reduces the pump efficiency owing to gas interference. The GVF 

has a significant positive association with the motor and pump suction temperatures. Higher GVF 

results in the greater amount of gas entering the pump and increases the motor temperature owing 

to the lack of liquid cooling the motor. In addition, the Turpin correlation parameter (ɸ) is derived 

from the GVF computation (Equation 5-9), indicating that ɸ is proportional to GVF. Moreover, a 

significant negative correlation is observed between GVF and pump intake pressure, because when 

the pump intake pressure falls below the bubble point pressure, more gas will develop at the intake. 

There are no variables with zero correlation, hence all variables are correlated to some degree. 
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Figure 6-14: Computed Variables Correlation Heatmap Matrix 

 

K-Nearest Neighbor (K=10) is the best model in terms of precision, recall, and the F1-

score for predicting the ESP failures over all prediction periods in Design C. Figure 6-15 provides 

a comparison of Design C's average F1-scores for the tested ML models. Table C- 3 details the 

tuned parameters for each ML model in Design C. The K value is based on the outcomes of Figure 

B- 15, Figure B- 16, and Figure B- 17 with K=10 providing the highest precision, recall, and F1-

score. 

 
Figure 6-15: Design C- Summary of Model Performance (F1-Score) 
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Figure 6-16 summarizes a comparison of Cohen's Kappa Coefficient (κ) results for the 

tested ML models. The KNN model achieves the highest Kappa (κ) among the other models, which 

corresponds to an almost perfect agreement between the actual and predicted SFM’s (> 0.87). 

 
Figure 6-16: Design C- Summary of Cohen's Kappa Coefficient (κ) Results 

 

Table 6-4 highlights the performance of Design C's best model, KNN, across the three 

prediction periods and for each ESP specific failure. As observed, high degrees of precision and 

recall are achieved for most SFM’s, indicating that the algorithm is performing effectively.  
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Table 6-4: Design C-KNN Results over Three Prediction Periods 

 Prediction Period of 3 

hours 
Prediction Period of 1 Day Prediction Period of 3 Days 

SFM Precision Recall 
F1-

score 
precision Recall 

F1-

score 
precision Recall 

F1-

score 

Broken Shaft 1 0.21 0.35 1 0.21 0.35 1 0.21 0.35 

MTR Cable 0.97 0.96 0.97 0.97 0.94 0.96 0.99 0.99 0.99 

High Tm 1 0.94 0.97 0.94 0.93 0.93 1 0.96 0.98 

Plugged with 

sand 
0.99 1 0.99 0.98 0.99 0.99 0.98 1 0.99 

Unknown 

SFM 
0.77 1 0.87 0.77 1 0.87 0.77 1 0.87 

Overload 0.98 0.74 0.84 0.98 0.74 0.84 0.99 0.74 0.85 

Power Fail 0.98 0.6 0.74 0.98 0.61 0.75 0.98 0.61 0.75 

Sensor 

Failure 
0.79 0.6 0.68 0.78 0.56 0.65 0.78 0.56 0.65 

Under 

Voltage 
0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.93 0.93 

Underload 1 1 1 1 1 1 1 1 1 

Normal 1 0.98 0.99 1 0.98 0.99 1 0.98 0.99 

Cohen's 

Kappa 

Coefficient 

Score= 

0.8704 0.8701 0.8715 

 

The KNN normalized confusion matrix in Figure 6-17 shows the performance of Design 

C with a three-day prediction period. Figure B- 19 and Figure B- 18 show similar figures for three-

hour and one-day prediction periods, respectively. These plots demonstrate that the model 

correctly predicts most ESP specific failures, while exhibiting a low rate of false alarms. Design 

C is superior to Designs A and B in terms of precision, recall, and F1-score, particularly in 

predicting the high motor temperature and motor underload ESP specific failure modes.  
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Figure 6-17: Design C-KNN Normalized Confusion Matrix (3 Days PP) 

 

Comparing Design C to Design A, it can be deduced that the integration of GVF and pump 

efficiency has a beneficial effect on prediction of two ESP SFMs, namely motor underload, and 

high motor temperature. Gas locking is one of the potential causes of motor underload failure. 

Upon entrance of free gas into the pump, the low-density gas separates from the higher-density 

fluid, accumulates, and eventually blocks the passage of the whole vane in the pump stage, 

resulting in gas locking, as explained in Section 2.4.1. Consequently, the liquid flow ceases, 

resulting in a decreased load on the motor, ultimately resulting in ESP motor underload SFM.  
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High motor temperature SFM, on the other hand, occurs when free gas replaces the liquid 

that usually flows around the motor to cool it. This causes a rapid rise in the motor winding 

temperature and may eventually burn the motor out. The predictions of this failure and motor 

underload are significantly impacted by gas interference in the ESP system and pump efficiency. 

Therefore, the incorporation of GVF and pump efficiency as input variables enhances the 

performance of the ESP SFM prediction. 

According to the variable importance presented in Figure 6-18, the motor current, motor 

frequency, and wellhead pressure have the greatest effect on predicting failures. This result is 

consistent with the findings of Designs A and B. All the investigated wells in this research are 

equipped with downhole gas separators, minimizing the effect of GVF on ESP SFM predictions. 

 
Figure 6-18: Design C-Variables Importance 

 

6.4 Design D 

Design D, like Design B, seeks to include physics into the analytical approach and lower 

the number of variables. It employs input variables from Design B in addition to the pump 

efficiency, GVF, and input electrical power to serve as the classification model's input variables. 
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Figure 6-19 summarizes a comparison of average F1-scores of the tested ML models for 

Design D. K-Nearest Neighbor (K=10) is the best model with the greatest F1-score for predicting 

ESP Failures throughout all prediction periods and SFM’s. Table C- 3 details the tuned parameters 

for each ML model in Design D. The K value was chosen based on the outcomes of Figure B- 20, 

Figure B- 21, and Figure B- 22 with K=10 providing the highest precision, recall, and F1-score. 

 
Figure 6-19: Design D- Summary of Model Performance (F1-Score) 

 

Figure 6-20 summarizes a comparison of Cohen's Kappa Coefficient (κ) results of the 

tested ML models for Design D. The KNN model achieves the highest Kappa (κ) among the other 

models, which corresponds to an almost perfect agreement between the actual and predicted SFMs 

(> 0.86). 
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Figure 6-20: Design D- Summary of Cohen's Kappa Coefficient (κ) Results 

 

The correlation heatmap in Figure 6-21 demonstrates that pump efficiency has a strong 

positive correlation with ∆𝑃𝑝𝑢𝑚𝑝 and motor frequency. This is consistent with the fact that the 

pump efficiency is a function of pressure difference in the pump (∆𝑃𝑝𝑢𝑚𝑝). However, there is a 

negative relation between the pump efficiency and input electrical power, GVF, and ɸ. As stated 

before, the greater the GVF, the lower the pump's efficiency becomes owing to gas interference. 

In addition, the GVF is positively correlated with ɸ, input electrical power, and motor frequency.  

 
Figure 6-21: Design D- ESP Variables Correlation Heatmap 
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The variable importance in Figure 6-22 demonstrates that motor frequency and ∆𝑃𝑓𝑙𝑜𝑤𝑙𝑖𝑛𝑒 

have the most influence in predicting failures, which is consistent with the variable importance of 

Design B. This resemblance is a result of the fact that Design D is constructed with the same input 

variables as Design B, and as well as GVF,  𝜂𝑝𝑢𝑚𝑝, and input electrical power. 

 
Figure 6-22: Design D-Variables Importance 

 

Table 6-5 describes the performance of Design D's best model, KNN, across the three 

prediction periods for each ESP specific failure. As observed, the KNN model demonstrates a high 

degree of precision and recall for most SFM’s, indicating that the algorithm is performing 

effectively.  
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Table 6-5: Design D-KNN Results over Three Prediction Periods 

 Prediction Period of 3 

hours 
Prediction Period of 1 Day 

Prediction Period of 3 

Days 

SFM Precision Recall 
f1-

score 
precision recall 

f1-

score 
precision recall 

f1-

score 

Broken Shaft 1 0.21 0.35 1 0.21 0.35 1 0.21 0.35 

MTR Cable 0.97 0.9 0.94 0.97 0.9 0.94 0.97 0.97 0.97 

High Tm 1 0.94 0.97 0.95 0.86 0.9 0.99 0.97 0.98 

Plugged with 

sand 
1 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 

Unknown 

SFM 
0.77 1 0.87 0.77 1 0.87 0.77 1 0.87 

Overload 0.97 0.73 0.83 0.97 0.73 0.83 0.97 0.73 0.83 

Power Fail 0.96 0.59 0.73 0.97 0.6 0.74 0.97 0.6 0.74 

Sensor 

Failure 
0.84 0.64 0.73 0.82 0.56 0.67 0.82 0.56 0.67 

Under 

Voltage 
0.91 0.93 0.92 0.91 0.92 0.92 0.89 0.92 0.91 

Underload 1 1 1 1 0.99 1 1 0.99 1 

Normal 1 0.98 0.99 1 0.98 0.99 1 0.98 0.99 

Cohen's 

Kappa 

Coefficient 

Score= 

0.8696 0.8692 0.8707 

 

The KNN normalized confusion matrix in Figure 6-23 shows the performance of Design 

D with a three-day prediction period. Figure B- 24 and Figure B- 23 show similar plots with the 

three-hour and one-day prediction periods, respectively. The matrices indicate that the model 

predicts each ESP failure accurately, while exhibiting a low percentage of false alarms. Each 

diagonal value shows the rate of true positives the model has accurately identified based on its 

recall measure. Similar to the other designs, broken shaft is the only failure poorly predicted by 

the model due to the lack of vibration data in this study. 
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Figure 6-23: Design D-KNN Normalized Confusion Matrix (3 Days PP) 

 

6.5 Design E 

The main objective of Design E is to forecast the pump efficiency (𝜂𝑝𝑢𝑚𝑝) by using a 

supervised regression model, with ESP-labeled datasets serving as the input variables. Table 6-6 

provides a summary of the regression results for the tested ML models of Design E. Multilayer 

Perceptron (MLP) Neural Network is the best model to forecast the 𝜂𝑝𝑢𝑚𝑝 in Design E, shown by 

its high R2 and low MAE and RMSE values. Table C- 2 details the tuned parameters for each ML 

model in Design E. Figure 6-24 compares the predicted and actual pump efficiency within the 
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testing dataset using the MLP model. The predicted values are quite close to the fitted line, 

indicating a strong fit for the MLP model with a high R2 of 99.6%. 

Table 6-6: Design E- Summary of Model Performance 

# Model RMSE MAE R2 EV 

1 KNN 2.351 0.724 0.973 0.973 

2 SVR 2.527 0.714 0.969 0.969 

3 RF 2.445 1.136 0.971 0.971 

4 MLP 0.873 0.181 0.996 0.996 

5 LASSO 4.472 2.875 0.904 0.904 

6 Ridge 4.468 2.870 0.904 0.904 

7 Polynomial 2.372 0.784 0.973 0.973 

8 Decision Tree 2.417 0.872 0.972 0.972 

 

 
Figure 6-24: MLP-Predicted vs. Measured Pump Efficiency 

 

A multilayer perceptron (MLP) is a kind of feedforward artificial neural network that 

generates outputs in response to a set of inputs (Pedregosa et al., 2011). In contrast to other 

machine learning algorithms, MLP allows the user to choose the number of neurons, the activation 

function, the optimizer, and the learning rate. A well-chosen collection of hyperparameters has the 

potential to make or break a model's ability to predict the desired outcome accurately. Tuning was 

performed for the MLP parameters' hyperparameter tuning. The MLP was tuned using the 
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hyperparameter optimization (GridSearchCV) results and then applied to the ESP dataset as 

summarized in Table 6-7. 

Table 6-7: MLP Hyperparameter Optimization 

Hidden Layer Sizes Activation Function Alpha Learning Rate Mean Test Score Std Test Score 

(50, 50) tanh 0.0001 Constant 0.996855 0.004382 

(50, 50) tanh 0.0001 Adaptive 0.996855 0.004382 

(50, 100) tanh 0.05 Adaptive 0.996379 0.005773 

(50, 100) tanh 0.05 Constant 0.996379 0.005773 

(50, 50) tanh 0.05 Constant 0.996363 0.004466 

 

Sorting the parameters of Table 6-7 by their test scores, the highest test score was produced 

by applying the optimum parameters. These parameters include the activation function of "tanh", 

alpha value of 0.0001, hidden layer sizes of (50, 50), learning rate of "constant", and the "Adam" 

solver. 

The variable importance is depicted in  Figure 6-25 for Design E, where the motor voltage 

(𝑉𝑚) has the greatest influence on forecasting 𝜂𝑝𝑢𝑚𝑝, followed by ∆𝑃𝑝𝑢𝑚𝑝 as the second most 

important variable and the oil production rate (𝑄𝑜). This result agrees with the concept that the 

pump efficiency is a function of 𝑄𝑜, 𝑉𝑚, ∆𝑃𝑝𝑢𝑚𝑝, as shown in Equation 5-5. 

 
Figure 6-25: Design E-Variables Importance 
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6.6 Data Analytics Summary 

For three days forecast period, Figure 6-26, Figure 6-27, Figure 6-28, and Figure 6-29 

highlight the best model results (KNN) for each design covered in this chapter. All designs attain 

Kappa (κ) values higher than 0.86 which corresponds to an almost perfect agreement between the 

actual and predicted SFMs, as seen in Figure 6-29. When it comes to accurately forecasting ESP 

specific failures with the most significant true positive rate, the KNNs models in Designs C and D 

outperform the models in Design A and B by a small margin. This can be seen in terms of overall 

F1-score and Kappa coefficient score. Design D is the recommended option for general use since 

it incorporates the impacts of the effects of gas presence and pump efficiency while using fewer 

variables than Design C. Although Design D is more favourable, the overall outcomes for all 

designs are relatively close. We believe Designs C and D have the potential to become much more 

advantageous if the ML models are applied for high GVF wells without a downhole separator. 

 
Figure 6-26: F1-Score Results Comparison Across All SFMs for All Designs (3 Days PP) 
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Figure 6-27: Precision Results Comparison Across All SFMs for All Designs (3 Days PP) 

 

 
Figure 6-28: Recall Results Comparison Across All SFMs for All Designs (3 Days PP) 

 

 
Figure 6-29: Cohen's Kappa Coefficient Score for All Designs (3 Days PP) 
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Figure 6-30 shows the results of Design D, which is the preferred design for general use in 

supervised multi-class classification to predict ESP SFMs. The top three ML models (KNN, MLP, 

and RF) and their F1-score outcomes are compared across each ESP SFM for a three-day 

prediction period. As seen from Figure 6-30, KNN outperforms MLP and RF across all SFMs 

despite its simplicity. However, if applied for real-time (streaming) data, KNN may not work 

efficiently due to its time-consuming and computationally more expensive nature to compute 

distances and find the nearest neighbors. The second-best model is MLP, which accurately predicts 

most of the ESP SFMs. MLP handles huge datasets and complex nonlinear problems effectively, 

but its hyperparameter tuning is challenging, because of the vast number of parameters involved. 

As shown in Figure 6-30, RF has a lower prediction rate for all SFMs than KNN and MLP, 

particularly for High Tm and Sensor Failure. Therefore, despite the fact that RF is faster than KNN 

and MLP and can handle real-time data, it is unable to predict most SFMs with a high F1-score. It 

should be mentioned that these ML models must be expanded to incorporate streaming data in 

future applications. 

 

 
Figure 6-30: Design D-ML Models Comparison (3 days PP) 
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Chapter 7 Future Applications 

 

As shown in Chapter 6, the four machine learning designs were able to accurately predict 

ESP specific failures up to three days in advance using the offline dynamic and historical ESP 

data. The results showed high true prediction rates with a low rate of false alarms. The future 

challenge will be using these models on live data, re-evaluating and improving their performances, 

and obtaining daily predictions on active wells. Real-time data processing requires an appropriate 

selection of ML methods, such as RF, XGBoost, or even deep neural networks. When additional 

wells are added, this will be a practical execution of this work on a broader scale. 

In the real-world implementation of the approach presented in this study, a comprehensive 

operational database of the field and a record of all ESP failures are necessary. The availability of 

reliable, organized operational data improves the accuracy of ML model predictions. Hence, the 

greater the amount of high-resolution data, the better the prediction will be. Many oil and gas 

companies use their own or third-party data storage and management platforms to handle large 

amounts of data (Qing et al., 2021), using private servers.  

Real-time data collected by Supervisory Control and Data Acquisition (SCADA) systems 

are the keystone of the live machine learning models. The SCADA systems are computer-based 

systems that control industrial operations by collecting real-time data from distant fields to monitor 

and control equipment and conditions (Maseda et al., 2021). In a SCADA system, the remote 

terminal units (RTUs) collect data from sensors, counters, meters, and other devices in the field, 

convert them to digital data, and transmit them to the organization's primary control system 



112 

 

(Maseda et al., 2021). After gathering data, the operators may employ analytical tools to get a 

comprehensive grasp of the data, enabling them to make more informed decisions in less time.  

The reliable historical data may be combined with the real-time SCADA data using the 

existing platforms within the company to provide inputs for the machine learning models. The 

collected data are then categorized, preprocessed, and prepared for use as training/testing datasets 

through an online platform. This platform will employ ESP-labeled datasets as inputs and utilize 

a supervised multi-class classification model to predict several ESP SFM’s. These failures are 

user-defined depending on the field's prevalent ESP failures. A focused team of engineers will 

evaluate each flagged well for potential failure and verify the alerts by associating them with the 

probability of ESP failure (Weibull model). Based on the team's findings, proactive ESP 

maintenance such as optimization, troubleshooting, or pump replacement may be proposed.  

Figure 7-1 displays the Live ESP Failure Prediction workflow. This workflow offers an 

overview of the discussion above on future machine learning model implementations. Shifting 

from a reactive event-based to a proactive and predictive maintenance of artificial lift operations 

will aid operators in avoiding undesirable events, significantly reducing downtime, and extending 

the lifespan of ESP’s. ML models are essential in this workflow and cannot be underestimated in 

our industry’s future operations. 
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Figure 7-1: Live ESP failure prediction workflow  
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Chapter 8 Conclusions and Recommendations 

 

This chapter offers a concise overview of the main takeaways from this study. The 

summary of the study findings and its conclusions are addressed first. Following that is a list of 

future work recommendations. 

 

8.1 Summary and Conclusions 

This study is an attempt to construct a comprehensive machine learning (ML) technique to 

handle the high frequency of ESP operational data. The model transforms the data into actionable 

information to predict various ESP failure modes at different prediction periods. Performance 

metrics were utilized to validate the machine learning models. Four designs with various input 

parameters were constructed and five prediction periods of 3 hours, 1 day, 3 days, 5 days, and 7 

days were evaluated. The results demonstrated valuable outcomes on the application of data 

analytics in ESP operations. Some of the key outputs for this study are: 

• A literature review on the development of ESP failure prediction through time showed the 

need to use data analytics and accurately predict failures before their occurrences. 

• A statistical analysis was performed on the field data obtained, characterizing the general 

and specific ESP failures. According to these data, three common categories of ESP 

failures are electrical failures (61%), motor failures (18%), and gas effects (13%). Looking 

more specifically, power failure, under-voltage, voltage unbalance, and motor underload 

are the most common occurrences. 
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• Two case studies from two oil wells in Kuwait Oil Company (KOC) assets were discussed 

to explore their ESP failures. Both cases share a common general reason for failure but 

have distinct underlying causes of failure, highlighting the necessity to identify and 

diagnose the root cause of ESP failure to determine the best mitigation strategy. 

• The gas interference in the ESP system and the pump efficiency were examined. An 

approach for estimating fluid properties from field data was designed to assess gas 

interference in the pump. 

• The early warning signs of failures were investigated by looking at the data trends within 

the two weeks before each SFM. On average, the warning signals of ESP failures manifest 

themselves two days before. The most impacted variables are the motor current and 

voltage, consistent with the fact that most ESP failures are electrical for the data under 

investigation.  

• The KNN model consistently outperformed other ML models in accurately predicting ESP 

failures for all the prediction periods, with the highest true prediction rate, F1-score, and 

Kappa coefficient.  

• All tested designs showed similarly good performances in predicting ESP failures. 

Considering that Design D uses less variables than Design C, and it adds the effects of gas 

presence and pump efficiency to Design B, it is the recommended option for general use. 

• Increasing the prediction period resulted in a negligible drop in the model’s performance 

up to 3 days, showing that the model can predict ESP failures accurately 3 days before their 

occurrences. However, when the prediction time was increased more than 3 days, the 

forecasts showed increases in the missed failures and false alarms. Consequently, a 

prediction period of 3 days was chosen for high reliability of failure predictions. 
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• In Design E, the ESP-labelled datasets were utilized as inputs, and a supervised regression 

model was employed to forecast the 𝜂𝑝𝑢𝑚𝑝. The best model with the highest accuracy to 

predict the pump efficiency was Multilayer Perceptron (MLP) Neural Network with an R2 

of 99.6%, MAE of 0.18, and RMSE of 0.873. The motor voltage (𝑉𝑚) has the greatest 

influence on forecasting 𝜂𝑝𝑢𝑚𝑝, followed by ∆𝑃𝑝𝑢𝑚𝑝  and the daily oil production rate (𝑄𝑜).  

• The Weibull statistical analysis was used to predict the probability of ESP failure and the 

MTBF values. The ESP's MTBF trends for the ten wells were estimated over five years. 

Initially, all wells had long MTBF values (higher reliability). The MTBF drops with time, 

starting from the third year of operation. Consequently, ESP loses its reliability over time 

as operational issues and pump wear cause an increasing number of failures.  

• By integrating the outcomes of the ESP Failure prediction ML model with the Weibull 

unreliability model, a powerful tool is provided. This tool allows the engineers to detect 

failures early, diagnose potential causes, and propose preventive actions. 

 

8.2 Recommendations  

• This study may be extended to incorporate diverse ESP failures from several wells and 

analyze a broader range of ESP failures. This will become possible by adding more data 

from wells in different fields. 

• Obtaining additional ESP data is advantageous for examining a broader variety of ESP 

failures. As an example, the vibration data can be helpful in identifying mechanical issues 

like a broken shaft. 

• The study can be extended to include other artificial lift techniques, such as sucker rod and 

progressive cavity pumps, to recognize their failure types and how to anticipate them. 
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• This study may be improved by creating a model that provides actionable insights for each 

failure it identifies. This would allow the system to not only detect problems, but also give 

a preventative measure for the petroleum engineer. 
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Nomenclature 

𝐵𝑔 = Gas Formation Volume Factor, ft3/SCF 

𝐵𝑜 = Oil Formation Volume Factor, RB/STB 

𝐵𝑜𝑏 = Formation Volume Factor at bubble point, RB/STB 

𝐶𝑜  = Oil Compressibility, 𝑝𝑠𝑖−1 

CAGR = Compound annual growth rate, % 

CFD = Computational Fluid Dynamics simulation 

𝐷𝐶𝐹𝑦 = Discounted cash flow at year y 

ESP = Electrical Submersible Pump 

𝐻𝑟𝑒𝑞 = Total Head Required, ft 

𝑁𝐶𝐹𝑦 = Net Cash Flow at year y 

𝑃𝑏 = Bubble Point Pressure, psi 

𝑃𝑑 = Pump Discharge Pressure, psi 

𝑃𝑖 = Pump Intake Pressure, psi 

𝑃𝑟 = Reduced Pressure, dimensionless 

𝑄𝑔 = Gas Rate, RB/D 

𝑄𝑚𝑎𝑥 = Maximum Pump Rate, BPD 

𝑄𝑜  = Oil Flow Rate, STB/D 

𝑅1 = Rotor Radius, m 

𝑅𝑠 = Solution Gas-Oil-Ratio, SCF/STB 

𝑅𝑠𝑏 = Solution Gas-Oil-Ratio at bubble point pressure, SCF/STB 

𝑅𝑠𝑖 = Initial Dissolved Gas-Oil-Ratio, SCF/STB 

𝑅𝑠𝑟 = Reduced Solution Gas-Oil-Ratio, SCF/STB 

𝑇𝑑 = Pump Discharge Temperature, °F 

𝑇𝑖 = Pump Intake Temperature, °F 

𝑇𝑚 = Motor Temperature, °F 

𝑇𝑟𝑒𝑠 = Reservoir Temperature, ᵒF 

𝑉𝑚 = Motor Voltage, volts 
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𝑞𝑠  = Gas Volumetric Flow Rate at pump intake, BPD 

°API = Stock tank Oil Gravity, dimensionless 

BPD = Bbl. per day 

CatBoost = Categorical Boosting Algorithm 

CHP, 𝑃𝑐𝑠𝑔 = Casinghead Pressure, psi 

DIFA = Dismantle, Inspection and Failure Analysis 

DT = Decision Tree 

EV Test = Explained Variance of test dataset  

f(𝑡) = failure density function 

FLP, 𝑃𝑓𝑙 = Flowline Pressure, psi 

FN = False Negative 

FP = False Positive 

GNB = Gaussian Naive Bayesian Classification 

GOR = Gas Oil Ratio, SCF/STB 

GVF = Gas Void Fraction, Gas Volumetric Fraction 

I, 𝐼𝑚 = Motor Current, Amps 

KNN = K-Nearest Neighbor 

LASSO = Least Absolute Shrinkage and Selection Operator 

LightGBM = Light Gradient Boosted Machine Algorithm 

LR = Multinomial Logistic Regression 

MAE = Mean absolute error 

ML = Machine Learning 

MLE = Motor Lead Extension 

MLP = Multilayer Perceptron Neural Network 

MSE = Mean-square error 

MTBF = Mean time between failures, days 

NN = Neural Network 

NPV = Net Present Value 

PCA = Principal Component Analysis 
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PGOR = Portable Gas Oil Ratio 

POOH = Pull Out of Hole 

Ppc = Pseudocritical Pressure, psi 

Ppr = Pseudoreduced Pressure, dimensionless  

Q  = Liquid Volumetric Flow Rate at pump intake, BPD 

R(t) = reliability function 

R2  = Coefficient of determination 

RF = Random Forest Algorithm 

RF = Random Forest  

RMSE = Root mean-square error 

RTU = Remote terminal unit 

SCADA = Supervisory Control and Data Acquisition 

SFM = Specific Failure Mode of an ESP 

SVM = Support Vector Machine Algorithm 

SVR = Support Vector Regression 

TBF = Time Before Failure, days 

TDH = Total Dynamic Head, ft 

TN = True Negative 

TP = True Positive 

Tpc = Pseudocritical Temperature, ᵒR 

Tpr = Pseudoreduced Temperature, dimensionless 

TVD = True Vertical Depth, ft 

VSD = Variable Speed Drive 

WHP, 𝑃𝑤ℎ = Wellhead Pressure, psi 

XGBoost = Extreme Gradient Boosting Algorithm 

𝐻𝐻𝑃 = Hydraulic Horsepower, hp 

𝐾 = Numbers of nearest neighbourhoods 

𝑉 = Impeller Volume, m3 
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Greek Symbols: 

𝛽 = Shape parameter 

𝜂𝑝𝑢𝑚𝑝 = Pump Efficiency, % 

𝜆𝑐 = Gas Volumetric Fraction (GVF) 

∆𝑃𝑎𝑛𝑛 = Pressure loss in annulus, psi 

∆𝑃𝑓𝑙𝑜𝑤𝑙𝑖𝑛𝑒 = Pressure loss in flowline, psi 

∆𝑃𝑝𝑢𝑚𝑝, ∆𝑃𝑝 = Pressure difference in pump, psi 

∆𝑃𝑡𝑢𝑏𝑖𝑛𝑔 = Pressure loss in tubing, psi 

ɸ = Turpin Correlation Parameter, psi-1 

γg = Gas specific gravity, dimensionless 

γo = Oil specific gravity, dimensionless  

Δ = Finite difference operator 

κ = Cohen’s Kappa Statistic 

Ω = Angular Speed, rad/s 

𝜂 = Scale parameter 

𝜆 = The failure rate, % 

𝜎 = Surface Tension, N/m 
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Appendix A 

 
Figure A- 1: Weibull Probability Plot of Well 1 
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Figure A- 2: Weibull Probability Plot of Well 2 

 

 
Figure A- 3: Weibull Probability Plot of Well 3 
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Figure A- 4: Weibull Probability Plot of Well 4 

 
Figure A- 5: Weibull Probability Plot of Well 5 
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Figure A- 6: Weibull Probability Plot of Well 8 

 
Figure A- 7: Weibull Probability Plot of Well 9 
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Figure A- 8: Weibull Probability Plot of Well 10 

 

  



133 

 

 

Appendix B 

 

 

Figure B- 1: Design A-KNN Normalized Confusion Matrix (3 Hours PP) 
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Figure B- 2: Design A-KNN Normalized Confusion Matrix (1 Day PP) 
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Figure B- 3:Design A-KNN Normalized Confusion Matrix (5-Days PP) 
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Figure B- 4:Design A-K Values Determination for KNN Model (3-hours PP) 

 

 
Figure B- 5: Design A-K Values Determination for KNN Model (1 Day PP) 

 

 
Figure B- 6: Design A-K Values Determination for KNN Model (3 Days PP) 

 

 
Figure B- 7: Design A-K Values Determination for KNN Model (5 Days PP) 
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Figure B- 8: Design A-K Values Determination for KNN Model (7 Days PP) 

 

 
Figure B- 9: Design B-KNN Normalized Confusion Matrix (1 Day PP) 
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Figure B- 10: Design B-KNN Normalized Confusion Matrix (3 Hours PP) 

 
 



139 

 

 
Figure B- 11: Design B-K Values Determination for KNN Model (3-hours PP) 

 

 
Figure B- 12: Design B-K Values Determination for KNN Model (1 Day PP) 

 

 
Figure B- 13: Design B-K Values Determination for KNN Model (3 Days PP) 

 

 
Figure B- 14: Design B-Calculated Variables Correlation Heatmap Matrix 
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Figure B- 15: Design C-K Values Determination for KNN Model (3-hours PP) 

 

 
Figure B- 16: Design C-K Values Determination for KNN Model (1 Day PP) 

 

 
Figure B- 17: Design C-K Values Determination for KNN Model (3 Days PP) 
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Figure B- 18: Design C-KNN Normalized Confusion Matrix (1 Day PP) 
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Figure B- 19: Design C-KNN Normalized Confusion Matrix (3 Hours PP) 
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Figure B- 20: Design D-K Values Determination for KNN Model (3-hours PP) 

 

 
Figure B- 21: Design D-K Values Determination for KNN Model (1 Day PP) 

 

 
Figure B- 22: Design D-K Values Determination for KNN Model (3 Days PP) 
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Figure B- 23: Design D-KNN Normalized Confusion Matrix (1 Day PP) 
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Figure B- 24: Design D-KNN Normalized Confusion Matrix (3 Hours PP)  
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Appendix C 

Table C- 1: Design B- Hyperparameters Optimization Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C- 2: Design E- Hyperparameters Optimization Results 

ML Models 
Hyperparameter to be Tuned 

Tuned Hyperparameter 
Hyperparameters Different Values 

RF 

max_samples [50,100, 200, 500] 500 
n_estimators [100, 200] 100 
max_depth [3,4,5,6] 6 

min_samples_split [5,6, 7] 5 
DT max_depth [1,3,5,7,9,11,12] 8 

MLP 

hidden_layer_sizes 
[(50,50), (50,100), 

(100,1)] 
(50, 50) 

Activation Function [relu, tanh, logistic] tanh 
Alpha [0.0001, 0.05] 0.0001 

learning_rate [constant, adaptive] Constant 
Solver Adam Adam 

KNN K values From 1 to 100 5 

SVM 

C [0.1, 1, 2, 5] 5 
gamma [0.001, 0.01, 0.1, 1, 10] 10 
kernel [rbf, linear] rbf 

LASSO 
Alpha 1e-08 to 1e+08 

0.0001 

Ridge 0.1 

Polynomial Degree [2, 3, 4, 5, 6] 2 

 

ML 

Models 

Hyperparameter to be Tuned Tuned 

Hyperparameter Hyperparameters Different Values 

RF 

max_samples 
[1000, 2000, 3000, 4000, 

5000] 
5000 

n_estimators [200, 500, 1000, 2000] 200 

max_depth [3,4,5,6] 6 

min_samples_split [5,10,15] 5 

DT 
max_leaf_nodes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 10 

min_samples_split [9, 10] 9 

MLP 

hidden_layer_sizes [(50,50), (50,100), (100,1)] (50, 50) 

Activation Function [relu, tanh, logistic] Relu 

Alpha [0.0001, 0.05] 0. 0001 

learning_rate [constant, adaptive] adaptive 

KNN K values From 1 to 100 10 

GNB var_smoothing From 1 to 10−9 1.0 

LR C [0.001,0.01, 0.1, 1.0, 10] 0.001 
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Table C- 3: Designs C & D- Hyperparameters Optimization Results 

 

 

ML 

Models 

Hyperparameter to be Tuned 
Tuned Hyperparameter 

Hyperparameters Different Values 
Design C Design E 

RF 

max_samples 
[1000, 2000, 3000, 4000, 

5000] 
5000 5000 

n_estimators [200, 500, 1000, 2000] 500 2000 

max_depth [3,4,5,6] 6 6 

min_samples_split [5,10,15] 5 5 

DT 
max_leaf_nodes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 10 10 

min_samples_split [9, 10] 9 9 

MLP 

hidden_layer_sizes [(50,50), (50,100), (100,1)] (50, 100) (50, 50) 

Activation Function [relu, tanh, logistic] Relu Relu 

Alpha [0.0001, 0.05] 0.0001 0.0001 

learning_rate [constant, adaptive] Constant Constant 

Solver Adam Adam Adam 

KNN K values From 1 to 100 10 10 


