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Abstract

A linear model for the analysisof longitudinal fluid dynamic oscillationsin solid rocket motorsis
developed and applied to the Ariane 5 boosters. The natural frequenciesare corrected as proposed by
Culick in order to account for the effects of mean flow, mass addition fromthe burning grain, pressure
coupling, nozze admittance,and internal geometry of the combustion chamber. In segmented solid rocket
motors, the main driving source of acoustic oscillationsis often represented by the coupling between the
vortices shed by the inhibitorsat the intersegments and the acoustic field in the combustion chamber.
Thisinteraction isanalyzed using Flandro'smodel, which providesthe vortex-related contributionto the
amplification/damping of the acoustic oscillations. The natural acoustic frequencies are considered as
known inputs for vortex development in the shear layer, which is described by means of classical linear
stability theory of parallel flows. The risk assessment of vortex-induced fluid dynamic instabilitiesin a
small scale and full size configurationof the Ariane 5 boostersis carried out for the leading modes at
several burntimes. Modd predictionsare in good agreement with the available experimental resultsfor

the scaled configuration.

1. Introduction

Huid dynamic oscillations in combustion chambers represent today one of the mogt stringent
limitations to rocket mator performance, since they often are respongiblefor vary serious problems, ranging
from the development o unacceptable pressure/thrust fluctuations to the occurrence o irreversible
destructive damage to the motor. In generd, fluid dynamic oscillationscan sustain themsdves through
energy coupling with either the combustion processitsdlf, or the propellant meen flow. In bath cases, but
especidly in the first one, even rdatively inefficient coupling mechaniams can be sufficient to produce
sgnificant damage, given the high energy rdeased by propdlant combusgtion, or associated with its flow
through the chamber. In solid propellant rockets, the coupling with the combustion process is usudly
determined by the response of the burning rate to pressure and/or velocity perturbations. This effect is
further complicated by the influence of the oscillation frequency, and, at least in linearized theories, is
usudly accounted for by meansdf suitably defined admittancefunctions. On the other hand, globd fluid
dynamic oscillations in the combugtion chamber can also be sustained by the occurrence o loca
ingtabilitiesd the mean flow capable o interfering with the rest of the flow fidd. Typicd in thisrespect
and quiteimportantin practiceare the undeedy vortical layersoriginating from theinhibitorsin ssgmented
solid rocket motors, as they gradudly protrudein the meen flow with progressd grain combustion.
1Senior Research Engineer, Centrospazio, Pisa

2poctoral Student, Dipartimento di Ingegneria Aerospaziale, Universita degli Studi di Pisa
3 Associate Professor, Dipartimento di |ngegneria Aerospaziale, Universita degli Sudi di Pisa

751




A comprehensive analysis of flow instabilities in a combustion chamber, although desirable in
principle, is limited by the remarkable difficulties in developing a representative model, due to the
complexity of the physical phenomena involved. The stability of fluid dynamic oscillations in combustion
chambers is a major aspect of rocket design, and has therefore received considerable attention in recent years
(Culick 1970, 1973, 1975, 1990; Yang et al., 1990; Kuentzmann, 1991). In this respect, linearized models
are quite adequate, and represent an attractive trade-off between simplicity and generality. On the other hand,
the linear nature of these models clearly precludes their application to the study of the development of the
oscillations beyond the linear range. Given the practical difficulties and high costs of fire tests, there is a
great need for validation of theoretical models for prediction of rocket flow stability ranges.

In the present work, the linear stability problem of the fluid dynamic oscillations induced by the
vortical wakes generated by the inhibitors in segmented solid rocket motors is specifically addressed. The
acoustic field in the combustion chamber is described according to Culick’s quasi-one-dimensional
formulation (Culick 1974), including the effects of mass addition from the burning grain, mean flow in the
chamber, pressure coupling, nozzle admittance, and, to some extent, internal geometry of the chamber. The
classical linear stability theory of parallel shear flows is used to describe the vortical field generated by the
inhibitors. The associated boundary value eigenproblem for the linear perturbation equation is solved
numerically by the multiple shooting method, and the interactions between the acoustic and vortical fields
are treated as suggested by Flandro, 1986. The combined model is then validated by comparison with
experimental data reported in the literature (Vuillot et al., 1993) relative to scaled fire tests on the Ariane 5
boosters, and finally applied to assess the risk of vortex-induced instabilities for the full-scale configuration.

2. Formulation

In the instability model proposed by Flandro, the acoustic field in the combustion chamber provides the
forcing frequency for the development of the vortices shedding from the inhibitors. The determination of
this frequency requires the solution of the unsteady flow field in the combustion chamber. Various levels of
refinement can be adopted to this purpose. In the simplest case, the classical Helmholtz solution of the one-
dimensional homogeneous wave equation in the combustion chamber can be used. However, this approach
does not account for the effects of mass addition from the burning grain, mean flow velocity, pressure and
velocity coupling of the combustion rate, nozzle admittance, internal geometry of the chamber, suspended
solid particulates, and grain motion, which are known to be significant in practice. To a higher level of
approximation, inclusion of these effects in a linearized analysis as originally suggested by Culick, 1970,
leads to the solution of a non-homogeneous one-dimensional wave equation:
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where p’ is the pressure perturbation, and explicit expressions of the known terms 4 and g account for the
above-mentioned effects. All of the flow properties of the acoustic field are normalized with respect to the
following reference quantities: length L, velocity @, time L/@, pressure 95. For one-dimensional
harmonic oscillations with complex frequency @, wave number k = @/@, and complex representation
p(X)e™™, the linearized solution of this equation is obtained as a small perturbation of the homogeneous
Helmholtz solution for the /-th mode B, = cos(K,X ), where K, = In/L . To the first order:
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where M, and M, are the average Mach numbers at the combustion chamber outflow boundary and at the
burning surface, A, and A, are the admittances of the nozzle and grain surface, p and @ are the mean
density and sound speed in the chamber of length L and cross-sectional area A, m, is the mean propellant
mass flow rate, and 0 < £ €1 is a numerical factor accounting for non-burning regions along the chamber.
This equation determines the corrected modal frequencies @, required as inputs to the linear stability analysis
of the vortical wake of the inhibitors. A similar expression holds for the corresponding mode shapes. In the
above, all of the unperturbed flow properties in the combustion chamber are assumed uniform in space and
equal to their mean values.
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In the linear approximation, the dynamics of the vortical flows in the shear layers generated by the
inhibitors is adequately described by the standard linear stability analyses of parallel flows. By representing
the flow perturbations in complex form and assuming harmonic solutions both in time and in the
streamwise x-direction, the classical Rayleigh or Orr-Sommerfeld equations are obtained for incompressible,
two-dimensional, thin shear layers with self-similar unperturbed velocity profiles U(r) in the transverse r-
direction. For non-diverging far field solutions outside the shear layer, a characteristic problem with
homogeneous boundary conditions must be solved, which allows the determination of either the complex
frequency @ = @, +iw; or the complex wave number @ = &, + ia; of the vortical wake. Here, for constant
amplitude acoustic oscillations in the combustion chamber, the frequency is real and fixed, being equal to
the modal frequency under consideration @ = @,. Then, the solution of the linear stability problem
determines the corresponding complex wave number (spacewise stability analysis), and completely defines
the dynamics of the entire vortical wake to within a multiplicative constant.

Notice that the Rayleigh equation is never singular for the problem of interest, since real group
velocities w/a correspond to marginally stable wakes, which are clearly incapable of providing effective
excitation of the acoustic field in the combustion chamber. Besides, vortical wakes in separated shear layers
are essentially dominated by the balance of inertial and pressure forces, while the viscosity enters the
problem only indirectly through its effects on the mean . velocity profile. Therefore, the Rayleigh
formulation has been preferred, since the theoretical advantages of the more rigorous approach based on the
Orr-Sommerfeld equation would largely be offset in practice by the additional complications associated with
its higher differential order and ill-conditioned behavior at high Reynolds numbers.

All of the flow properties of the vortical layer have been normalized with respect to the following
reference quantities: length & (shear layer thickness) , velocity AU (free stream velocity difference across
the shear layer), time 6/4U , pressure p(AU )2, vorticity 4U/é. Since § may be comparable to the radius
of the combustion chamber, the axisymmetric form of the Rayleigh equation for the complex amplitude of
the radial velocity perturbation has been written in cylindrical coordinates x,7, % as:

gre Y _[U=UTr _U/r+a2 Ll=0
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where primes indicate differentiation with respect to the radial coordinate r. Inside the shear layer the above
equation must be integrated numerically.

The general solution for the complex amplitude of the pressure perturbation in the free stream outside
the shear layer is known to be p(r) = C,I(ar)+ C,K,(ar), where I,(z) and K,(z) are the modified Bessel
functions of order zero and complex argument z, with the arbitrary constants C, and C, properly chosen on
each side of the shear layer in order to avoid nonphysical diverging solutions. By matching the pressure
perturbation profile in the free stream to the numerical solution inside the shear layer at the points
r =R, * /2 (symmetrically located with respect to the radial position R, of the critical axis, defined as the
mean flow streamline through the origin of the shear layer), the following boundary conditions:

avKy(ar)-v'Kj(ar)=0 at r=R,+§/2
ol (ar)- 71 (ar)=0 at r=R,-5/2

are obtained, as required to fully define the characteristic problem for the Rayleigh equation on a bounded
interval r = R, £ 6/2. The location of the matching points is essentially arbitrary in the region outside the
shear layer, and has negligible effects on the results of the stability analysis of the vortical wake. In order to
make the problem determined, the eigenfunction ¥ is normalized to unity at the initial point of the
numerical integration (here r = R, + §/2).

The eigenproblem for the complex wave number ¢ is transformed in a standard boundary value
problem by the addition of the auxiliary differential equations a, =0 and &/ =0 (where primes indicate
differentiation with respect to the radial coordinate), and solved numerically by a multiple shooting
technique. The integration is performed by a fourth order Runge-Kutta method, with extrapolation to fifth
order and adaptive step size for improved speed and efficiency. The error correction of the shooting algorithm
employs a modified Newton-Raphson method (Stoer and Burlish 1976) in order to increase convergence
capabilities. As a whole, the boundary value solver has been tested on standard ill-conditioned cases (Stoer
and Burlish 1976), and proved very efficient even in single precision. For the present application, it has
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been successfully validated against known results of both timewise and spacewise stability analyses
(Betchov and Criminale 1967, Michalke 1965). The computed eigenfunctions are reported in Figures 1, 2
and 3 for comparison; the eigenvalues fully agree with the reference results to all available digits. The
solution of the typical characteristic problem in the present work requires about 30 to 40 s on a PC/486-
50MHz for convergence to a relative error better than 1075,

According to Culick, 1966, and Flandro, 1986, the interactions between the shear layer and the acoustic
field in the combustion chamber arise as a consequence of the acoustic pressure emission of the vortical
flow. This emission, in turn, comprises two distinct components: a quadrupole contribution due to the
convective motion of the vortices, and a dipole acoustic pressure generation consequent to the interaction of
the vortices with a downstream boundary S, this latter contribution being dominant. In Flandro’s original
formulation, the vortices are supposed to impinge on a solid surface (usually the convergent portion of the
nozzle), where the satisfaction of the velocity boundary condition for impermeable walls requires an acoustic
pressure to be generated (reflected wave). The same phenomenon also occurs when the unsteady vortical
wake passes through the sonic section of the nozzle, which is characterized by a very low acoustic
admittance. This is actually the case in the present situation, where the critical axis of the shear layer
coincides, by definition, with the average streamline dividing the propellant flows originating from the
burning grain located upstream and downstream of the inhibitor.

Figure 1. Complex amplitude of the y-velocity component v v/s the transversal coordinate y in a
2-D shear layer with U/AU = anh(y/8), a = 0.8 (timewise analysis).
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Figure 2. Real part of the complex amplitude of the y-velocity component v v/s the transversal
coordinate y in a 2-D shear layer with U/AU =0.5[l+ tanh(y/é)]. for various values of

Sr = wd/AU (spacewise analysis).
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Figure 3. Imaginary part of the complex amplitude of the y-velocity component v v/s the
transversal coordinate y in a 2-D shear layer with U/AU = 0.5(1+ tanh( y/5)], for various values
of Sr = wd/AU (spacewise analysis).

The contribution B, of the vortical wake to the amplification-damping rate of the oscillations in the
combustion chamber as a consequence of the work done on the acoustic field is expressed by:

M [(piu)n-dS

T2ty

where V is the volume of the combustion chamber, # is the unit vector in the axial direction of the flow
velocity, dS is the element of the downstream boundary surface in the direction of its outward normal, M,
is the average Mach number in the combustion chamber, while p. and u/ are, respectively, the (real)
perturbations of vortical pressure and acoustic velocity, all quantities being normalized. Hence, the sign of
the amplification/damping rate B, of the acoustic oscillations is crucially dependent on the relative phase of
p. and i (and therefore of the vortical and acoustic fields). It is therefore necessary to uniquely characterize
the development of the vortical wake by imposing the appropriate initial conditions at the shear layer origin
(the inhibitor). In Flandro’s model this is done by requiring that the sum of the perturbation vorticity {,
due the interaction of the acoustic field with the unperturbed velocity profile of the shear layer and the
perturbation vorticity £, of the wake be equal to zero at the inhibitor:

£,+CL =0 at x=0 and r=R,

since, in the absence of viscosity, the total vorticity must clearly be continuous through the shear layer
origin. As a solution of a characteristic problem, £, (as well as all related vortical perturbation quantities) is
only known to within a proportionality factor C, which is determined by the above equation. Consistently
with the linear approach, the complex acoustic velocity u, is approximated by the classical Helmholtz
mode:

’

. X
u, =—isin—e™"
a

If, in addition, the downstream surface S is perpendicular to the rocket axis, p, and u, are constant on S,
and the complex amplitude of the pressure perturbation is j,(r)=1 (as confirmed by numerical
computations) then, after some tedious but relatively straightforward algebra, the linearized expression of
the amplification/damping rate B, is found to be:

2 Mise™ 0s @Xo sin (X, +4)
L a a

sin(a,l— argf, . &)
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Here (2 is the shear layer unperturbed vorticity, and X,, is the axial location of the inhibitor spaced at a
distance £ from S. Hence, B, can be written as an explicit function of acoustic, vortical, and geometric
parameters, and, in the absence of other contributions, the stability of acoustic oscillations only depends on
the sign of the following coefficient:

x=0,r=R, ]

Acoustic oscillations will be amplified (damped) when 12> C',_ >0 (-1< Cp, < 0).

X, +¢ =
Cs =cos m_)_{" sin of 2+ )sin[a,t—argé',
v a a

3. Results

The instability model has been validated by comparison with experimental data from the literature
(Vuillot et al., 1993) relative to fire tests conducted by ONERA on the LP3 motor, a 1:15 scaled version of
the Ariane 5 P230 rocket booster. This motor utilizes a non-metallized marginally stable propellant,
potentially capable of promoting longitudinal acoustic oscillations. Finally, the present linear stability
model has been employed to assess the risk of vortex-induced oscillations for the full scale configuration of
the Ariane 5 P230 booster. !

The internal geometry of the combustion chamber assumed for the computations is schematically
illustrated in Figure 4. The relevant geometric and ballistic data are summarized in Tables 1 and 2. The
analysis has been carried out for the inhibitor nearer to the chamber midpoint (here the second one), which
is known to be the most critical one for the stability of longitudinal oscillations (Brown et al., 1981).

Table 1. Geometric data. . Table 2. Ballistic data.
LP3 Ariane 5 LP3 Ariane 5
motor booster motor booster
R, [m] 0.0995 1.5 y 1.2173 1.174
R, [m] 0.045 . 0722 ¢, [I/kg’K] 1840 2010
R, [m] 0.045 0.722 T [K] 2910 - 3373
X, [m] 0.233 3.38 a [m/sPa*] 4.1-10°  2.628-10°°
X, [m] 0.908 11.43 n 0.49 0.37
d, [m] 0.002 p, [kg/m’] 1640 1752
d, [m] 0.002 ¢ [mys] 1470 1574
: L [m] 1.563 23.40
M 0.3 0.3
X, [m] 0.908 13.43
¢ (m] 0.722 10.11

R,

X, Centerline

L -

Figure 4. Schematic of the combustion chamber geometry.

Scaled Motor

Recalling that the linear stability model has been derived under the assumption of low Mach numbers,
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the reference length of the combustion chamber of the scaled LP3 motor is slightly shorter than the
physical dimension, and has been taken equal to the axial location of the converging portion of the nozzle
where the average Mach number is M = M, = 0.3. Consistently with earlier considerations, the distance £
has been taken equal to the axial separation of the inhibitor and the nozzle throat. Since the average pressure
P in the combustion chamber changes with time from ignition, the computations have actually been carried
out for two representative values, p=5.134 MPa and p = 5.484 MPa, corresponding to 26.6% and 75%
of web combustion, respectively. The first four longitudinal acoustic modes have been investigated. The
relative frequencies, corrected according to Culick’s theory, are plotted in Figure 5 as a function of time
from ignition. In the lack of experimental data, the mean velocity profiles of the shear layer stemming from
the inhibitor had to be obtained from the steady state numerical simulations of the flow in the combustion
chamber (Vuillot er al., 1993).

t[s;.

6

2~
OJ T L SRl L L] T
200 400 600 800 1060 1200 1400 1600

[ [Hz]
Figure 5. Con'ectcd frequencies f, = @,/2x for the first four longitudinal modes of the LP3 motor
as a function of burn time.

Table 3. Modal frequencies and wave numbers. Table 4. Modal frequencies and wave numbérs.
LP3 motor, 26.6% web combustion. - - LP3 motor, 75.% web combustion.

mode fHz] a, a; mode fHz] a, a;
1L 311.6 0.085 -0.034 1L 361.7 0.113 -0.057
2L 634.5 0.156 -0.111 2L 731.2 0.204 -0.192
3L 947.8 0.224 -0.232 3L 1019.1 0.326 -0.346
4L 1339.5 0.381 -0.389 4L 1393.8 0.504 -0.501

Linear stability analyses of paralle] flows are quite sensitive to the details of the unperturbed velocity
profile of the shear layer in the proximity of the critical axis, in particular to the presence of inflection
points. Therefore, the numerically simulated velocity profile must be smoothed in order to eliminate the
errors due to precision limitations, which would introduce spurious inflection points in addition to the
natural one on the critical axis. To this purpose, the standard fitting to an hyperbolic tangent profile in the
core of the shear layer has been used. This proved to be an acceptable approximation regardless of the axial
location along the chamber, thus confirming the essential validity of the self-similarity assumption (see, for
example, Figure 6).

The frequencies and the correspondmg wave numbers obtained from the shear layer stability analysis for
the first four longitudinal modes are reported in Tables 3 and 4. An example of the dependence of the
complex wave number on the acoustic frequency (Strouhal number) is also shown in Figure 7 for one bum
time. Typical behaviors of the amplitude and phase of the perturbation vomcny in the shear layer of the
inhibitor are plotted in Figure 8 and 9, respectively.

The results of the stability analysis of the first four longitudinal modes in the combustion chamber
under the excitation provided by the vortical wake from the inhibitor are summarized in Tables 5 and 6 for
the two combustion times under consideration. The corresponding experimental results, also shown in the
same Tables, have been obtained from the waterfall plots reported by Vuillot et al., 1993. The
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interpretation of these plots is somewhat uncertain because of the relatively poor spatial cross-correlation of
the data. The situation is further complicated by the fact that some of the pressure transducers located along
the combustion chamber may be unable to effectively detect those modes whose pressure nodes fall nearby.
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r
Figure 6. Typical normalized profile of the axial velocity in the shear layer for the LP3 motor.
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Figure 7. Complex wave number a as a function of the Strouhal number Sr= wd/AU for the
LP3 motor at 26.6% web thickness burnt and p = 5.134 MPa
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Figure 8. Modulus of the complex amplitude of the perturbation vorticity |,
coordinate r for the LP3 motor at 26.6% web thickness burnt and p = 5.134 MPa
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Figure 9. Argument of the complex amplitude of the perturbation vorticity arg{, v/s the radial
coordinate r for the LP3 motor at 26.6% web thickness burnt and p = 5.134 MPa

Table 5. Results of linear stability analysis.

LP3 motor, 26.6% web combustion.

Table 6. Results of linear stability analysis.
LP3 motor, 75% web combustion.

The criterion adopted here for stability discrimination consisted in considering the mode unstable when at
least one transducer shows clear evidence of significant pressure oscillations at the relevant frequency.
Experimental data for the first combustion time (26.6% web thickness bumt) confirm numerical results
except, perhaps, for the first mode, whose small value of the coefficient C, indicates, anyway, a weak
driving. As for the fourth mode, contrary to the other cases, the experimental results are relatively uncertain
since just one pressure transducer (placed between the second and third intersegment) indicates the presence
of oscillations. Results relative to the second combustion time (75% web thickness burnt) are again in good
agreement with experimental data: the third and fourth mode, predicted unstable at 25%, are now stable;
furthermore, the second mode remains unstable. On the other hand, the first mode is predicted unstable,

mode f[Hz) C,

IL 3617 0.113 unstable
2L 7312 0204 unstable
3L 1019.1 0326 unstable
AL 13938 0.504 unstable

‘contrary to experimental data.

bredicted

observed
stable
unstable

unstable
unstable

mode f [Hz]
IL 3617
2L 7312
3L 1019.1
4L 1393.8

Cs,  predictied  observed
0.08 unstable stable
0.33 unstable unstable
-0.13 stable stable
-0.06 stable stable

20

v

10 1

0
6

7

8

10

: r
Figure 10. Modulus of the complex amplitude of the perturbation vorticity |C,| v/s the radial co-
ordinate 7 for the full-scale Ariane 5 P230 motor at 25% web thickness burnt and p = 4.63 MPa
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Full-scale Motor

For the full-scale Ariane 5 P230 boosters the results of the stability analysis of the first three
longitudinal modes in the combustion chamber under the excitation provided by the vortical wake from the
inhibitor have been derived for three web thickness combustion times (25%, 50% and 75%). The frequencies
of the first three longitudinal modes, corrected according to Culick’s theory, are reported in Table 7, together
with the corresponding wave numbers obtained from the shear layer stability analysis. Typical behaviors of
the amplitude and phase of the perturbation vorticity in the shear layer of the inhibitor are plotted in Figure
10 and 11, respectively. The results of the stability analysis of the first three longitudinal modes in the
combustion chamber under the excitation provided by the vortical wake of the inhibitor are summarized in
Table 8 for the three combustion times under consideration. No experimental data are available for
comparison. The first mode is predicted unstable for all burn times, although the coefficient C; assumes

rather small values. On the contrary, modes 2L and 3L are always predicted stable.

afgz- 1 .‘“nv\“

0 T
6 7

10

r - ‘
Figure 11. Argument of the complex amplitude of the perturbation vorticity arg {, as a function of
the radial coordinate r for the full-scale Ariane 5 P230 motor at 25% web thickness burnt and

p=4.63 MPa

Table 7. Modal frequencies and wave numbers.
P230 boosters, 25%, 50% and 75% web combustion.

25% 50%
mode f [Hz]  «, a; f [Hz] a,
1L 18.3 0.29 -0.22 209 0.15
2L 373 1.08 -0.68 41.7 047
3L 59.7 211 -0.50 642 0.98

Table 8. Results of linear stability analysis.
P230 boosters, 25%, 50%, and 75% web combustion

-0.15
-043
-0.67

web: 25% 50% 75%

mode  Cp Cs, G,

1L  0.07 wunstable 0.003 unstable 0.011 unstable

2L -0.05 stable -0.105  stable -0.083
3L -0.06 stable -0.021  stable -*

stable
stable

75%

a, a;
1.04 -0.63
234 -023

(*) Here a; > 0, the shear layer remains stable, and there is no coupling with the acoustic field.
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4.

Conclusions

A number of concluding remarks can be drawn from the application of the present model to a realistic

case and comparison with the corresponding experimental data:

The predicted vortex-induced amplification/damping rates of longitudinal oscillations in the combustion
chamber are much larger than the contributions of the other effects like pressure and velocity coupling,
suspended particles, and grain motions, thereby indicating that the vortices shedding from the inhibitors
are likely to be the major destabilizing factor in segmented solid propellant rockets. This conclusion is
fully consistent with experience.

The results refer to a rather idealized flow geometry, and are quite sensitive to the input data, especially
the velocity profiles of the shear layer and the distance of the downstream surface from the inhibitor.
Despite these limitations and the relatively uncertain interpretation of the available empirical data due
to poor spatial cross-correlation, the results of the stability analysis-are in surprisingly good agreement
with the experiments. It seems, therefore, that the model is capable to correctly represent the behavior
of the flow in the combustion chamber at least in an average sense, i.e. for times significantly longer
than the typical oscillation period, even though the real instantaneous flow is probably far more
complex than assumed.

Within the obvious limitations inherent to the linearized approximation, the present model provides a
rather general and efficient approach to the problem of rocket flow instabilities induced by vortical
wakes, with the inclusion of the effects of all of the other major destabilizing factors. When properly
applied, it represents a useful means for design analysis of segmented solid propellant rockets.
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Nomenclature

a sound speed, burning rate constant M, Mach number at the burning grain

A port cross-sectional area n burning rate exponent

A, combustion surface acoustic admittance n unit normal vector

A nozzle acoustic admittance p pressure

c, specific heat at constant pressure P Helmholtz 's pressure mode shape

c propellant characteristic velocity r radial coordinate

C‘,_ amplification/damping coefficient R,  inhibitor radial coordinate

i imaginary unit \) downstream boundary surface

g.h  functions Sr  Strouhal number

k corrected acoustic wave number t time

I,(z) modified Bessel function of the 1st kind u axial velocity component

K Helmbholtz acoustic wave number v radial velocity component

K,(z) modified Bessel function of the 2nd kind U  shear layer axial velocity

l acoustic mode index 4U  axial velocity difference across shear layer
4 stand-off distance 1% combustion chamber volume

L combustion chamber length x axial coordinate from shear layer origin
m, combustion mass flux y transversal coordinate in 2-D shear layers
M_  Mach number in the combustion chamber X  axial coordinate from motor head-end
M,  chamber exit Mach number

Greek Symbols Substripts

a vortical wave number a acoustic

a,,a, vortical wave number real and imaginary parts v vortical

B, vortex-induced amplification/damping rate
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é shear layer thickness Special Notations

Y . specific heat ratio

4 perturbation vorticity q’  perturbation quantity,

v circumpherential cylindrical coordinate differentiation

P propellant gas density q complex amplitude of perturbation
P, propellant grain density 7 space average

0} acoustic angular frequency {g) timeaverage

®,_,; acoustic frequency real and imaginary parts

o) shear layer unperturbed vorticity
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Sommario

Un modello lineare per I'analisi delle oscillazioni fluidodinamiche longitudinali nei razzi a
propellente solido @ stato sviluppato ed applicato ai boosters dell' Ariane 5. Le frequenze naturali sono
corrette come proposto da Culick per tener conto degli effetti del flusso medio, dell' aggiunta di massa dal
grano, dell’ accoppiamento con il campo di pressione, dell’ ammettenza dell’ ugello, e della geometria
interna della camera di combustione. Nei motori a propellente solido segmentato la fonte principale di
eccitazione di oscillazioni acustiche é spesso costituita dall’ accoppiamento tra i vortici rilasciati dagli
inibitori agli intersegmenti ed il campo acustico nella camera di combustione. Tale accoppiamento é
analizzato mediante il modello di Flandro, che fornisce il contributo indotto dalla scia vorticosa
all’ amplificazione o smorzamento delle oscillazioni acustiche. Le frequenze acustiche lineari sono
considerate come dati d'ingresso per lo sviluppo dei vortici nella scia, che € descritto mediante la
classica teoria lineare di stabilita dei flussi paralleli. La valutazione del rischio di instabilitd
fluidodinamiche indotte dalla presenza di vortici é stata effettuata per i principali modi a vari tempi di
combustione per una configurazione in scala ridotta e per il prototipo. Le previsioni del modello sono in
buon accordo con i risultati sperimentali disponibili per la configurazione in scala.
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