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Abstract 38 

Aim 39 

Within sub-Saharan Africa, plants inhabiting more seasonal and arid landscapes showcase 40 

unique distributional patterns that hint at fascinating evolutionary histories. Research on plants in 41 

these habitats have highlighted a complex interplay between climate and orogenic activities. 42 

However, despite a steady improvement in our understanding of evolution within these diverse 43 

and widespread habitats, many taxa within these regions remain understudied. The 44 

Ledebouriinae (Scilloideae, Asparagaceae) are widespread throughout sub-Saharan Africa, and 45 

can also be found in Madagascar, the Middle East, India, and Sri Lanka. Unfortunately, this 46 

widespread distribution coupled with taxonomic uncertainties have made uncovering the 47 

evolutionary history of the Ledebouriinae very difficult. Here, using the most comprehensive 48 

sampling of the lineage to date, we investigate the timing and historical biogeography of these 49 

bulbous monocots within and outside of Africa.  50 

Location 51 

Sub-Saharan Africa, Madagascar, Asia 52 

Taxon 53 

Ledebouriinae (Scilloideae, Asparagaceae) 54 

Methods 55 

We infer age estimates of major clades and subclades using penalized likelihood as implemented 56 

in treePL. Capitalizing on our broad geographic sampling and using BioGeoBEARS, we then 57 
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reconstruct ancestral ranges across the phylogeny to investigate the role vicariance and dispersal 58 

have played in the biogeographic history of the lineage.  59 

Results 60 

Our results suggest that the Ledebouriinae originated within the past ~30 myr in southeastern 61 

sub-Saharan Africa, with the major subclades arising soon thereafter. Vicariance likely led to the 62 

current distribution of Ledebouria in Asia, not long-distance dispersal as previously 63 

hypothesized. The two Ledebouria overlap in eastern Africa, but have divergent biogeographical 64 

histories, divided into mostly northern and southern clades, yet each has an independent dispersal 65 

to Madagascar. A similar north-south split is seen in Drimiopsis. The predominantly sub-Saharan 66 

African Ledebouria clade has a complex biogeographic history, with a rapid radiation estimated 67 

~14 mya, likely driven by drastic climate change and mountain building in southern Africa. 68 

Main conclusions 69 

The expansion of seasonal and arid landscapes in sub-Saharan Africa coupled with mountain 70 

building likely spurred the radiation of the Ledebouriinae as well as several subclades. 71 

Fragmentation, due to Miocene-driven aridification, of a once widespread distribution led to the 72 

current distribution in Asia. 73 

Keywords Africa, Drimiopsis, geophytes, Ledebouria, Resnova, Scilloideae 74 
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1 INTRODUCTION 76 

Modern-day Africa is dominated by arid and semi-arid landscapes that contain a diversity 77 

of habitats from deserts, woodlands and savannas, to name a few (Bobe, 2006; Linder, 2014). In 78 

sub-Saharan Africa, these drier ecosystems collectively form a fairly continuous sickle-shaped 79 

corridor that connects the floras of southwestern, northeastern and western Africa, and that skirts 80 

around the wet tropics of central and western Africa (Balinsky, 1962; Bellstedt et al., 2012; 81 

Jürgens, 1997) (Figure 1). The recent onset of aridity in Africa (i.e., approximately from the 82 

Mid-Eocene onwards) is hypothesized to have been caused by the synergistic activities of rapid 83 

global cooling, tectonic events (e.g., Eastern African rift) and oceanic upwelling (i.e., Benguela 84 

current) that altered precipitation patterns across the continent (Bobe, 2006; Couvreur et al., 85 

2021; Hagen et al., 2021; Linder, 2017; Senut et al., 2009; Sepulchre et al., 2006). These changes 86 

had immense impacts on the evolutionary trajectories of countless lineages on the African 87 

continent. For example, in the early Eocene, equatorial Africa was largely covered by tropical 88 

forests, but aridification repeatedly fragmented and reduced these habitats over time (Couvreur, 89 

2015; Couvreur et al., 2008; Hagen et al., 2021). Evidence from plant fossils and phylogenetic 90 

studies suggest that lineages with past widespread distributions across the continent, as well as 91 

between eastern Africa and southern Asia, are now disjunct as a result of recent aridification (Ali 92 

et al., 2013; Jacobs et al., 1999; Pokorny et al., 2015; Sanmartín et al., 2010; Zhou et al., 2011). 93 

Conversely, dry and more seasonal climates have been linked to the diversification and dispersal 94 

of lineages both in and out of Africa. Today, a diversity of taxa can be found in abundance 95 

within the more arid regions of Africa as well as surrounding areas with similar climates (e.g., 96 

Arabian Peninsula) (Bruyns et al., 2014; Coe & Skinner, 1993; Jürgens, 1997; Lorenzen et al., 97 

2012; Nylinder et al., 2016). Therefore, it is imperative we gain a broad understanding of the 98 
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historical evolution of diverse lineages across different landscapes, habitats, and biomes in order 99 

to continually refine our understanding of the past and future changes of biodiversity within 100 

Africa. 101 

Geophytes, herbaceous plants with renewal buds located belowground on structures such 102 

as bulbs, corms, and stem tubers, are ubiquitous components of seasonal or disturbance-prone 103 

habitats, and are phylogenetically diverse (Howard et al., 2019; Pausas et al., 2018; Tribble et al., 104 

2021). Within Africa, geophytes are major components of the Greater Cape Floristic Region and 105 

the Mediterranean Basin (Buerki et al., 2012; Procheş et al., 2006). Although geophytes are 106 

predominant elements of these two areas, the geophytic habit is widespread throughout sub-107 

Saharan Africa, particularly within seasonal or disturbance-prone (e.g., fire) habitats (Esler et al., 108 

1999; Kornas, 1985). Studies have reported that many African geophytes’ origins coincide with 109 

the onset of increased seasonality and/or aridity within the continent (i.e., since the Eocene), with 110 

the majority of diversity evolving in response to the relatively more drastic climatic changes 111 

since the Oligocene/Miocene (Ali et al., 2012, 2013; Buerki et al., 2012; del Hoyo et al., 2009; 112 

Procheş et al., 2006). At a broad scale, therefore, geophytic lineages make excellent candidates 113 

for understanding recent evolutionary and biogeographic dynamics within seasonal and arid 114 

climates. 115 

Scilloideae (Asparagaceae) are a bulbous geophyte lineage widespread both within and 116 

outside of Africa (Speta, 1998a). This monocotyledonous clade consist of 1,000+ taxa found 117 

throughout seasonal climates in Africa as well as Madagascar, Europe, the Middle East, and 118 

Asia, with a single lineage found in South America (i.e., Oziroe Raf.; (Giranje & Nandikar, 119 

2016; Speta, 1998b). Although only a handful of studies have investigated the historical 120 

biogeography of the Scilloideae and its subclades, so far, all have pointed to sub-Saharan Africa 121 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508857doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508857
http://creativecommons.org/licenses/by-nc-nd/4.0/


as the origin for the majority of the group (excluding Oziroe in South America), followed by a 122 

complex history within and outside of the continent (Ali et al., 2012, 2013; Buerki et al., 2012; 123 

Pfosser, 2012). However, most inferences have been made using a broad view of each groups’ 124 

distribution (i.e., in biogeographical studies sub-Saharan Africa has been subdivided into one to 125 

three areas) (Ali et al., 2012, 2013; Buerki et al., 2012; Pfosser, 2012). Focusing on widespread 126 

groups within the Scilloideae using a more detailed approach to the regionalization of Africa as 127 

well as a greater taxon sampling, may provide refined insights into the biogeographical processes 128 

that have impacted the dispersal of plants across and out of Africa. 129 

The Ledebouriinae are an ideal group to study because they are widespread within sub-130 

Saharan Africa, with a handful of taxa found in Madagascar, Socotra, Yemen, India, and Sri 131 

Lanka (Giranje & Nandikar, 2016; Venter, 1993) (Figure 1). This distribution is unique within 132 

Scilloideae since many sympatric lineages with Ledebouriinae are also found in northern Africa 133 

(Pfosser, 2012; Speta, 1998a), but the Ledebouriinae are absent from the Scilloideae-rich 134 

Mediterranean Basin (Venter, 2008) (Figure 1). In sub-Saharan Africa, the Ledebouriinae are 135 

predominantly found within more seasonal landscapes, with highest diversity in the Limpopo, 136 

Mpumalanga, and KwaZulu-Natal regions of South Africa (Venter, 1993), yet some occurrences 137 

are documented from more wet, tropical regions (Figure 1). Much diversity within the 138 

Ledebouriinae, however, remains undescribed to science (Howard, 2014; Howard et al., 2022). 139 

Additionally, an expanded phylogenomic analysis of the group suggests that a complex 140 

biogeographical history awaits to be thoroughly examined (Howard et al., 2022). Previous dating 141 

analyses have estimated the origin of the Ledebouriinae sometime within the last 25 myr in sub-142 

Saharan Africa (Ali et al., 2012; Buerki et al., 2012). However, this clade was not the focus of 143 

study and therefore, taxon sampling was low. Additionally, results were unable to provide fine-144 
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scale biogeographical patterns since sub-Saharan Africa was considered and analyzed as one 145 

large area. A more detailed categorization of the various regions in the continent would provide a 146 

better understanding of the biogeographical history of the group. For example, Ali et al. (2012) 147 

found that Malagasy and Indian Ledebouria were sister to one another, which led the authors to 148 

invoke long-distance dispersals from Madagascar to India. However, as stated by the authors, 149 

Ledebouriinae samples from eastern, western, and northern sub-Saharan Africa were absent, 150 

limiting confidence in these conclusions (Ali et al., 2012). Furthermore, the phylogenetic 151 

reconstructions of Pfosser et al. (2012) suggested two independent dispersal events to 152 

Madagascar, but low phylogenetic resolution diminished confidence in this hypothesis. A recent 153 

phylogenomic analysis of the Ledebouriinae provided the framework to suggest (without testing)  154 

multiple dispersals to Madagascar, and a potential migration out of Africa via the Arabian 155 

Peninsula into India (Howard et al., 2022).  156 

The widespread distribution of the Ledebouriinae provides us with the opportunity to 157 

refine our understanding of evolution and biogeography within Africa, potentially during a time 158 

of extensive climatic, geologic, and habitat change on the continent. Here, we investigate the 159 

timing and historical dispersal of the Ledebouriinae both within and out of Africa. We ask: 1) 160 

Which region within Africa acted as the putative origin of the group, and 2) What roles have 161 

dispersal and vicariance played in the evolutionary history of the Ledebouriinae, if any? Our 162 

specific focus on these questions and the use of an increased sampling of the Ledebouriinae 163 

allow for a more thorough investigation into the evolutionary history of the group and improve 164 

our knowledge on patterns and processes within Africa. 165 
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2 METHODS 166 

2.1 Phylogenetic analysis 167 

Ledebouriinae samples were obtained from the field, private collections, and herbarium 168 

vouchers (Howard et al., 2022). DNA extractions were performed using a modified CTAB 169 

protocol, followed by high throughput sequencing on an Illumina HiSeq using the 170 

Angiosperms353 universal probe set (Johnson et al., 2019). Raw reads were cleaned using 171 

SECAPR (Andermann et al., 2018), sequences were pulled using hybpiper (Johnson et al., 2016) 172 

and aligned using MAFFT v.7 (Katoh & Standley, 2013). See Howard et al. (2022) for more 173 

details on Ledebouriinae sequence acquisition and analysis as well as data used. 174 

We incorporated outgroup taxa from the Plant and Fungal Tree of Life project (Baker et 175 

al., 2022) and the 1KP dataset (Matasci et al., 2014). Exons were only available for the outgroup 176 

taxa included to estimate divergence times using fossils and secondary calibration points. 177 

Phylogenetic reconstruction including the Ledebouriinae plus outgroups was performed on a 178 

concatenated, partitioned supermatrix of exons with 10% gappy/ambiguous sites removed using 179 

phyx (Brown et al., 2017). This matrix was analyzed using IQ-Tree v.2-rc1 (Nguyen et al., 2015) 180 

with 1000 ultrafast bootstraps (Nguyen et al., 2015) with 1000 ultrafast bootstraps, a best-fit 181 

partitioning scheme using the greedy algorithm of PartitionFinder (Lanfear et al., 2012), and a 182 

relaxed clustering percentage of 10 (Lanfear et al., 2014), followed by phylogenetic 183 

reconstruction (-m TESTMERGE). However, the exon-only dataset returned low support for 184 

many nodes within the Ledebouriinae. Therefore, we reran the IQ-Tree analysis with a 185 

topological constraint tree (-g) that was previously built from a supercontig (i.e., exons + introns) 186 

dataset of the Ledebouriinae (Howard et al., 2022). 187 
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2.2 Time calibration 188 

We incorporated eight outgroup fossil calibration points, each with a minimum age 189 

specified in Iles et al. (2015) (Table S1). A secondary calibration point at the crown node of 190 

monocots was inferred between 131–135 mya based on previous analyses (Givnish et al., 2018; 191 

Magallón et al., 2015). 192 

Given the size of the dataset, we used penalized likelihood as implemented in treePL 193 

(Smith & O’Meara, 2012) for time calibration. To incorporate uncertainty around age estimation, 194 

we took a multi-tiered approach (see https://github.com/sunray1/treepl) similar to previous 195 

studies estimating divergence times using large phylogenetic datasets (Emberts et al., 2020; Li et 196 

al., 2019; Magallón et al., 2015). We generated 100 bootstrap replicates of our original exon 197 

supermatrix alignment using RAxML v.8.2.0 (f -j option) (Stamatakis, 2014). A maximum 198 

likelihood tree for each replicate with a corresponding partition file was then reconstructed using 199 

a topological constraint (i.e., the phylogeny from the IQ-Tree analysis) to ensure consistent 200 

calibration point placement, and a GTRGAMMA model of evolution. The resulting 100 “best 201 

trees” were rooted on Acorus gramineus using phyx (Brown et al., 2017). In Step 1, each 202 

replicate tree had a priming step completed with a random seed number and the thorough 203 

command invoked. Step 2 was performed three independent times to assess convergence on the 204 

best smoothing parameter for each individual tree. Step 2 also included the individual outputs 205 

from each tree’s previous priming step (e.g., optad, moredetail, etc.) as well as the cross-206 

validation (CV) steps, which were set to cvstart=10000, cvstop= .00000000000001, 207 

cvmultstep=0.09. Lastly, Step 3 summarized each individual tree’s CV output to determine and 208 

scale each tree using the appropriate smoothing parameter. The 100 ultrametric phylogenies were 209 
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summarized using TreeAnnotator v.1.10.4 (Bouckaert et al., 2014) to obtain a maximum clade 210 

credibility tree with 95% confidence intervals around each node and median node heights. 211 

2.3 Biogeographical analysis 212 

The biogeographical regionalization of Linder et al. (2012) was used for categorizing the 213 

location of each sub-Saharan African Ledebouriinae accession. The exact distribution of 214 

populations/taxa represented by many field-collected individuals (i.e., collections made by C.C. 215 

Howard) remains to be fully assessed since they are undescribed species and/or are only known 216 

from one locality. Additionally, many described species are currently known as occurring in 217 

small geographic ranges or even single mountain tops (Lebatha, 2004; Venter, 2008). 218 

Consequently, most samples were assigned only to known areas of occurrence. Accessions found 219 

outside of Africa were coded according to their respective areas of occurrence: Madagascar, 220 

Yemen, Socotra, or Sri Lanka). Another reason we coded each taxon using this approach is 221 

exemplified by Ledebouria revoluta, reported from the Cape Region of South Africa to Sri 222 

Lanka (Mwafongo et al., 2017; Venter, 1993). This widespread taxon likely represents a species 223 

complex with a wide range of morphological variation (Brita Stedje, 1998), and therefore, often 224 

this name is associated with individuals whose species identification is difficult (Mwafongo et 225 

al., 2017). Consequently, and not surprisingly, L. revoluta is an ambiguous entity as evidenced 226 

by its polyphyly within the Ledebouriinae (Howard et al., 2022). In total, 14 geographic regions 227 

were used to categorize all terminals. To estimate ancestral ranges, we compared the maximum 228 

likelihood implementations of three biogeographical models, DEC, DIVA-like, and BAYAREA-229 

like as implemented in BioGeoBEARS (Matzke, 2013a, 2013b, 2014) in R (R Core Team, 230 

2016). We used log-likelihood and AICc values to determine the best model between the three. 231 

Given the debate surrounding the use of models with the +j parameter (Matzke, 2022; Ree & 232 
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Sanmartín, 2018), we decided to not include them and, additionally, their implementation tends 233 

to infer a high number of jump dispersals, which are unlikely biological scenarios for the 234 

majority of the Ledebouriinae (see Discussion).  235 

2.3.1 Biogeographical uncertainty 236 

Within a subclade of Ledebouria Clade A, phylogenetic relationships are poorly 237 

supported (Figure 2, node a) (Howard et al., 2022). However, given the potential rapid radiation 238 

along the backbone of this group, we wanted to explore the biogeography of this clade since it 239 

may contain an interesting history. To compensate for the uncertainty, we incorporated 240 

topological and branch depth variability into our biogeographical analysis by using a random 241 

sampling of trees from the posterior of a Bayesian analysis for the subclade of interest 242 

(Ceccarelli et al., 2019; Magalhaes et al., 2021). To begin, we reduced our total alignment to the 243 

most clock-like genes using SortaDate (Smith et al., 2018). This was done due to failure to reach 244 

convergence when using the entire alignment (data not shown). We kept genes that were at least 245 

10% concordant (bipartition >0.1), had a tree length greater than 7.24, and had root-to-tip 246 

variation of less than 0.009. Cutoff values for the latter two were determined using the median 247 

values for all gene trees, as previously reported (Pillon et al., 2021). Of the remaining 248 

alignments, we included only taxa within the subclade of interest (Figure 2b) and removed 249 

duplicate Ledebouriinae outgroup taxa as well as those putatively duplicate within the 250 

Ledebouriinae ingroup (indicated by * in Figure 2). Each gene was then aligned using MAFFT 251 

(Katoh & Standley, 2013) invoking the --auto option. Sites with 5% gaps/ambiguity were 252 

removed using phyx (Brown et al., 2017). Due to failure to reach convergence using a 253 

partitioned, concatenated alignment in BEAST v1.10.4 (Drummond & Rambaut, 2007), we 254 

instead input an unpartitioned, concatenated alignment using a GTR+GAMMA model of 255 
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substitution, a speciation birth-death prior, and a lognormal distribution with an offset 17.1, 256 

mean 1.0, stdev 1.0 (95% range 17.24–19.88) on the root node of the subclade. This initial value 257 

was chosen based on the treePL divergence time estimates for this node. We ran an MCMC 258 

chain of 300k generations sampling every 10k generations. Convergence was assessed using 259 

Tracer v1.7.1 (Rambaut et al., 2018) to ensure all ESS values were above 200. We removed 50% 260 

of trees as burnin and used the remaining trees in the analysis. We randomly sampled 100 trees 261 

after burnin, and performed a DIVA-like analysis (i.e., the best model) on each tree followed by 262 

stochastic mapping using BioGeoBEARS (Matzke, 2013a). Trees were summarized to obtain an 263 

average number of biogeographical events within and between each region included in the 264 

analysis. Scripts for running the analysis can be found on github 265 

(https://github.com/ivanlfm/BGB_BSM_multiple_trees). The rationale for incorporating 266 

phylogenetic uncertainty was developed by Ceccarelli et al. (2019) and Magalhaes et al. (2021). 267 

3 RESULTS 268 

3.1 Phylogenetic relationships and age estimates 269 

We recovered a polyphyletic Ledebouria, and a monophyletic Drimiopsis and Resnova, 270 

which is congruent with a recent study (Howard et al., 2022). However, shallow-level 271 

relationships differed compared to Howard et al. (2022), particularly within the Ledebouria 272 

clades, and especially within Ledebouria Clade A. This is due to using a topological constraint (-273 

g), which searches tree parameter space, over using a fixed topology (-te) which does not 274 

perform a tree search (see http://www.iqtree.org/doc/Command-Reference). Given differences in 275 

the inputs between Howard et al. (2022) and our exons-only datasets, we preferred a topological 276 

constraint allowing for a tree search over forcing a fixed topology. 277 
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Within a penalized likelihood framework, the Scilloideae originated approximately 52.0 278 

my (95% HPD 51.2 – 54.5) (Figure 2; Table 1). We recovered a median crown age estimate for 279 

the Ledebouriinae of 28.0 myr (95% HPD 26.1–28.3), with age estimates of the four major 280 

Ledebouriinae clades soon thereafter. The split between Drimiopsis and Ledebouria Clade B was 281 

estimated at 27.1 mya (95% HPD 25.2–27.5). The crown of Drimiopsis was dated to 22.1 mya 282 

(95% HPD 20.5–23.5), and Ledebouria Clade B was dated at 26.1 mya (95% HPD 24.0–26.5). 283 

The split between Resnova and Ledebouria Clade A occurred at 26.3 mya (95% HPD 23.7–284 

25.2). The Resnova crown was dated at 17.9 mya (95% HPD 16.6–18.5), and Ledebouria Clade 285 

A was estimated at 25.0 mya (95% HPD 23.0–25.4) (Table 1). 286 

3.2 Biogeography 287 

The DIVA-like model produced the most likely ancestral range estimates among the 288 

models (LnL -220.54) (Table 2). The regions Natal+Zambezian were reconstructed as the 289 

ancestral range for the Ledebouriinae (p = .53) and Drimopsis (p = .84), while Zambezian was 290 

reconstructed for Drimiopsis + Ledebouria Clade B (p = .95) and Ledebouria Clade B (p = .98). 291 

Within Ledebouria Clade B, the model favors a widespread distribution of Yemen+Zambezian 292 

(p = .55) followed by subsequent reconstructions containing various combinations of Zambezian 293 

and other regions, or Zambezian alone (Figures 3 and S2). Within Ledebouria Clade B we also 294 

recover one of the two dispersals of the Ledebouriinae to Madagascar (Figure 3). 295 

The Kalahari+Natal regions were recovered as the ancestral range for Resnova + 296 

Ledebouria Clade A (p = .42), whereas the Natal region was recovered for Resnova (p = .99), 297 

and Kalahari for Ledebouria Clade A (p = .51) (Figures 3 and S2). Within Ledebouria Clade A, 298 

we find an additional dispersal to Madagascar (Figure 3). Additionally, in summarizing the 10 299 

biogeographic stochastic reconstructions (see section 2.3.1), we recovered a steady rise in the 300 
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number of lineages in the Zambezian and Kalahari regions from ~15 myr onwards in a subclade 301 

of Ledebouria Clade A (Figure 3b). Additionally, despite some differences in topology between 302 

these results and those of Howard et al. (2022), both studies overall share clades that largely 303 

reflect geography. We recover two subclades of mostly Namibian taxa, a subclade containing 304 

mostly South African taxa, and a subclade containing a mixture of Zambian, Tanzanian, and 305 

Zimbabwean taxa (Figures 2 and 3).  306 

4 DISCUSSION 307 

4.1 Broad biogeographical patterns 308 

Here, we present the best and most comprehensive sampling of the Ledebouriinae to date 309 

(representing ~30% of described Ledebouriinae taxa (POWO, 2019) plus numerous undescribed 310 

taxa) which has provided greater insights into the historical biogeography of this widespread, 311 

bulbous lineage than previously uncovered. Our results suggest a rapid radiation along the 312 

backbone of the Ledebouriinae, estimated between ~28–26 mya (Figure 2; Table 1) in 313 

southeastern, sub-Saharan Africa (Figures 3, S1, S2). This region corresponds somewhat to the 314 

current center of diversity of the Ledebouriinae, which is at the intersection of the Natal-315 

Kalahari-Zambezian biogeographical regions (Lebatha, 2004; Manning, 2020; Venter, 1993). 316 

The four major subclades (Ledebouria Clade A, Ledebouria Clade B, Resnova, and Drimiopsis) 317 

originated in neighboring regions to one another soon thereafter (Table 1; Figure 3). During this 318 

timeframe in Africa, major shifts in climate and habitat composition have been inferred at both 319 

local and continental scales, and at shallow and deep phylogenetic scales (Couvreur et al., 2021; 320 

Gizaw et al., 2021; Hagen et al., 2021; Kandziora et al., 2022; Pokorny et al., 2015). From the 321 

Eocene-Oligocene transition, global cooling promoted the expansion of seasonal and arid 322 

climates as well as savanna, grassland, and fire-prone habitats in Africa, with greater increases 323 
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during the Miocene (Senut et al., 2009; Sepulchre et al., 2006). Furthermore, the Great 324 

Escarpment underwent renewed uplift in the early Miocene, which increased habitat 325 

heterogeneity that was coupled with an intensification of global cooling and aridification that 326 

collectively led to lineage radiation and dispersal in many African taxa (Cowling et al., 2009; 327 

Galley et al., 2007; Neumann & Bamford, 2015; Partridge & Maud, 1987). Being bulbous 328 

geophytes, the Ledebouriinae may have been “pre-adapted” for these climatic and environmental 329 

changes, and therefore diversified in response (Howard et al., 2020). Overall, our biogeographic 330 

reconstructions and divergence time estimations lead us to hypothesize that the expansion of 331 

seasonal habitats and extensive orogenic activity in southern, sub-Saharan Africa spurred the 332 

radiation of the Ledebouriinae and promoted additional radiations and dispersals over time. 333 

4.2 A tale of two Ledebouria 334 

We estimate that the two Ledebouria lineages originated at slightly different times 335 

(Figure 2; Table 1) in neighboring regions (i.e., Kalahari vs Zambezian), which lead to 336 

subsequent divergent biogeographic histories (Figure 3). In general, the two Ledebouria overlap 337 

in eastern Africa with a geographical divide between southern and northern sub-Saharan Africa 338 

(Figure 2) (Howard et al., 2022). The divergent evolutionary histories and current overlapping 339 

distribution of the two Ledebouria may have been influenced by the expansion and contraction 340 

of wet, tropical, forested habitats in eastern Africa that repeatedly split a historically more 341 

widespread distribution (Couvreur, 2015; Couvreur et al., 2021). These past habitat fluctuations 342 

have created a mosaic of climates and vegetation types in eastern Africa, and have influenced the 343 

evolutionary trajectory of countless lineages (Dagallier et al., 2020; Lorenzen et al., 2012). Other 344 

lineages adapted to seasonal and arid habitats share similar distributions with the two Ledebouria 345 

(Grace et al., 2015; Jürgens, 1997). For example, the two lineages overlap geographically with 346 
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that of stapeliads (Ceropegieae, Apocynaceae)—Ledebouria Clade B overlaps with the Northern 347 

grade, whereas Ledebouria Clade A overlaps with the Pan-African clade (see Fig. 3 in Bruyns et 348 

al. (2014)). We also find two dispersals of Ledebouria to Madagascar (Figure 3), which had been 349 

previously hypothesized (Pfosser, 2012). Madagascar and mainland Africa have been separated 350 

since at least the Paleocene (Couvreur et al., 2021), which suggests long distance dispersal from 351 

Africa to Madagascar led to the origin of Ledebouriinae on the island. 352 

4.2.1 The Voyage of Ledebouria Out of Africa, or Ledebouria Clade B 353 

Previous studies invoked long distance dispersal from Madagascar to India to explain the 354 

distribution of Ledebouria in Asia (Ali et al., 2012); however, we find little support for this 355 

hypothesis. Reconstructions place the ancestral area of Ledebouria Clade B in the Zambezian 356 

region followed by migration into other regions, such as Yemen and India, between ~20–15 mya 357 

(Figures 2 and 3). During this time, the Arabian Peninsula and Socotra were connected or in 358 

close proximity with mainland Africa (Edgell, 2006; Fleitmann et al., 2004; Jacobs, 2004; Rögl, 359 

1999), which would have allowed overland dispersal to these regions. Pollen and wood fossils 360 

indicate historical widespread distributions between eastern Africa and south Asia of other 361 

closely related taxa (Bonnefille, 2010; Morgan et al., 1994). Additionally, fossils indicate that 362 

forested habitats were present in the Arabian Peninsula during the Eocene and Oligocene, that 363 

later gave way to more open, xeric, grassland habitats in the Miocene (Jacobs et al., 1999; 364 

Whybrow & McClure, 1980). The modern-day equivalents of these conditions are commonly 365 

inhabited by Ledebouria (Venter, 1993). Given the historical environments present in Africa and 366 

south Asia during the Late Oligocene/Early Miocene, the ancestor of Ledebouria yemenensis + 367 

L. nossibeensis likely had a widespread distribution that was fragmented as aridification 368 

increased during the Miocene. Additionally, vicariance likely promoted allopatric speciation of 369 
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Socotran Ledebouria as the islands drifted away from mainland Africa over time. Vicariance has 370 

been invoked for other lineages with hypothesized widespread historical ranges between Africa, 371 

the Arabian Peninsula, Socotra, and/or southern Asia, including Isodon (Lamiaceae) (Yu et al., 372 

2014), Aganope (Fabaceae) (Sirichamorn et al., 2014), Searsia (Anacardiaceae) (Yang et al., 373 

2016), Smilax (Smilacaceae) (Chen et al., 2014), and several reptiles (Main et al., 2022; Smíd et 374 

al., 2013; Tamar et al., 2016), many of which have similar age estimates and distributions as 375 

Ledebouria Clade B. In other groups, such as the Urgineoideae (Asparagaceae) (Ali et al., 2013) 376 

and Uvaria (Annonaceae) (Zhou et al., 2011), dispersals from Africa to south Asia by way of the 377 

Arabian Peninsula have been hypothesized. Furthermore, Ledebouria seed has limited dispersal 378 

capacity, which occurs primarily via sheet water flow (i.e., travels only short distances and is 379 

rainfall dependent) (Venter, 1993). In years of limited rainfall and/or in flat terrains, seeds and 380 

seedlings can be found surrounding the parent plant (CCH, pers. obs.), and the ephemeral nature 381 

of the seeds in some taxa warrants germination soon after ripening (CCH and TSH, pers. obs.). 382 

Thus, our age estimates and biogeographical reconstructions as well as the limited dispersal 383 

ability of Ledebouria lead us to hypothesize that Clade B dispersed out of Africa to south Asia 384 

via overland migration through the Arabian Peninsula. This historical, widespread distribution 385 

was then fragmented by Miocene-driven aridification. Today, L. yemenensis, the only 386 

Ledebouriinae currently recorded from the Arabian Peninsula, likely represents a relic of this 387 

once widespread distribution as it is endemic to the cooler, higher elevation of the Yemeni 388 

Highlands surrounded by arid lowlands. 389 

4.2.2 Within Africa—Ledebouria Clade A 390 

Our results suggest that Ledebouria Clade A originated slightly later and in a more 391 

southerly region than that of Ledebouria Clade B (Table 1; Figures 2 and 3). Based on our 392 
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dataset, Ledebouria Clade A arose ~25–23 mya and remained predominantly within sub-393 

equatorial Africa (Figures 2 and 3). Despite the low resolution within some areas of Clade A 394 

(Howard et al., 2022), we recovered multiple subclades that reflect geographic affinity (Figure 395 

2). For example, we see a subclade of mixed geographic composition (i.e., L. caesiomontana + L. 396 

sp. 12 CCH190) (node c, Figure 2) that suggests a widespread distribution between the Kalahari 397 

and Zambezian regions that diverged and lead to in situ speciation in the Zambezian region 398 

followed by a dispersal to Madagascar (Figure 3). We recovered an additional subclade of 399 

predominantly Zambezian taxa (i.e., L. sp. 37 CCH169 + L. sp. 24 Uganda) (subclade in node a, 400 

Figure 2) with evidence of a dispersal to the Sudanian region (i.e.,  L. sp. 24 Uganda). 401 

Furthermore, two subclades of predominantly Namibian taxa (i.e., L. sp. 14 CCH109 + L. sp. 18 402 

CCH218 (node b, Figure 2), and L. sp. 7 CCH066 + L. sp. 32 CCH145 (subclade in node a, 403 

Figure 2)) suggest multiple dispersals to the region followed by in situ speciation (Figure 3). 404 

Lastly, a subclade of mostly South African taxa (i.e., L. galpinii + L. coriacea) (subclade in node 405 

a, Figure 2) was recovered (Figure 3). Overall, our results suggest that within a relatively short 406 

time frame (~20–15 mya), a complex history of dispersals followed by in situ speciation events 407 

occurred within Ledebouria Clade A in southern Africa (Figure 3; Table S2). 408 

From the Miocene onwards, complex interactions between mountain uplift and climate 409 

change have promoted diversification across lineages within southern Africa (García-Aloy et al., 410 

2017; Maswanganye et al., 2017; Neumann & Bamford, 2015; Nielsen et al., 2018). Ledebouria 411 

Clade A may have originated in southeastern Africa then dispersed and diversified as the region 412 

grew more heterogeneous and arid. For example, we found an instance of potentially rapid 413 

radiation within Ledebouria Clade A between 20–17 mya (Figure 3b), which corresponds to a 414 

clade with consistently poor phylogenetic resolution (Howard et al., 2022). This subclade 415 
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contains taxa from across southern sub-Saharan Africa with geographic signals within (i.e., 416 

clades of South African, Namibian, and Zambian taxa) (Figures 2 and 3). It is possible that the 417 

Middle Miocene Climatic Optimum or Middle Miocene Climate Transition (Zachos et al., 2001) 418 

coupled with renewed uplift of the Great Escarpment spurred this radiation, and we see a steady 419 

rise in lineage accumulation from ~20–15 mya (Figure 3b). During the Middle Miocene, the 420 

vegetation of South Africa was likely tropical, which gave way to more xerophytic shrubland by 421 

Late Miocene due to a global cooling climate (Pound et al., 2012). This time period is associated 422 

with diversification in the Crassulaceae (Lu et al., 2022) and also the expansion of C4 423 

grasslands/savannas at a global scale (Bobe, 2006; Senut et al., 2009). Current biogeographical 424 

patterns of Aloe suggest dispersal from southern Africa to East Africa as seasonality and 425 

aridification increased across the continent within the past ~16 my (Grace et al., 2015). 426 

Monsonia (Geraniaceae) share similar distributional patterns as Ledebouria Clade A with 427 

multiple lineages comprised of mainly southwestern or southeastern taxa (i.e., southern African 428 

split between eastern and western clades), which radiated within the past ~20–15 myr (García-429 

Aloy et al., 2017). Overall, we find a fascinating, albeit more complicated, evolutionary history 430 

of Ledebouria Clade A within southern sub-Saharan Africa that remains to be fully resolved. 431 

4.3 Limited, but intriguing insights into Drimiopsis 432 

Based on our limited sampling of Drimiopsis, we find additional evidence for a southern 433 

and northern sub-Saharan African divide (Figures 2 and 3), which is also seen in ungulates 434 

(Lorenzen et al., 2012), Lycaon pictus (Canidae) (Marsden et al., 2012), Encephalartos 435 

(Cycadaceae) (Mankga et al., 2020), and Agama (Reptilia) (Leaché et al., 2014). The 436 

eastern/northern sub-Saharan African Drimiopsis arose ~19–17 mya (Figure 2), during a time of 437 

increased mountain building in the region (~17 and ~13.5 mya; (Wichura et al., 2015) that was 438 
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followed by a shift towards a more arid climate (Bonnefille, 2010; Linder, 2017; Morgan et al., 439 

1994; Senut et al., 2009). Several East African Drimiopsis have overall more succulent leaves 440 

compared to their southern African relatives (Lebatha, 2004), which may have been selected for 441 

as eastern Africa experienced greater aridification compared to the southeast. Additionally, East 442 

African Drimiopsis are known polyploids (Lebatha, 2004; B Stedje & Nordal, 1987), which may 443 

have further spurred evolution in this region since polyploidy may provide an advantage in 444 

particular environmental conditions (e.g., aridity) (Manzaneda et al., 2012; Sonnleitner et al., 445 

2010). In contrast, South African Drimiopsis occur in moist and shady habitats, and are not 446 

found in the drier portions of southwestern Africa (Lebatha, 2004). Given the estimated age of 447 

South African Drimiopsis (~13.6 mya) (Figure 2), uplift of the Great Escarpment may have 448 

increased aridity in southwest Africa (Bobe, 2006; Partridge & Maud, 1987) that hindered 449 

Drimiopsis establishment in this region, but at the same time promoted diversification in 450 

southeastern Africa leading to its high diversity in the area (Lebatha, 2004). However, far greater 451 

sampling of Drimiopsis from its entire distribution is needed to test hypotheses regarding their 452 

evolutionary history. Ideally, an expanded phylogenetic framework would be coupled with 453 

ploidal inferences, anatomical studies, and experimental manipulations to fully assess the 454 

relationship between historical biogeography and morphological evolution. 455 

4.4 Where to sample next? 456 

Our taxon sampling heavily consisted of southern, sub-Saharan African taxa (Figure 1), 457 

and largely excluded Resnova. Therefore, increased sampling of Resnova as well as Ledebouria 458 

and Drimiopsis from western, central, and northern Africa will provide further insights into the 459 

biogeographical history of the Ledebouriinae. For example, Ledebouria occurs in northern 460 

Angola (Gregory Jongsma, pers. obs.) and Gabon (Figure 1). This leads us to wonder whether a 461 
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continuous distribution was once present along the central/western coast of Africa, or if the 462 

Central African tropical forests have consistently obstructed Ledebouriinae dispersal within the 463 

coastal, wet tropics. Furthermore, a Ledebouria accession from Uganda is nested within 464 

Ledebouria Clade A, which suggests that by increasing sampling from northern/western Africa 465 

we may uncover additional biogeographic events. Lastly, multiple, morphologically distinct 466 

Ledebouria taxa are recorded from Socotra and surrounding islands (Miller & Alexander, 2010), 467 

and India (Giranje & Nandikar, 2016). Incorporating these into future phylogenetic studies may 468 

highlight further dispersals, or bolster support for allopatric speciation/vicariance as a major 469 

evolutionary process leading to the current distribution of the group outside of Africa. 470 

5 CONCLUSION 471 

 The Ledebouriinae are a widespread, bulbous lineage of monocots that remain poorly 472 

understood taxonomically due to a high degree of phenotypic plasticity and significant under 473 

collection of specimens. Our study provides a pivotal first step towards refining our 474 

understanding of historical evolution and biodiversity within this fascinating lineage. The results 475 

of our analyses highlight the complex biogeographic history of the Ledebouriinae within and 476 

outside of sub-Saharan Africa. We find that the Ledebouriinae evolved within the past ~30 myr, 477 

which suggests the group radiated in response to increasing climatic seasonality and orogenic 478 

activity since. We find evidence that vicariance led to the current distribution of Ledebouria in 479 

Asia and Socotra, with overland dispersal out of Africa into Asia likely occurring via the Arabian 480 

Peninsula. We also find evidence of two independent dispersals to Madagascar. Within Africa, 481 

we find evidence of a northern and southern sub-Saharan division between the two Ledebouria 482 

lineages and within Drimiopsis. We also uncover a complex history of dispersals and in situ 483 

speciation events within southern Africa in Ledebouria Clade A, a clade that warrants improved 484 
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phylogenetic resolution to further elucidate the processes affecting its current distribution. In 485 

conclusion, our study shows the value of increasing research focus on understudied lineages 486 

inhabiting seasonal and arid habitats. 487 

Tables 488 

Table 1. Comparison of median age estimates and associated uncertainty (95% highest 489 
probability density (HPD)) for each major Ledebouriinae clade using penalized likelihood as 490 
implemented in treePL.  491 

Clade median estimate 95% HPD 

Scilloideae 52.2 51.2 – 54.5 

Ledebouriinae 28.0 26.1 – 28.3 

Ledebouria Clade A 25.0 23.0 – 25.4 

Resnova 17.9 16.6 – 18.5 

Clade A + Resnova 26.3 24.5 – 26.7 

Drimiopsis 22.1 20.5 – 23.5 

Ledebouria Clade B 26.1 24.0 – 26.5 

Clade B + Drimiopsis  27.1 25.2 – 27.5 

 492 

Table 2. Statistical outputs for each model from BioGeoBEARS. log-likelihood (LnL); rate of 493 
dispersal (d); rate of extinction (e); Akaike’s Information Criterion (AIC) 494 

Model LnL Number of 
parameters 

d e j AIC 

DEC -267.1 2 0.01 0.01 0 538.4 

DIVA-like -220.5 2 0.0027 0.009 0 445.2 

BAYAREA-like -232.8 2 0.0036 0.04 0 469.8 
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Figures 495 

 496 

Figure 1. General distribution of the seasonal and arid ecosystems of sub-Saharan Africa (light 497 
orange polygon) underlain by the distribution of the Ledebouriinae displayed using GBIF 498 
specimen occurrence data (teal squres; GBIF.org (22 March 2022) GBIF Occurrence Download 499 
https://doi.org/10.15468/dl.xmccae). Collection localities of samples used in this study are 500 
denoted with maroon circles. Examples of habitats and associated Ledebouriinae taxa are 501 
displayed in the images. a) Ledebouria sp. 8 CCH186, b) Ledebouria sp. 15 CCH027, c) 502 
Drimiopsis botryoides subsp. botryoides CCH153. See Figure 2 for phylogenetic placement of 503 
these example taxa. General distribution of seasonal landscapes adapted from Balinsky (1962), 504 
Jürgens (1997), and Bellstedt et al. (2012). 505 
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Figure 2. Divergence times within the Ledebouriinae as estimated using penalized likelihood in 506 
treePL. For each clade, collection localities are overlaid on a map of Africa, Madagascar, and 507 
Asia to aid with discussions of geographical patterns. Clades labeled with a, b, and c in yellow 508 
are clades discussed within the manuscript. Numbers above blue bars denote median age 509 
estimates. Blue bars denote 95% highest posterior density (95% HPD). * indicate samples 510 
excluded from subsequent biogeographical analyses. Not all nodes are annotated with estimated 511 
divergences times for illustrative simplicity. For a fully annotated phylogeny, see Figure S1.  512 
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Figure 3. Biogeographical reconstruction using the DIVA-like model as implemented in 514 
BioGeoBEARS and plotted using RevGadgets. a) Regionalization scheme used in the 515 
classification of taxa for analysis. b) Summary of 10 stochastic mappings from a posterior 516 
distribution of trees including only taxa from the indicated clade (solid black line). For pie chart 517 
probabilities at each node, see Figure S2. 518 

 519 

Data Availability 520 

Raw reads from PAFTOL are available in ENA (accession PRJEB35285) and assembled reads 521 

from www.treeoflife.kew.org. Raw reads of the Ledebouriinae are available from the SRA 522 

(accession PRJNA721471). Alignments, species trees, biogeography inputs/outputs are all 523 

available on Dryad (doi: currently in process) (but try https://doi.org/10.5061/dryad.r4xgxd2gw).  524 
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Supporting information 534 

Table S1. Fossil and secondary calibration points used in the penalized likelihood (treePL) 535 

analysis. With the exception of monocots, all calibrations were set as minimum values in the 536 

analysis. 537 
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node minimum 

calibration 

source 

Zingiberaceae 72.1 Iles et al., 2015 

Typhaceae 51.66 Iles, et al. 2015 

Cyperaceae 47.0 Iles, et al. 2015 

Amaryllidaceae 48.88 Pigg et al., 2018 

Coryphoideae 83.6 Iles, et al. 2015 

Agavoideae 14.5 Iles, et al. 2015 

Xanthorrhoeaceae 38.0  Iles, et al. 2015 

Goodyerinae 15.0 Iles, et al. 2015 

Monocots 131 – 135 Magallón et al., 2015 

 538 

Table S2. Top ten most common transition types found in a subclade of Ledebouria Clade A 539 

(Figure 3b) using stochastic mapping of biogeographic events. 540 

starting_rang

e 

ending_rang

e 

average_n_event

s 

SD transition_type 

K K 23.432 2.121 in situ speciation 

Z Z 19.252 1.297 in situ speciation 

K KN 3.393 0.517 dispersal 

T T 2.764 2.089 in situ speciation 
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C C 1.29 1.912 in situ speciation 

KZ K 1.09 0.307 vicariance or subset sympatry or 

extinction 

KZ Z 1.09 0.307 vicariance or subset sympatry or 

extinction 

K KZ 1.029 0.215 dispersal 

CK C 0.912 0.703 vicariance or subset sympatry or 

extinction 

 541 

Figure S1. Full dated phylogeny with 95% highest posterior density plots shown. 542 

Figure S2. Biogeographical reconstruction using the DIVA-like model with nodes showing the 543 

probable range for each region at that node. 544 

 545 
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28.0

Ledebouria grandifolia Socotra

Ledebouria sp. 29 CCH167 Zambia

Resnova megaphylla South Africa

Ledebouria luteola South Africa

Scilla autumnalis

Ledebouria sp. 5 CCH092 Namibia*

Ledebouria sp. 2 Zimbabwe

Ledebouria sp. 25 CCH163 Tanzania

Schizocarphus nervosus

Ornithogalum oligophyllum

Ledebouria sp. 17 CCH251 Namibia

Ledebouria cordifolia CCH170 Zambia*

Bellevalia dubia

Ledebouria sp. 34 CCH121 Namibia

Drimiopsis davidsoniae South Africa

Ledebouria coriacea South Africa

Drimiopsis atropurpurea South Africa

Ledebouria sp. 37 CCH169 Zambia

Ledebouria scabrida CCH069 Namibia

Drimiopsis burkei South Africa

Ledebouria sp. 12 CCH190 Zambia

Ledebouria sp. 24 Uganda

Ledebouria sp. 5 CCH210 Namibia*

Drimiopsis doleritica nom. nud. 1 South Africa

Ledebouria sp. 10 CCH161 Tanzania

Ledebouria sp. 2 South African

Ledebouria revoluta 3 Sri Lanka*

Resnova sp. Eswatini

Ledebouria sp. 9 CCH172 Zambia*

Ledebouria sp. 7 CCH066 Namibia

Ledebouria sp. 6 South Africa

Ledebouria sp. 22 CCH180 Zambia

Drimiopsis botryoides subsp. botryoides CCH153 Tanzania

Ledebouria sp. 4 Zimbabwe

Ledebouria sp. 11 Madagascar

Ledebouria revoluta 2 Sri Lanka*

Ledebouria sp. 16 CCH016 Namibia

Ledebouria revoluta 1 Sri Lanka

Ledebouria leptophylla South Africa

Ledebouria sp. 31 CCH149 Namibia

Ledebouria aff. cremnophila South Africa

Ledebouria sp. 9 CCH171 Zambia

Resnova sp. South Africa*

Ledebouria kirkii Tanzania

Ledebouria sp. 21 CCH178 Zambia

Ledebouria sp. 5 CCH101 Namibia

Ledebouria sp. 30 CCH073 Namibia

Ledebouria sp. 14 CCH109 Namibia

Ledebouria ovatifolia subsp. scabrida South Africa

Ledebouria sp. 23 CCH195 Tanzania

Ledebouria crispa South Africa

Drimiopsis linioseta South Africa

Ledebouria sp. 9 CCH168 Zambia

Ledebouria sp. 15 CCH027 Namibia

Ledebouria yemensis Yemen

Ledebouria undulata Namibia

Ledebouria revoluta India*

Ledebouria cordifolia CCH177 Zambia

Ledebouria socialis South Africa

Ledebouria sp. 35 CCH080 Namibia

Ledebouria sp. 8 CCH183 Zambia

Drimiopsis botryoides Burundi
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Ledebouria sp. 36 CCH067 Namibia

Ledebouria nossibeensis Madagascar

Ledebouria sp. 9 CCH173 Zambia*

Ledebouria sp. 27 CCH174 Zambia
Ledebouria sp. 26 CCH175 Zambia

Ledebouria revoluta South Africa

Massonia cf. depressa

Drimia altissima

Drimiopsis botryoides Ethiopia 

Ledebouria sp. 28 CCH191 Tanzania

Ledebouria sp. 33 CCH226 Namibia

Drimiopsis botryoides subsp. botryoides CCH154 Tanzania

Ledebouria sp. 19 CCH084 Namibia

Ledebouria sp. 3 Mozambique

Ledebouria sp. 7 CCH230 Namibia*

Ledebouria sp. 8 CCH186 Zambia*

Resnova humifusa South Africa

Ledebouria revoluta Eritrea 

Ledebouria sp. 13 CCH164 Tanzania

Urginea maritima

Ledebouria sp. 38 CCH209 Namibia
Ledebouria sp. 18 CCH218 Namibia

Ledebouria caesiomontana South Africa

Drimiopsis botryoides subsp. prostrata CCH160 Tanzania

Ledebouria sp. 32 CCH145 Namibia

Ledebouria sp. 20 CCH003 Namibia

Ledebouria revoluta Somalia 

Ledebouria galpinii South Africa

Lachenalia aloides var. quadricolor

Muscari commutatum

Hyacinthella leucophaea

Drimiopsis doleritica nom. nud. 2 South Africa*

Ledebouria cordifolia Zambia*
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L. sp. 36 CCH067 Namibia
L. sp. 33 CCH226 Namibia
L. sp. 34 CCH121 Namibia
L. sp. 32 CCH145 Namibia

L. sp. 35 CCH080 Namibia
L. sp. 31 CCH149 Namibia

L. sp. 30 CCH073 Namibia
L. sp. 5 CCH101 Namibia
L. sp. 7 CCH066 Namibia

L. sp. 22 CCH180 Zambia
L. ovatifolia subsp. scabrida South Africa
L. revoluta South Africa
L. coriacea South Africa

L. luteola South Africa

L. crispa South Africa
L. leptophylla South Africa

L. galpinii South Africa

L. sp. 25 CCH163 Tanzania
L. sp. 24 Uganda

L. sp. 29 CCH167 Zambia

L. sp. 28 CCH191 Tanzania
L. sp. 23 CCH195 Tanzania

L. sp. 27 CCH174 Zambia
L. sp. 26 CCH175 Zambia

L. sp. 37 CCH169 Zambia
L. sp. 21 CCH178 Zambia

L. sp. 4 Zimbabwe
L. sp. 8 CCH183 Zambia
L. sp. 20 CCH003 Namibia

L. sp. 6 South Africa
L. undulata Namibia

L. sp. 38 CCH209 Namibia
L. sp. 18 CCH218 Namibia

L. sp. 19 CCH084 Namibia
L. scabrida CCH069 Namibia
L. sp. 17 CCH251 Namibia

L. sp. 16 CCH016 Namibia
L. sp. 15 CCH027 Namibia

L. sp. 14 CCH109 Namibia
L. aff. cremnophila South Africa

L. sp. 2 Zimbabwe
L. cordifolia CCH177 Zambia
L. sp. 13 CCH164 Tanzania
L. sp. 12 CCH190 Zambia

L. sp. 3 Mozambique
L. sp. 11 Madagascar

L. sp. 2 South Africa

L. socialis South Africa
L. concolor South Africa

L. caesiomontana South Africa

R. sp. Eswatini
R. humifusa South Africa

R. megaphylla South Africa

L. kirkii CCH159 Tanzania
L. sp. 10 CCH161 Tanzania
L. nossibeensis Madagascar
L. revoluta Somalia

L. revoluta 1 Sri Lanka
L. revoluta India

L. grandifolia Socotra
L. revoluta Eritrea

L. yemenensis Yemen

L. sp. 9 CCH168 Zambia
L. sp. 9 CCH171 Zambia

D. doleritica nom. nud. 1 South Africa
D. linioseta South Africa

D. davidsoniae South Africa
D. burkei South Africa
D. atropurpurea South Africa

D. botryoides subsp. botryoides CCH154 Tanzania
D. botryoides Ethiopia

D. botryoides subsp. prostrata CCH160 Tanzania
D. botryoides subsp. botryoides CCH153 Tanzania
D. botryoides Burundi

Lachenalia aloides var. quadricolor South Africa
Massonia cf. depressa South Africa
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