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Abstract

Radar systems have become highly dynamic with the advancements in all-digital radar

architectures. All-digital radar architectures introduce the potential for dynamic beam-

forming.This thesis will detail the fundamentals that are the foundation of radar signal

processing (RSP) and modeling a digital phased array radar. This thesis will detail the

techniques used for digital beamspoiling. The intentional beamspoiling is intended to im-

prove the trackers’ ability to track a target continuously. When a high-speed target falls out

of a beam due to a maneuver, the radar will spoil the transmit beam illuminating a wider

scene. The wider illuminated scene allows for a higher likelihood of accurately detecting

the target, allowing the tracker to track the target continuously. This thesis will discuss the

theory and application of the trackers used in the simulation. With the beamspoiling and

trackers, this thesis will analyze the ability of an all-digital phased array to track a target

utilizing dynamic beamforming to improve the tracking performance. Finally, it will detail

the improvement of the trackers’ ability to track when utilizing beamspoiling for specific

situations, allowing the radar to track targets for a more extended time. The results varied

based on the amount a transmit beam was spoiled due to the loss in SNR that naturally

occurs from the decrease in power density.

xiv



Chapter 1

Introduction

The ever-evolving enhancements in technology, such as analog to digital converters

(ADCs) and field programmable gate arrays (FPGAs), have led to the increase in efficiency

and quality of digital phased array radars [2]. DAR systems can utilize new technology

enhancements to enable real-time, adaptive beamforming. [3]. Beamforming is a signal

processing technique that utilizes multiple array elements whose collective signals simul-

taneously contribute to the desired angle [4]. At the same time, beamforming also dissem-

inates non-desired angles, “steering” the beam in desired direction [4]. Technology that

has increased the processing power of radar systems has led to various complex algorithms

that interpret the information coming in and out of the radar systems. One class of algo-

rithms that benefit from increased processing capacity is tracking algorithms, which can

be particularly complex. Tracking algorithms have adaptive and cognitive properties that

allow the radar to track a target in non-ideal environments where interference and noise are

present [5]. Because of the increased functionality of these radar systems, there is a need

to research and study radar signal processing (RSP) algorithms. This thesis will explore

how beamforming can be used with existing tracking algorithms to improve the tracking of

fast-moving targets.

DARs can “digitally” steer transmit and receive radar beams to specific directions by

applying unique amplitude and phase weights to each element of an array [6]. This con-
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cept of digitally controlling an array’s phase and amplitude weights to steer a transmit

or receive beam electronically makes the DAR systems appropriate for Quadratic Phase

Spoiling (QPS) [7]. QPS applies unique phase weights to each antenna element, spread-

ing a transmitted beam’s power. Spoiled beamforming leads to spreading the transmitted

power of the radar to illuminate a wider scene at the cost of the decreased power density

of the transmit beam [8]. Because of the broader distribution of transmitted power, there is

a trade-off with DAR decreasing the transmit power’s contribution to the SNR due to the

decrease in power density of the transmitted spoiled beam [9].

Radar trackers can estimate a target’s attributes and update that prediction with mea-

sured data to converge on a target approximated attributes [10]. For this thesis, the attributes

are the position and velocity of the target. With the wide variety of trackers that the radar

community utilizes, the two trackers utilized in this thesis are the Unscented Kalman Filter

(UKF) and the Extended Kalman Filter (EKF). Both are appropriate for this project because

of their ability to process data in a non-linear system and relatively low processing power,

as opposed to a particle filter that is much more complex and requires more resources to

complete the complex computations [11], [12].

The radar field has researched the performance of various trackers utilizing different

adaptive beamforming techniques. Multiple Input Multiple Output (MIMO) radar systems

can adaptively assign sections of an array to different targets based on received data, op-

timizing the ability of a radar to track multiple targets [13]. Using adaptive beamforming

to null the effects of a jammer on a received signal to improve the performance of an EKF

while tracking [14]. Utilizing automated beamspoiling while tracking a target in cases of

fast-moving targets has yet to be widely researched. Utilizing automated beamspoiling

while tracking a target allows the radar to illuminate a wider scene. The wider illuminated

scene allows the radar to re-detect a lost target, allowing the tracker to re-establish the tar-

get’s position and to continue tracking a target that would be lost. This thesis will explore

2



an Unscented Kalman Filter (UKF) and an Extended Kalman Filter (EKF) ability to track

fast-moving targets escaping a beam. The radar will utilize the QPS, and with each tracker,

the radar will have the ability to enable and disable the QPS dynamically. Then the radar

will be simulated with the functionality of the QPS for each tracker. With the completion

of each scenario for the QPS enabled and disabled, we will analyze the trade-offs of SNR

due to the decreased power density on the transmission of a QPS beam.

1.1 Thesis Outline

Chapter 2 will outline the rationale for choosing a DAR to design and simulate, the

background of the primary radar concepts used to simulate a signal, and concludes with

modeling the Additive White Gaussian Noise (AWGN) for the received signal. Chapter 3

covers the transmit and receive digital beamforming, the manipulation of the weights on

transmit to generate a QPS beam, and the process of creating the receive beams necessary

to perform monopulse processing. Chapter 4 covers the RSP techniques used to detect a

target, beginning with the filter processing used to measure a target’s range, Doppler fre-

quency, correlated radial velocity, and the monopulse processing used to estimate a target’s

direction to the radar. Finally, Chapter 4 concludes with a description of the Cell Aver-

aging Constant False Alarm Rate (CA-CFAR) algorithm used to detect potential targets

when AWGN is present. Chapter 5 will cover the Kalman Filter (KF) foundation of the

two trackers used in this project. Then Chapter 5 will discuss the Unscented Kalman Filter

(UKF) and the Extended Kalman Filter (EKF) in detail, breaking down the theory of the

two trackers. With the various algorithms and techniques used in this project, Chapter 6

will detail the Monte Carlo simulation and the conditions used to generate targets for the

simulation randomly. Chapter 7 will discuss the preliminary results of each tracker’s per-

formance with and without the automated QPS. Chapter 8 will discuss the results and what

3



effects the trade-off of the lower SNR had on the tracker’s abilities to track a target. To

conclude the thesis, Chapter 9 will cover the possible future work that can proceed with the

research and analysis completed in this thesis.
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Chapter 2

Radar Background, Transmit and Receive Signal Modeling

This chapter describes the mathematical processes and relationships between a pulse-

Doppler radar and its intended target. This chapter will discuss the type of radar modeled

for this project, introduce the waveforms used, and discuss the model of a delayed signal.

Next, the discussion will lead to the design of the pulse train to measure a target’s Doppler

shift. The last subject this chapter will be adding and introducing Additive White Gaussian

Noise (AWGN) into the system model.

2.1 Digital Phased Array

The type of radar model chosen for analysis in this thesis is a digital phased array radar

(DAR), which models many similarities to HORUS. HORUS is an all-digital phased-array

radar in development at the Advanced Radar Research Center (ARRC) at the University

of Oklahoma [15]. The digital phased array radar was birthed in the 1970s when digital

beamforming and increased resolution array techniques began to be researched [16]. DAR

is rooted in the concept of a phased array antenna that can control the and amplitude at each

antenna element, forming transmit and receive beams [17].

The rationale for choosing a DAR for this project is that a DAR allows for arbitrary

control of phase weights for digital beamforming on both transmit and receive. The DAR
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capabilities allow the phase weights used for the transmit beamforming to be manipulated

to increase the width of a beam to illuminate a wider scene with a transmitted beam. The

wider beam decreases the transmitted beam’s power density, decreasing the SNR. With

the wider transmitted beams, we can reduce the likelihood that a high-speed target escapes

the transmit beam of a track update dwell. However, with the decrease in SNR created

when spoiling a beam. When the SNR decreases to a certain threshold, the likelihood of

a detected target decreases. Therefore, there are limits to spoiling a beam, with a loss in

SNR.

2.2 Background and System Model

Figure 2.1 displays how the different concepts and techniques work together to create

the system model. The system model is a tool to assess the ability of the EKF and UKF to

re-establish high-speed targets that were lost. Figure 2.1 describes radar system generating

a waveform and collecting data to form a received data cube. Figure 2.1 displays when

the radar signal processing techniques are applied to the data cube. Figure 2.1 explains the

conditions for spoiling the transmit beams and ending an iteration as well as scheduling the

delta and sum beams on receive. Finally, figure 2.1 shows the high-level process of how

the UKF and EKF both take in initial estimates, predict an estimate, and update an estimate

based on the detections.

2.3 Waveforms

For this Thesis, there are two types of waveforms that we have modeled. The first is the

classic Linear Frequency Modulated (LFM) chirp, and the second is a Pseudo Random Bi-

nary Sequence (PRBS) waveform. The LFM signal has a smooth ramp-up and ramp-down

time at the beginning and end of the pulse [4]. The LFM waveform allows for large com-
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Figure 2.1: System Flow Diagram

pression ratios at the possible cost of ambiguity between the range and Doppler frequency

(fD) [18].

2.3.1 LFM Waveform

Modeling an LFM waveform is straightforward; first, the chirp, defined as a quadratic

phase function,
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θ(t) = −2π
B

2
t+ πγt2. (2.1)

where,

γ =
B

Tx

(2.2)

is the “chirp rate” of the LFM controlled by the Bandwidth (B) of the chirp and the pulse

width (Tx). When represented as discrete-time samples prior to an analog waveform, the

waveform must be sampled as a sampling frequency (fs) at least B to satisfy the Nyquist

theorem and avoid aliasing [19]. t is in continuous time. With that, the LFM waveform is,

x̃(t) = ejθ(t)a(t) (2.3)

where a(t) is the amplitude envelope whose peak matches the transmitted power (Pt), the

envelope creates a smooth ramp-up and ramp-down time for the chirp.

Figure 2.2: Real and Imaginary Parts of LFM with Windowing

Figure 2.2 presents these properties, with the rate of rotation of the real and imaginary

parts of the complex LFM signal decreasing in the rate of cycles until t = Tx

2
then increas-
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ing from t = Tx

2
to t = Tx. The applied window function clips off the beginning and end

of the LFM signal, creating smooth ramp-up and ramp-downs.

2.3.2 PRBS Waveform

The PRBS waveform is easily replicated and has many combinations of the phases 0

and π to create the signal [20], making the PRBS waveform a candidate for DAR systems

that transmit multiple waveforms. The construction of the PRBS waveform, as given in the

name “Pseudo Random Binary,” is performed by generating a series of 1’s and 0’s with a

length,

L = 2N − 1 (2.4)

where N is the number of registers in a given system [21]. With the 1’s corresponding to

a phase of π and 0’s corresponding to a phase of 0. Each PRBS waveform consists of a

unique “random” sequence (θPSRB(t)), allowing it to randomly cycle between two “real”

values

x̃(t) = ejθPSRB(t). (2.5)

where θPSRB(t) is a sequence of random π or 0 phases. Figure 2.3 displays the PRBS wave-

form. A slight delay is added to the changing phases of the PRBS waveform. The chal-

lenge with PRBS waveform is that the phase cannot change instantly and must smoothly

vary. This challenge requires the signal to move through an amplitude of zero as the sig-

nal voltage changes between -1 and +1, resulting in a signal that does not have a constant

amplitude. Figure 2.4 displays the inconsistent amplitude of a PRBS waveform.
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Figure 2.3: PRBS Waveform with Windowing

Figure 2.4: PRBS Delayed Slope

2.4 Range Modeling

One of the main goals of radar tracking is to follow the target range or distance from the

radar. To determine a target’s range, the time it takes the transmitted signal to travel to and

from the target is measured and converted to a corresponding distance [4]. The relationship
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between time and range is

τ =
2R

c
(2.6)

where R is the range of a target, and c is the constant speed of light. The received radar

waveform is modeled by applying the required time delay to the transmitted signal as

xRx(t) = x̃(t− τ). (2.7)

Figure 2.5 represents a delayed signal, shifted due to the target’s range.

Figure 2.5: Simulated Delay of a PSRB Waveform

2.5 Doppler Modeling

Doppler shift (fd) is the second of three characteristics that a radar can directly mea-

sure. It is challenging to measure accurately fd with a single pulse due to the lack of time

duration in a radar pulse. A pulse train needs to be introduced to more easily measure fd.

The definition is in the name; a radar will send out multiple pulses at evenly spaced inter-
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vals creating a “train” of pulses. A target’s radial velocity (Vr) is related to a target’s fd

according to,

fd =
2Vr

λ
(2.8)

where λ is the wavelength calculated at the carrier frequency (fc). Essentially, fd is the

increase or decrease of frequency relative to fc due to the target’s velocity, which causes

relative motion between the radar and the target. For a target with constant velocity, the

range of a target on the mth pulse is

Rm = R0 −mVrTR, 0 ≤ m ≤ M − 1, (2.9)

where m denotes a particular pulse number and Tr is the Pulse Repetition Interval (PRI),

which is the time between pulses. Therefore the propagation delay on a particular pulse

can be derived as

τm =
2Rm

c
=

2(R0 −mVrTR)

c
. (2.10)

The received signal can now be modeled in both range and Doppler by modifying(2.7) to

become

xRx(t,m) = a(t− τm)e
jθ(t−τm)e−j2πfcτmej2πfdt. (2.11)

2.6 Noise Model

A good model for radar receiver noise is additive white Gaussian noise(AWGN), which

implies that the average noise power is flat over the entire spectrum and that the noise

samples are uncorrelated. Additionally, it is assumed that the distribution of the noise is the

same across the entire band of interest. “Gaussian” denotes that the noise values follow a
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normal distribution centered with a mean (µn) of 0 and a variance σ2
n matched to the noise

power. The basic model of the noisy received signal (x(t)) is given as

x(t) = xRx(t,m) + q(t,m) (2.12)

where q(t,m) is the AWGN within a received signal. The receiver noise power is,

Pn = kbTBF (2.13)

where kb is the Boltzmann constant (1.38 × 10−23JK), T standard temperature in Kelvin

(290K), F is the system’s noise figure, and B is the bandwidth.

2.7 Summary

To summarize, Chapter 2 has discussed the design of the two waveforms used in this

simulation. The process of simulating a received signal with the Range and Doppler in-

formation of a target. Furthermore, the modeling of unwanted AWGN added to a received

signal. The next chapter will discuss modeling a target’s direction and how that pertains to

radar transmit and receive beams.
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Chapter 3

Transmit and Receive Beamforming

An essential step for a DAR system is digital beamforming. With a DAR, the ability

to form beams (beamforming) depends on the array’s multiple phase centers that the sig-

nal processor can utilize [4]. Applying phase weights at each antenna element steers the

transmit and receive beams in a given direction.

The transmitted and receive beams are pre-designed for our digital array model on

each Coherent Processing interval (CPI) before transmitting the waveform. This chapter

describes the beamforming model. First, we discuss the array design and how the emitter’s

coordinates are defined and cataloged. Next, The design of the transmit and receive pencil

beams will be detailed. Manipulating the transmitted pencil beams into broader beams

using QPS is also discussed. Finally, the design of the receive monopulse sum (
∑

) and

difference (∆) beams will be detailed.

3.1 Array Design

We modeled a rectangular, uniform-spaced array in a North East Down (NED) coordi-

nate system. NED coordinate systems are standard in radar systems, most commonly used

in airborne radar systems. The NED coordinates are a Cartesian coordinate system where

the x-axis now points “North,” the y-axis points “East,” and the z-axis points “Down” to-
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wards the center of the earth. A NED coordinate system depends on the local origin. For

this model, the local origin is the radar. Figure 3.1 illustrates rotating the coordinate system

from a traditional Cartesian to a NED system.

Figure 3.1: North East Down (NED) Rotation

While the introduction of the NED coordinate system is not imperative to the design of

the phased array, a NED coordinate-based model allows for the radar and target positions

to be accounted for in the same coordinate system. Each element within the array is defined

by a NED-based coordinate and treated as a vector.

The elements are spaced λ
2

apart in both the north and east directions to ensure no

aliasing in angular direction [22]. Figure 3.2 shows the rectangular array design.

3.2 Transmit and Recieve Beamforming

This section will cover the creation of both the transmit and receive beams. To begin,

the wavenumber (k) is associated with the propagated signal, in units of rad
m

given by,

k =
2π

λ
=

2πfc
c

(3.1)

where fc is the carrier frequency of the transmit signal and c is the speed of light. The

wavenumber, k, is a scalar value, while the 3D wavenumber vector is defined as
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Figure 3.2: Array Layout

K̄ = Kxx̂+Kyŷ +Kz ẑ (3.2)

where

|K̄| = k. (3.3)

Because of this, the unit vector in the direction of propagation can be defined as,

ūk =
K̄

k
=

Kxx̂+Kyŷ +Kz ẑ

k
. (3.4)

A unit vector related to azimuth and elevation angles can be defined as

r̂ =

[
cos(θel)cos(θaz) cos(θel)sin(θaz) −sin(θel)

]
(3.5)

where r̂ is the spherical unit vector pointing outwards of the array, θel steers the transmit

and receive beams in elevation, and likewise for θaz in the azimuth direction. The transmit

steering direction in a NED coordinate system,
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k̂steer = −kr̂. (3.6)

The wavenumber vector k̂ is applied to the elements NED coordinates (PNED) and summed,

thereby “steering” the array in a direction dictated by θel and ϕaz,

ϕtx = e−jPNED•k̂steer (3.7)

The model for the target’s unit vector is,

ûtarg =

[
x̂targ ŷtarg ẑtarg

]
. (3.8)

The receive signal complex-valued weights with angles for the array are,

ϕtar = e−jPNED•k̂targ (3.9)

where k̂targ is the wavenumber vector corresponding to the target’s position, and we math-

ematically model it by scaling the target’s unit vector (ûtarg) by k

k̂targ = kûtarg (3.10)

To model the target within the transmit beam,

ϕtar,tx = ϕ∗
txϕtarg = e−jPNED•k̂steere−jPNED•k̂targ = e−jPNED(k̂steer−k̂targ). (3.11)

The weights are conjugated so that when the steering vector and the target’s wavenumber

vector match, the phases are zero, and the coherent sum will add to a peak within the beam

corresponding to the direction of the target.
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3.3 Quadratic Phase Beam Spoiling

Ideally, beams would never need to be spoiled because of the loss of gain that occurs

due to the spread of power that spoiling induces [4]. However, high-speed targets can be

re-established utilizing a spoiled beam when a target begins to fall out of a beam due to a

high-speed maneuver. A spoiled beam that illuminates a broader scene volume is preferred

to re-establish the target location. There are processes used to identify the weights needed

for a specific beam shape [8]. One widely-used approach to elevation beam spoiling is to

apply quadratic phase weighting vertically across the array elements [23]. We will explore

the utilization of the quadratic phase weights in this work.

The phase weights derived to synthesize a spoiled beam in this simulation are from

Leifer [23], who modeled his spoiling factor (SF ) after Kinsey [24], [8]. First, we will

derive Leifer’s SF from the Quadratic phase of an LFM chirp. A traditional chirp waveform

is,

x(t) = ejπγt
2

= x(t) = ej2π
γ
2
t2 0 ≤ t ≤ Tp (3.12)

where Tp is the pulse time, the chirp rate

γ =
BLFM

Tp

(3.13)

where γ controls the Quadratic phase with the bandwidth of the chirp (BLFM ) and Tp with

the units of Hz
s

. Substituting LFM’s γ for γx and t for x,

θ(x) = ej2π
γx
2
x2

0 ≤ x ≤ Lx. (3.14)

where Lx is the length of the array in a particular dimension, and x is the exact position of

each element (ndx). The rate at which the weights are spread in the spacial dimension are
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γx =
SF

L2
x

=
SF

(N λ
2
)2
. (3.15)

Where N is the number of elements in a single dimension, and λ
2

is the distance between

each element, giving γx units of m−1

m
. Knowing that

B = γxLx (3.16)

and

Bs =
1

Lx

, (3.17)

then the Spoiling factor (SF ) can be derived from

SF =
B

Bs

=
γxLx

1
Lx

= γxL
2
x (3.18)

Substituting (3.15) into (3.14) yields

θ(x) = e
j2π 1

2

SF
(Ndx)2

(ndx)2 (3.19)

The factors of two introduced (3.19) and the distance between each element cancel out

to give the quadratic phase weights derived by Leifer [24]:

θspl(x) = ejπ
SF
N2 n

2

0 ≤ n ≤ N (3.20)

where n is the antenna element that is weighted by SF and N is the number of elements in

a particular dimension.

As for the application in this thesis, SF is a variable that can alter the weights of θspl(x).

Creating an initial pencil beam on transmit from (3.7), the vector ϕtx is then reshaped into

an Nx × Ny matrix where each position within the matrix corresponds to an element’s

position,
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ϕtx,m =



ϕtx,1,1 ϕtx,1,2 · · · ϕtx,1,nx

ϕtx,2,1 ϕtx,2,2 · · · ϕtx,2,nx

...
... . . . ...

ϕtx,ny ,1 ϕtx,ny ,2 · · · ϕtx,ny ,nx


. (3.21)

Next, θspl(x) is applied to the corresponding dimension via point-wise multiplication,

whether the transmit beam is spoiled in azimuth, elevation, or both. This process is shown

in (3.22) and (3.23), where (3.22) applies the spoiling phases in the elevation and (3.23)

spoiling in both.

ϕtx,EL = ϕtx,mθspl,x(x) (3.22)

ϕtx,,AZ = (θspl,y(x))
Tϕtx,mθspl,x(x) (3.23)

Similarly to γ and the time-bandwidth product from the LFM chirp, the spoiling factor

proves less effective at low spoil factors. Figure 3.3 illustrates an assortment of beams

modified by the QPS spoiling factor. Notice how the spoil factor has little effect on the

transmitted beam until it reaches a factor of four. At that point, the beams begin to degrade

by the intended spoil factor.

Because the transmit beam is spoiled, there is a need for multiple receive beams to

populate the spoiled area. The number of receive beams needed is the size of SF , each

receive beam evenly shifted by the 3dB beams width in K space by a factor of Kx,res and

Ky,res, respectively. Kx,res and Ky,res are the 3dB of the transmit and receive pencil beams

in K space,

Kx,res =
BwEL,3dB

(Nang − 1)
(3.24)

and,
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Figure 3.3: Comparison of Different Spoil Factors

Ky,res =
BwAZ,3dB

(Nang − 1)
(3.25)

BwEL,3dB and BwAZ,3dB are the receive beams’ 3dB beamwidths in elevation and azimuth,

respectively. Nang represents the number of angles in a particular monopulse table.

xshift = nKx,res − Nx − 1

2
≤ Kx,res ≤ +

Nx − 1

2
(3.26)

yshift = nKy,res − Ny − 1

2
≤ Ky,res ≤ +

Ny − 1

2
(3.27)

xshift and yshift are vectors holding the shift factors for each receive beam for a specific

spoiling factor.
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Similar to (3.5), the unit vectors pointing in the azimuth and elevation directions are

found and are obtained by,

θ̂ =

[
cos(θaz)sin(θel) sin(θel)sin(θaz) cos(θel)

]
, (3.28)

ϕ̂ =

[
−sin(θaz) cos(θaz) 0

]
. (3.29)

The angles θ̂ and ϕ̂ shift the receive beams in elevation and azimuth, respectively. The shift

factors from xshift and yshift can be applied to θ̂ and ϕ̂ giving each receive beam its own

unique shift to populate the entire illuminated scene of a spoiled transmit beam,

θ̂shift = θ̂xshift (3.30)

and,

ϕ̂shift = ϕ̂yshift. (3.31)

θ̂shift and ϕ̂shift are then applied to the original k̂steer, to give each received beam its unique

k̂steer evenly spaced within the spoiled transmit beams spoiled area;

k̂shift = k̂steer + θ̂shift + ϕ̂shift. (3.32)

But, due to the addition of θ̂shift and ϕ̂shift to

mathbfhatksteer, k̂shift is no longer a true unit vector and needs to be re-weighted by its

magnitude,

k̂shift =
k̂shift

|k̂shift|
. (3.33)

With that, k̂shift can now be weighted by the wavenumber, giving each receive beam a

unique steer vector,
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k̂shft,str = −kk̂shift (3.34)

evenly spaced in azimuth and elevation and populating the entire scene that the spoiled

transmit beam is illuminating.

Figure 3.4: Elevation Beams

Modifying (3.7) with the newly shifted steering vectors for each receive beam produces,

ϕrx,n = e−jPNED•k̂shft,str . (3.35)

A transmit beam spoiled by a factor of four in elevation is displayed in figure 3.4 with

four evenly spaced receive beams to cover the entire scene illuminated by the spoiled trans-

mit beam.
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Figure 3.5: Spoiled Elevation Beam Tx Figure 3.6: Spoiled Elevation Beam Rx

Figure 3.7: Spoiled El/Az Beam Tx Figure 3.8: Spoiled El/Az Beam Rx

Figure 3.5 shows another normalized transmit beam spoiled in elevation by a factor of

eight. The transmit beam has degraded by the spoiling weights, and the transmitted power is

less concentrated and spread out. Figure 3.6 shows the the combined power patterns of the

evenly spaced receive beams that capture the illuminated scene created by the transmitted

beam. The power of the receive beams is much denser due to the finely spaced receive

beams. The finely spaced receive beams are essential to capturing any received energy

from the degraded spoiled beam.

In the final example of the QPS capability, a transmit beam is spoiled by a factor of eight

in elevation and 16 in azimuth. The normalized transmit beam is shown in a decibel scale in
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figure 3.7. The power of the transmitted beam is spread out, creating a lower power density

on transmission. Because of the low power density, a received signal is likelier to have a

low SNR. Because the transmit beam is spoiled by factors eight and 16. There must be

at least 128 beams to fill the volume illuminated by the spoiled beam. Figure 3.8 displays

those receive beams. The 128 receive beams can capture a received signal transmitted by

the degraded transmit beam.

3.4 Monopulse Beams

Because of the type of angle estimation used in this analysis, this section will cover

the extra steps needed for the received beams so received data can be processed using

monopulse. While there are several steps within monopulse processing, this section will

concentrate on the receive beamforming part of the process. For a 2D array, there are two

difference beams and one sum beam on receive [25].

An early type of angle tracking in radar was lobe switching [26]. This technique does

not point a beam directly at a target but instead points two beams offset to either side of the

target, switching rapidly [26]. Monopulse tracking is an offshoot of lobe switching; more

accurately, the ∆ beams in monopulse processing originated from lobe switching [26].

For the difference beams, the two-dimensional array is divided into four equal-sized

subarrays on receive. As shown in figure 3.9, each quadrant produces one of the receive

beams displayed in figure 3.10. The Quadrants are combined to create the elevation and az-

imuth channels for the difference beams. The channels used to build the sum and difference

beams are given as,

Chan1az = Q1 +Q2, (3.36)

Chan2az = Q3 +Q4, (3.37)
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Figure 3.9: Monopulse Receive Beam Quadrants

Chan1el = Q2 +Q4, (3.38)

and,

Chan2el = Q1 +Q3. (3.39)

The difference beams for the respective dimensions are created by subtracting their respec-

tive channels,

∆AZ = Chan1az − Chan2az, (3.40)
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Figure 3.10: Monopulse Receive Beam Quadrants

Figure 3.11: Monopulse Delta Quadrants in Elevation and Azimuth
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∆EL = Chan1el − Chan2el. (3.41)

Figure 3.12: Monopulse Sum and Difference Beams in Azimuth

As for the Sum (
∑

) beam, it is simply the sum of all four quadrants to create a pencil beam,

∑
= Q1 +Q2 +Q3 +Q4. (3.42)

The
∑

and ∆AZ beams are displayed in figure 3.12, where ∆AZ has a null located at the

center of the
∑

beam. In contrast, the
∑

beam is a traditional pencil beam. The post-

processing that utilizes the
∑

and ∆AZ beams will be detailed in Section 4.3 of Chapter

4.
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3.5 Summary

This chapter has covered the different beamforming techniques used in this particular

project. This chapter also detailed the unique QPS technique used to illuminate a broader

area. Lastly, this chapter discussed the monopulse beams formed on receive to prepare

the received data for monopulse processing. The next chapter will discuss the different

processing techniques used for identifying a target’s range, velocity, and direction, as well

as a technique for distinguishing targets from noise.
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Chapter 4

Radar Signal Processing and CFAR

One of the many functions of radar is target detection; target detection is accomplished

through a process known as radar signal processing [27]. A radar can measure three target

components based on a return signal; the distance the target is from the radar, the Doppler

shift due to the target’s motion, and the target’s direction with respect to the antenna array.

There are various signal processing techniques used to measure each of these components.

The three methods used during the research are, matched filtering, the Fast Fourier Trans-

form across the pulse dimension to acquire the Doppler shift, and monopulse processing

to identify the azimuth and elevation angles of the target. After discussing the signal pro-

cessing techniques, the section concludes with a discussion of the constant false alarm rate

(CFAR) algorithm used to filter out the false alarms in the simulation.

4.1 Match Filtering

One of the most common techniques in analyzing a complex signal is filtering, which

alters the spectrum with predetermined parameters [28]. Matched filtering is used in many

signal processing sub-fields to detect a signal corrupted by noise. The matched filter is

designed to maximize the signal-to-noise ratio (SNR) of a received signal corrupted by

noise to extract a target’s information from the radar. In most radar signal processing
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algorithms, a target’s range is considered the most significant measurement [29].

The traditional matched filter takes an impulse response h(t) and a transfer function

H(ω). The conjugated time-reversed version of the transmitted signal determines the filter

response,

h(t) = x∗
p(−t). (4.1)

The transfer function H(ω) takes advantage of the time-reversal and conjugation properties

of the Fourier transform where

F{f(−t)} = F (−ω) (4.2)

and,

F{f ∗(t)} = F ∗(−ω). (4.3)

Therefore, the transfer function of the matched filter is given as

F{h(t)} = F{x∗
p(−t)} = X∗

p (ω) = H(ω). (4.4)

We also utilize the multiplication property of the Fourier transform,

F{x(t)⊗ h(t)} = X(ω)H(ω). (4.5)

Utilizing the multiplication property of the Fourier transform allows us to avoid the time

sync that comes with convolution. Where convolution in the time domain translates to

multiplication in the frequency domain.

With AGWN, figure 4.1 shows a target’s matched filter response at a distance of ap-

proximately 12 km. Figure 4.2 shows the same target at the same distance without the

corruption of AWGN.
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Figure 4.1: Output of Matched Filter With Noise

Figure 4.2: Output of Matched Filter Without Noise

4.2 Doppler Processing

There are several RSP techniques used for Doppler detection in radar systems. The

received data are collected and organized into a data cube of ADC samples for each pulse

along each antenna element.

A Fast Fourier Transform (FFT) is applied to the pulse dimension, converting it to the

frequency shift due to the target’s radial velocity (Vr). Figure 4.3 depicts the application of

an FFT to a radar data cube.

Match filtering followed by Doppler processing result in a range-Doppler (RD) map.
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Figure 4.3: Received Data Cube

Doppler frequency (fd) can be converted to Vr using 2.8,

fd =
2Vr

λ

In figure 4.4, AWGN distorts the received range-Doppler data. In contrast, without

AWGN, the sidelobes from the range-Doppler processing are more defined in figure 4.5.
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Figure 4.4: RD Map with AWGN Figure 4.5: RD Map without AWGN

4.3 Monopulse AoA Estimation

Monopulse is a signal processing technique for measuring the angle of arrival (AoA)

of the received signal [26]. In theory, monopulse processing estimates a target’s direction

angles for each pulse of a pulse train [30]. Chapter 3, Section 3.4 details the Sum (
∑

)and

Difference (∆) beamforming used in Monopulse processing. This section will review the

process of angle estimation through monopulse processing detailed by Barton [26].

The first step in monopulse processing is to create a monopulse table composed of

monopulse bins that span at least the 3dB beamwidth (Bw3dB) of the
∑

beam in both

azimuth and elevation. To do so,

Bw3dB =
0.886λ

L
(4.6)

where λ is the wavelength of the carrier frequency of the transmitted signal and L is the

array’s length in the elevation or azimuth direction. For the array used in this simulation,

the receive channels in the elevation and azimuth directions are the same. Therefore, the

beam widths for both azimuth and elevation of the sum beam are the same, where the

Monopulse angles span from −Bw3dB

2
to +Bw3dB

2
, the width of the sum beam.
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The next step is populating the monopulse table with the azimuth and elevation ∆∑ ratios

for each angle. Each table holds the angles that span the 3dB beamwidth of the
∑

,

uaz =


sin(θ1,az) 0

...
...

sin(θNang ,az) 0

 (4.7)

and

uel =


0 sin(θ1,el)

...
...

0 sin(θNang ,el)

 . (4.8)

Both are then converted to the K-space by scaling each matrix by the wave number of the

carrier frequency,

kmono = −ku. (4.9)

Next, the complex phases pointing out from the array’s center is created from the azimuth

and elevation,

vmono = exp(−jAkmono) (4.10)

where A is the antenna phase center of the receive array. Summing vmono for each of the

azimuth and elevation complex phases creating Σaz and Σel,

Σaz =

Nang∑
i=1

vmono,az, (4.11)

Σel =

Nang∑
i=1

vmono,el. (4.12)
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The ∆az and ∆el beams are the difference in the half sums of vmono,

∆az =

Nang
2∑

i=1

vmono,az −
Nang∑

i=
Nang

2
+1

vmono,az (4.13)

and,

∆el =

Nang
2∑

i=1

vmono,el −
Nang∑

i=
Nang

2
+1

vmono,el. (4.14)

With the Σ and ∆ channels built, the imaginary components for the ratios can be ex-

tracted and stored for each respective angle,

IDSR = Im

(
∆

Σ

)
(4.15)

where IDSR denotes the imaginary part of the ∆ and Σ ratio. With ratio of the imaginary

parts, we are able to identify the angle error from the center of the receive beam.

Once the range Doppler processing have been applied to the receive signal, the monopulse

processing can be applied to any potential targets.

IDSRaz = Im

(
∆det,az∑

det,az

)
(4.16)

IDSRel = Im

(
∆det,el∑

det,el

)
(4.17)

The IDSRaz and IDSRel are compared to their respective ratios stored in the monopulse

table, a null indicating the target’s direction angles θaz and θel. Figures 4.6 and 4.7 picture

the nulls. With the receive sum beam’s center being zero, the null represents the difference

in a target’s direction angle with respect to the center of the received sum beam. Figure 4.6

indicates that the target is not at the direct center of the beam in azimuth. Figure 4.7 shows

a receive sum beam pointed at the target in elevation.
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Figure 4.6: Azimuth AoA Figure 4.7: Elevation AoA

To find the estimated angle of arrival,

θaoa,az = θant,az + θmono,az (4.18)

and,

θaoa,el = θant,el + θmono,el. (4.19)

4.4 CFAR

While there are several CFAR algorithms, the one picked for this simulation is Cell Av-

eraging Constant False Alarm Rate (CA-CFAR). The rationale for using the CA-CFAR is

that it is not as computationally intensive as others. For example, Order Statistic Constant

False Alarm Rate (OS-CFAR) can performed better than a CA-CFAR detector; however, it

is more computationally intensive [31]. As for the CA-CFAR used, it sufficiently identifies

the targets without sacrificing the computational processing needed for other CFAR algo-

rithms. The most common approach to Constant False Alarm Rate (CFAR) is to assume

the average noise power within a CFAR window does not contain a target and base the

detection threshold on this assumption [32].
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The estimated threshold T̂ ,

T̂ =

√
−4

π
µl ln |PFA| (4.20)

where ln |PFA| is a function of the desired false alarm probability. When the test cell value

is greater than T̂ , the test cell is potentially a target.

Figure 4.8: CFAR Threshold, Detection’s and False Alarms

Figure 4.8 demonstrates the application of T̂ and how it distinguishes between possible

targets and false alarms using hypothesis testing with equal variances. The area under

P (T̂ |H1) shaded in red is the probability of detection. The areas of P (T̂ |H1) and P (T̂ |H0)

shaded in green is probability of false alarms (PFA). The detector is designed to adjust the

threshold T̂ for an acceptable constant false alarm rate.
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The CA-CFAR algorithm slides a window over the processed range-Doppler data with

a predetermined window size. The CA-CFAR window has three basic types of range-

Doppler cells. The first is the test cell, which is at the very center of the window. The test

cell is being tested against the 2nd type of cells, the reference cells. Finally, the third type

is the guard cells, these work as a buffer between the test and reference cells. The com-

position of the CA-CFAR window is shown in figure 4.9, labeling the three types of cells

within the window. The more reference cells within a CFAR window, the more accurate

the background noise estimation is [29]. However, there is a threshold to the number of

reference cells used within a CFAR window before the noise is no longer homogeneous

[29].

Figure 4.9: Range Doppler map with Sliding CA-CFAR Window

39



4.5 Summary

This chapter has covered the basics of the processing and target detection algorithms

used within the simulation, from the basics of the matched filter used to identify a target’s

range, the extraction of the Doppler frequency to determine a target’s radial velocity to the

monopulse processing to determine a target’s AoA. Furthermore, implementing the CA-

CFAR algorithm that yields false alarms.

The next chapter will detail the theory behind the Kalman filter and the two trackers

used in this simulation.
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Chapter 5

Target Tracking

The ultimate goal of a target tracking algorithm is to estimate with high precision a

target’s attributes, such as position and velocity, continuously while the attributes are con-

stantly changing [18]. Engineers have developed various algorithms to predict a target’s

next position based on previously observed information. This chapter will cover the basics

of the Kalman filter, the Extended Kalman filter (EKF) implementation, and the theory and

application of the Unscented Kalman filter (UKF).

5.1 The Kalman Filter and Background

The Kalman filter operates within linear stochastic systems; it allows for the mean and

covariance of a random parameter to be estimated in the presence of unwanted AWGN [33].

Global Positioning Systems (GPS) utilize the Kalman filter for high-precision positioning.

There are three basic steps to a Kalman filter; the prediction step, the observation step,

and the update step [34]. The process within the Kalman filter detailed throughout this

section is summarized from Subhash [34].

The prediction, or priori will be the first step to be discussed. When tracking a target, an

observer can predict a target’s next position with previous information given. The predic-

tion step calculates the state vector and estimated error. The state vector contains attributes
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associated with the target, such as position, velocity, and acceleration. Mathematically the

state vector prediction is described as

x̂n+1,n = Fx̂n,n +Gun (5.1)

where x̂n+1,n is the predicted state vector of the next iteration, F is the state transition

matrix x̂n,n is the previous state vector, G is the control matrix, and un is the input variable.

un accounts for any added variations to the state vector. For example if the state vector

is predicting position and velocity, un will account for any changes in the velocity with

respect to an acceleration quantity. G will account for the time ∆t since the last prediction.

x̂n+1,n is a Nx×1 vector holding the values of the the attributes of interest. for example

if x̂n+1,n is a 6× 1 predicting an objects position and velocity the result of 5.1 would be,

x̂n+1,n =



rx

ry

rz

vx

vy

vz


. (5.2)

Where, r and v would be the vectors holding the position and velocity components of the

object. The state transition matrix F can best be described as an Nx ×Nx matrix where Nx

is the number of variables within the state vector and accounts for the time ∆t since the

last prediction. For example, if the state vector predicted a target’s Cartesian position and

velocity, F would be a matrix holding the following values,
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F =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (5.3)

The values of F account for the position due to the change in time for x̂n,n.

Recall that the x̂n,n is the updated previous state vector. For this example, we will

assume that x̂n,n predicts six variables, the position and velocity of a target in a Cartesian

coordinate system according to,

x̂n,n =



x̂n,n

ŷn,n

ẑn,n

v̂xn,n

v̂yn,n

v̂zn,n


. (5.4)

The control matrix G maps the control input to the state variable. For example, if there was

an increase or decrease in a target’s velocity, G accounts for that acceleration.

Finally, the control input un is the last variable to account for in the predicted state

vector equation, which is any change in velocity to a target, accounting for a target’s change

in position.

The estimated error for the prediction is represented in a covariance matrix,

Pn+1,n = FPn,nF
T +Q (5.5)
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where Pn+1,n is a matrix holding the predicted error for each variable in the predicted state

vector x̂n+1,n. FT is a transposed state transition matrix, Pn,n is the previously estimated

error, and Q is the process noise covariance matrix Pn,n, and Pn+1,n are both nx × nx ma-

trices holding the error variances for the state vector variables. The covariance is updated

during each prediction. The updated prediction depends on the accuracy of the previous

prediction.

Because the actual noise process of a system can not be precisely determined, Q is

estimated and considered constant for the entire process of the Kalman Filter.

The observation step is relatively simple in the traditional Kalman Filter due to the

assumption that x̂n,n is measured through a Linear Time-Invariant (LTI) system. The ob-

servation step takes in a vector zn,n which is the measurement.

The Kalman filter is considered an optimal filter; therefore, during the update stage, it

will seek to minimize the error variance using the Kalman gain K. K will minimize the

variance of the covariance Pn,n along the diagonal, which characterize the error variance

in estimating these variables within the state vector x̂n,n. K is described as

K = Pn,n−1H
T(HPn,n−1H

T +Rn)
−1 (5.6)

where Pn,n−1 is being the previous covariance, H is a linear mapping from the state vari-

ables to the observations, and Rn accounting for the measurement uncertainty. Rn is a

Nx × Nx matrix that holds the error variances of each measurement along the diagonal.

When computed, the Kalman gain is a matrix with nz × nx dimension.

For the state update equation (x̂n,n), the main factors that it is controlled by are the

Kalman gain and the error between the observation and predicted state vector. With the

update to state vector being,

x̂n,n = x̂n,n−1 +K(zn −Hx̂n,n−1)). (5.7)
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Upon closer inspection, if the difference between the measurement and the predicted mea-

surement is zero, then the updated state vector equals predicted state vector. Alternatively,

if the difference between the measurement and the predicted measurement is small, the

weighted K affects the updated state vector very little. A large Kalman gain shows low

confidence in the predicted state vector and places more weight on the new measurement.

For the updated covariance, K again plays a role. Along with Rn, the updated covari-

ance is,

Pn,n = (I−KnH)Pn,n−1(I−KnH)T +KnRnK
T
n . (5.8)

If the Kalman gain is very small the covariance becomes Pn,n ≃ Pn,n−1. However, as the

values of K get closer to one, the first term in (5.7) approaches zero and the previous co-

variance is ignored, such that the measurement uncertainty is weighted more heavily when

previous covariance is negated, and measurement uncertainty is weighted much greater

when calculating the updated covariance.

To see how the Kalman filter uses the previous operation and how the steps work off

each other, reference figure 5.1. The steps continue until the observations cease to exist.

5.2 Extended Kalman Filter Theory

While the traditional Kalman filter is practical when predicting linear systems, it does

not work well with non-linear such as the measurements of range, velocity, and angle. For

a radar system that predicts, variations of the Kalman filters have been developed over the

years. One variation of the Kalman filter is the Extended Kalman filter (EKF). The EKF

approximates the local linear behavior of a non-linear function so that a Kalman filter can

be applied [35].

The essential operation of a Kalman filter is to propagate a Gaussian random variable
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Figure 5.1: Flowchart of a Basic Kalman Filter

(GRV) through a system. In the EKF, the state vectors distribution is approximated as

a Gaussian distribution with a GRV, which is then propagated analytically through the

first-order linearization using a Jacobian of the nonlinear system to approximate a linear

system [1]. Section 5.3 the details of the EKF and how to approximate the linearization.

Essentially, the EKF approximates the state vector through the a linear approximation and

has the ability to propagate the covariance through the system exactly.

5.3 Extended Kalman Filter Algorithm and Application

The EKF operations are similar to the classic Kalman filter, estimating the next state

and error of the state due to noise, taking a measurement, and correcting the estimated state

due to the error between the initial estimate and measurement. As stated in 5.2, the critical

difference is that the EKF can handle nonlinear systems through a first-order linearization

of the nonlinear system. This section will break down the time update and measurement

update given by Kay and how those apply to the simulation [35].

After predicting an initial state and error, the state vector is updated to account for the
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time between measurements. Because this radar system predicts position and velocity, the

predicted state is a 6 × 1 vector. Assuming the dynamic system model is known based on

the previous velocity and position, a state transition function is applied to the previous state

vector,

x̄k = f(x̄k−1). (5.9)

The linearized approximated estimated error,

C̄k = FC̄k−1F
T +Qk−1, (5.10)

C̄k−1 is the previously updated covariance, and Qk−1 is the estimated system noise. Ak is

a matrix of partial derivatives (the Jacobian). Being a first-order Taylor series expansion,

the Jacobian is evaluated at the current predicted state to linearize the covariance at the

current predicted state. The mathematical description of Ak is,

Ak =



∂f1,k
∂x1,k

∂f1,k
∂x2,k

∂f1,k
∂x3,k

∂f1,k
∂x4,k

∂f1,k
∂x5,k

∂f1,k
∂x6,k

∂f2,k
∂x2,k

∂f2,k
∂x2,k

∂f2,k
∂x3,k

∂f2,k
∂x4,k

∂f2,k
∂x5,k

∂f2,k
∂x6,k

∂f3,k
∂x2,k

∂f3,k
∂x2,k

∂f3,k
∂x3,k

∂f3,k
∂x4,k

∂f3,k
∂x5,k

∂f3,k
∂x6,k

∂f4,k
∂x2,k

∂f4,k
∂x2,k

∂f4,k
∂x3,k

∂f4,k
∂x4,k

∂f4,k
∂x5,k

∂f4,k
∂x6,k

∂f5,k
∂x2,k

∂f5,k
∂x2,k

∂f5,k
∂x3,k

∂f5,k
∂x4,k

∂f5,k
∂x5,k

∂f5,k
∂x6,k

∂f6,k
∂x2,k

∂f6,k
∂x2,k

∂f6,k
∂x3,k

∂f6,k
∂x4,k

∂f6,k
∂x5,k

∂f6,k
∂x6,k


. (5.11)

The EKF linearization in figure 5.2 shows the actual sampling along with an estimated

covariance and mean on the left [1]. The samples are transformed by f(x), and a true

covariance and mean are given. However, this is not possible in a nonlinear system. To the

right, the EKF transforms the mean and approximates it through h(x), and AkC̄k−1A
T
k

linearizing the covariance.
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Figure 5.2: Comparison of Sampling vs EKF Linearization [1].

Measurements are needed to update (correct) the estimated state vector and covariance.

A transfer function h(x̄k) is applied to the state vector and converted to the measurement

domain. Giving the following vector,
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h(x̄k) =



x̂

ŷ

rk

Vr,k

Vx,k

Vy,k

Vz,k


where x̂, ŷ, and rk are parameters directly related to the range and angles measured by the

radar. Vr is the radial velocity measured by the radar. Vx,k, Vy,k, and Vz,k is the velocity

vector components that are related to the range, angle, and radial velocity of the radar. The

values of The unit vectors, range, and radial velocity are converted to the measurement

domain using the following series of equations;

rk =
√
r2x,k + r2y,k + r2z,k, (5.12)

x̂ =
rx,k
rk

, (5.13)

ŷ =
ry,k
rk

, (5.14)

Vr,k = r̂k • Vk, (5.15)

where

r̂k =

[
rx,k ry,k rz,k

]
. (5.16)

These particular combinations of the range, velocity, and angle measurements are used to

more effectively compute the Jacobian. The Jacobian (Ak) relates x̄k to h(x̄k). Ak is

computed as the first-order Taylor series expansion,

49



A =
∂hk

∂xk

∣∣∣∣∣
x=x̄

=



1
rk

− x̂2

r2k
− x̂ŷ

r3k
− x̂ẑ

r3k
0 0 0

− x̂ŷ
r3k

1
rk

− ŷ2

r3k
− ŷẑ

r3k
0 0 0

x̂
rk

ŷ
rk

ẑ
rk

0 0 0

Vx,k

rk
− x̂Vx,k

r2k

Vy,k

rk
− ŷVy,k

r2k

Vz,k

rk
− ẑVz,k

r2k

x̂
rk

ŷ
rk

ẑ
rk

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



. (5.17)

The variance of the error can be represented as a diagonal matrix Rk with each index

along the diagonal representing the estimated variance for each element within the state

vector being predicted in the measurement space since the SNR affects the error in the r,

Vr, and unit vector measurements.

SNR =
|Rxsig|
Pns

(5.18)

The range resolution is predetermined, being dependent on the bandwidth β,

δr = c/2β (5.19)

The resolutions of x̂ and ŷ depend on the number of antenna elements transmitting in the

respective direction Ntx and Ntx,

δx̂ = 2/Ntx (5.20)

δŷ = 2/Nty (5.21)

the radial velocity resolution,

δVr =
λ

2NpfPR

(5.22)
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which is related to Doppler frequency, depending on the transmit wavelength λ, the number

of pulses per CPI Np, and the pulse repetition frequency fPR.

The variance of each measurement is calculated with the estimated SNR from the

measurement resolutions of the range, unit vectors, and radial velocity;

σ2
r =

δR

2SNR
, (5.23)

σ2
x =

δx̂

2SNR
, (5.24)

σ2
y =

δŷ

2SNR
, (5.25)

σ2
V r =

δVr

2SNR
. (5.26)

The final variances of Rk are estimated to be the velocity unit vector variance from C̄k.

With this information, the measurement error matrix,

Rk =



σ2
x 0 0 0 0 0 0

0 σ2
y 0 0 0 0 0

0 0 σ2
r 0 0 0 0

0 0 0 σ2
V r 0 0 0

0 0 0 0 C̄k,55 C̄k,56 C̄k,57

0 0 0 0 C̄k,65 C̄k,66 C̄k,67

0 0 0 0 C̄k,75 C̄k,76 C̄k,77



. (5.27)

The Kalman Gain Kk is evaluated on each step using the updated C̄k and Rk,

Kk = C̄kHk(HkC̄kH
T
k +Rk)

−1. (5.28)

Notice how the system error stored in C̄k influences Kk. The measurement error stored
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in Rk also influences the output of Kk. C̄k and Rk determines how much weight to give

the measurement zk and how much weight to distribute between the measurement zk and

the state vector x̄k.

The state vector x̂k is updated,

x̂k = x̄k +Kkσz (5.29)

where,

σz = zk − h(x̄k). (5.30)

Accounting for the error in the prediction and Kk in 5.29 weights the σz. Note that for

equation 5.29,

lim
Kk→1

x̂k = x̄k + σz (5.31)

and,

lim
Kk→0

x̂k = x̄k (5.32)

The updated covariance,

Ĉk = (I−KkHk)C̄k, (5.33)

theoretically, causing the predicted error to converge on the actual error as the iterations

increase. Figure 5.3 summarizes the EKF algorithm. The prediction step takes in the initial

estimates of the state vector, applies the transfer function to the previous state vector, and

estimates the system noise. Then, it updates the Kalman gain based on the trust in the

measurement and measurement noise and updates the state vector and covariance.
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Figure 5.3: Extended Kalman Filter Algorithm

While the EKF can keep the simple recursive computations of the classical Kalman

filter, the linear approximations applied using the Jacobian to non-linear equations repre-

senting the system dynamics can produce inaccurate results [36]. The inaccurate results

could be because the resulting Jacobian may be inaccurate or nonexistent [36], [37]. Be-

cause of the EKF limitations, the next section will introduce another filter from the Kalman

filter family.
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5.4 Unscented Kalman Filter Theory

With the EKF’s limitations, the unscented Kalman filter (UKF) has grown in popular-

ity recently. The UKF compensates for the deficiencies of the EKF by introducing the

Unscented Transform (UT) [37]. With the UT, there is no need for a complex Jacobian

calculation for the linearization process needed to transform the mean and covariance in-

formation [34].

5.5 Unscented Kalman Filter Algorithm and Application

In keeping the Kalman tradition, the UKF algorithm is similar to the EKF and classic

Kalman filter. The central part of the algorithm predicts a state vector and covariance, takes

a measurement, then updates the state vector and covariance. The UKF repeats these steps

until the iterations are complete. The UKF algorithm used for the simulation follows the

UKF algorithm documented in Challa [34].

Before the UKF algorithm begins, the weights are selected, wi,m denoting the mean

weights and wi,c denoting the covariance weights:

w0,m =
λ

N + λ
, (5.34)

wi,m =
λ

2(N + λ)
1 ≤ i ≤ 2N, (5.35)

w0,c =
λ

N + λ
+ 1− α2 + β, (5.36)

wi,c =
λ

2(N + λ)
1 ≤ i ≤ 2N. (5.37)

Where,
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λ = 3−N, (5.38)

N is the number of data points in the state vector, β is 2, the optimal value for a Gaussian

distribution and α is set to a constant 1× 10−2 [1]. The weights control the distribution of

the sigma points of the UT. To remain unbiased, the weights for the mean must satisfy the

condition,

∑
i

wi = 1. (5.39)

The first step in the UKF Algorithm is the calculating the sigma points (χk,i) for the

UT,

χk,0 = x̂k−1, (5.40)

χk,i = x̂k−1 +
(√

(N + λ)Ĉk−1

)
i

1 ≤ i ≤ N, (5.41)

and

χk,i = x̂k−1 −
(√

(N + λ)Ĉk−1

)
i

1 ≤ i ≤ N. (5.42)

A function is then applied, transforming the sigma points,

χf
k,i = f(χk,i) (5.43)

accounting for the CPI time ∆t and the estimated V for the simulation.

Once the sigma points have been transformed, wi,m is applied to each χf
k,i and summed

together, giving the UT approximation of the mean,

x̄k =
2N∑
i=0

wi,mχ
f
k,i. (5.44)

55



A weighted covariance is created by applying wi,c to each estimated error of the sigma

points and mean calculated in (5.44),

C̄k =
2N∑
i=0

wi,c

[
χf
k,i − x̄k

][
χf
k,i − x̄k

]T
+Q (5.45)

summing the weighted estimated covariance, giving a UT approximation.

The unscented transform represented in figure 5.4, demonstrates how the UT better

estimates the true mean and approximated covariance when applied to the state vector and

estimated covariance. Essentially, the UT allows the exact sigma points to pass through the

system, while the sigma points are used to approximate the covariance.

After the predictions and measurements, the sigma points are converted from Carte-

sian coordinates to Spherical coordinates due to the radar measurements taking place in a

Spherical coordinate system,

ζk,i = h(χf
k,i) (5.46)

where,

ζk,i =



rk,i

θaz,k,i

θel,k,i

V rk,i


.

With the UKF tracking the position and velocity in a Cartesian coordinate system, these

are straightforward conversions. The algorithm converts the predicted range from the pre-

dicted position vector, the angles of arrival from the angles of the position vector, and the

radial velocity from the dot product of the velocity vector with the position’s unit vector.

The conversions are as follows,
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Figure 5.4: Comparison of Sampling vs Unscented Transform [1].

rk,i =
√

x2
k,i + y2k,i + r2k,i, (5.47)

θaz,k,i = tan−1(
yk,i
xk,i

), (5.48)

θel,k,i = tan−1(
sqrtx2

k,i + y2k,i
zk,i

), (5.49)

and

V rk,i = Vk,i • r̂k,i. (5.50)

57



The mean weights are applied to the converted sigma points ζk,i in the measurement do-

main.

Using a similar approach to calculating the Rk of the measurement space from Section

5.3. Recall (5.23) and (5.26), which are reused to calculate the estimated variance on each

CPI for the range and radial velocity. As for the angles θaz,k,i and θel,k,i, an estimated vari-

ance is calculated before the simulation begins and re-calibrates using the SNR estimated

on each CPI. Because the actual variance is unknown, each estimated variance is compared

by taking the larger of the two.

The angle variance calculated before the simulation begin equal to the width of a single

monopulse bin in an angles respective direction,

σaz,initial =
BWaz

Nxbin − 1
(5.51)

and

σel,initial =
BWel

Nybin − 1
. (5.52)

The angles errors are recalculated every CPI with respect to the estimated SNR,

σaz,SNR =
BWaz

1.39
√
2SNR

(5.53)

and

σel,SNR =
BWel

1.39
√
2SNR

. (5.54)

Because only four measurements were taken, Rk dimensions are 4× 4,
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Rk =



σ2
r,k,i 0 0 0

0 σ2
az,k,i 0 0

0 0 σ2
el,k,i 0

0 0 0 σ2
V r,k,i


. (5.55)

Next, the weighted measurement exception and covariance are calculated,

ẑk =
2N∑
i=0

wi,mζk,i (5.56)

and

Sk =
2N∑
i=0

wi,c

[
ζk,i − ẑk

][
ζk,i − ẑk

]T
+Rk. (5.57)

Applying the covariance weights to the expected and measured difference updates the mea-

surement’s cross-covariance,

C̄k,xz =
2N∑
i=0

wi,c

[
χf
k,i − x̄k

][
ζk,i − ẑk

]T
. (5.58)

The updated cross-covariance and measurement covariance update the Kalman gain,

Kk = C̄k,xzSk
−1. (5.59)

Kk is then applied to the measured difference to update the state vector,

x̂k = x̄k +Kk(zk − ẑk) (5.60)

following the same conditions as the Kalman filters Kk and the UKF’s Kk from equa-

tions 5.31 and 5.32, the Kk weights the measurement difference based on the trust of the

measurement.
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Before the next iteration begins, the measurement covariance updates the expected co-

variance:

Ĉk = C̄k −KkSkK
T
k . (5.61)

The UKF algorithm is pictured in figure 5.5, showing how the prediction and update

steps work together to converge on a target through the iterative process.

Figure 5.5: Unscented Kalman Filter Algorithm

5.6 Estimated Uncertainty

For the traditional Kalman filter, P measures the state estimate error. Recall C0, the

initially estimated covariance. For this section, we will assume that C0 will match the

measured error of the first measurement. The variances within Pn,n will decrease to zero

as the radar continues to take accurate measurements [38], [39]. Recall (5.6),
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K = Pn,n−1H
T(HPn,n−1H

T +Rn)
−1.

Assuming that the Kalman filter is linear, the H transform reduces to an identity matrix, in

this case (5.6) reduces to,

K =
Pn,n−1

Pn,n−1 +Rn

. (5.62)

Under these circumstances, K approaches I, as the values measurement uncertainty Rn

reduces to zero. In this ideal case (5.7) reduces to,

x̂n,n = x̂n,n−1 + I(zn − x̂n,n−1) = zn, (5.63)

indicating that the Kalman filter fully trusts the measurement. Finally, for this ideal case

(5.8) reduces to

Pn,n = (I− I)Pn,n−1 = 0. (5.64)

While this ideal scenario is not possible, it does demonstrate how Rk weights the va-

lidity of the measurement and affects the accuracy of the predictions.

Recall the effect K has on the measurements, where a low K trusts the measurement

and a high K increases the uncertainty of the measurement. Reducing (5.7) to approxi-

mately x̂n,n = x̂n,n−1 and (5.8) reduces to Pn,n = (I − 0)Pn,n−1 when K is very low.

With these phenomena, we will be able the analyze the performance of the EKF and UKF

in Chapters 7 and 8.

5.7 Summary

In conclusion, this chapter has discussed the foundation of the EKF and UKF, along

with the implementation of the EKF and UKF to track a single target using a phased array
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radar. It also discussed the limitations of the EKF. Furthermore, this chapter has demon-

strated why the UKF has risen in popularity with the development of the UT. The next

chapter will discuss the final simulation constraints, preliminary results, and the results of

the Monte Carlo.
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Chapter 6

Monte Carlo Simulation

There are a variety of techniques widely used to test the limits and capabilities of a

system. The one chosen for this simulation to test the beamforming along with the UKF

and the EKF capabilities is the Monte Carlo. A Monte Carlo simulation essentially ap-

plies statistical analysis to random sampling to converge on a solution to the results [40].

A Monte Carlo simulation is an offshoot of random experiments [40]. This chapter will

discuss the setup of the Monte Carlo and how the simulation parameters that dictate the

automated QPS and a lost target.

6.1 Simulation Design and Monte Carlo Setup

Table 6.1 holds all the parameters for the DAR system are dependent on. Several pa-

rameters are tested and randomly chosen for the simulation. A single target is randomly

generated for each Monte Carlo iteration which runs for 50 CPIs; the time between each

CPI is simulated to last 2 seconds. The simulation randomly chooses the target’s position,

velocity, and maneuvers at the beginning of each Monte Carlo. The targets range, velocity,

and angle limits are predetermined as constraints. To ensure the target can be adequately

tracked, within the natural constraints of the radar, the target’s properties are randomly

generated iteratively until the target’s properties converge on a solution that satisfies the
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constraints.

A target’s position must be within the radar’s minimum and maximum range. A target’s

range can be at least the minimum range of 1 km and no more than the maximum range

of 25 km for the entire 50 CPI Monte Carlo iteration. Because of the NED coordinate, the

target’s z position can not be a negative quantity or zero because it is an airborne target.

The azimuth and elevation constrain the target’s position as well. The target cannot exceed

the field of view of the radar.

The PRF limits the radar’s ability to detect a target’s radial velocity. The randomly

generated velocity of the target is chosen using a normal distribution giving the highest

weight of 50% to the x component of the velocity vector. Then randomly distributing the

remaining 50% to the y and z components of the velocity vector. The max velocity that a

target can reach is ±262m
s

due to the constraint of the PRF.

The number of target maneuvers is randomly generated from one to five. Acceleration

and the length of the acceleration define a maneuver. The randomly chosen acceleration

follows a normal distribution for each acceleration vector < x, y, z > component. Weigh-

ing the x (north) component at 75 to 50% of the acceleration vector and the remaining

percentage randomly distributed to the y (east) and z components. The length of time that

the acceleration last is a Rayleigh random variable. The Rayleigh random variable gives

more weight to lower accelerations, increasing the likelihood that a low acceleration will

last longer than a high acceleration. This process can be visualized in Figure 6.1, giving

four different Rayleigh distributions based on the previously randomly chosen acceleration.

The maneuvers are randomly chosen and generated for the 50 CPIs within a Monte Carlo

iteration and added to the velocity, which is added to an updated target’s position to ensure

that the range, velocity, and angle constraints are satisfied.

At the beginning of each iteration the radar does not know where the target is and is

actively searching for the target. One of five Radar Cross-section (RCS) values is chosen

64



Parameter Reference Table
Parameter Quantity Units Description

Fc 3 GHz Carrier Frequency
λ 0.0999 m Carrier Frequency Wavelength
B 100 MHz Bandwidth
Fs 250 MHz Sampling Frequency
Tp 5 µs Pulse Width

PRF 10.5 KHz Pulse Repetition Frequency
PRI 0.952 µs Pulse Repetition Interval
γ 2× 1013 cycles

s2
Chirp Rate

Np 128 N/A Number of Pulses per CPI
Ne 1024 N/A Number of Antenna Elements
Ptx 10 Watts Transmitted Power per Element

∆tCPI 2 s Time Between CPI
Fadc 75× 103 samples

s
Receiver ADC Rate

NCPI 50 N/A Number of CPI’s
Rmin 1 Km Minimum Range
Rmax 25 Km Maximum Range
Rref 13 Km Reference Range

Table 6.1: Radar Parameter Reference Table
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Figure 6.1: Rayleigh Distributions Based of Randomly Chosen Acceleration

for the target that would give the target between 5dB and 30dB SNR positioned at the mid-

range of 13 km tracked by an unspoiled beam. Each one of the RCS values is simulated 100

times for each the UKF and the EKF. The UKF and EKF are initiated with the automated

QPS enabled with a default factor of four, the automated QPS enabled with a default spoil-

ing factor of eight, and the QPS disabled. With this, the Monte Carlo randomly generates

3000 targets, giving the possibility of up to 150,000 CPIs generated over the entirety of the

simulation.
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6.2 Conditions for QPS and Lost Targets

Figure 6.2 displays the process in a flow diagram that dictates the conditions for spoil-

ing. The first rule states that if a target is not within a beam and the detected monopulse

angle either being the minimum or maximum possible detection. The radar will then throws

a spoiling flag for that particular direction for the upcoming CPI. The following rule states

that a “fall” flag will be thrown when a target is detected Bw
4

from the center of the receive

beam. If the “fall” flag is thrown for four consecutive CPIs, the target is considered to be

“falling” out of the beam, triggering the beam spoiling for that particular direction. For the

Monte Carlo simulation, the default QPS factors are eight and four. With these conditions

set, the DAR now has a basic automated QPS.

For these QPS factors, a factor of eight illuminates 25.38◦ of the scene in the respective

spoiled direction, while a QPS factor of four is half that and illuminates a scene of 12.69◦ in

the respective spoiling direction. However, because of this, there is a performance trade-off.

For a QPS factor of eight, the beam is spoiled in one direction the transmit beam’s power

contributions to the SNR decrease by a factor of eight. If the beam is spoiled in azimuth

and elevation, the transmit beam contributions are decreased by 64. The decrease in SNR

contributions is due to the decreased power density of the illuminated transmitted beam.

With a QPS factor of four, the transmit beam’s contributions to the SNR are decreased by

four when spoiled in a single direction and by 16 when spoiled in both directions. Again,

this is due to the transmitted beam’s power density being decreased by the spoiled beam.

Figure 6.3 details the lost target decision process. A target is lost if the difference be-

tween the current target’s detected range and the previous range is 1.5 km; the detection

is invalid, throwing a flag and resetting the tracker’s predicted range to the previous CPI

range. Three consecutive CPIs of range flags target indicates a lost target. Suppose a mea-

sured position vector is complex due to severely inaccurate detected angles. In that case,
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Figure 6.2: Flow Diagram of the Spoiling Decision Process

a complex flag is triggered, and the predicted position of the target is set to the previous

CPI’s position prediction. three consecutive CPIs of complex flags indicate a lost target.

A lost target terminates the current Monte Carlo iteration, and the following Monte Carlo

iteration begins randomly generating a new target.
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Figure 6.3: Flow Diagram of Decision Process for Lost Targets

6.3 RCS Values and SNR due to Contributions of the Radar

Recall that RCS values were chosen based on a target’s range at 13 km. The following

process finds the RCS values. First, the radar equation can be restructured to calculate the

received power,

PRx =
PTxGλσ

(4π)3R4
(6.1)

where PTx is the transmitted power of a single emitter, G is the gain of an antenna element,

σ is the radar cross-section, and R is the range of a target. Giving the received power on a

single antenna element. Several variables can increase the PRx. Modifying (6.1),

P̂Rx = PRxNeBTpNp (6.2)
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given the increased P̂Rx due to the number of antenna elements (Ne) within an array, the

time bandwidth product of the bandwidth (B) and the pulse width (Tp), and the number of

pulses (Np) in a pulse train. With the modified P̂Rx from equation 6.2, the SNR is rep-

resented in dB can be taken at 5.18 to achieve the SNR of a received signal in decibels.

Calculating the P̂Rx using an iterative process for different RCS values, the equation con-

verges on five unique solutions for RCS values that range from 10 dB to 30 dB with the

results cataloged in Table 6.2.

RCS Results
SNR (dB) RCS

10 0.21
15 0.67
20 2.12
25 6.72
30 20.78

Table 6.2: Target RCS Values used in the Simulation

The SNR contribution due to the target will vary due to several factors. First is the

target’s range; the closer a target is to the radar, the better the SNR it will have. The

greater the distance a target is from the radar, the worse the SNR contributions are due

to the target. Secondly, the spoiling factor decreases the SNR contributions. Modifying

(5.18) with the contributions due to P̂Rx, and accounting for the spoil factor of the QPS

gives,

SNR =
P̂Rx

1
Sf

Pns

(6.3)

where Sf is the spoil factor of QPS, the decrease in SNR due to the QPS’s Sf is because

of the spread of power on transmit and not a concentrated pencil beam of an unspoiled

transmit beam.
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6.4 Summary

For this chapter, we have discussed the type of test, the Monte Carlo, that will be per-

formed on the system to test QPS using different Kalman filters to track randomly generated

targets of chosen RCS values. The section further explained the different conditions that

trigger the QPS and the conditions that test if a target is lost. The parameters the radar sys-

tem used were discussed as well. With those subjects covered, the next chapter will discuss

the preliminary results of the trackers.

71



Chapter 7

Tracker Performance

This chapter evaluates the performance of both the UKF and the EKF. Beginning with a

discussion on both trackers’ ability to track a target’s x (north) and y (east) positions. Next,

there will be a discussion on the estimated uncertainty and how the estimated uncertainty

can is used to assess the performance of both trackers. The chapter will conclude with a

discussion on both trackers performed with and without the automated QPS.

7.1 Two-Dimensional Tracker Performance

This section will discuss the ability of the UKF and EKF to estimate a target’s position

and velocity while the target performs a series of maneuvers. A maneuver is a stress test for

each tracker because a maneuver causes a variant in a target’s position concerning change

over time. The observations made in this section will help to understand each tracker’s

ability to estimate a single target’s attributes as the target’s attributes change over time.

Figure 7.1 is a two-dimensional plot of a target’s x (north) and y (east) positions tracked

by the UKF. The UKF appears to track the target with estimates following the same trend

as the positions. The updated estimates appear to trust the measurements since the updated

estimates converge on the target as the change in position stays constant. However, when

the change in position is no longer constant, the UKF estimates become inaccurate. The
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Figure 7.1: Tracked X and Y Positions Using UKF

inaccurate estimates cause the UKF to struggle to converge on the target until the change

in position of the targets is constant again.

Figure 7.2 is a plot of the x and y velocities corresponding to the positions plotted in Fig-

ure 7.1. The UKF does not appear to estimate the target’s velocity components accurately.

The inaccurate estimates and updates could be due to the UT estimating the measurement

covariance by approximating the sigma points. Another cause of the inaccurately estimated

velocity components by the UKF appears to be caused by the measurement variances.

Figure 7.3 is a two-dimensional plot of a target’s x (north) and y (east) positions tracked

by the EKF. The EKF appears to follow the trend of the target’s actual positions. The EKF’s

updated estimates appear to trust the predictions after the measurement step. However, after

the rate at which the target’s position changes, the EKF appears to estimate the change.

The updated estimates again tend to trust the predictions allowing the EKF to estimate the
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Figure 7.2: Tracked X and Y Velocity Using UKF

target’s actual positions accurately.

Figure 7.4 is a plot of the x and y velocities corresponding to the positions plotted

in Figure 7.3. The EKF does not converge on the target’s actual velocity components.

However, it appears the EKF does estimate the change in velocity. Again the EKF tends to

trust the prediction after a measurement. The difference in behavior from the UKF could

be due to the EKF algorithm propagating the covariance through the system. The EKF

estimates the state vector using a Jacobian but propagates the true covariance from the

prediction step to the update step. Another step that could have increased the accuracy of

the estimates could have been decreasing the measurement variances, assuming that the

radar is tracking a single target.
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Figure 7.3: Tracked X and Y Positions Using EKF

7.2 Estimated Uncertainty

To better understand the performance of the UKF and EKF under the different condi-

tions, the determinant (det(C̄)) of the estimate error covariance (C̄k) is calculated on each

CPI. The initial error tends to be primarily due to the lack of measurements to correct the

estimated error. However, with the accumulation of measurements taken, the det(C̄) values

fall sharply following an exponential decay.

Recall the discussion from Section 5.6 about the non-ideal circumstances of the tra-

ditional Kalman filter. The discussion concludes with the effect K has on the measure-

ments, where a low K trusts the measurement and a high K increases the uncertainty of

the measurement. Reducing (5.7) to approximately x̂n,n = x̂n,n−1 and (5.8) reduces to

Pn,n = (I − 0)Pn,n−1 when K is very low. The concept of Pn,n = (I − 0)Pn,n−1 trans-
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Figure 7.4: Tracked X and Y Velocity Using EKF

lates to the behavior of the EKF and UKF’s covariance behavior.

Ten targets that the UKF tracked were chosen, and their det(C̄) were plotted in Figure

7.5. The conditions of these particular targets were an RCS value of 20.78 and a QPS

spoiling factor of eight. After the det(C̄) decays to near zero, there are sudden increases to

follow a saw tooth pattern. Recall (5.45),

C̄k =
2N∑
i=0

wi,c

[
χf
k,i − x̄k

][
χf
k,i − x̄k

]T
+Q

increases in det(C̄) lead to (5.45) not reducing,

C̄k = Ĉk

this indicates a missed measurement, and det(C̄) will continue to increase due to Q being
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a non-negative matrix. Recall (5.61),

Ĉk = C̄k −KkSkK
T
k

where both Sk and Kk are controlled by the error between the measurement and the predic-

tion, any discrepancy between the measurement error causes C̄k = Ĉk not to be satisfied.

However, det(C̄) quickly decays again once a sequence of valid measurements are taken

satisfying C̄k = Ĉk.

As for the floor of det(C̄) the never completely reaching zero and stabilizes at 10−7.

This phenomenon is due to the estimated measurement variance Rk calculated on each

iteration which controls Sk and Kk. Because Rk will never perfectly estimate the variance

for each measurement, the floor of det(C̄) is only as good as the accuracy of Rk. However,

the more accurately the variance in Rk can be estimated, the lower the floor of det(C̄),

increasing the likelihood of the UKF’s ability to track a target.

The Same ten target’s estimated SNR is plotted for each tracked CPI in Figure 7.6.

The difference in SNR can be due to several factors. The transmit and receive beams may

not be pointed directly at the target leading to a loss of SNR. Another is that the beam

has been spoiled, decreasing the transmitted power. A sudden drop in SNR indicates that

a target has been lost, as shown by several targets.

Target 6 in Figure 7.6 SNR tends to fall from just below 25dB to just below 20dB until

CPI 30, where the target’s SNR steadily increases to 25dB. Corresponding to target 6’s

det(C̄) in Figure 7.5, the det(C̄) models that saw tooth behavior until CPI 30 where the

det(C̄) reaches its minimum value and stays for the remaining CPIs. Target 2’s det(C̄) in

Figure 7.5 is never able to converge and satisfy C̄k = Ĉk, eventually ending on the 32nd

CPI. C̄k = Ĉk is confirmed by erratic SNR values of target 2 in Figure 7.6 being dropped

on the 32nd CPI.
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Figure 7.5: UKF det(C̄) for 10 Targets with QPS Enabled

For the EKF, the det(C̄) was plotted in Figure 7.7 with the same conditions as the

det(C̄) for the UKF previously discussed. Similarly to the UKF, the EKF also follows an

exponential decay due to high estimated error on the first few CPIs. While some of the

det(C̄) follow the saw tooth behavior because of the brief period where C̄k = Ĉk is not

satisfied, some are slower to decay. C̄k = Ĉk not satisfied is due to the variance between

the prediction and target of the EKF being larger than the variance between the prediction

and target of the UKF. However, the floor of det(C̄) is lower for the EKF at 10−8. The

lower floor of det(C̄) for the EKF is due to the Rk being more accurately estimated.

Figure 7.8 presents the SNR values of the targets from Figure 7.7. While the error does

not decay as sharply after a bad detection as with the UKF that was previously discussed,

the EKF appears to have fewer variations in the SNR and is less likely to lose the target.
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Figure 7.6: UKF SNR for 10 Targets with QPS Enabled

Target 4 in Figure 7.8 has a steady SNR of approximately 25dB until the 14th CPI,

where the SNR drops to around 12dB. The SNR of the target recovers for a while, then

inconsistent from CPI 38 until the end. As for target 4’s det(C̄) in Figure 7.7 the det(C̄)

never quite converges to the floor at the low SNR on the 14th CPI and the det(C̄) increases

again at the 39th CPI after SNR of the target begins to become erratic leading the det(C̄)

to never converge again. The inconsistent det(C̄) is due to the large measurement variance,

but the ability to continuously track the target is due to the high approximation of the

measurement variance. Target 1 has the highest SNR just above 35dB in Figure 7.8 except

for a lower SNR detection starting at the 41st CPI. Target 1’s SNR could correlate to the

relatively flat and low det(C̄) of target 1 in Figure 7.7 with the saw tooth behavior at the
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Figure 7.7: EKF det(C̄) for 10 Targets with QPS Enabled

end of the iteration due to the lower SNR detection’s. These lower SNR detection’s are

most likely due to a maneuver causing the target to not be centered within the radars beams.

With the det(C̄) for each CPI cataloged. The det(C̄) analysis will help to understand

the behavior of the UKF and EKF under different conditions.

7.3 Preliminary Results of Trackers and Phase Beamspoiling

Before discussing the results of the Monte Carlo simulation, a discussion of the trackers

with and without the QPS enabled is presented.

Figure 7.9 demonstrates the UKF predicting a target’s radial velocity and range. The

initial predictions are relatively inaccurate, but the detections are accurate for the range and
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Figure 7.8: EKF SNR for 10 Targets with QPS Enabled

radial velocity. The updates begin to converge on the target’s approximate position and ra-

dial velocity due to the decrease in error between the detection and prediction. The updated

radial velocity seems to give more weight to the detection converging on the target’s true

radial velocity. The predicted range tends to oscillate around the target’s true position until

it converges on the target’s true position. Nevertheless, the UKF lost the target after 23

CPIs.

Further exploring the UKF’s behavior, the det(C̄) is plotted in Figure 7.10. It follows

the exponential behavior due to increased measurements and the assumption that the tracker

converges on the target’s actual radial velocity and position. There is a slight increase

causing the saw tooth behavior leading up to CPI 10, but it quickly decays. However, the
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Figure 7.9: Range and Velocity Tracking With Beam Spoiling Turned Off

Figure 7.10: UKF Determinate of the Predicted Covariance For the Lost Target

det(C̄) begins to diverge between CPI’s 15 and 20, converges one more time, then diverges

and is never able to satisfy C̄k = Ĉk, leading to inaccurate predictions. Because the
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error between the prediction and the measurement never decreases to the point that allows

C̄k = Ĉk to be satisfied.

Figure 7.11: Monopuluse Detection and Error With Beam Spoiling Turned Off

To better understand the inability of the tracker to decrease the measurement error,

Figure 7.11 shows the target’s detected monopulse angles, actual error, and the beamwidth

that limits the monopulse detentions. The azimuth monopulse angles observed show that

the target’s azimuth angles are centered in the receive beam. In contrast, the detected

elevation monopulse angles are at the edge of the beam (−0.0277 radians). The angle of

−0.0277 radians indicates that the target’s actual Elevation angle is less than the radar’s

steered transmit and receive beams controlled by the predicted UKF coordinates of the

target. With error it is clear that the radar is never able to detect the target’s true angles.

Figure 7.12 shows the tracked azimuth and elevation angles along with the actual and

measured angles of the target. Combining the predicted azimuth and elevation angles with

the detected respective monopulse angles gives the target’s measured azimuth and elevation

angles. The measured azimuth angles of the target are reasonably accurate and within the

threshold of the received beamwidth. However, the elevation angle between the target’s

x and z position is most likely the largest of the two detected angles and has the most

prominent error between the predicted and actual Elevation angles. This error is more

significant than half the bandwidth of the receive beam, which is the maximum angle the
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Figure 7.12: Azimuth and Elevation Angle Tracking With Beam Spoiling Turned Off

monopulse can detect. Therefore it is difficult for the UKF to converge on the target’s actual

elevation angle. The tracked elevation begins to converge on the target. It follows the trend

of the target’s change in the elevation direction but cannot converge on the target due to

the limits of the max and min monopulse angles. The error tends to increase with each

maneuver, the first maneuver is a slight change in velocity at the 10th CPI, the next coming

at the 16th CPI, and the final coming at the 21st CPI. Figure 7.9 displays these maneuvers

with the target’s radial velocity on each CPI.

Figure 7.13 shows a target tracked by the UKF. The target performs three maneuvers

while traveling toward the radar. The initial range and radial velocity predictions are some-

what inaccurate but converge on the target by the third CPI. The velocity prediction on the

maneuvers follows the trend of the target’s change in radial velocity and converges on the
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Figure 7.13: UKF Range and Velocity Tracking With Beam Spoiling Turned On

approximate actual radial velocity on the next CPI. Following the end of the maneuver on

the first CPI of the third maneuver but with the Monte Carlo iteration ending, it is unknown

if it would have converged in the 51st CPI. The target’s range is tracked for the entire itera-

tion and has a low error between the measured range and the predicted range relative to the

target’s position.

The det(C̄) for this particular target is plotted in Figure 7.14. The saw tooth behavior

happens shortly after CPI 20 due to the first maneuver and is repeated at CPI’s 39-41 on

the second maneuver. However, due to the last several maneuvers, the det(C̄) struggles to

converge until the acceleration is constant.

With introducing the quadratic phase beamspoiling to the simulation, the spoiling with

respect to azimuth and elevation was tracked for each CPI. Figure 7.15 shows the compara-
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Figure 7.14: UKF Determinate of the Predicted Covariance For the Tracked Target

Figure 7.15: UKF Monopuluse Detection and Error With Beam Spoiling Turned On

ble data for CPI’s 2 through 49 because the trackers do not start tracking until the 2nd CPI.

The top plot represents the triggered spoiled beams. The detected monopulse angles, angle
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error, beam limits, and thresholds are in the graph below. The first initial direction in which

the beam is steered in elevation is most likely in a direction in which the detected elevation

monopulse angle is either the max or min detected, causing the radar to spoil the transmit

beam in elevation to find the target. The next spoiling occurs during the 9th CPI due to the

four previous elevation monopulse detections being consecutively out of the chosen thresh-

old of Bw
4

radians from the center of the beam, triggering the “fall” flag. The “fall” flag

indicates that the target is beginning to fall out of the beam. So the transmit beam is again

spoiled in elevation. for this instance of spoiling the “fall” flag was valid due to the error

also being out of the set tolerance. The “fall” flag would have been triggered again on the

22nd CPI, but the 21st CPI was detected below the threshold of Bw
4

radians, and the “fall”

flag was reset, which agian was accurate due to the monopulse detections being similar to

the angle error in elevation. The final beam spoiling occurs in the transmit beam’s azimuth

direction due to the detected azimuth monopulse angle being the minimum monopulse an-

gle. This instance was an invalid detection due to the error being much smaller than the

false azimuth monopulse detection.

Figure 7.16 displays the angles of the target tracked by the UKF. The initial elevation

angle prediction is highly inaccurate. However, it can converge on the target with the

additional beam spoiling and track the target for the entirety of the iteration. Similarly,

the first few azimuth detections are inaccurate but converge on the target once there are

accurate detections. Towards the end of the iteration, the azimuth detections are slightly

inaccurate, causing the UKF to diverge slightly but update and adjust towards the target on

the last CPI.

Finally, the performance of the EKF with quadratic phase beamspoiling is analyzed.

Similar to the previous targets, this target is tracked by the EKF, whose radial velocity

and range are plotted for each CPI in Figure 7.17. The target performs five maneuvers, the

first and third being a slow acceleration that begins on the 17th CPI, the other two being
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Figure 7.16: UKF Azimuth and Elevation Angle Tracking With Beam Spoiling Turned On

relatively large accelerations with respect to the first. The EKF tracks the change in velocity

fairly accurately, converging close to the actual radial velocity. The range of the target is

accurately tracked as the target moves away from the radar and then begins to turn back,

moving towards the radar. The first prediction has more than a kilometer error from the

detected range, with the EKF converging on the target’s true range on the proceeding CPI.

The EKF tracked targets det(C̄) is plotted in Figure 7.18. The saw tooth behavior

happens after the target begins its first maneuver and converges; however, once the tar-

get begins to accelerate for a longer period, the det(C̄) of the EKF does not completely

converge until the third maneuver is complete.

As opposed to the UKF tracked target that included the addition of the quadratic phase

beamspoiling, this iteration using the EKF had a few more spoiled beams triggered as
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Figure 7.17: EKF Range and Velocity Tracking With Beam Spoiling Turned On

Figure 7.18: UKF Determinate of the Predicted Covariance For the Tracked Target

pictured in Figure 7.19. The transmit beam is spoiled in elevation at the beginning of the

iteration due to an inaccurate elevation prediction that was outside the bounds of the receive
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Figure 7.19: EKF Monopuluse Detection and Error With Beam Spoiling Turned On

beams monopulse table, which is a invalid detection due to the error not matching the

detection. Then monopulse detection for both azimuth and elevation becomes a reasonably

small indication that the target is close to the center of the receive beam tracking the target.

Until the 26th CPI, the Elevation monopulse angle detected is again maxed out, causing

the transmit beam to spoil on the proceeding CPI in Elevation. It does this several more

times, most likely due to the significant changes in velocity toward the end of the iteration.

Along with azimuth spoiling as well. The “fall” flag is triggered once for the elevation

direction due to the assumption that the target is beginning to fall out of the beam, with

measurements of the elevation angle from CPI’s 37 to 41.

Finally, the randomly generated target’s angles are shown to be tracked by the EKF in

Figure 7.20. The beginning of the iteration shows that EKF starts to diverge in azimuth
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Figure 7.20: EKF Azimuth and Elevation Angle Tracking With Beam Spoiling Turned On

but quickly converges on the target’s actual angle due to the detections and updates done

to the EKF. In elevation, the tracker oscillates around the target’s angle until it converges

in the target’s elevation angle. A few false detections are made during the more significant

maneuvers causing the EKF to diverge from the target. However, once more accurate

measurements are made, the EKF follows the trend of the target, beginning to converge on

it again.

7.4 Summary

For this chapter, we have discussed performance of the UKF and EKF while tracking a

single target. The section further explained the different conditions that trigger the QPS and

the conditions that test if a target is lost. Discussed the preliminary results of the UKF with
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automated QPS disabled and what conditions led to lost targets. This chapter explained how

the determinants of both trackers can be used to observe the performance of the trackers.

The discussion led to early results of the UKF and EKF’s ability to track a target due to the

automated QPS ability to re-establish a target’s position and radial velocity when a target

performs a randomly generated maneuver, or the DAR shows signs of struggling to follow

a targets path. With those subjects covered, the next chapter will discuss the results from

the Monte Carlo and how effective or ineffective the automated QPS is.
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Chapter 8

Results

This chapter will discuss the results of the Monte Carlo simulation. The chapter begins

with the EKF and UKF utilizing the QPS for default transmit beam spoiling factors of eight

and four and the performance of the EKF with the QPS disabled. The tracked targets with

five RCS values are stated in the previous chapter for all three of these cases. Finally,

presenting the quantitative results of each tracker, assessing the QPS’s ability to improve a

tracker’s performance.

Due to the number of targets from the Monte Carlo, there was no need for legends for

most figures within this chapter. This chapter is less interested in the behavior of a few

targets and more in the overall behavior of the trackers under the different conditions. The

following sections will focus on the overall behavior of the trackers when presented with

different conditions.

8.1 EKF Performance

This section will discuss the performance of the EKF tracker with the different condi-

tions presented. First, discussing the target’s actual SNR and how it relates to the Deter-

minate of the EKF’s estimated error.

Figure 8.1 shows target SNR for the different RCS values referenced in Section 6.3
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Figure 8.1: 100 Randomly Generated Targets SNR Tracked by the EKF With Spoiling
Disabled

of Chapter 7. The QPS functionality was disabled for this EKF Monte Carlo iteration.

Each plot contains 100 randomly generated targets. The SNR of the targets tends to trend

toward the corresponding RCS value. With each increasing RCS value, the likelihood of a

randomly generated target’s SNR increased. All of the SNR values are within 10dB of

the expected SNR.

Figure 8.2 is a plot of all 500 randomly generated targets det(C̄) for the portion of the

Monte Carlo simulation where the QPS was disabled. As expected, the det(C̄) decays at

almost an exponential rate for the first few CPIs. However, there seem to be continuous
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Figure 8.2: EKF Determinant Trends of 500 Randomly Generated Targets for the QPS
Disabled

detections with significant errors leading to the constant divergence and sometimes con-

vergence of det(C̄). The divergence is due to the radar’s inability to steer the transmit and

receive beams directly at the targets and the randomly generated maneuvers the targets per-

form on each iteration. Because of the inability of the radar to steer the beams to point at

the target directly, the error between the prediction and a target’s actual position continues

to grow, causing the large spread in det(C̄) values between 10−8 and 10−4. However, since

the estimated variances of Rk are closer to the actual variance value in many cases, the

floor of the EKF’s det(C̄) is relatively low at 10−8.

Figure 8.3 presents the targets SNR plotted for the 500 iterations of the Monte Carlo
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Figure 8.3: 100 Randomly Generated Targets SNR Tracked by the EKF With Spoiling
Enabled by a Factor of 4

where the QPS spoiling factor was enabled for a spoiling factor of four. The SNR plots

follow the same trends as the previous SNR plots in figure 8.2, where the overall floor of

the randomly generated targets SNR rises with the increased RCS value. One difference

is that it does not increase as much due to a decreased transmitted power density triggered

by the QPS functionality.

Figure 8.4 represents the det(C̄) of the 500 randomly generated targets the EKF tracked

utilizing the automated QPS with a spoiling factor of four. The density of the det(C̄) in-

creases for the majority of the CPIs, the values of the det(C̄) of the EKF straddles between
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Figure 8.4: EKF Determinant Trends of 500 Randomly Generated Targets for a Spoil Factor
of 4 Enabled

10−8 and 10−5. The decrease in the ceiling of the det(C̄) values is due to the lower er-

ror between the target and the prediction. Again, since the estimated variance’s of Rk are

closer to the actual error value in many cases, the floor of the EKF’s det(C̄) is relatively

low at 10−8.

Figure 8.5 is a plot of each of 100 randomly generated targets. The EKF tracked these

targets with the automated QPS enabled and a default spoiling factor of eight. Continuing in

the trends of the previous two SNR plots, the SNR of the targets trend towards increasing

with a more significant RCS value. However, with the spoiling factor eight, the amount of

SNR that increased per RCS value decreased due to the decreased power density of the
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Figure 8.5: 100 Randomly Generated Targets SNR Tracked by the EKF With Spoiling
Enabled by a Factor of 8

transmitted spoiled beam.

Figure 8.6 is a plot of the EKF’s det(C̄) with the automated QPS enabled with a default

spoil factor of eight. Again the det(C̄) of the 500 randomly generated targets decay quickly

but have a large distribution of error due to the dependency in measurements with the

predictions. However, similarly the det(C̄) to figure 8.4, the concentration of det(C̄) for

figure 8.6 is denser and lower. However, due to the lower SNR created by, the lower power

density on transmit because of the increased spoiling factor of eight, the det(C̄) mimics the

spread of values associated with figure 8.2.
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Figure 8.6: EKF Determinant Trends of 500 Randomly Generated Targets for a Spoil Factor
of 8 Enabled

Figure 8.7 is the scatter plots of CPI’s tracked with respect to the average SNR of the

generated target. Each plot contains 500 data points, one for each of the 1500 randomly

generated targets that the EKF tracked. Each plot is for each of the automated QPS cases,

with the spoiling enabled for factors of eight and four and the automated QPS disabled.

For the bottom plot, the automated QPS was disabled, resulting in a large distribution of

the length of time a target is tracked with respect to the average SNR value. The middle

plot represents the length of time the targets we tracked with the automated QPS enabled

for a spoiling factor of four. The length of time a target is tracked appears to be trending

towards a more extended period. Finally, in the top scatter plot, it is for a spoiling factor of
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Figure 8.7: Scatter Plot of Number of CPI’s Tracked per Monte Carlo For the EKF

eight. Similar to the plot with the automated QPS enabled for a spoiling factor of four, the

top tracked CPI’s with respect to average SNR appear to trend towards longer times than

bottom scatter plot. However, points are not as dense as the plot that displays the tracked

targets with the QPS enabled for a spoiling factor of four. The distribution in the length of

time a target is tracked for the QPS enabled with a spoiling factor of eight is most likely

due to the decreased SNR that is attributed to the increased QPS spoiling.

Figure 8.8 is the complement of the cumulative distribution function (CDF) of the scat-

ter plots in figure 8.7. The compliment of a CDF represents a probability at a certain

point. Figure 8.7 represents the probability that a target will be tracked for each of the
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Figure 8.8: EKF Compliment of Cumulative Distribution Function (CDF) of Tracked CPI’s

first 49th CPIs. The CDFs complement for the QPS disabled has the lowest probability of

being tracked for an entire Monte Carlo iteration. As for the scenario for the EKF utilizing

the automated QPS with a spoiling factor of four, the CDFs complement for this situation

has the highest probability to be tracked ending above 0.75. The spoiling factor of four’s

probability indicates that this scenario had the most encouraging results. When the EKF

utilized the spoiling factor of eight, the probability that a target would be tracked for a more

extended time increased as opposed to when the automated QPS was disabled for the EKF.
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8.2 UKF Performance

For this section, we will discuss the performance of the UKF under the same conditions

as the EKF. An analysis of the UKF’s performance will determine if the automated QPS

impacted the UKF’s ability to track a target. Following the same process as Section 8.1,

we will begin discussing SNR and determinate plots of the targets and UKF, respectively.

Next, the scatter plots of the CPI’s tracked with respect to average SNR will be analyzed.

Ending the section with a discussion on the CDF for each spoiling factor.

Figure 8.9: 100 Randomly Generated Targets SNR Tracked by the UKF With Spoiling
Disabled
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Similar to the EKF SNR plots in figure 8.1 from Section 8.1, the target SNR in figure

8.9 increase with each increased respective RCS value. One thing of note here is that the

distribution’s average ceiling is lower with the UKF than the EKF. The lower ceiling of the

target’s SNR tracked using the UKF is most likely due to an increase in lost targets due to

the automated QPS disabled, decreasing the lost targets SNR.

Figure 8.10: UKF Determinant Trends of 500 Randomly Generated Targets for the QPS
Disabled

Figure 8.10 displays the det(C̄) for the 500 randomly generated targets in this scenario.

Following a similar exponential decay trend as the EKF’s det(C̄)’s, the det(C̄) converges

when the estimated error is approximately the updated estimated error. A few things of

note, first, the minimum det(C̄) for the UKF increased by a factor of 102, indicating that
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the estimated variance of the UKF was not as accurate as the EKF’s estimated variance.

Secondly, the divergence of the det(C̄) after a measurement is lower than the EKF due to

the distribution of the UKF’s det(C̄) of the tracked targets. Finally, the density of det(C̄)

decreases as the CPI’s increase, which appears to be caused by the utilization of the UT

converging a the target’s.

Figure 8.11: 100 Randomly Generated Targets SNR Tracked by the UKF With Spoiling
Enabled by a Factor of four

For the 500 randomly generated targets that the UKF tracked using automated QPS

with a spoiling factor of four. The targets SNR values are plotted with respect to CPI

in figure 8.11. Interestingly, the distributions for each RCS value seem more spread out
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and abundant than in figure 8.9. The distribution of the targets SNR is most likely due

to the increased detection. The floor of the SNR value is still lower due to the decreased

SNR contribution of the transmit beam with the added automated QPS. The spoiling of

the transmitted beam appears to cause a lower SNR due to the decreased power density on

transmit that naturally occurs with a spoiled beam.

Figure 8.12: UKF Determinant Trends of 500 Randomly Generated Targets for a Spoil
Factor of four Enabled

Figure 8.12 displays the det(C̄) of the UKF that tracked the 500 randomly generated

targets using the automated QPS with a spoiling factor of four. A few things of note, the first

being that the det(C̄) of the UKF with the automated QPS spoil factor four still has a higher

minimum value by a factor of 102 than the EKF’s det(C̄). Secondly, the concentration of
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the UKF det(C̄) is denser than the det(C̄) of the UKF with the automated QPS disabled,

alluding to the targets tracked for a more significant time.

Figure 8.13: 100 Randomly Generated Targets SNR Tracked by the UKF With Spoiling
Enabled by a Factor of eight

Figure 8.13 depicts SNR values of 500 randomly generated targets the UKF tracked

with the automated QPS enabled with a spoiling factor of eight. Each SNR plot corre-

sponds to its respective RCS value; the trend continues where the SNR floor increases

with each increasing RCS value. Also, the density of the target SNR values is increased

from figure 8.9, indicating that more targets were tracked for a more significant time with

the QPS enabled as opposed to the QPS disabled. The rate at which the SNR floor rose
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decreased due to the decreased SNR contributions of the transmit beam when the QPS

was enabled. This behavior is due to a more significant decrease in SNR contribution on

transmission with a spoiling factor of eight instead of four.

Figure 8.14: UKF Determinant Trends of 500 Randomly Generated Targets for a Spoil
Factor of eight Enabled.

Figure 8.14 presents the det(C̄) of the UKF with the automated QPS enabled with

a spoiling factor of eight. Following the trend of the previous two det(C̄) plots for the

UKF, figure 8.14 shows that the UKF’s det(C̄) has a higher floor than the EKF. However,

the concentration of det(C̄) is more significant, leading to the assumption that the updated

estimated error is more accurate than the EKF’s updated estimated error. Finally, the spread

of det(C̄) for a QPS spoiling factor of eight is slightly larger than the det(C̄) values when
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the QPS spoiling factor is four. The spread of det(C̄) in figure 8.14 most likely means that

there were fewer targets tracked for this Monte Carlo scenario as opposed to the previous

scenario.

Figure 8.15: Scatter Plot of Number of CPI’s Tracked per Monte Carlo For the UKF.

Figure 8.15 represents the number of CPIs a target was tracked for that Monte Carlo’s

iterations average SNR. Each scatter plot represents 500 targets for each of the QPS

scenarios. For the automated QPS disabled, the UKF’s spread in CPI’s tracked for SNR,

showing no trends except for a target being less likely tracked by the UKF without the

automated QPS enabled. When the UKF utilized the automated QPS with a spoiling factor

of four, there appears to be a correlation between the length of time a target is tracked and
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the average SNR. Similarly, when automated QPS is enabled with a spoiling factor of

eight for the UKF, there appears to be a correlation between the length of time a target

is tracked and the average SNR per Monte Carlo iteration. The correlation of the case

when the QPS defaults to a spoiling factor of eight is not as concentrated as when the QPS

defaults to a spoiling factor of four. The lower distribution of results is assumed to be due

to the natural loss of SNR due to the lower power density of the transmit beam with a

spoiling factor of eight instead of four.

Figure 8.16: UKF Complement of the Cumulative Distribution Function (CDF) of Tracked
CPI’s.

Figure 8.16 is the complement of the CDF for the scatter plots in figure 8.15. The CDFs

complement represents the probability that a target will be tracked for CPIs one through

49. When the QPS is disabled for the UKF, the probability of a target being tracked for all
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CPIs is the lowest. The low probability indicates a higher likelihood of a lost target than

any other scenario. When the UKF utilizes the automated QPS with a spoiling factor of

four, the probability that a target would be tracked for the entirety of the iteration rose to

above 0.80—indicating that the scenario of the UKF utilizing the spoiling factor of four

produced the most promising results. When the UKF increased the spoiling factor to eight,

the UKF’s ability to track a target still increased from the scenario of the automated QPS

being disabled. However, the scenario with a spoiling factor of four performed better than

the scenario with a spoiling factor of eight. With this continued trend of the spoiling factor

of four outperforming the spoiling factor of eight for both trackers, there appears to be a

trend where the spoiling factor of four performed better due to the increase in SNR. The

decrease in SNR is due to an increase in the spoiling factor. A decrease in SNR leads to

a decrease in accurate detections. Therefore, the likelihood of a lost target increased with

an increase in the spoiling factor from four to eight.

8.3 Quantitative Results

For the quantitative results, we will explore both the UKF and EKF how each tracker

performed under each of the unique conditions, from the five standard RCS values given to

the 30,000 randomly generated targets to the different QPS scenarios. Then determine the

effectiveness of the automated QPS with the data presented.

For each case presented in table 8.1 there is a maximum of 5000 tracked CPIs. For the

totals in table 8.1 there is a maximum of 25,000 tracked CPIs for each QPS scenario. The

QPS scenario of “Spoil = 0” in table 8.1 corresponds to the automated QPS being disabled.

From the data presented in table 8.1, it is clear that both the EKF and UKF performed better

with the automated QPS enabled as opposed to it being disabled. Another observation of

note is that it is clear that when the automated QPS was enabled, it performed negligibly
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Cumulative Tracked CPI’s Per Monte Carlo Iteration

SNRREF (dB) RCS EKF UKF
SF 8 SF 4 SF 0 SF 8 SF 4 SF 0

10 0.21 4403 4435 4189 4102 4492 3289
15 0.67 4456 4402 4081 4340 4684 3048
20 2.21 4514 4644 4151 4352 4724 3285
25 6.72 4372 4634 4210 4113 4727 3378
30 20.78 4578 4764 3970 4601 4876 3493

Totals 22323 22879 20601 21508 23503 16493

Table 8.1: Cumulative Tracked CPI’s Per Monte Carlo Iteration

better for the EKF when the spoiling factor is four as opposed to eight. In contrast, the UKF

performed noticeably better with the automated QPS spoiling factor set to four instead of

eight. However, both trackers performed better for their respective Monte Carlo iterations

using the automated QPS spoiling factor of four instead of the other two scenarios. The

increased performance of the trackers appears to be due to that specific scenario taking

advantage of the wider illuminated scene when needed and also not having the loss in

SNR due to more significant spoiling factors such as a spoiling factor of eight.

Table 8.2 is the percentage of tracked CPIs over the entirety of the Monte Carlo simu-

lation. There is no clear trend that correlates with the number of CPIs tracked due to the

increase in the RCS value of the randomly generated target. However, the EKF performed

better than the UKF, except when the automated QPS spoiled by a factor of four. The in-

Percent of Tracked Targets per Monte Carlo Scenario

SNRREF (dB) RCS EKF UKF
SF 8 SF 4 SF 0 SF 8 SF 4 SF 0

10 0.21 88.06 88.7 83.78 82.04 89.84 65.78
15 0.67 89.12 88.04 81.62 86.8 93.68 60.96
20 2.21 90.28 92.88 83.02 87.04 94.48 65.7
25 6.72 87.44 92.68 84.2 82.26 94.54 67.56
30 20.78 91.56 95.28 79.4 92.02 97.52 69.86

Totals 89.292 91.516 82.404 86.032 94.012 65.972

Table 8.2: Percent of Tracked Targets per Monte Carlo Scenario
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crease in performance of the EKF, as opposed to the UKF, is most likely due to the initial

setup of the estimated measurement variances for the UKF, which would explain why the

det(C̄) values for the UKF never decayed as far as the det(C̄) values.

Table 8.3 displays the results of targets tracked for a complete Monte Carlo iteration.

Each case has a maximum possible tracked Mote Carlo iteration of 100. Again, both track-

ers showed the best performance with the automated QPS enabled with a spoiling factor of

four. Moreover, both trackers performed the worst with the automated QPS disabled. The

UKF had the worst performance of the two trackers when the automated QPS disabled,

only able to track 33.8% of the targets for a complete Monte Carlo iteration.

Table 8.4 contains the mean and median number of tracked CPIs for a target using the

UKF for each condition, further solidifying that the automated QPS allowed the tracker to

track a target for a more extended period. The UKF iterations averaged a slightly higher

CPI track length when utilizing a spoiling factor of four instead of eight to increase the

SNR potentially. Furthermore, there appears to be less discrepancy from the mean median

CPIs tracked when the beamspoiling is enabled for a spoiling factor of 4.

Continuing the trend, table 8.5 holds the mean and median tracked CPIs for all condi-

tions that the EKF tracked and performed better with automated QPS enabled instead of

the alternative of disabling the automated QPS. Also, this further confirms that the EKF

Tracked Targets for 50 CPI’s

SNRREF (dB) RCS EKF UKF
SF 8 SF 4 SF 0 SF 8 SF 4 SF 0

10 0.21 76 74 53 56 73 31
15 0.67 69 70 55 68 82 31
20 2.21 67 78 59 62 80 32
25 6.72 65 73 60 57 85 32
30 20.78 71 84 49 74 90 43

Totals 348 379 276 317 410 169

Table 8.3: Total Targets Tracked for a Full Monte Carlo Iteration
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UKF Mean and Median CPI’s Tracked

SNRREF (dB) RCS SF 8 SF 4 SF 0
Mean Median Mean Median Mean Median

10 0.21 41 50 45 50 33 32
15 0.67 44 50 47 50 31 27
20 2.21 44 50 47 50 33 31
25 6.72 41 50 48 50 34 36
30 20.78 47 50 49 50 35 40

Table 8.4: UKF Average and Median Tracked CPI’s for Each Condition

EKF Mean and Median CPI’s Tracked

SNRREF (dB) RCS SF 8 SF 4 SF 0
Mean Median Mean Median Mean Median

10 0.21 44 50 45 50 42 50
15 0.67 45 50 44 50 41 50
20 2.21 45 50 47 50 42 50
25 6.72 44 50 47 50 42 50
30 20.78 46 50 48 50 40 45

Table 8.5: EKF Average and Median Tracked CPI’s for Each Condition

performed slightly better overall than the UKF.

8.4 Summary

To summarize the proceeding sections, the automated QPS increased the EKF and

UKF’s ability to track a target for a more extended time. By decreasing the original spoil

factor of eight in half, the trackers improved even more due to the increased SNR.
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Chapter 9

Conclusion and Future Work

This thesis has detailed the versatility of a Phased-Array radar and its ability to elec-

tronically manipulate a beam to illuminate a wider scene by utilizing the digitized phase

amplitude weights to spoil a beam. The QPS allows the proper weights to be selected to

spoil a beam accurately. With the QPS and the radar signal processing techniques outlined

in this thesis, we were able to build a simulation that accurately mimics the real-world

environment in which a phased array will operate. The simulation helped to verify the im-

proved tracker performance when utilizing the automated QPS. With the automated QPS

with a spoiling factor of four, the UKF preformed 28.04% better than when the QPS was

disabled. When the EKF utilized the automated QPS with spoiling factor of four, the EKF

preformed 9.112% better, as opposed to the EKF not utilizing the automated QPS. The au-

tomated QPS laid the foundation for optimizing target tracking with a phased-array radar

allowing a spoiled beam only when needed to avoid unnecessary processing time and en-

ergy of the multiple receive beams created from the QPS functionality.

The addition of the UKF and EKF allowed for the verification of the automated QPS

functionality for better performance in tracking through the Monte Carlo process. This re-

search is just a building block for testing the abilities of Digital phased-array radar systems

and automated energy distribution. This research allows for more opportunities to discover

more complex functionality of Digital phased-array radars.
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9.1 Future Work

The first area would be, adding Mulitple Input Multiple Output (MIMO) concepts the

the phased-array radar simulation. MIMO concepts allow phase-array radar by adding the

ability simultaneously transmit and receive multiple waveforms at a time [41]. The addition

of the MIMO capabilities adds the concept of frequency shifting and a frequency mode to

the radar’s ability. Frequency shifting allows for the LFM signal to be transmitted multiple

times simultaneously by shifting the carrier frequency to multiple sub-carriers, each having

its sub-bandwidth within the initially allotted bandwidth of the radar [42]. The use of

unique waveforms can be researched even further by combining the frequency shifting of

the frequency mode with other waveforms, such as the PSRB, avoiding the complications

of non-orthogonal waveforms.

The introduction of multiple waveforms allows for multiple target tracking using the

tracking algorithms like the ones used in this thesis. Because of this, new concepts need to

be introduced, such as greedy nearest neighbor. With the multiple predictions made with

a single tracker, greedy nearest neighbor assigns the detections with the nearest prediction

made by the tracker [43]. The greedy nearest neighbor algorithm’s introduction allows a

MIMO radar to track multiple targets while lowering the probability of each being mis-

matched with the other [43]. A more optimal correlation algorithm to explore would be the

Hungarian algorithm. Instead of relying on a minor error between the track and prediction

like the greedy nearest neighbor algorithm, the Hungarian relies on a correlation matrix to

decrease the likelihood of mismatching tracks [44]. Because of the addition of the corre-

lation matrix, the Hungarian is more computationally intensive than the Greedy Nearest

Neighbor algorithm [44].

Moving away from the MIMO concepts, one limitation of this simulation was the error

of the CA-CFAR. While the CA-CFAR was less computationally intensive than others,
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the CA-CFAR relies on isolated targets and works under the assumption of homogeneous

interference [4]. When the clutter overcomes the thermal noise of a range-Doppler map, the

interference becomes heterogeneous, increasing the probability of a lost target [4]. With

that, it would be beneficial to explore other CFAR algorithms, such as an OS-CFAR. A

drawback to the OS-CFAR is that it is computationally intensive. With the CA-CFAR a

normalized mean window can be convolved with the entire range-Doppler map, and the

CFAR test is performed with the entire map at once. There is no current shortcut to the

OS-CFAR. The OS-CFAR must slide its OS-CFAR window one cell at a time, sort the

cells and grab the kth statistic to perform the ordered statistic test. This process causes the

OS-CFAR to be much slower than the CA-CFAR but also more accurate.

The final improvement would be the ability to spoil a transmit beam at different spoiling

factors during an iteration. The rate at which a target’s angle changes is dependent on the

range of a target. When a target performs a maneuver closer to the radar, there are more

significant changes in the angle, causing the possible need for a wider spoiled beam. While

if a target performs a maneuver at a greater distance, a sizeable spoiling factor is not needed.

With these conditions, an optimized automated QPS is an ideal research topic.

116



References

[1] E. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estima-
tion,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Com-
munications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158.

[2] M. A. Zatman, “Digitization requirements for digital radar arrays,” Proceedings of
the 2001 IEEE Radar Conference (Cat. No.01CH37200), pp. 163–168, 2001.

[3] D. C. Gaydos, P. Nayeri, and R. L. Haupt, “Adaptive beamforming with software-
defined-radio arrays,” IEEE Access, vol. 10, pp. 11 669–11 678, 2022.

[4] M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. McGraw-Hill
Education, 2014.

[5] P. Rohal and J. Ochodnicky, “Radar target tracking by kalman and particle filter,” in
2017 Communication and Information Technologies (KIT), 2017, pp. 1–4.

[6] T. Jeffrey, Phased-Array Radar Design: Application of Radar Fundamentals, ser.
Electromagnetics and Radar. Institution of Engineering and Technology, 2009.
[Online]. Available: https://books.google.com/books?id=UUMhCFWl5hEC

[7] M. Matsuki, Y. Yokota, M. Shibata, A. Karasawa, H. Fujihara, S. Nakamura,
Y. Kankaku, T. Motohka, and S. Suzuki, “Phase spoiling technique for high power
and wide beam in alos-4,” in IGARSS 2019 - 2019 IEEE International Geoscience
and Remote Sensing Symposium, 2019, pp. 8326–8327.

[8] R. Kinsey, “Phased array beam spoiling technique,” in IEEE Antennas and Propaga-
tion Society International Symposium 1997. Digest, vol. 2. IEEE, 1997, pp. 698–701.

[9] J. Gaffney, G. Guttrich, B. Babu, and J. Torres, “Performance comparison of fast-
scan gmti/stap architectures,” in Proceedings of the 2001 IEEE Radar Conference
(Cat. No.01CH37200), 2001, pp. 252–257.

[10] J. Yan, J. Dai, W. Pu, H. Liu, and M. Greco, “Target capacity based resource opti-
mization for multiple target tracking in radar network,” IEEE Transactions on Signal
Processing, vol. 69, pp. 2410–2421, 2021.

117

https://books.google.com/books?id=UUMhCFWl5hEC


[11] I. Ullah, Y. Shen, X. Su, C. Esposito, and C. Choi, “A localization based on un-
scented kalman filter and particle filter localization algorithms,” IEEE Access, vol. 8,
pp. 2233–2246, 2020.

[12] O. Aydogmus and M. F. Talu, “Comparison of extended-kalman- and particle-filter-
based sensorless speed control,” IEEE Transactions on Instrumentation and Measure-
ment, vol. 61, no. 2, pp. 402–410, 2012.

[13] S. Pate, “Predictive tracking simulation and techniques for all-digital radar,” Master’s
thesis, University of Oklahoma, 2021.

[14] W. R. Blanding, W. Koch, and U. Nickel, “Adaptive phased-array tracking in ecm us-
ing negative information,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 45, no. 1, pp. 152–166, 2009.

[15] M. Yeary, R. Palmer, C. Fulton, J. Salazar, and H. Sigmarsson, “Recent advances on
an s-band all-digital mobile phased array radar,” in 2019 IEEE International Sympo-
sium on Phased Array System and Technology (PAST), 2019, pp. 1–5.

[16] R. A. Monzingo and T. W. Miller, Introduction to adaptive arrays. Scitech publish-
ing, 2004.

[17] S. H. Talisa, K. W. O’Haver, T. M. Comberiate, M. D. Sharp, and O. F. Somerlock,
“Benefits of digital phased array radars,” Proceedings of the IEEE, vol. 104, no. 3, pp.
530–543, 2016.

[18] G. H. B. C. Stimson, G. and D. Adamy, Introduction to Airborne Radar, 2nd ed.
SciTech Publishing, 1998.

[19] J. Guo, S. Yang, S.-W. Qu, J. Hu, and Z. Nie, “A study on linear frequency modula-
tion signal transmission by 4-d antenna arrays,” IEEE Transactions on Antennas and
Propagation, vol. 63, no. 12, pp. 5409–5416, 2015.

[20] A. Davies, “Properties of waveforms obtained by nonrecursive digital filtering of
pseudorandom binary sequences,” IEEE Transactions on Computers, vol. C-20, no. 3,
pp. 270–281, 1971.

[21] D. F. Albanese and A. M. Klein, “Pseudorandom code waveform design for cw radar,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, pp. 67–75,
1979.

[22] C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2015.

[23] M. C. Leifer, “An airborne radar phased array with low sidelobes and a spoiled beam,”
2018 IEEE Radar Conference (RadarConf18), pp. 0072–0076, 2018.

118



[24] ——, “Revisiting a method of beam shaping using phase weights,” in 2016 IEEE
International Symposium on Phased Array Systems and Technology (PAST). IEEE,
2016, pp. 1–3.

[25] N. O’Donoughue, Emitter detection and geolocation for electronic warfare. Artech
House, 2019.

[26] S. Sherman and D. Barton, Monopulse Principles and Techniques, ser. Artech House
radar library. Artech House, 2011. [Online]. Available: https://books.google.com/
books?id=I1vksFcnQngC

[27] M. I. Skolnik, “Fifty years of radar,” Proceedings of the IEEE, vol. 73, pp. 182–197,
1985.

[28] S. Mitra and S. Mitra, Digital Signal Processing: A Computer-based Approach,
ser. Connect, learn, succeed. McGraw-Hill, 2011. [Online]. Available: https:
//books.google.com/books?id=QyuNQgAACAAJ

[29] M. Skolnik, Introduction to Radar Systems, ser. Electrical engineering series.
McGraw-Hill, 2001. [Online]. Available: https://books.google.com/books?id=
Y6-APwAACAAJ

[30] P. Peebles, Radar Principles. Wiley India Pvt. Limited, 2007. [Online]. Available:
https://books.google.com/books?id=rnX21aAMKCIC

[31] H. Rohling, “Radar cfar thresholding in clutter and multiple target situations,” IEEE
transactions on aerospace and electronic systems, no. 4, pp. 608–621, 1983.

[32] R. Mitchell and J. Walker, “Recursive methods for computing detection probabilities,”
IEEE Transactions on Aerospace and Electronic Systems, no. 4, pp. 671–676, 1971.

[33] M. S. Grewal and A. P. Andrews, Linear Optimal Filters and Predictors, 2008, pp.
131–181.
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