

UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

ENHANCED CAPSULE-BASED NETWORKS AND THEIR APPLICATIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

ZHIHAO ZHAO

Norman, Oklahoma

2022

ENHANCED CAPSULE-BASED NETWORKS AND THEIR APPLICATIONS

A DISSERTATION APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Samuel Cheng, Chair

Dr. Gregory MacDonald

Dr. Shangqing Zhao

Dr. Bin Zheng

© Copyright by ZHIHAO ZHAO 2022
All Rights Reserved.

iv

Acknowledgments

First, I would like to specially thank my major advisor Dr. Samuel Cheng, who gives me

insightful guidance and significant supports throughout my whole Ph.D. study and research. His

comprehensive insights of scientific literacy have greatly helped me to become a qualified PhD

student.

I would like to thank all my committee members, Dr. Gregory MacDonald, Dr. Shangqing

Zhao, Dr. Bin Zheng, for their time and efforts reviewing and discussing my research. Their

guidance is immeasurable both during the writing of this dissertation and over the entire course of

my time at the University of Oklahoma. Especially, Dr. Shangqing Zhao went through my papers

thoroughly many times and greatly improved them.

I cherish the numerous happy moments with my friends: Xuxin Chen, Eddie Clark, Dong Han,

Raidel Martinez, Renee Wagenblatt, Karen Winfrey, Ken Winfrey, Haoliang Zhang, Lu Zhang,

Jiaomiao Zhao, Wenqing Zhu.

Special thanks to my father and brother who greatly helped my mother to fight with her lung

cancer. Hope my mother overcomes her cancer in the future.

Table of Contents

List of Tables ix

List of Figures xi

Abstract xv

Chapter 1: Introduction 1
1.1 The limitations of convolutional neural networks 1
1.2 The big pictures of capsule networks and GLOM 3

1.2.1 Parsing objects into the part-whole hierarchy 3
1.2.2 High-dimensional coincidence filtering 5
1.2.3 Potential advantages 5

1.3 Improve capsule networks and GLOM 7
1.3.1 A more efficient routing algorithm for capsule networks 7
1.3.2 Building equivariant capsule networks or GLOM 8
1.3.3 Building adversarial robust networks 8
1.3.4 Encoding part-whole relationships into learnable trans-

formation weights 9
1.3.5 Pushing performance on practical tasks 10
1.3.6 Pushing the compatibility of capsule networks and GLOM

with other types of networks 10
1.4 Contribution and organization 11

1.4.1 Capsule networks with fast non-iterative cluster routing
for medical image segmentation 12

1.4.2 An equivariant, adversarial robust, and interpretable ar-
chitecture for point clouds 13

1.4.3 Pushing the compatibility by group ensemble block 13
1.4.4 Contributions 14

Chapter 2: Capsule networks and GLOM 16
2.1 The general ideas of capsule networks 16

2.1.1 The concept of the routing procedure 16
2.1.2 A routing procedure example 18

2.1.2.1 Advantages of the routing procedure 19
2.2 GLOM 19

2.2.1 Embedding islands 20

v

2.2.1.1 What are embedding islands 20
2.2.1.2 How to form embedding islands 21

Chapter 3: Capsule networks with non-iterative cluster routing 23
3.1 Introduction 23
3.2 Related works 25

3.2.1 Capsule networks 25
3.2.2 Attention mechanism 26

3.3 Capsule networks with dynamic routing 26
3.4 Capsule networks with vector capsules 27

3.4.1 The network architecture 28
3.4.2 The routing procedure 28

3.5 Capsule networks with matrix capsules 29
3.5.1 The network architecture 30
3.5.2 The routing procedure 31
3.5.3 Activation of a capsule 32

3.6 The proposed cluster routing 33
3.6.1 Comparisons with related works 36

3.7 Experiments 37
3.7.1 Classification 37
3.7.2 Generalization to novel viewpoints 41
3.7.3 Disentangled representation 43
3.7.4 Reconstruction from affine-transformed channels 43
3.7.5 Analysis of routing weights 45
3.7.6 Application in medical image segmentation 46

3.8 Summary 48

Chapter 4: Twin-Islands: an adversarial-robust and interpretable architecture 49
4.1 Introduction 49
4.2 Composing embeddings by quaternions 52

4.2.1 Check equivariance in capsule networks 52
4.2.2 Composing an embedding by unit quaternions 53

4.3 The proposed Twin-Islands 55
4.3.1 Transformation weight islands for interpretability 55

4.3.1.1 Transformation weight islands 55
4.3.1.2 Illustrative propagation example 55
4.3.1.3 Transformation weight decomposition for clustering 57
4.3.1.4 Propagation for point clouds 57

4.3.2 Prediction as consensus for adversarial robustness 60
4.3.2.1 Motivation 60
4.3.2.2 Implementation of motivation 61

4.3.3 Implementation details 63
4.3.3.1 Coefficient vector initialization 63

vi

4.3.3.2 Network architecture 63

4.4 Experiments 64

4.4.1 Experiment settings 64

4.4.2 Equivariance evaluation 65

4.4.2.1 3D shape classification 65

4.4.2.2 Orientation estimation 65

4.4.3 Interpretability analysis 67

4.4.3.1 Visualization 67

4.4.3.2 Part-whole relationship pruning 68

4.4.4 Adversarial robustness evaluation 68

4.4.4.1 Robustness to adversarial perturbations 69

4.4.4.2 Robustness to point deletion 69

4.4.4.3 Analysis on clipping operation 70

4.5 Related works 70

4.5.1 Capsule networks and GLOM 70

4.5.2 Network interpretation and adversarial attacks 71

4.6 Conclusion and Future Work 72

Chapter 5: Group ensemble block: subspace diversity improves coarse-to-fine retrieval 73

5.1 Introduction 73

5.2 Related works 76

5.2.1 Coarse-to-fine problems 76

5.2.2 Ensemble methods for image retrieval 77

5.2.3 Class-level and instance-level discrimination for image retrieval 78

5.3 Proposed method 79

5.3.1 Proposed group ensemble block 80

5.3.2 Combining group ensemble block with class-level and
instance-level discrimination 82

5.4 Performance and cost analysis 84

5.4.1 Performance analysis 86

5.4.2 Cost analysis 87

5.5 Experiment 88

5.5.1 Experiment settings 88

5.5.1.1 Evaluation tasks 88

5.5.1.2 Datasets 90

5.5.1.3 Training details 90

5.5.2 Experiment results and comparisons 91

5.5.3 More analyses and ablation studies 93

5.5.4 Group ensemble block in other tasks 97

5.6 Conclusion 99

vii

Chapter 6: Conclusion and future directions 100
6.1 Conclusion 100
6.2 Future directions 101

References 102

viii

List of Tables

Table 3.1 Comparison on different types of capsule networks. 37

Table 3.2 Test error rate comparisons with capsule networks literature and
the baseline CNN. (·) denotes ensemble size. 38

Table 3.3 Analysis of the hyperparameters K and D on the M-variants
using the CIFAR-10 dataset. Test error rate and the number of
parameters are listed for each setting. 42

Table 3.4 Ablation study on the proposed capsule network M-variants,
where each variant’s name is abbreviated, e.g., M-v1. We study
the network’s classification accuracy when the routing weights ci
are data-dependent or data-independent. The CIFAR-10 dataset
is used. 42

Table 3.5 A comparison of the smallNORB test error rate on images cap-
tured at novel viewpoints when all models are matched on error
rate for familiar viewpoints. We use the same baseline CNN as
in Hinton et al.’s work [1]. 43

Table 3.6 Parameters of a proposed capsule network and a baseline CNN
used for reconstructing images from affine-transformed channels.
Each filter of the baseline CNN is of size 3× 3. 46

Table 3.7 Comparison of capsule network with iterative routing, cluster
routing, and group ensemble block on the LUNA16 lung seg-
mentation dataset. 47

Table 4.1 Classification evaluation on the ModelNet40 dataset. NR/NR
and NR/AR are train/test settings, where NR means not rotated
and AR means arbitrarily rotated. 64

Table 4.2 Relative angular error (RAE) of orientation estimation on rota-
tional asymmetry objects. 65

Table 4.3 Classification accuracy on five objects after pruning the less fre-
quently used transformation weight bases. 68

ix

Table 4.4 Classification accuracy evaluation (%) after randomly removing
part of the input point cloud. 70

Table 5.1 Major symbols for formulating and processing random subspaces
in Section 5.3.1. 80

Table 5.2 The covariance comparison between the baseline and ensemble
model. The covariance is computed on the first 9 fine-grained
classes of CIFAR-100. 87

Table 5.3 Comparison with the state-of-the-art on CIFAR-100, ImageNet-
C16, and ImageNet-1K. The top-1 accuracy (%) is reported for
the kNN classification, and the mAP (%) is reported for the
coarse-to-fine image retrieval. 91

Table 5.4 Cost of the group ensemble block using varying numbers of en-
semble size N , with Din = 2048 and Demb = 256. 93

Table 5.5 Ablation study on masking strategy using ImageNet-C16. 94

Table 5.6 Ablation study on sampling strategy, where the default strategy
uses random sampling as in Figure 5.1. 95

Table 5.7 Ablation study on transformation process. The MLP has three
layers with 256 hidden neurons. 95

Table 5.8 Ablation study on using same or distinct transformation weights
for various sub-inputs. 96

Table 5.9 Effect of the number of group ensemble blocks. 96

Table 5.10 Mean average precision (mAP) on CIFAR-100, when leveraging
the transformation outcomes of 1, 2, 3, and 4 sub-inputs. 4
sub-inputs are used in total. 97

x

List of Figures

Figure 1.1 Comparison of how humans and convolutional neural networks
process the same image. 2

Figure 1.2 Illustration of adversarial attack to CNNs, borrowed from [2]. 3

Figure 1.3 Illustration of CNNs’ prediction to images after viewpoint change,
borrowed from [3]. The first column shows canonical poses of ob-
jects, and the other columns show object after viewpoint change.
The correct and wrong classifications are colored in green and
red, respectively. 4

Figure 2.1 Example of the routing procedure with a simple boat. Multiple
predictions are produced from each part of the whole, but only
the boat prediction is agreed by both parts. 18

Figure 2.2 A demo illustration of embedding islands, borrowed from [4]. It
contains six embeddings for each layer and 2-D vectors in the
same color and direction form an island. The islands of identical
vectors at the various levels shown in the figure represent a parse
tree, where all of the locations shown belong to the same object
and the scene level has not yet settled on a shared vector. 20

Figure 3.1 The architecture of a vector capsule network [5] used on the
MNIST dataset. This network has one convolutional layer (ReLU
Conv1) and two capsule layers (PrimaryCaps and DigitCaps).
The routing procedure is conducted between the two capsule
layers. 28

Figure 3.2 The architecture of a matrix capsule network [6] used on the
SmallNORB dataset. This network has one convolutional layer
and four capsule layers. The routing procedure is conducted
between each adjacent pair of capsule layers. 30

xi

Figure 3.3 Illustration of the proposed cluster routing. A next-layer cap-
sule of the (l+ 1)th layer gets input as a weighted sum over the
centroids it receives, and larger weights are assigned to the cen-
troid with larger corresponding agreement vector. The content
of next-layer capsules are computed from their inputs by layer
normalization, which is not shown in the figure for the purpose
of clarity. 34

Figure 3.4 Comparison between iterative routing algorithms and the pro-
posed non-iterative cluster routing algorithm. 36

Figure 3.5 Dimension perturbations on capsules produced by capsule net-
works with attention routing [7] (left), dynamic routing [8] (mid-
dle), and the proposed clustering routing (right), respectively.
Each row shows the reconstructed images when one dimension
of the capsule representing the input digit is tweaked by intervals
of 0.05 in the range [-0.25, 0.25]. All three capsule networks pro-
duce capsules with disentangled representation – each dimension
of a certain capsule represents a digit’s property, such as thick-
ness, skew, and width. 44

Figure 3.6 Reconstructed images from capsule channels output by the dy-
namic routing capsule network [8] and the proposed capsule net-
work, and reconstructed images from convolutional channels out-
put by the baseline CNN. The first column shows groundtruth.
The other columns show reconstructions from capsule channels
(or convolutional channels) applied with the following affine trans-
formations: 2-9 col: rotation with 0, 45, 90, ..., 315 degrees;
10-11 col: horizontal and vertical flip; 12-14 col: shifting 1, 2, 4
pixels; 15-19 col: scaling by a factor of 0.5, 0.75, 1.2, 1.5, 2. 45

Figure 3.7 Visualization of routing weights used for last-layer capsules. Four
bars show routing weights for the four vote clusters that a last-
layer capsule receives. The left figure shows routing weights for
the 8th dimension of the first channel’s capsule; the right fig-
ure shows routing weights for the 2nd dimension of the second
channel’s capsule. Each channel of the last layer is designed to
contain only a single capsule. 47

Figure 4.1 The embedding islands in GLOM that represent sub-parts, parts,
and whole object of a LEGO toy. 51

Figure 4.2 Illustration of why the viewpoint-invariant part-whole relation-
ships generalize to novel viewpoints. 54

xii

Figure 4.3 Illustration of model interpretability using the person object. 56

Figure 4.4 A 1D illustrative example on propagation among pi and wi. The
initial values are generated as constant adding Gaussian noises.
pi and wi are updated by Eqs 4.4 and 4.5, respectively, and then,
pi converges to two values, representing the shaft and panel; wi

converges to two values too, representing to the shaft-to-umbrella
and panel-to-umbrella. 58

Figure 4.5 Illustration of the high-dimensional coincidence filtering. 59

Figure 4.6 Illustration of why the high-dimensional coincidence filtering is
robust to adversarial attacks. 60

Figure 4.7 Predict the embedding q and category y of an object, using
votes vi towards q. q is computed as the mean of the votes
it receives. The i-th consensus value mi is computed as the
similarity between vi and q. The perturbation can only affect
the large consensus values, excluding the small consensus values
from noisy votes. 61

Figure 4.8 Illustration of estimating the object’s orientation using quatenions-
composed embeddings. 66

Figure 4.9 Visualization of Twin-Islands processing selected point clouds.
The second and third columns are embedding islands and trans-
formation weight islands, representing the parts and the part-
whole relationships, respectively. The last column is one embed-
ding representing the whole object, which is equivariant with
respect to the inputs. 67

Figure 4.10 Classification accuracy after FGSM attacks (a) and PGD attacks
(b). Attacks are performed on objects placed at novel orienta-
tions that are not covered in the training set. 69

Figure 4.11 The consensus value distribution computed from the first object
of airplane and guitar category. 70

Figure 4.12 Classification accuracy on the airplane category, w. and w/o.
clipping. 71

xiii

Figure 5.1 Illustration of the proposed low-complexity group ensemble block,
and the workflow of combining class-level discrimination, in-
stance discrimination, and ensemble block together for the coarse-
to-fine image retrieval. In practice, we use more subspaces than
this illustration, e.g., 1024. 79

Figure 5.2 Performance analysis on the ensemble sizeN using dataset CIFAR-
100. 86

Figure 5.3 The top-10 retrievals on datasets CIFAR-100 (upper) and ImageNet-
C16 (lower), using (proposed) and not using (baseline) the pro-
posed group ensemble block. For this coarse-to-fine retrieval
task, while the model is trained with only coarse-level annota-
tions available, the retrievals counted as correct must be from
the same fine-grained category as the query. The right side of
the figure shows the retrievals, where Green and red boxes mark
the correct and incorrect retrievals. 89

Figure 5.4 t-SNE representations of embeddings from the CIFAR-100’s fish
coarse category. The fish category consists of five fine-grained
categories — aquarium fish, flatfish, ray fish, shark fish, and trout
fish. 92

Figure 5.5 Effect of embedding length on the coarse-to-fine retrieval and
kNN classification using CIFAR-100. 96

Figure 5.6 CIFAR-10 training and testing accuracy by ResNet50 and its
variant where its last linear layer is replaced with a group en-
semble block. 98

xiv

Abstract

Current deep models have achieved human-like accuracy in many computer vision tasks,

even defeating humans sometimes. However, these deep models still suffer from significant

weaknesses. To name a few, it is hard to interpret how they reach decisions and it is easy

to attack them with tiny perturbations.

A capsule, usually implemented as a vector, represents an object or object part. Cap-

sule networks and GLOM consist of classic and generalized capsules respectively, where the

difference is whether the capsule is limited to representing a fixed thing. Both models are

designed to parse their input into a part-whole hierarchy as humans do, where each capsule

corresponds to an entity of the hierarchy. That is, the first layer finds the lowest-level vision

patterns, and the following layers assemble the larger patterns till the entire object, e.g.,

from nostril to nose, face, and person.

This design enables capsule networks and GLOM the potential of solving the above prob-

lems of current deep models, by mimicking how humans overcome these problems with the

part-whole hierarchy. However, their current implementations are not perfect on fulfilling

their potentials and require further improvements, including intrinsic interpretability, guar-

anteed equivariance, robustness to adversarial attacks, a more efficient routing algorithm,

compatibility with other models, etc.

In this dissertation, I first briefly introduce the motivations, essential ideas, and existing

implementations of capsule networks and GLOM, then focus on addressing some limitations

of these implementations. The improvements are briefly summarized as follows. First, a

fast non-iterative routing algorithm is proposed for capsule networks, which facilitates their

applications in many tasks such as image classification and segmentation. Second, a new

xv

architecture, named Twin-Islands, is proposed based on GLOM, which achieves the many

desired properties such as equivariance, model interpretability, and adversarial robustness.

Lastly, the essential idea of capsule networks and GLOM is re-implemented in a small group

ensemble block, which can also be used along with other types of neural networks, e.g.,

CNNs, on various tasks such as image classification, segmentation, and retrieval.

xvi

Chapter 1: Introduction

1.1 The limitations of convolutional neural networks

Convolutional neural networks (CNNs) have been very successful in a wide range of

vision tasks in the past decade, such as image recognition [9, 10], object detection [11, 12],

and instance segmentation [13]. This success is largely due to its architecture consisting

of multiple layers of feature detectors that replicate the same set of learnable weights on

numerous local patches [14, 15]. The stochastic gradient descent technique also plays an

important role in CNNs’ success, enabling training deep CNNs with a huge amount of data

via optimizing the task-specific loss functions. Despite the success of CNNs in so many tasks,

there are many limitations for CNNs as the following.

Firstly, it is hard to either explain why the structure of CNNs leads to a certain prediction

or interpret how CNNs make their predictions in great detail, which makes CNNs work

as black boxes, as in Figure 1.1. Although there exist some interpretation methods for

CNNs, they mainly explore the interaction between the input and output (or a higher layer’s

activation maps). To name a few, finding images or image patches that maximize the target

neurons’ activation [16, 17, 18], displaying the loss function’s gradient w.r.t the input image

[19, 20], and fitting the network’s prediction on a single image’s various deformations using a

simpler model, e.g., a linear classifier [21]. All these methods try to interpret the black-box

network after they are already trained. In contrast, an ideal network should be a self-

explanatory white box. Consequently, CNNs are not sufficient for high stake decisions, such

as medical diagnosis assistance.

1

Figure 1.1. Comparison of how humans and convolutional neural networks process the same
image.

Secondly, CNNs are vulnerable to adversarial attacks, which makes them potentially

unsafe to be used in security-critical areas. A tiny amount of unpredictable shifts presented

in a test image can fool the CNNs to make completely wrong predictions. This makes the

adversarial attack possible and threatens the real-world applications [2]. As the example in

Figure 1.2, the object person is correctly recognized without the attack. But after adding

small perturbations to the original inputs, CNNs easily change their correct prediction to the

wrong category gibbon. Interestingly, an adversarial example generated with a specific CNN

can fool many other CNNs. However, the two images are apparently the same to humans:

the vision system of human will identify each object as a panda.

Thirdly, CNNs are not robust to affine transformations. In other words, they cannot

generalize their capability to every possible affine transformation of an image, as in Figure 1.3.

Human beings watch a few samples of an object and can recognize it from any viewpoint

next time. But CNNs are just “remembering” the annotation of human-fed samples and

cannot recognize objects filmed at novel viewpoints that are not covered in the training set.

Data augmentation partially alleviates this problem for 2D affine transformations, whereas

the usual data augmentation methods can not imitate 3D affine transformation [3].

2

Figure 1.2. Illustration of adversarial attack to CNNs, borrowed from [2].

1.2 The big pictures of capsule networks and GLOM

As explained in the previous section, the three limitations of CNNs can be solved by

human beings. If we build deep models that parse their inputs like humans, they will

potentially solve these limitations of CNNs. There is strong psychological evidence that

humans parse visual scenes into part-whole hierarchies [22, 23]. The part-whole hierarchy,

take the person as an example, consists of parts (e.g., face), subparts (e.g., mouth), sub-

subparts (e.g., a corner of the mouth), etc. Therefore, capsule networks and GLOM aim

to parse objects into the part-whole hierarchy, where the adjacent layers are connected by

high-dimensional coincidence filtering.

1.2.1 Parsing objects into the part-whole hierarchy

Capsule networks [24, 25, 5, 6, 4] and GLOM [4] aim to be human-like through the part-

whole hierarchy. The capsules in capsule networks or embeddings in GLOM are supposed

to spatially correspond to nodes of a parse tree that parses the network’s input object into

a part-whole hierarchy. A toy example can be that the person object is parsed into a

three-layer capsule network or GLOM (in practice we may need more layers). Capsules or

embeddings of the highest layer represent the entire person, capsules or embeddings of the

3

school bus 1.0

motor scooter 0.99

fire truck 0.99

garbage truck 0.99 punching bag 1.0 snowplow 0.92

parachute 1.0 bobsled 1.0 parachute 0.54

school bus 0.98 fireboat 0.98 bobsled 0.79

Figure 1.3. Illustration of CNNs’ prediction to images after viewpoint change, borrowed from
[3]. The first column shows canonical poses of objects, and the other columns show object
after viewpoint change. The correct and wrong classifications are colored in green and red,
respectively.

middle layer represent the mouth, nose, arm, etc., and capsules or embeddings of the lowest

layer represent the line, circle, etc. The learnable weights in capsule networks or GLOM

are supposed to learn the relationship between object parts represented by the capsules or

embeddings in adjacent layers, e.g., the nose-to-person relationship.

The process that capsule networks and GLOM process their input is also named “inverse

computer graphics” [26]. In computer graphics, a computer renders a 3D object onto a 2D

4

screen with a given viewpoint. Capsule networks and GLOM are supposed to work in the

inverse direction that it first deduces the 3D coordinates from pixels, then multiplies the 3D

coordinates by the inverse of the transformation matrix to get the pose of the whole object.

1.2.2 High-dimensional coincidence filtering

Capsule networks and GLOM activate capsules or columns in a different way than CNNs.

The convolution operation in CNNs that connects the neurons in consecutive layers can be

expressed as wTx + b, where w and b are the convolution kernel and bias for the data x in

a 2D local window. This convolution operation activates a neuron when sufficient evidence

xi has been found in x. In contrast, capsule networks and GLOM use “high-dimensional

coincidence filtering” that has essentially the same core idea as Hough transform. They

activate the capsule or column by finding a bunch of similar predictions from a huge number

of incoming predictions that are produced from the layer below. For example, when the

layer below has detected the head, arm, and legs, these parts may produce predictions of a

person or helmet (from the head), person or monkey (from the arm), person or dog (from

the legs), then the prediction person is the coincidence.

1.2.3 Potential advantages

Capsule networks and GLOM are supposed to work like humans, as the general designing

philosophy explained above. Therefore, they potentially have the following advantages as

humans.

The first advantage is interpretability. One definition of interpretability is “the degree to

which a human can understand the cause of a decision [27].” Because part-whole relationships

are the way how a human makes decisions, models using part-whole relationships will be

interpretable as long as there is a way to clearly visualize the correspondence between model

components (both model activities and model weights) and the part-whole hierarchy. For

5

example, the situation that various faces in different images use the same transformation

matrix to predict the person object means that this transformation matrix encodes an arm-to-

person relationship. This interpretability further facilitates other possible applications. For

example, the model may be pruned based on the importance of each part-whole relationship.

The second advantage is robustness to adversarial attacks. By adding a small pertur-

bation to the original input, well-trained deep CNNs produce wrong predictions. However,

this small perturbation will never mislead humans. Capsule networks and GLOM mimic

humans, and thus potentially prevent adversarial attacks. Like humans, capsule networks

and GLOM predict the object as the consensus between various object parts’ predictions

towards the full object. For example, if “head”, “arm”, “hand”, “leg”, and “foot” have

the same prediction of “person”, this agreement will activate the “person” prediction. This

prediction fashion is robust as perturbations on the object parts will not be accumulated in

the agreement quantification. This is because the person is activated by finding a coinci-

dence instead of the sum-like convolution operations in CNNs. In addition, this coincidence

between multiple parts’ predictions still holds firmly when some parts are occluded, making

it robust to occlusion.

The third advantage is equivariance with respect to the input object’s affine transfor-

mation. Equivariance is originally the mathematical notion of symmetry for functions. A

function f is said to be an equivariant map if the result of transforming the input x and then

computing the function is the same as first computing the function and then transforming

the output, i.e., f(Tx) = Tf(x) where T is the matrix that performs the transformation.

Capsule networks and GLOM with the following mechanism can be equivariant and general-

ize well to novel viewpoints that the network has never seen: i) the capsules or embeddings

are supposed to be viewpoint-equivariant, whose activities contain the orientation informa-

tion of the object or object parts; ii) the transformation weights are supposed to encode the

viewpoint-invariant spatial relationship between a part and a whole as the coordinate trans-

6

formation between intrinsic coordinate frames assigned to the part and the whole. Then,

when the viewpoint changes, the orientation of each object part or the entire object encoded

in every capsule or column changes to the new viewpoint, so that the viewpoint-invariant

spatial relationship learned from one viewpoint works for the new viewpoint.

1.3 Improve capsule networks and GLOM

Despite the promising future, the ambitious goals of capsule networks and GLOM have

not been well achieved. Especially, GLOM is proposed as an imaginary system without any

programming-level implementation. This leaves ample space to improve the existing capsule

networks and practically achieve the imaginary design goals of GLOM.

1.3.1 A more efficient routing algorithm for capsule networks

First, the iterative routing algorithms in capsule networks are not time efficient, prevent-

ing their usage in very practical tasks such as medical image segmentation and ImageNet

classification where large-size images, e.g., 512 × 512 or a large number of images are in-

volved. One reason for this phenomenon is the inefficiency of iterative routing algorithms

used in capsule networks. The iterative routing algorithms, e.g., dynamic routing [5] and

EM routing [6], use multiple iterations to find the agreements between incoming predictions.

As each iteration adds additional operations, the training and inference time can increase

dramatically with more routing iterations, especially for large-size images. In contrast, non-

iterative routing algorithms [28, 29] compute the capsule’s content with a straight-through

process. By simplifying the multiple iterations to a single forward pass, non-iterative routing

procedures mitigate the computational burden of iterative routing procedures. Therefore, a

non-iterative cluster routing is proposed for capsule networks, making it more convenient to

apply capsule networks to large-size images, e.g., medical image segmentation.

7

1.3.2 Building equivariant capsule networks or GLOM

Second, the equivariance is not theoretically guaranteed. Most capsule networks and

GLOM literature use intuitive heuristics to learn transformation-robust spatial relations

among objects’ components. But the following design goals are usually not met without

introducing new inductive bias to the network: i) the transformation weight should encode

the viewpoint-invariant spatial relationship between a part and a whole (or between a sub-

part and a part), where the relationship can be, for example, the coordinate transformation

between intrinsic coordinate frames of the part and the whole; ii) the capsule or embedding

should encode viewpoint-equivariant orientation of corresponding part or whole that it rep-

resents. Crucially, the problem of correctly deducing 3D coordinates from the pixels of an

image or video is not addressed. Capsule networks and GLOM use trainable transformation

kernels applied to local receptive fields, but the receptive field coordinates are agnostic to

the object’s 3D pose.

The 3D coordinates, however, are directly provided in another kind of data, the point

clouds. A point cloud is a collection of 3D data points representing a 3D object, usually

scanned by 3D laser scanners. Capsule networks that take advantage of a point cloud’s 3D

coordinates have successfully shown equivariance [30, 31]. One goal of this dissertation is to

achieve equivariance in GLOM using point clouds.

1.3.3 Building adversarial robust networks

Third, one design goal of capsule networks and GLOM is to increase the networks’ ro-

bustness to adversarial attacks. CNNs are vulnerable to adversarial attacks due to their

weight-sum fashion convolutional kernels, but the high-dimensional coincidence filtering is

just the opposite of weight-sum-like processes. The coincidence filtering compares the vec-

tor’s similarity, e.g., cosine similarity, in the high-dimensional vector space. A small per-

8

turbation to a vector will not change the similarity between two vectors, and this robust

similarity is then the basis for deducing large object parts till the entire object. However,

for capsule networks, the robustness is only evaluated on the smallNORB data set [6] and

is challenged by vote attacks [32]. For GLOM, there is currently no work that explores its

robustness to adversarial attacks in practice. Thus, there is plenty of room to improve the

adversarial robustness of capsule networks and GLOM.

1.3.4 Encoding part-whole relationships into learnable transformation weights

Fourth, the part-whole relationships are not very clearly represented in transformation

weights [33, 34]. For capsule networks, they have no module that guarantees the transfor-

mation weights to encode the part-whole relationship, which may probably lead to a fuzzy

representation. The transformation weights are just learned through stochastic gradient de-

scent to minimize the loss function. Whether the part-whole relationship is learned into the

transformation weight has not been proven yet, not to mention quantifying to which extent

the relationship is discovered. It is also possible that the capsules just learn a blended repre-

sentation of various things, e.g., human eyes and car headlights. For GLOM, an imaginary

propagation-fashion strategy is proposed for learning interpretable object parts, but how the

part-whole relationship can be learned into the network is not explored. This leaves the

blank to learn the part-whole relationship, visualize which relationship is learned in which

transformation weight, and even quantitatively measure how precisely the weight encodes

the relationship.

Especially, the point cloud is an ideal beginning among the various types of data. This

is because the equivariant representation of object parts can be theoretically guaranteed

as in [30, 31]. Then the part-whole relationships, if learned to be viewpoint-invariant, can

generalize to novel viewpoints that are not covered in the training data set. One goal of

9

this dissertation is to learn and visualize viewpoint-invariant part-whole relationships in

equivariant capsule networks or GLOM using point clouds.

1.3.5 Pushing performance on practical tasks

Fifth, the performance of capsule networks and GLOM on large and practical datasets

need to be improved. CNNs have been successfully applied to almost every computer vi-

sion task. But capsule networks and GLOM have not beaten CNNs many times in terms

of classification accuracy, segmentation precision, etc. This leads to some doubt about

their practical superiority to CNNs. For capsule networks, one reason is that the original

computationally-expensive routing algorithms, in terms of GPU memory and the network’s

forward propagation time, prevent building deep networks for high-resolution images. An

image of size 224×224 needs a huge number of (224−2)×(224−2) parallel routing processes

with a receptive field of 3× 3 for just the network’s first capsule layer, where the number of

parallel routing processes is the same as the number of sliding windows during the convolu-

tion operation in CNNs. However, it is possible to apply capsule networks with the following

two modifications. First, simplify the original iterative routing algorithms into one single

iteration. Second, share parameters between different capsules in the same receptive field.

One goal of this dissertation is to implement these two modifications on capsule networks

and hopefully achieve high segmentation precision on medical images of size 512× 512.

1.3.6 Pushing the compatibility of capsule networks and GLOM with other types of net-

works

Sixth, capsule networks and GLOM are attractive and promising, but there are still

many other popular networks such as CNNs and transformers. Furthermore, there are many

charming tasks that capsule networks and GLOM have not touched too much, such as self-

supervised learning and neural radiance fields [35]. It would greatly increase the impact

10

of capsule networks and GLOM by incorporating them with other kinds of networks and

extending their usage to more tasks. Although capsule networks and GLOM are different

types of networks compared to CNNs and transformers, it is possible to isolate the core

ideas of capsule networks and GLOM and reimplement these core ideas to be compatible

with CNNs or transformers. One goal of this dissertation is to find out the essential ideas of

capsule networks and GLOM and accomplish their compatibility with other types of neural

networks.

1.4 Contribution and organization

The organization of this dissertation is summarized as the following.

• First, the introduction section gives the motivations, general ideas, and potential ad-

vantages of capsule networks and GLOM.

• Second, the original mechanisms of capsule networks and GLOM are illustrated in

more detail, e.g., how the consecutive layers are connected.

• Third, a novel non-iterative routing procedure is proposed for capsule networks, which

is for the motivations in Sections 1.3.1 and 1.3.5. It is significantly faster than the

original iterative dynamic routing and EM routing while producing better accuracy at

the same time. With the decrease in the number of computations, capsule networks

can be used to segment images of a large size, e.g., 512× 512.

• Fourth, an equivariant, interpretable, and adversarial robust network is proposed for

point clouds, which is for motivations in Sections 1.3.2, 1.3.4, and 1.3.3.

• Fifth, a group ensemble block is proposed and applied to image classification, segmen-

tation, and retrieval, which is for motivations in Section 1.3.6. In addition, this group

11

ensemble block can also be used along with other techniques such as self-supervised

learning.

• The last section gives a conclusion and future directions.

The original works in the third, fourth, and fifth chapters are summarized as the following.

1.4.1 Capsule networks with fast non-iterative cluster routing for medical image segmenta-

tion

Capsule networks use routing algorithms to flow information between consecutive layers.

In the existing routing procedures, capsules produce predictions (termed votes) for capsules

of the next layer. In a nutshell, the next-layer capsule’s input is a weighted sum over all the

votes it receives. In this paper, we propose non-iterative cluster routing for capsule networks.

In the proposed cluster routing, capsules produce vote clusters instead of individual votes for

next-layer capsules, and each vote cluster sends its centroid to a next-layer capsule. Gener-

ally speaking, the next-layer capsule’s input is a weighted sum over the centroid of each vote

cluster it receives. The centroid that comes from a cluster with a smaller variance is assigned

a larger weight in the weighted sum process. Compared with the state-of-the-art capsule net-

works, the proposed capsule networks achieve the best accuracy on the Fashion-MNIST and

SVHN datasets with fewer parameters, and achieve the best accuracy on the smallNORB

and CIFAR-10 datasets with a moderate number of parameters. The proposed capsule net-

works also produce capsules with disentangled representation and generalize well to images

captured from novel viewpoints. The proposed capsule networks also preserve 2D spatial

information of an input image in the capsule channels: if the capsule channels are rotated,

the object reconstructed from these channels will be rotated by the same transformation.

12

1.4.2 An equivariant, adversarial robust, and interpretable architecture for point clouds

Borrowing part-whole relationships into neural networks provides a chance to access the

internal activities of models. The recently proposed GLOM is an imaginary system that

parses the part-whole hierarchy of an object into the model’s internal embeddings. However,

the parsing process of this hierarchy remains obscure by the black-box autoencoders in the

original GLOM. In this dissertation, a new adversarial-robust and interpretable architecture

is proposed for point cloud processing, named Twin-Islands. The proposed Twin-Islands not

only parses the object into embedding islands, but also makes the parsing process transpar-

ent via encoding the real-world part-whole relationships with some transformation weight

islands. The transparent parsing process makes the model intrinsically interpretable. Fur-

thermore, the object is classified through plurality voting where the votes are produced from

the embedding islands and transformation weight islands. The plurality voting rules out a

number of incorrect votes, in contrast to the traditional models that accumulate the pertur-

bations in every object part. The visualization experiment shows the correspondence between

the real-world part-whole relationships and the transformation weight islands. One of its

applications is also provided which prunes the transformation weights by the importance of

corresponding part-whole relationships. Adversarial perturbation and deletion experiments

show its superiority over CNN-based models.

1.4.3 Pushing the compatibility by group ensemble block

The neurons that conjointly compose a capsule collaborate with each other, but neurons

of different capsules are isolated. This motivates us to propose a group ensemble block

in the same spirit and apply it to other types of neural networks like CNNs. This group

ensemble block essentially samples random subspaces from the original vector, and merges

the processed results of these subspaces into the output vector. Operations such as parallel

13

computation and parameter sharing are adopted to decrease the number of parameters and

computations. A brief introduction from the perspective of the random subspace is given in

the next paragraph.

The conventional ensemble learning methods obtain the diversity among different en-

sembles’ output through varying architectures or weights. However, these methods require

too much computation and memory. Instead of varying network architectures or weights,

we find that one can also achieve diversity from data difference, i.e., the difference among

many random sampled subspaces. Moreover, compared to previous ensembling methods,

one can dramatically reduce the overhead when projecting to random subspaces because the

subspaces can be sampled not from the initial input, e.g., the input image, but just before

the end of the network. Although the network layers before the projections are shared for

every subspace, they receive diverse gradients from the diverse subspaces in the backprop-

agation. To implement our idea, we propose the group ensemble block to execute subspace

sampling inside a small and easy-to-plug block that needs little computation. Furthermore,

we show that our group ensemble block is complementary to existing methods by provid-

ing its integration with class-level and instance-level discrimination. Experiments show that

the proposed group ensemble block achieves state-of-the-art accuracy on the CIFAR-100

and ImageNet datasets for the coarse-to-fine image retrieval problem, where the model is

trained with coarse-level annotation (e.g., trees) and evaluated with fine-grained category

(e.g., maple trees and oak trees).

1.4.4 Contributions

The contributions of this dissertation are summarized as the following:

• Efficiency: A fast non-iterative routing algorithm is proposed for capsule networks

that largely relieves the computation burden of the iterative routing algorithms. This

14

routing algorithm increases capsule networks’ performance on multiple tasks such as

image classification and segmentation.

• Equivariance: The proposed new architecture, named Twin-Islands, is equivariant w.r.t

the input object’s orientation for point clouds.

• Interpretability: Visualization of the proposed Twin-Islands shows that model weights

encode part-to-whole relationships and model activities encode the object’s parts and

whole.

• Adversarial robustness: By utilizing the high-dimensional coincidence filtering, the

proposed Twin-Islands is robust to small perturbations produced in adversarial attacks.

• Compatibility. The capsule or GLOM idea is re-implemented in a group ensemble

block. Its usage along with CNNs is provided for image classification and segmentation,

and its usage along with self-supervised learning is provided for image retrieval.

15

Chapter 2: Capsule networks and GLOM

2.1 The general ideas of capsule networks

A capsule network is composed of several capsule layers and convolutional layers, where

the convolutional layers are used to produce the primary capsule layer. Each capsule layer

consists of usually a huge number of capsule individuals. Each capsule is a group of neurons

that not only represents the category of an entity (such as an object or an object part),

but also represents the properties of that entity. These properties may include position,

size, orientation, deformation, velocity, albedo, hue, texture, etc. One very special property

is the existence probability of the entity, which is represented by the extent of activation

of the capsule. The prediction output of the capsule network is the category represented

by the most activated capsule of the last capsule layer. This chapter later introduces the

concept of the routing procedure that passes information between two consecutive capsule

layers. In addition to the general ideas of the capsule and routing procedure, a complete

implementation of capsule networks should determine a certain form of the capsule, routing

procedure, and network structure that are clear enough for programming. In the following,

two implementations in [5] and [6] by Hinton et al. are introduced.

2.1.1 The concept of the routing procedure

The routing procedure that passes information between two consecutive capsule layers,

gets all the capsules of layer L as input and outputs all the capsules of layer L + 1. For

convenience, if there is a connection between a capsule at layer L and another capsule at

16

layer L + 1, the former capsule is called a child capsule, and the latter is called a parent

capsule.

In the routing procedure, a child capsule computes prediction for each of its possible par-

ents by multiplying its own output by transformation matrices. An intuitive understanding

of the capsule’s prediction is that a capsule predicts its parent’s properties by its own proper-

ties through the part-whole relationship that is encoded in the transformation matrix. Each

prediction has a weight, which is called the routing coefficient, and the routing coefficients

of a child capsule sum to 1.

A parent capsule gets predictions from all its child capsules, and its output is coupled

from these predictions. More precisely, the output of a parent capsule is the weighted sum

of the predictions with the weight being routing coefficient. If the output of a parent capsule

is close to all or most of these predictions, these predictions must form a tight cluster. In

other words, all or most of these predictions are close to the output of the parent capsule,

which is named as agreement [5, 6]. A parent capsule is supposed to become active when

multiple predictions agree.

Usually, the routing procedure contains the following two steps, and the two steps are

run several times to optimize the routing coefficients and the parent capsules:

• For each possible parent, a capsule computes a prediction by multiplying its own output

by a transformation matrix. Then the output of each parent capsules is coupled from

the predictions of all its child capsules.

• If a prediction is close to the output of a possible parent, there is top-down feedback

which increases the routing coefficient for that parent and decreasing it for other par-

ents. This further increases the similarity between the capsule’s prediction and that

parent’s output.

17

Figure 2.1. Example of the routing procedure with a simple boat. Multiple predictions are
produced from each part of the whole, but only the boat prediction is agreed by both parts.

2.1.2 A routing procedure example

A routing procedure example is given in Figure 2.1. The boat in the input image consists

of a triangle and a rectangle. The triangle and rectangle are rotated by 65◦ and 15◦ from the

standard view, respectively. In this example, the triangle and rectangle have been detected

by a certain capsule layer before the routing procedure. At the beginning of the routing

procedure, the capsule representing the triangle predicts a boat and a house with equal

routing coefficient, and so does the capsule representing the rectangle.

However, the two capsules only agree on the boat prediction. In other words, the pre-

dictions for the boat form a tighter cluster than the predictions for the house. The capsule

representing the triangle thus favors the parent representing the boat more. This causes

top-down feedback that increases the routing coefficient for the boat prediction. The same

feedback happens to the capsule representing the rectangle for the same reason. After this

feedback, the capsule representing the boat is more active than the capsule representing the

house.

18

2.1.2.1 Advantages of the routing procedure

In CNNs, the ReLU function activates a neuron based on the matching score between

a 3D local patch and the convolution filters. These filters are fixed after being learned in

the training stage. In capsule networks, a capsule, the basic unit as a neuron in CNNs,

is activated if it is supported by most of its children capsules. More precisely, a capsule

is activated if the predictions coming from its child capsules match each other. This is an

effective way to utilize the part-whole relationship and leads to models that generalize better.

Max pooling is used in CNNs to reduce the number of neurons representing the input

image. It allows neurons in one layer to ignores all but the most active feature detector in

a local pool in the layer below. The routing procedure is designed to not only produce the

information for classifying the category of the input image but also many properties of each

entity such as position, size, and orientation.

2.2 GLOM

Recent works [4, 36, 37] have taken a step forward in representing the part-whole hierar-

chy inside neural networks. The pioneering and representative method is GLOM [4] which

leverages embedding islands residing in different layers to represent the part and whole. In

this section, we first explain what are embedding islands and how to form embedding islands

via propagation. Then we explain how to compose the contents of embeddings so that the

model is able to generalize to objects placed at novel viewpoints that are never covered in

the training data.

19

Figure 2.2. A demo illustration of embedding islands, borrowed from [4]. It contains six
embeddings for each layer and 2-D vectors in the same color and direction form an island.
The islands of identical vectors at the various levels shown in the figure represent a parse
tree, where all of the locations shown belong to the same object and the scene level has not
yet settled on a shared vector.

2.2.1 Embedding islands

2.2.1.1 What are embedding islands

Every layer of GLOM consists of multiple embeddings, which are vectors and initialized

from the layer below. After the propagation, embeddings within the same layer that spatially

corresponds to the same part of an object will converge to the identical vector. Each set

of identical embeddings is named an embedding island because these embedding sets divide

the object into its separate parts. The higher layer has few embedding islands that represent

large parts of the object; the lower layer has many embedding islands that represent many

small parts of the object, as shown in Figure 4.1. Denoting any two embeddings at one layer

as pi and pr, embedding islands are formed by the following,

pi = pr, if pi and pr in the same part of an object

pi ̸= pr, otherwise.

(2.1)

20

An embedding represents a car headlight given a car input will represent an eye when

the input changes to a person. This is different from how CNNs or capsule networks work

for different inputs. For example, CNNs are likely to have two neurons representing the

headlight and eye respectively, which forces a hard decision that whether the car headlight

and eye are really different parts.

2.2.1.2 How to form embedding islands

The embedding islands are supposed to be formed through propagation between embed-

dings. In each propagation round, an embedding blends information received from the layer

below, the same layer, and the layer above. Specifically, in each propagation round, the i-th

embedding pi at a certain layer is updated with the following contributions:

• Itself at the previous propagation step pprev
i .

• The r-th embedding of the same layer pr is passed to pi with a confidence wr that

is positively related to its similarity with pi. This contribution blends an embedding

with its similar neighbors.

• The j-th embedding qj of the layer above is input to the top-to-down autoencoder

nett→d, and the output is passed to pi. The contribution from the layer above car-

ries the information about a larger part or the entire object and correctifies wrong

embeddings at the current layer.

• The o-th embedding oo of the layer below is input to the down-to-top autoencoder

netd→t, and the output is passed to pi. The contribution from the layer below is also

used to initialize the current-layer embeddings in the first propagation round.

21

In summary, pi is updated with all the contributions as,

pi = pprev
i +

∑
r ̸=i

wrpr +
∑
j

nett→d(qj,p
prev
i) +

∑
o

netd→t(oo,p
prev
i). (2.2)

If pi and pr are spatially inside one object part, they will be initialized as roughly similar.

The propagation blends pi and pr with each other and produces the same values for them.

22

Chapter 3: Capsule networks with non-iterative cluster routing

3.1 Introduction

Convolutional neural networks (CNNs) have been very successful in many computer vision

tasks, such as image classification [9, 10], object detection [11, 12] and instance segmentation

[13]. However, they sometimes fail to recognize an object captured from novel viewpoints

which are not covered in the training data [38, 39]. One purpose of capsule networks is to

overcome this problem [40, 8, 1]. Compared with CNNs, capsule networks have the following

two major distinctions. First, the basic unit of capsule networks is a capsule composed of

a group of neurons, while the basic unit of CNNs is a single neuron. A capsule thus can

potentially represent multiple properties of an object, such as thickness and scale. Second,

a data-dependent routing procedure is conducted between two consecutive capsule layers,

while the flow of information in conventional CNNs is data-independent.

In the existing routing procedures, capsules produce predictions (termed votes) for the

next-layer capsules. The input of a next-layer capsule is formulated as a weighted sum over

all the votes it receives. Then its content may be computed from its input by a “squashing”

function [8] or by layer normalization [41]. Iterative routing procedures alternately update

the capsule’s content and the weights used for formulating the capsule’s input through several

iterations [8, 1]. In contrast, non-iterative routing procedures compute the weights and

capsule’s content with a straight-through process [42, 7]. By simplifying the iterations to

a single forward-pass, non-iterative routing procedures release the computational burden of

iterative routing procedures.

23

We propose non-iterative cluster routing and apply it to capsule networks. In contrast

to the existing routing procedures, in the proposed cluster routing, capsules produce vote

clusters instead of individual votes for capsules of the next layer. A vote cluster comprises

many votes, and each vote may be produced based on a different previous-layer capsule.

A cluster’s votes close to each other indicate that the same information is extracted from

various previous-layer capsules. Thus the vote cluster’s variance can be utilized to represent

its confidence in the information it encodes. The input of a next-layer capsule is a weighted

sum over the centroid of each vote cluster it receives, and the centroid that comes from a

cluster with a smaller variance is assigned a larger weight. On several classification datasets,

capsule networks with the proposed cluster routing achieve the best accuracy compared to

the state-of-the-art capsule networks. Our capsule networks also preserve advantages of the

previous types of capsule networks — producing capsules with disentangled representation

[8, 7] and generalizing well to images captured from novel viewpoints [1, 42]. We also show

that the proposed capsule networks preserve 2D spatial information such as the rotational

orientation of an input image through a reconstruction experiment, where we first rotate the

capsule channels by a transformation T , then observe if the reconstructed object is rotated

by the same transformation T .

We outline the contributions of our work as the following:

• A novel non-iterative cluster routing is proposed for capsule networks. In the proposed

cluster routing, capsules produce vote clusters instead of individual votes for next-

layer capsules. The variance of a vote cluster is utilized to compute its confidence in

the information it encodes. While computing a next-layer capsule’s content, the vote

cluster with smaller variance contributes more than other vote clusters.

• Compared with the state-of-the-art capsule networks, the proposed capsule networks

achieve the best accuracy on the fashion-MNIST and SVHN datasets with the fewest

24

parameters. On the smallNORB and CIFAR-10 datasets, the proposed capsule net-

works achieve the best accuracy with a moderate number of parameters.

• The proposed capsule networks produce capsules with disentangled representation,

generalize well to images captured from novel viewpoints, and preserve 2D spatial

information of an input image in the capsule channels.

3.2 Related works

3.2.1 Capsule networks

Capsule networks were first introduced by Hinton et al. [40]. More recently, they de-

veloped capsule networks with dynamic routing [8] and EM (Expectation-Maximization)

routing [1]. Capsule networks with dynamic routing yielded disentangled representation of

an image; capsule networks with EM routing generalized well to images captured at novel

viewpoints. However, these routing methods can be improved from the perspective of com-

putational complexity. Li et al. [43] approximated the routing procedure with a master

branch and an aide branch. Chen et al. [44] incorporated the routing procedure into the

training process. Zhang et al. [45] improved the routing efficiency by using weighted kernel

density estimation. Ahmed et al. [42] and Choi et al. [7] computed the coupling coeffi-

cients with a straight-through process. In addition to the works on releasing computational

complexity, Ribeiro et al. [46] replaced the EM algorithm in EM-routing with Variational

Bayes, which improved both the classification accuracy and novel viewpoint generalization.

Tsai et al. [41] imposed layer normalization as normalization and replaced the sequential

iterative routing with concurrent iterative routing. Wang et al. [47] interpreted the rout-

ing as an optimization problem that minimizes a combination of clustering-like loss and a

Kullback–Leibler regularization term.

25

Capsule networks were combined with other techniques. Lenssen et al. [48] used group

convolutions to boost the equivariance and invariance of capsule networks. Deliège et al.

[49] embedded capsules in a Hit-or-Miss layer, which resulted in a hybrid data augmentation

process and also detected potentially mislabeled images in the training data. Jaiswal et al.

[50], Saqur et al. [51] and Upadhyay et al. [52] combined capsule networks with generative

adversarial networks [53] to synthesize images.

Capsule networks were also extended to a wide range of applications. LaLonde and Bagci

[54] extended capsule networks to object segmentation by introducing a deconvolutional

capsule network. Durate et al. [55] developed capsule-pooling and applied capsule networks

to action segmentation and classification. Zhao et al. [56] applied capsules to point clouds

for 3D shape processing and understanding. Zhou et al. [57] applied capsule networks to

visual question answering tasks with an attention mechanism.

3.2.2 Attention mechanism

The routing procedure is close to the attention mechanism of the Transformer [58], which

produces data-dependent attention coefficients that capture the long-range interactions be-

tween inputs and outputs. Some capsule networks adopted the attention mechanism. Choi

et al. [7] and Karim et al. [42] proposed attention-based routing procedures that compute

the coupling coefficients between capsules without recurrence. Xinyi et al. [59] used an

attention module in a capsule graph network to focus on critical parts of the graphs.

3.3 Capsule networks with dynamic routing

In contrast to a traditional neural network composed of artificial neurons, a capsule

network comprises capsules. A capsule comprises a group of neurons that jointly represent

an object or an object part. We present the classic dynamic routing capsule networks [8]

among various types of capsule networks. In dynamic routing capsule networks, a capsule

26

is represented as a vector, and the capsule vector’s length represents how active the capsule

is. A capsule ui ∈ RD at the lth layer is transformed to make “prediction vectors” ûj|i for

capsules of the (l + 1)th layer, by multiplying with weight matrices Wij,

ûj|i = Wijui, (3.1)

where i and j are the indices of capsules of the lth and (l + 1) layer. A “prediction vector”

is also named a vote for the next-layer capsules. The input sj to a next-layer capsule is a

weighted sum over all votes it receives, as in Eq 3.2. The capsule vector vj of a next-layer

capsule is “squashed” from its input such that the capsule vector’s length is between zero

and one, as in Eq 3.3. The dynamic routing iteratively updates the weights cij, the weighted

sum sj and the capsule vector vj to the next-layer capsule by the following equations,

s
(t)
j =

∑
c
(t)
ij ûj|i, (3.2)

v
(t)
j =

∥s(t)j ∥
1 + ∥s(t)j ∥

·
s
(t)
j

∥s(t)j ∥
, (3.3)

and

c
(t)
ij =

exp(bij +
∑

v
(t)
j · ûj|i)∑

k exp(bik +
∑

v
(t)
j · ûk|i)

, (3.4)

where t is the index of iteration, and bik is the log prior probability.

3.4 Capsule networks with vector capsules

In the capsule network implementation of [5], a capsule is implemented as a vector. The

length of the vector represents the existence probability of the entity represented by the

capsule. The orientation of the vector represents the properties of the entity such as position

and size.

27

Figure 3.1. The architecture of a vector capsule network [5] used on the MNIST dataset. This
network has one convolutional layer (ReLU Conv1) and two capsule layers (PrimaryCaps
and DigitCaps). The routing procedure is conducted between the two capsule layers.

3.4.1 The network architecture

A capsule network with one convolutional layer and two consecutive capsule layers is

shown in Figure 3.1. This network is used on the MNIST dataset. The routing procedure

is conducted only between the two capsule layers.

The first layer (layer ReLU Conv1 in Figure 2) has 256 convolutional kernels and uses

the ReLU activation. Each output channel is of size 20 × 20 since the input is an MNIST

image of size 28 × 28, and the convolutional kernels of size 9 × 9 are used with a stride

of 2 and no padding. This layer converts pixel intensities to the activities of local feature

detectors that are then used as inputs to the first capsule layer (PrimaryCapsules).

3.4.2 The routing procedure

As introduced in above, a parent capsule gets predictions from all its child capsules, and

the output of this parent capsule is the weighted sum of these predictions with the weight

being routing coefficient. For all but the first layer of capsules (as the routing procedure is

conducted between two consecutive capsule layers), the input to a capsule, sj, is a weighted

sum over all “prediction vectors” ûj|i from the capsules in the layer below, and the weight

of ûj|i is cij. Each “prediction vector” is produced by multiplying the output ui of a capsule

28

in the layer below by a transformation matrix Wij,

sj =
∑
i

cijûj|i, ûj|i = Wijui. (3.5)

The output vector vj of a capsule is calculated by the following non-linear “squashing”

function from the input sj,

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(3.6)

The length of the output vector of a capsule should be between 0 and 1 since it represents

the probability of existence. The non-linear “squashing” function ensures that a short input

vector sj gets shrunk to almost zero length and a long input vector sj gets shrunk to a length

slightly below 1.

The routing procedure used in vector capsule network [5] is shown in Procedure 1, where

lines 4, 7 compute the routing coefficients

Algorithm 1 Routing algorithm given ûj|i, r, l.

for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.
for r iterations do
for all capsule i in layer l: ci ← softmax(bi)
for all capsule j in layer (l + 1): sj ←

∑
i cijûj|i

for all capsule j in layer (l + 1): vj ← squash(sj)
for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + ûj|i.vj

end for
return vj

3.5 Capsule networks with matrix capsules

In contrast to the capsule network implementation of [5], the probability that the entity

represented by the capsule exists is represented by a separate logistic unit in the implemen-

tation of [6]. In the implementation of [6], a capsule is implemented as a 4 × 4 matrix and

a separate scalar unit. The separate scalar represents the probability that the entity exists.

29

Figure 3.2. The architecture of a matrix capsule network [6] used on the SmallNORB dataset.
This network has one convolutional layer and four capsule layers. The routing procedure is
conducted between each adjacent pair of capsule layers.

The matrix is supposed to represent the pose (position and orientation in 3D space) of that

entity and thus called pose matrix.

3.5.1 The network architecture

The structure of a capsule network [6] used on the SmallNORB dataset is shown in

Figure 3.2. It has one convolutional layer and four capsule layers. The routing procedure is

conducted between adjacent capsule layers.

The first layer (layer ReLU Conv1 in Figure 3) has A (A = 32) convolution kernels of size

5 × 5 with a stride of 2 and uses ReLU activation. This layer converts pixel intensities to

the activities of local feature detectors that are then used as inputs to the primary capsules

of the first capsule layer (PrimaryCaps).

The second layer (PrimaryCaps) takes A convolutional channels as input which is the

output of the first layer. It outputs B (B = 32) capsule channels where each capsule contains

a 4 × 4 matrix and a scalar activation. In this layer, (4 × 4 + 1) × B convolutional channels

are first produced from the input by convolution kernels of size 1 × 1 with a stride of 1.

Then the (4 × 4 + 1) ×B convolutional channels are rearranged to B capsule channels.

30

The first capsule layer is followed by two K × K (K=3) convolutional capsule layers

(ConvCaps1 and ConvCaps2), each with 32 capsule types (C = D = 32) with strides of 2

and 1, respectively.

The final capsule layer (Class Capsules) has one capsule per output class. There are E

(E=5) classes in total. The category represented by the most activated capsule of the final

capsule layer is used as the prediction output of the capsule network.

3.5.2 The routing procedure

The routing procedure in the implementation of [6] is named EM routing as it is based on

the Expectation-Maximization (EM) algorithm. In the EM routing procedure, each parent

capsule corresponds to a Gaussian, and the pose of each active child capsule (converted to

a vector) corresponds to a datapoint (or a fraction of a datapoint if the capsule is partially

active). Recall the definition of the parent and child capsule: for convenience,if there is

a connection between a capsule at layer L and another capsule at layer L + 1, the former

capsule is called a child capsule, and the latter is called a parent capsule.

Each capsule i in layer L makes a “prediction pose” for the pose of capsule j in layer

L + 1. A “prediction pose”, also called a vote, is produced by multiplying the pose matrix

Mi of capsule i by a 4× 4 transformation matrix Wij,

Vij = MiWij, (3.7)

where Wij is discriminatively learned and supposed to encode the part-whole relationship

between Mi and Vij. The activations ai and votes Vij for all capsules i ∈ ΩL and j ∈ ΩL+1

are input to the EM routing procedure to compute the activations aj and poses Mj.

31

An interesting property of the above equation is that if the following equation satisfies,

the part-whole relationship encoded in Wij applies to all viewpoints,

TVij = TMiWij, (3.8)

where T is a 3D viewpoint transformation matrix applied to the input object, TVij and

TMi are representing the same object parts as Vij and Mi but in different viewpoint.

3.5.3 Activation of a capsule

The choice of whether activating a capsule j is based on the cost of explaining datapoint

i by using capsule j,

costhij = − ln(P h
i|j), (3.9)

phi|j =
1√

2π(σh
j)

2
exp (−

(vhij − µh
j)

2

2(σh
j)

2
), (3.10)

where vhij is the h-th dimension of the vectorized vote Vij, µj is the mean of the fitted

Gaussian, and σj is the variance of the fitted Gaussian under the assumption that µj has an

axis-aligned covariance matrix. This assumption makes it possible to calculate the cost by

summing over all dimensions of the cost of explaining each dimension, h, of the vote Vij.

32

The activation of the capsule j, aj, is computed with the logistic function of the cost,

costj. The h-th dimension of costj is computed as,

costhj =
∑
i

rijcost
h
ij

=
∑
i

−rij ln(phi|j)

=
∑
i

rij
((vhij − µh

j)
2

2(σh
j)

2
+ ln(σh

j) +
ln(2π)

2

)
=

∑
i rij(σ

h
j)

2

2(σh
j)

2
+ (ln(σh

j) +
ln(2π)

2
)
∑
i

rij

=
(
ln(σh

j) + k
)∑

i

rij,

(3.11)

where k is a constant, cij is the routing coefficient from capsule i to capsule j, and
∑

i rij is

the amount of data assigned to capsule j. aj is computed as,

aj = sigmoid(λ(βa −
∑
h

costhj)), (3.12)

where βa is discriminatively learned, λ is an inverse temperature parameter as a hyperpa-

rameter. Capsule j thereby is activated only when σj is small enough and
∑

i rij is big

enough. This corresponds to a tight cluster of votes with sufficient capsules from the layer

below with high activations.

3.6 The proposed cluster routing

In contrast to the dynamic routing, the proposed cluster routing utilizes vote clusters

instead of individual votes. A capsule ui ∈ RD at the lth layer is multiplied with each

weight matrix of a weight cluster W
{1,··· ,K}
i , resulting in a vote cluster û

{1,··· ,K}
i for a capsule

at the (l + 1)th layer. To reduce clutter in the notation, from now on we omit the index

33

Figure 3.3. Illustration of the proposed cluster routing. A next-layer capsule of the (l+1)th
layer gets input as a weighted sum over the centroids it receives, and larger weights are
assigned to the centroid with larger corresponding agreement vector. The content of next-
layer capsules are computed from their inputs by layer normalization, which is not shown in
the figure for the purpose of clarity.

j for the next-layer capsules without introducing confusion. Then, for a cluster of weights

W
{1,··· ,K}
i , for k ∈ {1, · · · , K}, Eq 3.1 becomes

ûk
i = Wk

iui. (3.13)

Each weight matrix Wk
i in a weight cluster may attend to a specific and distinct location

of the capsule vector ui. It is supposed that after the training stage, if all vector locations

represent the same object (or object part), each weight matrix will produce the same vote;

if one vector location does not represent the same object as other vector locations, one or

more votes will be different from others. Thus the agreement among these votes indicates if

the capsule vector correctly represents a certain object.

Furthermore, we can replace ui in Eq 3.13 by its neighborhood to increase the receptive

field of each vote. In practice, we fix with the 3× 3 neighborhood throughout this work and

so we replace ui by the concatenation N(ui) ∈ R9D of its neighborhood. Then the k-th vote

34

in the cluster is produced as follows,

ûk
i = Wk

iN(ui). (3.14)

A vote cluster, û
{1,··· ,K}
i , sends its centroid mi =

1
K

∑K
k=1 û

k
i and an agreement vector ai

to the next-layer capsule. The agreement vector ai is computed by applying the negative

log to the votes’ standard deviation as follows,

ai = − log

√√√√ 1

K

K∑
k=1

(ûk
i −mk

i) ◦ (û
k
i −mk

i)

 , (3.15)

where ◦ is the Hadamard (element-wise) product. Each of the C capsule channels in the lth

layer produces a vote cluster for the next-layer capsule. Centroids of these vote clusters are

weighted summed as follows,

s =
C∑
i=1

ci ◦mi, (3.16)

where ci = exp(ai) ⊘
∑C

i=1 exp(ai) and ⊘ is the Hadamard division. We apply layer nor-

malization [60] on the weighted sum s, resulting in a capsule vector of the next layer as in

[41].

Notice that the matrix product in Eq 3.14 can be implemented by D “conv” filters

in popular deep learning libraries such as Tensorflow [61] and PyTorch [62]. This is also

used in Choi et al.’s work [7], where the authors name it as convolutional transform. This

decreases the difficulty to program a capsule network with the proposed routing, and also

accelerates the running speed because the “conv” operation in Tensorflow and Pytorch is

highly optimized.

35

Figure 3.4. Comparison between iterative routing algorithms and the proposed non-iterative
cluster routing algorithm.

3.6.1 Comparisons with related works

Although our weight matrix is implemented using convolutional filters, the proposed

capsule networks achieve non-linearity by the proposed cluster routing instead of the ReLU

activation as in CNNs. Table 3.1 lists the differences among different types of capsule

networks.

The proposed cluster routing may remind the readers of the group normalization [63]

which also utilizes the mean and standard deviation of a group. Group normalization di-

vides the output channels of a convolutional layer into several groups, and normalizes each

group with the group’s mean and standard deviation, which is similar to other normalization

techniques such as batch normalization [64], instance normalization [65] and layer normaliza-

tion [60]. However, in contrast to the proposed cluster routing, the group normalization does

not qualify as a routing algorithm, because it has no process similar to the following routing

process: i) compute the data-dependent routing weights based on the agreement between

36

Table 3.1. Comparison on different types of capsule networks.

Dynamic Routing [8] EM routing [1]

Inverted dot-

product attention

routing [41]

The proposed

cluster routing

Routing sequential iterative sequential iterative concurrent iterative non-iterative

Poses vector matrix matrix vector

Activations n/a (norm of poses) determined by EM n/a n/a

Non-linearity Squash function n/a n/a n/a

Normalization n/a n/a Layer Normalization Layer Normalization

Loss Function Margin loss Spread loss Cross Entropy Cross Entropy

votes; ii) compute the input of next-layer capsules as a weighted sum over the votes, where

the routing weight are data-dependent.

3.7 Experiments

We evaluate the proposed capsule networks on the following tasks: classification, dis-

entangled representation, generalization to images captured at novel viewpoints, and re-

construction from affine-transformed channels. We also visualize the routing weights ci,

verifying that they are data-dependent as they should be.

3.7.1 Classification

Network architectures The proposed capsule networks’ capacity is related to two

hyperparameters, the number of a capsule vector’s dimensions,D, and the number of a weight

cluster’s weight matrices, K. We design four variants of the proposed capsule networks by

varying D and K while fixing the number of layers as five and the number of channels at

each layer as four. The four variants are named M-variant1-4 as in Table 3.2. During the

experiments, we find that the proposed capsule networks also work well even if we use only

one capsule channel at each layer. When using a single channel, we apply N weight clusters

37

Table 3.2. Test error rate comparisons with capsule networks literature and the baseline
CNN. (·) denotes ensemble size.

Method
smallNORB Fashion-MNIST SVHN CIFAR-10

Error (%) Param Error (%) Param Error (%) Param Error (%) Param

Inverted dot-
product attention
routing [41]

- - - - - - 14.83 560K

Attention Routing [7] - - - - - - 11.39 9.6M

STAR-CAPS [42] - - - - - - 8.77 ≃318K
HitNet [66] - - 7.7 ≃8.2M 5.5 ≃8.2M 26.7 ≃8.2M
DCNet [67] 5.57 11.8M 5.36 11.8M 4.42 11.8M 17.37 11.8M

MS-Caps [68] - - 7.3 10.8M - - 24.3 11.2M

Dynamic [8] 2.7 8.2M - - 4.3 ≃1.8M 10.6 8.2M (7)

Nair et al. [69] - - 10.2 8.2M 8.94 8.2M 32.47 8.2M

FRMS [45] 2.6 1.2M 6.0 1.2M - - 15.6 1.2M

MaxMin [70] - - 7.93 ≃8.2M - - 24.08 ≃8.2M
KernelCaps [71] - - - - 8.6 ≃8.2M 22.3 ≃8.2M
FREM [45] 2.2 1.2M 6.2 1.2M - - 14.3 1.2M

EM-Routing [1] 1.8 310K - - - - 11.9 ≃460K
VB-Routing [46] 1.6 169K 5.2 172K 3.9 323K 11.2 ≃323k
Baseline CNN 3.76 3.30M 5.21 3.38M 3.30 3.38M 7.90 3.38M

S-variant1 (N4K4D13) 2.80±0.20 150K 5.19±0.15 152K 3.89±0.10 156K 13.33±0.78 156K

S-variant2 (N4K4D16) 2.58±0.32 217K 5.07±0.13 215K 3.77±0.11 219K 11.58±0.36 219K

S-variant3 (N8K8D16) 1.93±0.22 672K 4.79±0.13 686K 3.47±0.07 686K 8.58±0.15 686K

S-variant4 (N8K8D32) 1.57±0.13 2.53M 4.68±0.01 2.51M 3.37±0.03 2.55M 7.37±0.06 2.55M

M-variant1 (C4K5D6) 2.98±0.24 150K 5.17±0.07 146K 3.94±0.07 154K 12.16±0.30 154K

M-variant2 (C4K5D8) 3.09±0.19 246K 5.02±0.04 240K 3.63±0.11 252K 11.11±0.09 252K

M-variant3 (C4K8D16) 1.92±0.12 1.32M 4.84±0.07 1.30M 3.56±0.07 1.34M 8.55±0.12 1.34M

M-variant4 (C4K8D24) 1.95±0.12 2.87M 4.64±0.03 2.84M 3.48±0.14 2.89M 7.89±0.11 2.89M

on capsules of this single channel which produces N vote clusters for a next-layer capsule.

We also design four variants with a single channel at each layer, named S-variant1-4 as in

Table 3.2.

Every M-variant and S-variant has 5 capsule layers, with a stride of 2 at the second and

fourth layers. Each variant is trained for 300 epochs using cross-entropy loss with stochastic

gradient descent. The initial learning rate is 0.1 with step decay at every 100 epochs, and

the decay rate is 0.1. A batch size of 64 is used.

38

Datasets and data augmentation For each dataset, the hyperparameters for data

augmentation are tuned by a validation set containing one-fifth of the training images. The

models are then retrained with the full training set before testing. During the training stage,

we add brightness and contrast jitter to an image to perturb its brightness and contrast. For

a pixel at position x, its value f(x) can be perturbed by g(x) = αf(x) + β, where α and

β control contrast and brightness, respectively. In this context, adding random brightness

and contrast with a factor of 0.2 to an image means that α is in the range [0.8, 1.2] and β is

in the range [−0.2 1
Nx

∑
x f(x), 0.2

1
Nx

∑
x f(x)], where Nx is the total number of pixels and

1
Nx

∑
x f(x) is the mean value of all pixels.

Datasets and data augmentation For each dataset, the hyperparameters for data

augmentation are tuned by a validation set containing one-fifth of the training images. The

models are then retrained with the full training set before testing. During the training stage,

we add brightness and contrast jitter to an image to perturb its brightness and contrast. For

a pixel at position x, its value f(x) can be perturbed by g(x) = αf(x) + β, where α and

β control contrast and brightness, respectively. In this context, adding random brightness

and contrast with a factor of 0.2 to an image means that α is in the range [0.8, 1.2] and β is

in the range [−0.2 1
Nx

∑
x f(x), 0.2

1
Nx

∑
x f(x)], where Nx is the total number of pixels and

1
Nx

∑
x f(x) is the mean value of all pixels.

smallNORB [72] comprises 5 classes of 96 × 96 stereo images. The training and test sets

both have 24,300 images. Following the steps in [1], we downsample each image to 48× 48

pixels and normalize it to zero mean and unit variance. During training, we add random

brightness and contrast with a factor of 0.2, pad to 56× 56, randomly shift with a factor of

0.2, and randomly cropped to 32× 32. At test time, we take the center 32 × 32 crop.

Fashion-MNIST [73] comprises 10 classes of 28 × 28 clothing items. The training and test

sets have 60,000 and 10,000 images, respectively. During training, we add random brightness

39

and contrast with a factor of 0.2, pad to 36 × 36, take random 32 × 32 crop, and apply

random horizontal flips with probability 0.5. At test time, we pad the images to 32 × 32.

SVHN [74] comprises 10 digit classes of 32 × 32 real-world house numbers. We trained

on the core training set only, consisting of 73,257 images, and tested on the 26,032 images

of the test set. During training, we add random brightness and contrast with a factor of 0.2,

pad to 40 × 40, and take random 32 × 32 crop.

CIFAR-10 [75] comprises 10 classes of 32 × 32 real-world images. The training and test

sets have 50,000 and 10,000 images, respectively. During training, we add random brightness

and contrast with a factor of 0.2, pad to 40 × 40, take random 32 × 32 crop, and apply

random horizontal flips with probability 0.5.

ImageNet [76] comprises 1000 classes of real-world images. The training and validation

sets have 1,281,167 and 100,000 images, respectively. During training, we resize each image

to 256 × 256 pixels, take random 224 × 224 crop and apply random horizontal flips with

probability 0.5. During validation, we take the center 224 × 224 crop. Following the previous

Ahmed et al.’s work [42], the test set is not used.

Accuracy comparisons with the state-of-the-arts The comparisons between the

state-of-the-art capsule networks and the proposed M-variants and S-variants are listed in

Table 3.2. On the Fashion-MNIST and SVHN datasets, the proposed capsule networks

achieve better accuracy than other types of capsule networks with fewer parameters: i) on

Fashion-MNIST, M-variant1 achieves an error rate of 5.17% with 146K parameters, and

S-variant1 achieves an error rate of 5.19% with 152K parameters; ii) on SVHN, M-variant2

achieves an error rate of 3.63% with 252K parameters, and S-variant2 achieves an error

rate of 3.77% with 219K parameters. For the smallNORB dataset, S-variant4 achieves the

best error rate of 1.57% with a moderate size 2.53M. For the CIFAR-10 dataset, S-variant4

achieves the best error rate of 7.37% with a moderate size 2.55M; M-variant4 achieves an

error rate of 7.89% with a moderate size 2.89M.

40

Classification accuracy on ImageNet For the ImageNet dataset, we design a capsule

network variant based on the M-variant4. Similar to the STAR-CAPS variant designed

for ImageNet in [42], this variant starts with a 7×7 convolutional layer that outputs 64

channels, followed by a single bottleneck residual block with 256 output channels. Then the

M-variant4 is added after the residual block. The Top-1 validation accuracy on ImageNet

is 63.87% and the Top-5 accuracy is 88.98%, which outperforms the accuracy of 60.07% and

85.66% produced by the STAR-CAPS network [42].

Accuracy comparisons with the baseline CNNWe compare the variantsM-variant4

and S-variant4 with a baseline CNN. The baseline CNN is designed as the following: 5

ReLU convolutional layers, layer normalization after the ReLU activation, 256 filters at each

layer and 3.38M parameters in total. As shown in Table 3.2, the baseline CNN has more

parameters, and achieves an higher error rate compared to either of the M-variant4 and

S-variant4 networks.

Experiments on hyperparameters For the M-variants, we analyze the impact of the

hyperparameters K and D, while fixing the number of channels at each layer as four. As

shown in Table 3.3, there is a clear trend that both larger D and larger K lead to higher

accuracy on the CIFAR-10 dataset.

Ablation study In the ablation experiment, we fix the routing weight ci to a constant

value 1
C
, which means the weight becomes data-independent. As shown in Table 3.4, after re-

moving the data-dependence, the proposed capsule networks’ performance drop significantly,

which demonstrates the data-dependence is crucial.

3.7.2 Generalization to novel viewpoints

We validate the proposed capsule networks’ generalization ability to images captured

at novel viewpoints using the smallNORB dataset. Following the experiments in [1], we

train the proposed capsule networks on one-third of the training data containing azimuths

41

Table 3.3. Analysis of the hyperparameters K and D on the M-variants using the CIFAR-10
dataset. Test error rate and the number of parameters are listed for each setting.

D=6 D=8 D=16 D=24

K=5
12.16% 11.11% 9.06% 8.06%
154K 252K 872K 1.86M

K=8
11.29% 10.24% 8.55% 7.89%
226K 375K 1.34M 2.89M

Table 3.4. Ablation study on the proposed capsule network M-variants, where each variant’s
name is abbreviated, e.g., M-v1. We study the network’s classification accuracy when the
routing weights ci are data-dependent or data-independent. The CIFAR-10 dataset is used.

Data-dependent routing M-v1 M-v2 M-v3 M-v4

Yes 12.16 11.11 8.55 7.89
No 35.48 33.97 33.48 32.96

of (300, 320, 340, 0, 20, 40) and test on the test data containing azimuths from 60 to 280;

for elevation viewpoints, we train on the 3 smaller and test on the 6 larger elevations. The

validation set consists of images captured at the same viewpoints as in training. For the

networks to be compared, we measure their classification accuracy on images captured at

novel viewpoints (test set) after matching their classification accuracy on familiar viewpoints

(validation set). The following networks are compared in Table 3.5: the baseline CNN model

as in [1], EM-routing capsule networks [1], STAR-CAPS networks [42], and capsule networks

with the proposed cluster routing. The proposed capsule networks achieve the best accuracy

of 86.9% on novel azimuth viewpoints. On novel elevation viewpoints, the proposed capsule

networks achieve an accuracy of 86.6%, which is slightly lower than the EM-routing capsule

networks while outperforming the baseline CNN.

42

Table 3.5. A comparison of the smallNORB test error rate on images captured at novel
viewpoints when all models are matched on error rate for familiar viewpoints. We use the
same baseline CNN as in Hinton et al.’s work [1].

Azimuth (%) Elevation (%)
Model CNN EM STAR-CAPS Ours CNN EM STAR-CAPS Ours
#Params 4.2M 316K 318K 246K 4.2M 316K - 246K

Familiar 96.3 96.3 96.3 96.3 95.7 95.7 - 95.7
Novel 80.0 86.5 86.3 86.9 82.2 87.7 - 86.6

3.7.3 Disentangled representation

Capsule networks with dynamic routing [8] and capsule networks with attention routing

[7] produce capsules with disentangled representation — each dimension of a last-layer cap-

sule represents a digit’s property, such as thickness, skew, and width. The proposed capsule

networks also produce capsules with disentangled representation. Based on M-variant2, we

change the number of last-layer capsules to 10, such that each last-layer capsule represents a

class of the MNIST dataset. For an input image, we mask out all capsule vectors of the last

layer except the one representing the input image’s class. This capsule vector is input to a

decoder that reconstructs the input image. The decoder has the same architecture as in [8],

which consists of 3 fully connected layers with 512, 1024, and 784 (784 is the total number

of pixels of an MNIST image) neurons, respectively. As shown in Figure 3.5, the proposed

capsule networks produce capsules with disentangled representation.

3.7.4 Reconstruction from affine-transformed channels

We design a 3-layer capsule network for this task, where the second layer has a stride of

2. The output channels of the last layer are input into a reconstruction network. The recon-

struction network consists of one upsample layer and two convolutional layers with ReLU

and Sigmoid activation. The Sigmoid convolutional layer outputs the reconstructed image

in the range [0, 1]. We transform the last layer’s output channels by a transformation T and

43

(a) Attention routing (b) Dynamic routing (c) Proposed cluster routing

Figure 3.5. Dimension perturbations on capsules produced by capsule networks with atten-
tion routing [7] (left), dynamic routing [8] (middle), and the proposed clustering routing
(right), respectively. Each row shows the reconstructed images when one dimension of the
capsule representing the input digit is tweaked by intervals of 0.05 in the range [-0.25, 0.25].
All three capsule networks produce capsules with disentangled representation – each dimen-
sion of a certain capsule represents a digit’s property, such as thickness, skew, and width.

observe the image reconstructed from the transformed channels. Ideally, the reconstructed

image shall look like the input image transformed by the transformation T. The layer nor-

malization is not used due to the simplicity of the MNIST dataset. The network is trained

to perform both classification and reconstruction tasks.

The baseline CNN for this task has a similar architecture to the 3-layer capsule network.

Table 3.6 lists the architecture of the two networks in detail. A capsule network with dynamic

routing [8] (8.2M parameters) is also compared. For the dynamic routing network, we: i)

transform the output channels of the second last capsule layer because each channel of the last

layer contains only one capsule; ii) reconstruct the input image using three fully connected

layers as in [8].

As shown in Figure 3.6, the dynamic routing capsule network seems to be always trying

to reconstruct the original image. It produces low-quality reconstructions for large rotations

(rotation with a degree from 90◦ to 270◦), translations, and flips. The baseline CNN produces

fine reconstructions for vertical flips, translations, scaling with a factor larger than 1, and

gentle rotations 0◦, 45◦, 315◦ (-45◦), but fails on large rotations and horizontal flip. The

proposed capsule network produces fine reconstructions for almost all transformations except

44

P
ro
p
os
ed

B
as
el
in
e

C
N
N

D
y
n
am

ic
ro
u
ti
n
g

Figure 3.6. Reconstructed images from capsule channels output by the dynamic routing
capsule network [8] and the proposed capsule network, and reconstructed images from con-
volutional channels output by the baseline CNN. The first column shows groundtruth. The
other columns show reconstructions from capsule channels (or convolutional channels) ap-
plied with the following affine transformations: 2-9 col: rotation with 0, 45, 90, ..., 315
degrees; 10-11 col: horizontal and vertical flip; 12-14 col: shifting 1, 2, 4 pixels; 15-19 col:
scaling by a factor of 0.5, 0.75, 1.2, 1.5, 2.

scaling with a factor less than 1. In short, the proposed capsule networks succeed in more

transformation cases than the baseline CNN and the dynamic routing capsule network.

3.7.5 Analysis of routing weights

A data-dependent routing means that the routing weights ci are dependent on the input

image’s visual content, unlike the weights matrices that are the same for any input. However,

the reader may come up with a degenerate case where the proposed cluster routing may

produce data-independent routing weights: suppose the weight matrices of a weight cluster

are identical or very close to each other, the votes produced by this weight cluster will be

identical or very close; then the routing weight for this vote cluster’s centroid will always

be almost 1, regardless of the input image’s visual content. To examine if this degeneration

happens, we visualize the routing weights.

45

Table 3.6. Parameters of a proposed capsule network and a baseline CNN used for recon-
structing images from affine-transformed channels. Each filter of the baseline CNN is of size
3× 3.

Baseline CNN Capsule network (C4K4D32)

First layer 960 (96 filters) 5,120
Second layer 83,040 (96 filters) 18,944
Third layer 13,840 (16 filters) 18,944
Linear classifier 31,370 31,370
First recons layer 4,640 (32 filters) 4,640
Second recons layer 289 (1 filter) 289

Total 134,139 79,307

We decide the stride and padding at each capsule layer such that each channel of the last

layer contains only one capsule, then visualize routing weights for the last-layer capsules.

Figure 3.7 shows the routing weights for the four vote clusters that a last-layer capsule re-

ceives. It can be seen from Figure 3.7 that the proposed capsule networks produce routing

weights of the same distribution for images from the same class, but routing weights of dif-

ferent distributions for images from different classes. This demonstrates that the degenerate

case does not happen — the proposed capsule networks use data-dependent routing weights.

3.7.6 Application in medical image segmentation

The dataset adopted here is the lung nodule analysis 2016 dataset (LUNA16). It consists

of 885 labelled 3D CT scans of lung cancer screening patients collected from 7 academic

centers and 8 medical imaging companies. Each 3D scan has 100∼300 2D slices of size

512× 512.

The proposed cluster routing is used to replace the iterative routing algorithm in the

SegCaps model [77]. The group ensemble block proposed later in this dissertation is also

adopted along with cluster routing. All the models are trained with the same setting on 2

46

Figure 3.7. Visualization of routing weights used for last-layer capsules. Four bars show
routing weights for the four vote clusters that a last-layer capsule receives. The left figure
shows routing weights for the 8th dimension of the first channel’s capsule; the right figure
shows routing weights for the 2nd dimension of the second channel’s capsule. Each channel
of the last layer is designed to contain only a single capsule.

Table 3.7. Comparison of capsule network with iterative routing, cluster routing, and group
ensemble block on the LUNA16 lung segmentation dataset.

Method
Dice coefficient Precision
mean/median mean/median

SegCaps with iterative routing [77] 0.9924/0.9958 0.9865/0.9916
SegCaps with cluster routing 0.9944/0.9979 0.9905/0.9958
SegCaps with cluster routing & group ensemble block 0.9992/0.9996 0.9942/0.9994

A5000 16G-memory graphic cards: batch size of 6, Adam optimizer, constant learning rate

of 1e-5. As in Table 3.7, with using the proposed cluster routing, the dice score is increased

from 0.9924 to 0.9944 and from 0.9958 to 0.9979 in terms of mean and median; the precision

is increased from 0.9865 to 0.9905 and from 0.9916 to 0.9958 for mean and median metrics in

terms of mean and median. With plugging the proposed ensemble block, the dice coefficient

and precision are further improved.

47

3.8 Summary

We propose a non-iterative cluster routing algorithm for capsule networks. The proposed

cluster routing adopts vote clusters instead of individual votes, and the variance of a vote

cluster is used to compute its confidence in the information it encodes. A capsule vector is

computed from the vote clusters it receives, where the vote cluster with larger confidence

contributes more than other vote clusters. The experiments show that capsule networks with

the proposed cluster routing achieve competitive performance on tasks including classifica-

tion, disentangled representation, generalization to images obtained from novel viewpoints,

and reconstructing images from affine-transformed channels. In the future, it will be in-

teresting to explore whether some of the vote clusters can be pruned without affecting the

performance.

48

Chapter 4: Twin-Islands: an adversarial-robust and interpretable architecture

Borrowing part-whole relationships into neural networks provides a chance to access the

internal architecture of models. The recently proposed GLOM is an imaginary system that

parses the part-whole hierarchy of an object into the model’s internal embeddings. However,

the parsing process of this hierarchy remains obscure by the black-box autoencoders. In this

paper, we propose a new adversarial-robust and interpretable architecture for point cloud

processing, named Twin-Islands. The proposed Twin-Islands not only parses the object into

embedding islands, but also makes the parsing process transparent via encoding the real-

world part-whole relationships with some transformation weight islands. The transparent

parsing process makes the model intrinsically interpretable. Furthermore, the object is

classified through plurality voting where the votes are produced from the embedding islands

and transformation weight islands. The plurality voting rules out a number of incorrect votes,

in contrast to the traditional models that accumulate the perturbations in every object part.

The visualization experiment shows the correspondence between the real-world part-whole

relationships and the transformation weight islands. One of its applications is also provided

which prunes the transformation weights by the importance of corresponding part-whole

relationships. Adversarial perturbation and deletion experiments show its superiority over

CNN-based models.

4.1 Introduction

One goal of artificial intelligence is to create human-like agents. Current deep models

have achieved human-like accuracy in almost every computer vision task, even defeating

49

humans sometimes. However, the process of how deep models produce their outputs are still

very different from humans. If we want to have deep models entirely working like humans,

they need to have human-like processing on their input too, in addition to the human-like

accuracy.

Psychological researches have revealed that people parse an object into its part-whole

hierarchy through the viewpoint-invariant part-whole relationships [23, 22]. The recently

proposed GLOM [4] has attracted great attention since it demonstrates the feasibility to

parse the part-whole hierarchy of an object into the model’s internal embeddings. Specif-

ically, it uses embedding islands at the lower and higher layer to represent the part and

whole respectively, where every embedding island contains many identical embeddings and

spatially matches an object part. The embedding islands in consecutive layers are connected

by networks. Although the embedding islands clearly represent the parts and whole, the

relationships from parts to whole remain obscure in the black-box networks.

In this paper, we propose a new architecture Twin-Islands, where we introduce a novel

component called transformation weight islands to represent the relationship between parts

and whole, in addition to the embedding islands in GLOM. Specifically, the transformation

weight islands have the same shapes as the embedding islands of the lower layer of two

consecutive layers, and each transformation weight island is performed to the same shape

embedding island, producing votes for the entire object. The relationships from parts to the

whole are transparent and stored in every transformation weight island.

One definition of interpretability is “the degree to which a human can understand the

cause of a decision [27].” The proposed Twin-Islands is an intrinsically interpretable ar-

chitecture whose model internals (e.g., learned weights) have a clear meaning. In contrast,

most of the existing interpretability works for point cloud processing are conducted on non-

intrinsically interpretable deep models. These methods identify the relationship between the

input and output post hoc, such as finding which points contribute most to the classification

50

Figure 4.1. The embedding islands in GLOM that represent sub-parts, parts, and whole
object of a LEGO toy.

decision [78] or approximating the classification decisions with the simple linear classifier for

each point cloud [79].

Furthermore, the proposed Twin-Islands uses plurality voting to defend against adver-

sarial perturbations. The votes for the entire object are firstly produced by applying the

part-whole relationships encoded in transformation weight islands to the object parts en-

coded in embedding islands. The following plurality voting picks the top similar votes and

discards many incorrect votes that contains the perturbations. This is in contrast to most of

the existing methods that circumvent the perturbation accumulation inherent to the internal

architectures of deep models, but import auxiliary techniques such as denoising [80, 81] and

self-supervision [82].

The contributions are outlined as the following:

• The proposed Twin-Islands is the first work that explores the part-whole relation-

ship for intrinsic model interpretability in point cloud processing. The model becomes

intrinsically interpretable because every proposed transformation weight island repre-

sents a part-whole relationship while connecting two embedding islands for part and

whole.

51

• The proposed Twin-Islands is the first work that explores the part-whole relationship

for adversarial robustness in point cloud processing. We introduce plurality voting for

classification that picks the top similar votes for the object and discards the perturba-

tions in a larger number of incorrect votes.

• The visualization experiment shows a clear match between the real-world part-whole

relationships and the model internals, i.e., the transformation weight islands. One

application of the intrinsic interpretability is also provided which prunes transforma-

tion weights. The adversarial perturbation and point deletion experiments show that

the proposed Twin-Islands is more robust than recent CNNs-based and capsule-based

models.

4.2 Composing embeddings by quaternions

4.2.1 Check equivariance in capsule networks

In this section, the equivariance in capsule networks are checked. The short answer in

advance is no, which is one motivation why one goal of the proposed Twin-Islands model is

equivariance.

Equivariance with a transformation of an input image means that the transformation can

be transferred to the representation output. Whether the capsule networks are viewpoint

equivariant is checked by the following experiment. Denote a capsule network for image

classification as a mapping function f : X =⇒ where X is the input image and Y = f(X)

the prediction output. Denote P (X) as the pose matrix of the Y -th class capsule. A class

capsule is the same as an ordinary capsule but at the final layer of a capsule network. For

the MNIST dataset, there are 10 class capsules. Now, consider P as the pose estimate of

an object as in this matrix capsule network implementation and T being a 3D viewpoint

transformation due to position and orientation change of the camera. If the pose matrix is

52

invariant with respect to the transformation T , we expect P (TX) = P (X). A model that

works by viewpoint invariance discards the viewpoint information in the input image. In

contrast, if the pose matrix is equivariant with respect to the transformation T , we expect

P (TX) = TP (X). The equivariance and invariance are checked by,

| det
(
P (TX)− TP (X)

)
|

| det(P (X))|
, (4.1)

| det
(
P (TX)− P (X)

)
|

| det(P (X))|
, (4.2)

respectively in the experiment described in the following. If the capsule networks work by

equivariance, the former value should be small whereas the latter one should be large. If the

capsule networks work by invariance, the contrast situation happens that the former value

should be large and the latter one should be small.

In the experiment, a capsule network is trained on the MNIST dataset with augmented

data of affined-transformed images. While checking invariance and equivariance, the image

is transformed with novel affine transformations that are not used in the training stage. We

used the novel affine transformation because we want to check how the capsule networks

recognize images that they have never seen.

The average values of the first and second metrics are 0.965 and 0.111, respectively.

This indicates that the matrix capsule implementation [6] preserves invariance more than

equivariance.

4.2.2 Composing an embedding by unit quaternions

The part-whole relationship adopted by human beings is viewpoint-invariant, i.e., it

is the relative relationship between the part and whole that does not change when the

observer’s viewpoint changes. What is connected by the viewpoint-invariant is the viewpoint-

53

Figure 4.2. Illustration of why the viewpoint-invariant part-whole relationships generalize to
novel viewpoints.

equivariant representations for the part and whole. When the observer’s viewpoint changes,

the observer uses the same part-whole relationship, but the orientations of the part and

whole change according to the viewpoint change.

For a point cloud, its equivariant representation for each small patch can be computed

into local reference frames (LFRs) [83]. Existing works convert LRFs to the more compact

unit quaternion form, and build models based on the quaternion computation rules which

reserve the equivariance property in the model’s output. Following the equivariance works

for point clouds [83, 84], an embedding can be formed as a concatenation of many unit

quaternions for the purpose of equivariant representations for part and whole. Formally,

an embedding is a concatenation of K unit quaternions as, pi = [(pi)1, . . . , (pi)K], where

(pi)k = p1ik + p2iki+ p3ikj+ p4ikk is a unit quaternion, and i, j, k are the imaginary units.

54

4.3 The proposed Twin-Islands

Although GLOM [4] describes a general framework for leveraging part-whole relation-

ships, there are big gaps towards the proposed adversarial robustness and interpretability

targets. We detail the gaps and propose corresponding solutions in the following subsections.

Note that we remove the index j for the embedding of the last layer, since the last layer has

only one embedding that represents the entire object.

4.3.1 Transformation weight islands for interpretability

4.3.1.1 Transformation weight islands

GLOM uses embedding islands to represent the part-whole hierarchy, but how the parts

predict the whole is not interpretable because the autoencoder that predicts the whole from

its parts is a black box. Instead, we apply similar transformation weights to similar em-

beddings. Since the similar embeddings that form an island represent a part of an object,

their corresponding transformation weights that form a transformation weight island repre-

sent the part-whole relationship. Similar to the embedding islands in Eq 2.1, the proposed

transformation weight islands are formed as the following,

wi = wr, pi and pr in the same embedding island

wi ̸= wr, otherwise.

(4.3)

4.3.1.2 Illustrative propagation example

Here we first give a 1D example about how to form the embedding islands and trans-

formation weight islands through propagation, which is later extended to real-world point

clouds. Let a 1D object, e.g., the umbrella in Figure 4.4, contain two parts located in the

55

Figure 4.3. Illustration of model interpretability using the person object.

first and second half. Assume the 1D embeddings pi ∈ R and 1D transformation weights

wi ∈ R have roughly captured the two parts, but far from perfect, as the initial time in

Figure 4.4. Our goal is to let both the embeddings pi and the transformation weights wi be

the same for each object part, as the final step in Figure 4.4. In each propagation round,

the i-th embedding or the i-th transformation weight receives information from every other

embedding or transformation weight as follows,

pi := pi +
∑
r ̸=i

(∥xi − xr∥ · ∥pi − pr∥)−1 · pr, (4.4)

wi := wi +
∑
r ̸=i

(∥xi − xr∥ · ∥pi − pr∥·)−1 · wr, (4.5)

where ∥xi − xr∥ is the Euclidean distance between the i-th and r-th embedding (or trans-

formation weight) location and ∥pi − pr∥ is the Euclidean distance between the embedding

values. As in Figure 4.4, both the embeddings and transformation weights become stable

finally.

56

4.3.1.3 Transformation weight decomposition for clustering

The transformation weight islands in Eq 4.3 are formed when wi = wr. However, the

exact identity among transformation weights is hard to achieve for real-world data, and

a clustering process is required to divide the transformation weights into islands. Classic

clustering algorithms are not sufficient because they require the number of islands as a

hyperparameter, e.g., the value of K in K-Means. The proposed Twin-Islands uses an

approach that does not affect the propagation process and removes the prior knowledge for

the clustering process. Specifically, we introduce a spanning set {eh} for the transformation

weight space, where eh is one basis. Every transformation weight is decomposed with a

coefficient vector ai = [ai,1, . . . , ai,H] ∈ RH in the running time,

wi =
∑
h

ai,heh. (4.6)

Then two transformation weights wi and wj will be assigned into one cluster if hai,h =h aj,h.

For example, if a1 = [0.1, 0.75, 0.05, 0.1] and a2 = [0.05, 0.8, 0.05, 0.1], w1 and w2 belong to

the same cluster. This decomposition requires a hyperparameter of the size of the spanning

set, but the number of transformation weigh islands will be automatically determined for

different objects without any prior knowledge.

4.3.1.4 Propagation for point clouds

Given the transformation weight decomposition Eq 4.6, passing a transformation weight

is equivalently passing its coefficient vector. In each propagation round, a transformation

weight’s coefficient vector ai is updated with two contributions:

1. The coefficient vector aprev
i from the previous step.

57

Figure 4.4. A 1D illustrative example on propagation among pi and wi. The initial values
are generated as constant adding Gaussian noises. pi and wi are updated by Eqs 4.4 and 4.5,
respectively, and then, pi converges to two values, representing the shaft and panel; wi

converges to two values too, representing to the shaft-to-umbrella and panel-to-umbrella.

2. Neighbor coefficient vectors of the same layer,

anbrs
i =

1

N

∑
r ̸=i

sircirar, (4.7)

where sir is the similarity between embeddings pi and pr, and cir = ∥xi − xr∥−1 is the

closeness between the 3D positions of pi and pr.

The two contributions are summed and normalized as the updated coefficient vector,

ai = u(aprev
i + λa a

nbrs
i), (4.8)

where u(x) = x/∥x∥1 is the normalization function.

58

Figure 4.5. Illustration of the high-dimensional coincidence filtering.

Similar to Eqs 4.7 and 4.8, the embeddings pi are updated as the following,

msgr→i = sircirpr, (4.9)

pi = mean(pprev
i , λpmsg1→i, . . . ,msgN→i), (4.10)

where quaternion mean is used instead of the weighted-sum for maintaining equivariance.

The mean of a set of unit quaternions {ui} is mean({ui}) =u u⊤Mu [85], where M ∈ R4×4

is defined as M :=
∑

i uiu
⊤
i . The mean quaternion is the eigenvector of M corresponding to

the maximum eigenvalue and can be solved by SVD. This eigenvector-finding procedure is

automatically differentiable using the PyTorch library.

59

Figure 4.6. Illustration of why the high-dimensional coincidence filtering is robust to adver-
sarial attacks.

4.3.2 Prediction as consensus for adversarial robustness

4.3.2.1 Motivation

After the propagation, each embedding pi that represents a part is multiplied with a

transformation weight wi that represents a part-whole relationship, producing a vote vi for

the whole object. Each vote is a guess from an embedding of a part towards the embedding

of the whole object. Similar votes indicate that they are a good embedding representation

for the whole object. However, in the high-dimensional vote space, if a vote contains large

noise information, it is hard to be similar to any others. Therefore, only votes that are

similar to others, will be used for classifying the input object.

The design philosophy of most of the existing adversarial attacks is to add a small per-

turbation that misleads the classifier to yield a wrong result. Although the perturbation is

small, its impact will be accumulated when making the final decision due to the weighted-

sum fashion classification process. In the proposed Twin-Islands, a small perturbation cannot

60

significantly change the similarity between votes. Then we propose a plurality voting pro-

cess by a clipping function that removes those noisy votes, thereby, perturbations cannot be

accumulated over all votes.

Similar votes
form a cluster

Votes vi from
embeddings of parts

Consensus mi Classifier

Embedding q of
the whole object

Clipping

Clipped
Consensus mi'

Mean of votes

Category
prediction y

0 0

: Impact of adversarial perturbation

Figure 4.7. Predict the embedding q and category y of an object, using votes vi towards q.
q is computed as the mean of the votes it receives. The i-th consensus value mi is computed
as the similarity between vi and q. The perturbation can only affect the large consensus
values, excluding the small consensus values from noisy votes.

4.3.2.2 Implementation of motivation

The implementation of the above motivation is shown in Figure 4.7. Given the quater-

nions composition for each embedding, the vote vi for the embedding of the object is com-

puted by transforming each quaternion of pi by quaternion multiplication ◦,

(vi)k = (pi)k ◦ (wi)k, (4.11)

where vi, pi, wi are all composed of K quaternions and the subscript k retrieves the k-th

quaternion. The embedding q of the object is computed as the mean of the votes,

(q)k = mean
(
(v1)k, . . . , (vN)k

)
, (4.12)

61

Algorithm 2 The propagation and classification process.

Input: Embeddings pi of parts of the object.
Output: Embedding q of the object, category prediction y.

1: Initialize the coefficient vectors ai {Eqs. 4.15 & 4.16}
2: for t = 1, · · · , T iterations do
3: Update contributions: ar to ai, pr to pi {Eqs. 4.7 & 4.9}
4: Update ai and pi using contributions {Eqs. 4.8 & 4.10}
5: Update transformation weights wi using ai {Eq. 4.6}
6: Update votes vi = wipi {Eq. 4.11}
7: Update embedding q as mean of {vi} {Eq. 4.12}
8: Update clipped consensus vector m′ {Eq. 4.13}
9: Update classification decision y based on m′

10: end for
11: return q, y

A consensus vector m = [m1, . . . ,mN] is used to describe the similarity between the votes

v1, . . . ,vN and the embedding q of the object. The i-th consensus value mi is measures the

similarity between vi and q as,

mi =
1

K

∑
k

(
1− d((vi)k, (q)k

)
. (4.13)

where the function d(a,b) = 2 cos−1(|⟨a,b⟩|) computes the distance between two unit quater-

nions a,b.

A small consensus value mi indicates the i-th vote is different from other votes and tends

to be noise. The small consensus values mi are clipped to 0 as the following,

m′
i =

mi, mi ≥ τ

0, otherwise.

(4.14)

This threshold τ is linearly increased from 0 to 0.5 in the first 10 epochs in programming.

The clipped consensus vector contains information from the plural votes that agree with

each other, and is input to a linear classifier for predicting the object category.

62

4.3.3 Implementation details

Algorithm 2 shows how to form the last layer from its previous layer. Forming other

layers is similar to this process.

4.3.3.1 Coefficient vector initialization

The coefficient vector ai should be viewpoint-invariant to pass the viewpoint-equivariance

to the last-layer embedding q. To this end, the coefficient vectors are initialized using

viewpoint-invariant canonical point positions,

x′
ik = mean−1

(
(p1)k, . . . , (pN)k

)
◦ xi, (4.15)

ai = ψ([x′
i1, · · · ,x′

iK]), (4.16)

where xi is the point position that embedding pi locates, and ψ(·) is implemented as an

MLP.

4.3.3.2 Network architecture

For generating the input, we first compute the LRFs that equivariantly describe every

point’s neighborhood. The LRFs extraction algorithm is chosen as the FLARE algorithm

[83] following the work [30]. Every LRF is then converted to a quaternion and replicated K

times to form the input of Twin-Islands. We stack two layers to let the first layer extract

parts of the object and let the second layer capture the entire object. Every embedding in

Twin-Islands is composed of K = 128 quaternions. The number of embeddings can be seen

in the visualization experiments. Two propagation (T = 2) are performed for embeddings

and transformation weights after the initialization. Both hyperparameters λa and λp used

63

Method Params NR/NR NR/AR

PointNet 3.5M 88.45 12.47
PointNet++ 1.5M 89.82 21.35
DGCNN 2.8M 92.90 29.74
KDTreeNet 3.6M 86.20 8.49
Point2Seq 1.8M 92.60 10.53
Spherical CNNs 0.5M - 43.92
PRIN 1.5M 80.13 68.85
PPF-FoldNet 3.5M 70.16 70.16
QENet 0.4M 74.43 74.07
REQNN 2.9M 83.03 83.03

Proposed 0.3M 77.40 77.40

Table 4.1. Classification evaluation on the ModelNet40 dataset. NR/NR and NR/AR are
train/test settings, where NR means not rotated and AR means arbitrarily rotated.

in the propagation process are set to 0.3 in the first propagation step and 1 in the second

step. The hyperparameter H is set to 64.

4.4 Experiments

4.4.1 Experiment settings

The model is trained using classification supervision on the ModelNet40 dataset. The

ModelNet40 dataset consists of 40 common objects in point cloud format. Its official split

has 9,843 point clouds for training and 2,468 for testing. Since the proposed Twin-Islands

is designed to be equivariant, it is trained with each point clout’s default orientation. The

model is trained with 150 epochs, a batch size of 24, Adam optimizer, and a constant learning

rate of 5e-3. The code is written in PyTorch, and runs on two A5000 GPUs.

64

Method avg chair bed sofa toilet monitor

Mean LRF 0.35 0.32 0.36 0.34 0.41 0.34

PCA 0.67 0.69 0.70 0.67 0.68 0.61

PointNetLK 0.38 0.43 0.31 0.40 0.40 0.31

IT-Net 0.19 0.10 0.22 0.17 0.20 0.28

QENet 0.09 0.08 0.10 0.08 0.11 0.08

REQNN 0.16 0.13 0.17 0.14 0.19 0.16

Proposed 0.04 0.04 0.03 0.03 0.05 0.04

Table 4.2. Relative angular error (RAE) of orientation estimation on rotational asymmetry
objects.

4.4.2 Equivariance evaluation

4.4.2.1 3D shape classification

This task evaluates Twin-Islands’s classification ability for objects placed at novel orien-

tations. More clearly, the training point clouds are not rotated (NR), and the testing point

clouds are arbitrarily rotated (AR). For a thorough comparison, the testing accuracy on not

rotated (NR) orientations is provided as well. The following state-of-the-art methods are

compared in Table 4.1: PointNet [86], PointNet++ [87], DGCNN [88], KDTreeNet [89],

Point2Seq [90], Spherical CNNs [91], PRIN [92], PPF-FoldNet [93], QENet [30], REQNN

[84]. As in Table 4.1, most methods perform well on the familiar not rotated (NR) ob-

jects, but fail to recognize novel arbitrarily rotated objects (AR) that are not covered in the

training set. In contrast, the proposed model achieves a decent accuracy of 77.40% for novel

orientations, with the fewest parameters of 0.3M.

4.4.2.2 Orientation estimation

This task quantitatively evaluates how accurately the last-layer embedding q captures

the input’s orientation. Note that the orientation information is not learned with orienta-

tion supervision, but passed from the equivariant quaternion input through the quaternion

65

Figure 4.8. Illustration of estimating the object’s orientation using quatenions-composed
embeddings.

arithmetic. We test five rotational asymmetry objects, including chair, bed, sofa, toilet, and

monitor. Two point clouds in canonical and rotated orientation θ are input into the network,

resulting in two embeddings q and qrot. The predicted orientation θ̂ is the relative transform

between the k̂-th quaternion of q and qrot, with k̂ being the quaternion that has the largest

consensus over all votes. The metric is the relative angle in degree (RAE), computed by

d(θ, θ̂)/π. The reported RAE is averaged on five random rotations for each test point cloud.

The following methods are compared: a naive averaging of the LRFs (Mean LRF), the

principal axis alignment (PCA), PointNetLK [94], IT-Net [95], QENet [30], and RE-

QNN [84]. PointNetLK and IT-Net are 3D networks that iteratively align two given point

sets. Methods invariant to rotations such as PointNet and PointNet++, cannot be used

to estimate the orientation and are not evaluated. It can be seen from Table 4.2 that the

proposed model achieves the best average RAE of 0.04.

66

Figure 4.9. Visualization of Twin-Islands processing selected point clouds. The second and
third columns are embedding islands and transformation weight islands, representing the
parts and the part-whole relationships, respectively. The last column is one embedding
representing the whole object, which is equivariant with respect to the inputs.

4.4.3 Interpretability analysis

4.4.3.1 Visualization

This experiment shows that the part-whole relationships are successfully learned into the

model’s transformation weights. For visualizing part-whole relationships, the visualization

paints points that mainly use the same weight basis with the same color, as in Figure 4.9.

The embeddings are visualized with the help of K-Means clustering. Figure 4.9 shows some

representative results. The overall results for 40 categories are shown in the Appendix.

67

Object No pruning
Relationships pruning ratio

75% 50% 25%

bathtub 82.0 48.0 72.0 80.0

bed 94.0 86.0 88.0 94.0

chair 97.0 86.0 98.0 97.0

desk 87.2 83.72 90.7 89.5

dresser 96.5 58.14 95.4 95.4

avg. 92.4 75.4 90.5 92.4

Table 4.3. Classification accuracy on five objects after pruning the less frequently used trans-
formation weight bases.

4.4.3.2 Part-whole relationship pruning

This experiment shows that some transformation weight bases can be pruned if they do

not represent any important part-whole relationship. The importance of a transformation

weight basis is counted by its frequency in the training set. In Table 4.3, we show the

classification accuracy on the first five classes of ModelNet10, with removing the 25%, 50%,

75% less frequently used bases. The removal is achieved practically by setting corresponding

coefficients ai,h to 0. It is important to note that the pruned network is directly evaluated

without any fine-tune or retraining. Table 4.3 shows that the network achieves the same

accuracy with pruning 25% basis. With a large 50% pruning ratio, the accuracy drops

slightly from 92.4% to 90.5%. With an aggressive 75% pruning ratio, the accuracy drops

drastically from 92.4% to 75.4%.

4.4.4 Adversarial robustness evaluation

This experiment compares Twin-Islands with the recently proposed CNN-based REQNN

model and the capsule-based QENet model. Both models leverage quaternions for equivari-

ance for point clouds as Twin-Islands. Since the model is designed to be equivariant, the

attacks are performed on objects placed at novel orientations that are not covered in the

training data.

68

Figure 4.10. Classification accuracy after FGSM attacks (a) and PGD attacks (b). Attacks
are performed on objects placed at novel orientations that are not covered in the training
set.

4.4.4.1 Robustness to adversarial perturbations

Our adversarial attacks adopt the popular fast gradient sign method (FGSM) [2] and

projected gradient descent attack (PGD) [96]. Since the models are not performed well

on some categories even before the attack, we perform the attacks on the categories where

all three models REQNN, QENet, and Twin-Islands obtain more than 95% accuracy before

the attack. As the results in Figure 4.10, the proposed Twin-Islands is more robust to both

FGSM and PGD attacks than the CNN-based REQNN and capsule-based QENet.

4.4.4.2 Robustness to point deletion

This experiment evaluates the model’s classification accuracy after removing random

small 12-point-patches from the point cloud. This point removal on QENeT and Twin-

Islands is achieved by simply deleting these points from the point cloud. For REQNN which

always needs 1024 points as its input, we fill the removed patches with their neighbor points.

In Table 4.4, the proposed Twin-Islands is more robust against point deletion than the

CNN-based REQNN and capsule-based QENet.

69

Method No deletion
Point deletion ratio

5% 10% 15% 25% 50%

QENet 74.07 75.07 66.38 57.70 40.91 13.01

REQNN 83.03 74.84 65.56 56.98 40.40 12.85

Twin-Islands 77.40 76.29 74.75 72.61 67.51 42.34

Table 4.4. Classification accuracy evaluation (%) after randomly removing part of the input
point cloud.

Figure 4.11. The consensus value distribution computed from the first object of airplane and
guitar category.

4.4.4.3 Analysis on clipping operation

Figure 4.11 shows the consensus values (Eq 4.13) produced from the first testing point

cloud of the airplane and guitar class. It can be seen that there is a clear gap between

the large and small consensus values. Figure 4.12 shows that there is a improvement on

adversarial robustness after clipping the small consensus values.

4.5 Related works

4.5.1 Capsule networks and GLOM

Capsule networks [25, 5] aim to learn the part-whole hierarchy too, but they have a

significant difference from GLOM. While capsule networks use multiple capsules to represent

each of the possible object part types at a local patch, GLOM uses one embedding to

represent the object part no matter what is this object part type by regressing the embeddings

70

Figure 4.12. Classification accuracy on the airplane category, w. and w/o. clipping.

into islands. The recent work [36] is an implementation of GLOM for interpreting image

classification, but the equivariance is not achieved and the robustness to adversarial attack

is not explored. GlomFace transferred the part-whole hierarchy in the extreme occlusion

problem in face landmarks alignment [37].

4.5.2 Network interpretation and adversarial attacks

Most of the interpretation methods explore the interaction between the input and output

(or a higher layer’s activation maps), including finding images or image patches that maxi-

mize the targets neurons’ activation [16, 17, 18], displaying the loss function’s gradient w.r.t

the input image [19, 20], and fitting the network’s prediction on every single image using a

simpler model, e.g., a linear classifier [21]. Methods for interpreting point cloud processing

mostly borrow generally the same ideas for images [80, 81, 82]. This paper explores intrinsic

interpretability through part-whole relationships.

Adversarial attacks can be divided into white-box attacks [2, 96] and black-box attacks

[97]. Generally speaking, white-box attacks have more threats than black-box attacks be-

cause the white-box attacks have the access to the model architecture and weights. Therefore,

we evaluate the proposed model with the popular white-box attacks FGSM and PGD.

71

4.6 Conclusion and Future Work

This paper proposes a new architecture, named Twin-Islands, for point clouds. Visualiza-

tion and pruning experiments demonstrate its interpretability, and adversarial perturbation

and deletion experiments show its robustness. In the future, there is a broad space to ex-

plore. One direction is to reproduce similar results for images. But this is difficult because

3D coordinate needs to be inferred from 2D images instead of directly given as in point

clouds, the random background needs to be excluded from objects, and significant object

deformation needs to be properly handled. One direction is to further utilize interpretability,

such as dissembling and assembling two or more models. One direction is to quantitatively

measure the extent of interpretability via measuring how accurately the islands segment the

object.

72

Chapter 5: Group ensemble block: subspace diversity improves coarse-to-fine

retrieval

5.1 Introduction

Image retrieval systems find related database images for a user-input query sorted by their

relevance scores. The relevance score quantifies how closely a database image matches the

query, usually computed by their cosine similarity in the embedding space. Previous image

retrieval methods usually improve the reliability of relevance scores through three approaches.

The first approach utilizes class-level discrimination, mapping images of the same class to

nearby locations in the embedding space [98, 99, 100, 101]. The second approach utilizes

instance-level discrimination, leveraging self-supervised learning that pulls the embeddings

of the same image’s different augmentations together and pushes the embeddings of different

images apart [102, 103, 104, 105]. The third approach is to take an ensemble average of

several models trained under various conditions [106, 107, 108, 109].

Since the focused aspects of the three approaches are not mutually exclusive, it may be

possible to combine the benefits of each approach. For example, the recent method [110]

has combined class-level and instance-level discrimination, resulting in a performance gain.

However, utilizing ensemble learning with other approaches meets practical challenges from

the perspective of computation and memory costs. To support this claim, we summarize the

cost of each approach as the following:

• The class-level discrimination usually requires the current training image and at least

one image from the same or different category to maximize or minimize their embedding

73

similarity. The cost varies with the specific methods, and an inexpensive method

Scalable Neighborhood Component Analysis (SNCA) [101] adds little computation

and memory cost to the base network.

• The instance-level discrimination usually requires a siamese network that contains two

identical or very similar subnetworks during training. The cost is about 2× during

training and 1× (no additional cost) after the model is trained.

• The ensemble methods usually use N entire large deep networks, with each network

learning a sub-embedding. The cost is N× for both training and testing stages.

As in the summary, the ensemble approach is expensive primarily due to the cost of

ensembling several entire networks. Therefore, we must answer the following question: in-

stead of ensembling many independent networks, is it possible to execute ensemble learning

in a low-cost module, so that it can be used with many other methods? We propose that the

random subspace technique has the potential of solving this question. Instead of model differ-

ences, diversity can also come from the differences between many random sampled subspaces

of the data or feature representation, because the diversity between subspaces guarantees the

diversity between their processed results. The effectiveness of random subspaces has already

been shown for traditional models such as naive Bayes and decision trees [111, 112].

However, in existing literature, the usage of random subspaces has not been well explored

for deep neural networks from the perspectives of cost and reusability, limiting its applications

such as the image retrieval task. To fill this gap, we tailor the usage of random subspaces for

deep neural networks from these two perspectives. First, in terms of cost, many computations

can be executed in parallel, such as subspace sampling and subspace processing. With this

parallelization, the usage of subspace sampling does not slow down the training process, even

though it takes numerous iterations. We also empirically show that the parallel subspace

processing can be implemented as a linear transformation for low computation cost, and its

74

weights can be shared across the processing of every subspace for low memory cost. Second, in

terms of reusability, it is possible to integrate all necessary steps into one small block. Thus,

this block will be flexible similar to batch normalization [64] and dropout [113] techniques

in that all can be easily deployed elsewhere. For example, we replaced the ResNet50’s last

linear layer with the proposed ensemble block, which increased the CIFAR-10 classification

accuracy from 94.82% to 95.76%.

We implement the random subspace method proposed above in the proposed group en-

semble block which sufficiently utilizes the subspaces’ diversity via the masking and merging

processes. The masking process perturbs each subspace which further increases the diversity

and performance. The merging strategy leverages the advantages of both averaging and

concatenating: processed outcomes of subspaces inside the same group are averaged to in-

crease the number of utilized subspaces, and sub-embeddings averaged from each group are

concatenated to increase the diversity inside the concatenated embedding vector.

The proposed group ensemble block is evaluated on the coarse-to-fine image retrieval

task where the training and testing settings have an apparent gap. The coarse-to-fine image

retrieval task aims to retrieve images from the same fine-grained category (e.g., maple trees,

oak trees, or palm trees) as the query after the model is trained with only coarse-level

annotation (e.g., trees) available. In other words, the model needs to learn fine-grained

classes with only coarse-level labels.

The contributions of our work are outlined as the following:

• The cost of random-subspace-based ensemble learning for deep models is significantly

decreased by the proposed group ensemble block. In addition, one can effortlessly

replace a linear layer in deep models with the proposed ensemble block, so that its

applications are not limited to image retrieval. As an illustration, we provide an

example of CIFAR-10 classification using ResNet50, where the accuracy increases from

94.82% to 95.76%.

75

• The proposed group ensemble block sufficiently utilizes the subspaces’ diversity via

masking and merging processes. The masking process perturbs each subspace which

further increases both diversity and performance. The merging strategy combines and

leverages the advantages of both averaging and concatenating strategies.

• Using the proposed group ensemble block, we achieve the state-of-the-art accuracy for

the coarse-to-fine image retrieval problem on the CIFAR-100 and ImageNet datasets.

Our quantitative evaluation shows that different subspaces’ outcomes are both low-

correlated and complementary to each other.

5.2 Related works

5.2.1 Coarse-to-fine problems

This subsection reviews coarse-to-fine literature where the testing-time labels are finer

than those available at training time. [114] and [101] both study coarse-to-fine image classifi-

cation and suppose that the models are trained with coarse-level labels, but the training set’s

fine-grained labels are available as ground truth at testing time. [114] trains the AlexNet

on the coarse classes in the training stage. While testing, they use the output of the FC7

layer (second-to-last layer) as the embedding and then predict the fine-grained category with

a kNN classifier. [101] proposes SNCA, which replaces the Softmax classifier of deep con-

volutional neural networks with a non-parametric classifier. The non-parametric classifier

classifies an image into a specific class based on its nearest neighbor images. [115] stud-

ies the task of coarse-to-fine few-shot image classification. After training the model with

coarse-level labels, they annotate one or a few fine-grained labels to support fine-grained

classification. [110] studies coarse-to-fine image retrieval, combining class-level discrimina-

tion and instance-level discrimination. They adopt SNCA for class-level discrimination and

the self-supervised learning method BYOL [104] for instance-level discrimination.

76

Many existing methods, e.g., [114, 101], can be adapted for the coarse-to-fine image

retrieval problem though they were not created to do so. Actually, any network’s neuron

activations can be utilized as the embedding representation for the coarse-to-fine image

retrieval task. However, only one existing publication [110] clearly and specifically targets

the coarse-to-fine image retrieval problem to the authors’ best knowledge. The authors of

[110] combine class-level and instance-level discrimination. We further combine the ensemble

learning approach by proposing a low-complexity group ensemble block.

5.2.2 Ensemble methods for image retrieval

Ensemble learning combines information from multiple sources to obtain better general-

ization performance. It includes many techniques such as bagging, boosting, and random

subspaces. Before the deep learning era, ensemble learning had been well researched with

traditional machine learning methods such as naive Bayes, decision trees, and support vector

machines. However, unlike these traditional methods, deep models have much more complex

architectures and many more parameters that are usually trained with much more data.

Then utilizing ensemble learning with deep models may incur significant computation and

memory increases. In the following, we name a few such works in the area of image retrieval.

These methods divide the embedding into multiple sub-embeddings and produce each sub-

embedding individually to achieve diversity among various sub-embeddings. [108] clusters

the training set into several subsets and learns a model for each subset. [109] randomly groups

classes into different superclasses and trains several models with these superclass labels. [116]

shares many lower layers across the ensembles, but each ensemble has 15 non-shared layers,

which is still expensive.

redThe random subspace method produces diversity among subspaces sampled from the

data or feature representation. Random subspaces potentially require much lower compu-

tation and memory costs compared to many other ensemble learning methods, because the

77

model parts before the sampling operation can be shared across different subspaces. How-

ever, this approach has not been well explored for deep neural networks in terms of cost and

reusability. We fill this gap by the proposed group ensemble block.

5.2.3 Class-level and instance-level discrimination for image retrieval

The class-level discrimination approach forces images of the same class to be mapped

to nearby locations in the embedding space. Many methods of this approach minimize (or

maximize) the similarity between a randomly sampled image pair if they are from different

(or the same) classes [98, 99]. All these methods can also be extended to triplet [117, 118],

and n-tuple [100]. The neighborhood component analysis methods [119, 101, 120] achieve

class-level discrimination by classifying an image based on its distance to each image in the

training set.

The instance-level discrimination is achieved through self-supervised learning (SSL) that

maximizes the similarity between the embedding representation of an image’s random aug-

mented views. SSL methods usually use a siamese network’s two branches to process an

image’s two augmentations and do not require any annotation. For the SSL methods, it is

crucial to avoid the degenerate solution, where the representation of every image collapses

to the same constant. To achieve that, both SimCLR [102] and MoCo [103] utilize negative

pairs — repulsing different images (negative pairs) while attracting the same image’s various

augmentations (positive pairs). BYOL [104] practically shows that negative pairs are not

necessary. Instead, they use a large batch size and a momentum encoder for one of the

siamese network’s two branches. SimSiam [105] further demonstrates that negative pairs,

large batch size, and the momentum encoder are unnecessary, but a ‘stop-grad’ operation

applied on one branch is crucial. We adopt the SimSiam method for SSL as it needs less

computation and memory cost than other methods.

78

Figure 5.1. Illustration of the proposed low-complexity group ensemble block, and the work-
flow of combining class-level discrimination, instance discrimination, and ensemble block
together for the coarse-to-fine image retrieval. In practice, we use more subspaces than this
illustration, e.g., 1024.

5.3 Proposed method

The task of coarse-to-fine image retrieval aims to find relevant database images for a

given query image. Its difference from the usual image retrieval task is that: while the

training set only provides coarse-level annotations (e.g., trees), the retrieval images that are

counted correct must be from the same fine-grained category (e.g., maple trees, oak trees, or

palm trees) as the query. The database images are retrieved and ordered according to their

semantic relevance to the query. The i-th database image xi’s relevance score to the query

x is defined as the following,

Rel(x,xi) =
vTvi

vvi

+ log
(p(yx = yxi

)

1− p(yx = yxi
)

)
, (5.1)

where v ∈ RDemb and vi ∈ RDemb are x and xi’s embeddings output by the same model

trained with coarse-level labels, yx and yxi
are x and xi’s coarse-level annotations. In Eq 5.1,

the first term computes the cosine similarity in the embedding space; the second term utilizes

the probability p(yx = yxi
) that the query is from the same coarse-level category as the i-th

79

database image. Note that the second term only uses coarse-level labels about the training

set and does not require any fine-grained label.

In this section, we first illustrate the proposed group ensemble block, then describe one

of its applications, i.e., aggregating the instance-level discrimination method SimSiam [105]

and class-level discrimination method SNCA [101] for the coarse-to-fine image retrieval.

5.3.1 Proposed group ensemble block

blackDenote the network’s input image as x, and denote the network’s many layers

before the group ensemble block as f(·). In our experiments, the layers f(·) include the

ResNet50 backbone and the projector’s two linear layers. The group ensemble block’s output

is utilized as the image’s embedding for image retrieval. Our group ensemble block, as shown

in Figure 5.1, consists of three steps as the following:

Table 5.1. Major symbols for formulating and processing random subspaces in Section 5.3.1.

x input image of the network

f(·) the network parts before the group ensemble block, including the
ResNet50 backbone and the projector’s two linear layers

t input of the group ensemble block, t = f(x) ∈ RDin

N number of sampled subspaces inside the group ensemble block
L length of θn, sn, bn, mn, and L≪ Din

θn the indexing vector that samples the n-th subspace from t
sn the n-th sub-input sampled with θn

bn mask for sn, consists of elements between [0, 1] (Eq 5.2)
mn the n-th masked sub-input, mn = sn ◦ bn
g(·) the parallel transformation applied to each masked sub-input mn

a) Subspace sampling: blackDenote the ensemble block’s input as t = f(x) ∈ RDin .

N indexing vectors θn ∈ Z+
L are randomly generated to define the N sampled subspaces.

Each element of θn takes a value from {1, 2, · · · , Din}, and the N indexing vectors are never

updated once generated. Then N sub-inputs sn ∈ RL are sampled from input t by taking

the respective elements of t assigned by the indexing vectors θn.

80

blackEach sub-input sn is further multiplied element-wise with a mask bn ∈ RL to pro-

duce the masked sub-inputmn = sn◦bn, which further increases the diversity. In our default

strategy, the masks bn are initialized as the following,

bn =
1

1− τ
max(0, U(0, 1)L − τ), (5.2)

where U(·, ·)L is a uniformly sampled vector of length L, max(0, ·) and τ are used to control

the number of additional zeros added to bn (the default value for τ in our experiments is

0.1), and 1
1−τ

normalizes the max(·) function’s output to the range [0, 1].

blackb) Parallel transformation: This step captures the distinctness among subspaces.

As the number of sampled sub-inputs N grows to a large number, the parallel process

g(·) independently applied to each masked sub-input mn should be as simple as possible;

otherwise, the memory and computation cost quickly become unaffordable. Therefore, we

choose process g(·) as a linear transformation, sharing the learnable transformation weights

for all sub-inputs.

c) Ensemble all subspaces’ outcome: The transformation outcome of all sub-inputs can

be ensembled by either averaging or concatenating. Assume the embedding v after ensem-

ble is fixed to a short length Demb for an efficient retrieval process; the dimension of each

sub-input’s transformation outcome will then be Demb and
Demb

N
for the averaging and con-

catenating strategy, respectively. Apparently, concatenating requires a much lower memory

and computation cost than averaging. However, it is not feasible to simply adopt concate-

nating. Since the embedding’s dimension Demb is usually limited to a small number, Demb

N

goes to a small number or even less than 1 when N goes to a large number. A reasonable

way to reduce memory and computation cost will be dividing the N sub-inputs into
√
N

groups, averaging inside every group, and concatenating between groups.

81

When the lower layers f(·) are complex enough, e.g., ResNet50, we assume that f(x)

preserves almost all the semantic information of x. Then building the ensemble process

upon f(x) is nearly equivalent to building it upon x while significantly mitigating the com-

putation and memory burden. While building the group ensemble block upon f(x), the

backward-propagation propagates the “diversity” between sub-inputs backward so that the

lower layers will be updated with diverse gradients. Formally, the lower layers’ parameters

Wf are updated with diverse gradients as the following,

Wf := Wf +
∑
n

∂L

∂mn

∂mn

∂Wf

, (5.3)

where both ∂L
∂mn

and ∂mn

∂Wf
are different among various subspaces because the masked sub-

inputs mn are different from each other.

5.3.2 Combining group ensemble block with class-level and instance-level discrimination

Due to the low cost of the proposed group ensemble block as analyzed in Section 5.4.2,

it is possible to combine all three approaches, including class-level discrimination, instance-

level discrimination, and ensemble learning. How the three approaches are connected is

shown in Figure 5.1: the SSL method SimSiam (the instance-level discrimination) adds a

siamese architecture to the model for stage I; the proposed group ensemble block (the en-

semble learning approach) is placed at the top of the projector; the SNCA (the class-level

discrimination) classifies images based on the group ensemble block’s output. This combi-

nation requires three steps for the coarse-to-fine retrieval problem, as shown in Figure 5.1.

The first step trains the backbone, projector, and predictor with the siamese architecture.

The second step generates an embedding vector for every training image. The third step

retrieves relevant images for a given query by comparing embeddings’ similarities. Note that

82

the class-level and instance-level methods (SimSiam and SNCA) are only used in the first

step.

For utilizing the class-level discrimination, we adopt the Scalable Neighborhood Com-

ponent Analysis (SNCA) method [101]. Suppose we are given a dataset of n examples

x1,x2, · · · ,xn with corresponding coarse-level labels cy1, cy2, · · · , cyn. Example xi selects

example xj as its neighbor with probability pij, based on their cosine similarity cij in the

embedding space,

pij =
exp(cij/σ)∑
k ̸=i exp(cik/σ)

, pii = 0, (5.4)

where pii = 0 indicates that each example cannot select itself as its neighbor. The parameter

σ, set as 0.05 in practice [101], is used to scale the cosine similarity. Let Ωi = {j|cyj = cyi}

denote the indices of training examples that share the same coarse-level label with xi, and

define pi as the probability of xi being correctly predicted. The objective is to minimize the

expected negative log-likelihood over the dataset,

pi =
∑
j∈Ωi

pij, Lclass = −
1

n

n∑
i=1

log(pi). (5.5)

For utilizing instance-level discrimination, we adopt the SimSiam method [105]. The

SimSiam method first randomly augments an image x to T views x1,x2, · · · ,xT . Then

each augmented view is processed with the same backbone, projector, and predictor, where

the projector and predictor output zi and ui, respectively. SimSiam maximizes the cosine

similarity between every view pair (xi, xj) through minimizing the loss term Lij,

Lij = −(
ui

∥ui∥
zj

∥zj∥
+

uj

∥uj∥
zi

∥zi∥
). (5.6)

83

Note that the gradients of Lij w.r.t. zi and zj are set to 0, and named as the stop gradient

[102]. Summing Lij over every view pair gives the instance-level discrimination loss Linstance,

Linstance =
1

T (T − 1)

∑
1≤i ̸=j≤T

Lij. (5.7)

The total loss is a sum over the class-level loss and the instance-level loss,

L = Lclass + Linstance. (5.8)

5.4 Performance and cost analysis

Denote rn = [r1n, r
2
n, · · · , rKn] ∈ RK as a query’s largest relevance score to K fine-grained

categories output by the n-th sub-input, where the superscript represents an element of the

vector rn. We further normalize it (||rn|| = 1) so that it represents the probability of which

category the current retrieval will be from. Let r ∈ RK be the average of the N sub-inputs’

prediction: r = 1
N

∑
rn. Let Ey(r) further be the mean of r conditioned on fine-grained

class y, which means Ey(r) is the mean of all r generated by images from fine-grained class

y.

Theorem 1 Denote the query and retrieval image’s fine-grained category as Y and Ŷ , re-

spectively. All the relevance vectors r that correctly retrieve a y-th fine-grained class image

form a set Sy = {r: argmaxd r
d = y}. Let ϕy be the Euclidean distance from Ey(r) to ∂Sy,

the boundary of Sy. The upper error bound that a retrieval image is not from the same

fine-grained category as the query is given by the following,

Pr(Ŷ ̸=y|Y=y)≤γy + ηy/N

ϕ2
y

=
2(γy + ηy/N)(K − 1)2

(KEy(r)− 1)2
, (5.9)

84

where

ηy =
1

N

K∑
d=1

N∑
n=1

V ar(rdn|Y = y) (5.10)

is the variance of a single sub-input’s relevance score prediction, and

γy =
1

N2

K∑
d=1

∑
n̸=m

Cov(rdn, r
d
m|Y = y). (5.11)

is the covariance between different sub-inputs’ relevance score predictions.

This proof follows the same idea as in the proof of Section 7.2 of [121]. The fact that

||r − Ey(r)|| < ϕy leads to argmaxd r
d = y implies that P (||r − Ey(r)|| ≥ ϕy|Y = y) gives

the upper error bound,

Pr(Ŷ ̸= y|Y = y) ≤ Pr(||r − Ey(r)|| ≥ ϕy |Y = y) (5.12)

Using Chebyshev’s inequality, we have

Pr(||r − Ey(r)|| ≥ ϕy |Y = y) ≤ 1

ϕ2
y

V ar(r|Y = y), (5.13)

and V ar(r|Y = y) can be computed by the variance-covariance matrix as the following,

V ar(r|Y = y) = V ar(
1

N

N∑
n=1

rn|Y = y)

=
1

N2

K∑
d=1

[
N∑

n=1

V ar(rd
n|Y = y)

+
∑
n̸=m

Cov(rdn, r
d
m|Y = y)]

(5.14)

85

Combining Eqs. 5.10, 5.11, 5.13, 5.14 gives

Pr(Ŷ ̸= y|Y = y) ≤ γy + ηy/N

ϕ2
y

. (5.15)

γy+ηy/N

ϕ2
y

= 2(γy+ηy/N)(K−1)2

(KEy(r)−1)2
uses the same rules as in the proof of Section 7.2 of [121].

5.4.1 Performance analysis

The error upper bound shown in Theorem 1 is positively related to ηy/N and negatively

related to the covariance γy. We assume that when N goes to a large number, ηy/N should

be small. In this subsection, we evaluate the effect of two factors, N and γy.

Figure 5.2 shows the effect of embedding size N using dataset CIFAR-100. As shown in

the figure, the accuracy on two tasks that are detailed in Section 5.5.1.1, increases as the

ensemble size N increases and saturates around N = 1024.

Figure 5.2. Performance analysis on the ensemble size N using dataset CIFAR-100.

For the covariance, we compare two models that use and do not use the group ensemble

block, named ensemble model and baseline model. Note that even if there is no ensemble

block in the baseline model, the embedding can still be cut into several parts so that we

can analyze the covariance between these parts. An insignificant difference between the two

86

models’ evaluated covariance will indicate that the ensemble block is not working. Otherwise,

the ensemble model’s covariance being significantly lower than the baseline model indicates

a good ensemble block. We use the following setting to have a fair comparison between the

two models: i) for the ensemble model, the group ensemble block cuts its input into several

(here, we use four for convenient comparison) evenly distributed and non-overlapping sub-

inputs without using inside-group averaging; ii) for the baseline model, its embedding is also

cut into four parts for computing covariance. As shown in Table 5.2, the ensemble model

produces a consistently lower correlation than the baseline model on fine-grained classes.

Table 5.2. The covariance comparison between the baseline and ensemble model. The co-
variance is computed on the first 9 fine-grained classes of CIFAR-100.

Method y = 1 y = 2 y = 3 y = 4 y = 5 y = 6 y = 7 y = 8 y = 9

Baseline 0.244 0.077 0.222 0.210 0.114 0.167 0.215 0.261 0.150

Ensemble 0.223 0.072 0.161 0.159 0.804 0.159 0.181 0.149 0.118

5.4.2 Cost analysis

With choosing g(·) as a linear transformation, the group ensemble block needs far fewer

parameters and computations than the lower layers, making it low-complexity. We show

this by setting N,Din, Dens to be large enough, e.g., 1024, 4096, and 1024. Note that the

dimension of a sub-input and its output are L = Din√
N

and Dens√
N
.

In terms of parameters, the group ensemble block contains N×L parameters for stor-

ing the indexing vectors θn, N×L parameters for storing the masks bn, and (L + 1)×Dens√
N

parameters for storing the transformation weights. Then the total parameter amount is

1024× 4096√
1024

+ 1024× 4096√
1024

+ (4096√
1024

+ 1)× 1024√
1024

≈ 0.27M , far less than the lower layers’

parameter amount, e.g., the f(·)’s ∼ 30M parameters.

In terms of computation, the group ensemble block requires N×L FLOPs for masking the

sub-inputs and N×2×L×Dens√
N

FLOPs for the linear transformation. The total computation

87

amount is 1024× 4096√
1024

+ 1024×2× 4096√
1024
× 1024√

1024
≈ 8.52M FLOPs, far less than the lower

layers’ computation amount, e.g., the ResNet50’s 3.87G FLOPs.

In comparison, the traditional ensemble approaches usually need to ensemble N entire

networks for N ensembles, which needs N×30M parameters and N×3.87G FLOPs. These

numbers quickly grow beyond control when the ensemble size N goes to a large number.

5.5 Experiment

5.5.1 Experiment settings

5.5.1.1 Evaluation tasks

Coarse-to-fine image retrieval finds the top relevant fine-grained images for a given

query using Eq. 5.1. We report the mean average precision (mAP), which averages the

average precision (AP) over all queries. The AP for a single query is computed as the

following [122],

AP =

∑n
k=1 P (k) · rel(k)

R
, (5.16)

where R denotes the number of relevant images for the query, n denotes the number of

images retrieved by the model, P (k) denotes the precision of top-k retrieval results, and

rel(k) is a binary indicator function equal to 1 when the kth retrieved result is relevant to

the query and 0 otherwise.

On-the-fly kNN classification assumes that coarse-level labels are available during

training, and fine-grained labels are available as ground truth during testing. This task eval-

uates whether the model has really learned fine-grained categories from coarse-level labels.

For a test image x, denote its k nearest database images and corresponding fine-grained

labels as x1, · · · ,xk and y1, · · · , yk respectively. The probability that x is classified into

88

Figure 5.3. The top-10 retrievals on datasets CIFAR-100 (upper) and ImageNet-C16 (lower),
using (proposed) and not using (baseline) the proposed group ensemble block. For this
coarse-to-fine retrieval task, while the model is trained with only coarse-level annotations
available, the retrievals counted as correct must be from the same fine-grained category as
the query. The right side of the figure shows the retrievals, where Green and red boxes mark
the correct and incorrect retrievals. 89

fine-grained category y is computed as the following,

p(yx = y) ∝
k∑

i=1

1(yi = y) exp(
1

σ

vTvi

vvi

), (5.17)

where the indicator function 1(·) takes 1 when the i-th nearest database image falls in the

y-th fine-grained category otherwise takes 0. The probability p(yx=y) is normalized so that∑
y p(yx=y)=1. The hyper-parameter k is set to 20, which is cross-validated from {10, 15,

20, 25, 30}. The top-1 accuracy is reported for the on-the-fly kNN classification.

5.5.1.2 Datasets

The CIFAR-100 dataset [123] contains 20 coarse classes and each coarse class has 5 fine-

grained classes. For example, the coarse class trees has the fine-grained classes maple trees,

oak trees, palm trees, pine trees, and willow trees.

For the ImageNet dataset [124], we use the Robustness library [125] that subsumes fine-

grained classes into coarse classes. We use its geirhos 16 that provides 16 coarse classes,

with each containing 2 fine-grained classes. For example, the coarse class boat consists of

fine-grained classes canoe and fireboat. For convenience, we name this subset ImageNet-C16.

5.5.1.3 Training details

Our models use the ResNet-50 [126] as the backbone. The projector contains three 2048,

2048, and 256 length linear layers, and the predictor contains two 2048 and 256 length linear

layers. The models are trained with the SGD optimizer and cosine learning rate for 600

epochs. The initial learning rate is 0.1, with a 5-epoch warmup [127]. The weight decay is

5e-4 for CIFAR-100 and 1e-4 for ImageNet-16. The batch size is 128 for CIFAR-100 and 64

for ImageNet-C16. We use a single NVIDIA P100 GPU with 16G memory.

90

Table 5.3. Comparison with the state-of-the-art on CIFAR-100, ImageNet-C16, and
ImageNet-1K. The top-1 accuracy (%) is reported for the kNN classification, and the mAP
(%) is reported for the coarse-to-fine image retrieval.

Method

Class

discrim.

Instance

discrim.
Ensemble #Params FLOPs

CIFAR-100 ImageNet-C16 ImageNet-1K

kNN mAP kNN mAP kNN mAP

SNCA [101] ✓ - - 24.0M 3.8669G 72.2 35.9 72.6 43.2 55.4 31.8

ClusterFit [130] ✓ - - 54.2M 3.9273G 72.5 23.0 73.3 32.4 59.5 12.7

Grafit [110] ✓ ✓ - 32.9M 3.8848G 77.7 55.7 80.8 65.6 69.1 42.9

Basline ✓ ✓ - 32.4M 3.8837G 77.7 55.7 80.9 65.8 69.1 43.0

Baseline w. group ensemble ✓ ✓ ✓ 32.0M 3.8840G 78.7 60.4 83.2 69.2 71.9 45.3

The data augmentation consists of AutoAugment [128], random crop, and random erasing

[129]. Due to the large amount of GPU memory required by SimSiam, we use four augmented

views T=4 for CIFAR-100 and two augmented views T=2 for ImageNet-C16.

5.5.2 Experiment results and comparisons

In the following, we list all methods that we evaluate. All the methods below adopt the

ResNet-50 architecture for a fair comparison.

SNCA [101] solely uses the class-level discrimination as explained in Section 5.3.2.

Grafit [110] uses both class-level and instance-level discrimination. The instance-level

discrimination is achieved through the self-supervised method BYOL [104].

ClusterFit [130] first uses the k-means algorithm to cluster the training images’ feature

vectors that are output by a pretrained model. It then trains a model from scratch, with the

k-means’ cluster assignments as pseudo-labels. It’s shown [130] that a model trained with

these pseudo labels produces a more transferable feature representation than models trained

with human-annotated labels.

Our baseline uses class-level and instance-level discrimination, similar to Grafit. The

difference is that Grafit uses BYOL for SSL while our baseline uses SimSiam. Using SimSiam

91

Figure 5.4. t-SNE representations of embeddings from the CIFAR-100’s fish coarse category.
The fish category consists of five fine-grained categories — aquarium fish, flatfish, ray fish,
shark fish, and trout fish.

achieves comparable accuracy to BYOL while requiring significantly less GPU memory. For

example, Grafit and our baseline require ∼35G and ∼15G GPU memory, respectively, using

the CIFAR-100 dataset with a batch size of 128 and four augmented views (T=4). We deem

our baseline to be a more feasible version of Grafit.

The proposed ensemble model utilizes the proposed group ensemble block, class-level

discrimination, and instance-level discrimination. It replaces the last layer of the baseline

projector with a group ensemble block.

As shown in Table 5.3, the ensemble model achieves the best performance for every eval-

uation task. For the kNN classification, the group ensemble block pushes the best accuracy

from 77.7% to 78.7% on CIFAR-100, from 80.9% to 83.2% on ImageNet-C16, and from 69.1%

to 71.9% on ImageNet-1K. For the coarse-to-fine image retrieval task, the group ensemble

block pushes the best accuracy from 55.7% to 60.4% on CIFAR-100, from 65.8% to 69.2%

on ImageNet-C16, and from 43.0% to 45.3% on ImageNet-1K.

92

Figure 5.3 shows the top-10 retrieval images on CIFAR-100 and ImageNet-C16 when

using (proposed) and not using (baseline) the ensemble block. It can be seen that using the

ensemble block produces consistently better retrieval results. Figure 5.4 presents the t-SNE

visualization for CIFAR-100’s coarse category fish using the group ensemble block.

5.5.3 More analyses and ablation studies

black Cost of the group ensemble block Table 5.4 lists the memory and FLOPs cost

of the proposed group ensemble block with varying ensemble sizes. It can be seen that the

ensemble block consumes 524.32K parameters and 1.31M FLOPs even with a large ensemble

size of 16384, which is negligible compared to the baseline model’s 32.40M parameters and

3.88G FLOPs. In terms of inference speed, using an NVIDIA RTX A5000 graphic card, the

baseline model takes 0.0688s for a batch size of 64, and the model with ensemble size of 1024

and 16384 take 0.0694s and 0.0699s respectively, showing that using the group ensemble

block adds almost no latency.

black

Table 5.4. Cost of the group ensemble block using varying numbers of ensemble size N , with
Din = 2048 and Demb = 256.

Cost 64 256 484 1024 4096 16384 baseline

#Params 40.99K 67.60K 91.21K 131.59K 262.28K 524.32K 32.40M

FLOPs 1.06M 1.08M 1.09M 1.11M 1.18M 1.31M 3.88G

black Effect of masking strategy This ablation study investigates different masking

strategies, in addition to the default strategy as in Eq.5.2. The “no masking” strategy

removes the masking step, which is equivalent to using a mask with all elements being 1.

This experiment also evaluates the performance of generating each element of the mask using

the Gaussian distribution N (µ, σ2) or the uniform distribution U(a, b). For the parameter τ

that sets mask elements smaller than it to zero, we evaluate with τ = 0, τ = 0.1, τ = 0.25.

93

It can be seen from Table 5.5 that using either Gaussian or uniform masking is better than

no masking. For the parameter τ , it is better to set it larger than 0, e.g., 0.1 or 0.25. The

Gaussian and uniform masking strategies produce about the same accuracy.

Table 5.5. Ablation study on masking strategy using ImageNet-C16.

No masking
Threshold

N (0.5, 0.252) U(0, 1)
kNN mAP kNN mAP kNN mAP

82.38 68.34
τ = 0 82.69 68.95 83.15 69.02
τ = 0.1 82.56 69.27 83.19 69.24
τ = 0.25 83.19 69.34 82.69 68.95

black Effect of sampling strategy This ablation study investigates different sampling

strategies, in addition to the “random sampling” as in Figure 5.1. The “no sampling”

strategy does not apply any sampling strategy, and each sub-input sn is the same as the

input t, which can also be understood as “complete sampling” that samples the entire input.

The “ordered sampling” strategy samples each sub-input sequentially, i.e., the first draws

the first L elements, the second draws the next L elements, and so forth. When all elements

are exhausted, samples will be drawn from the beginning again. As shown in Table 5.6, the

“no sampling” strategy does not produce an apparent accuracy increase compared to the

baseline. The “ordered sampling” strategy is much worse than the baseline, because these

ensemble groups significantly overlap due to the sequential sampling. With this overlap, the

outputs of
√
N groups are not diverse from each other, and the embedding of length Demb

is composed of
√
N highly correlated sub-embeddings of a short length Demb√

N
. Consequently,

the “random sampling” strategy outperforms the others by a large margin.

Effect of various transformation processes This ablation study investigates different

transformation processes, in addition to the default linear transformation. As shown in

Table 5.7, using a three-layer MLP with 256 hidden neurons is slightly worse than the default

linear transformation while utilizing more parameters and computations. The potential

94

Table 5.6. Ablation study on sampling strategy, where the default strategy uses random
sampling as in Figure 5.1.

Sampling strategy
CIFAR-100 ImageNet-C16

kNN mAP kNN mAP

Baseline 77.72 55.70 80.88 65.84
No sampling 77.95 56.06 80.83 65.99
Random sampling 78.65 60.35 83.19 69.24
Ordered sampling 69.98 46.87 73.56 53.56

reason may be that the MLP overfits the coarse-level annotation and cannot generalize well

to the fine-level image retrieval.

Table 5.7. Ablation study on transformation process. The MLP has three layers with 256
hidden neurons.

Sampling strategy
CIFAR-100 ImageNet-C16

kNN mAP kNN mAP

Linear 78.65 60.35 83.19 69.24
MLP 78.53 60.08 82.94 68.70

Effect of embedding vector length Figure 5.5 shows the effect of embedding vector

length using dataset CIFAR-100. The accuracy increases as the embedding vector length

increases and is finally saturated around the length of 1024. Note that a small embedding

length is favorable in practice for smaller storage size and faster retrieval speed.

Same or distinct transformation weights This ablation study investigates whether

using distinct transformation weights for various sub-inputs would improve the model’s per-

formance. As the evaluated result shown in Table 5.8, using distinct weights for distinct

sub-inputs does not produce higher accuracy. This may be because distinct weights are

overfitted to the coarse-level annotations and cannot generalize well to the fine-grained cat-

egories.

95

Figure 5.5. Effect of embedding length on the coarse-to-fine retrieval and kNN classification
using CIFAR-100.

Table 5.8. Ablation study on using same or distinct transformation weights for various sub-
inputs.

Same transformation
CIFAR-100 ImageNet-C16

kNN mAP kNN mAP

Yes 78.65 60.35 83.19 69.24
No 77.69 58.50 82.13 68.26

Effect of number of group ensemble blocks In Figure 5.1, the last linear layer of

the baseline projector is removed and the group ensemble block is added. To check if more

ensemble blocks will produce higher accuracy, we remove all the baseline projector’s three

linear layers, and add three ensemble blocks. As shown in Table 5.9, using three ensemble

blocks does not improve the accuracy.

Table 5.9. Effect of the number of group ensemble blocks.

Number of
ensemble blocks

CIFAR-100 ImageNet-C16
kNN mAP kNN mAP

1 78.65 60.35 83.19 69.24
3 77.08 57.01 81.88 68.33

96

Complementariness analysis To measure complementariness between sub-inputs, we

observe the model’s performance when we ensemble the outcome of various sub-inputs. To

compare the ensemble model with the baseline model, we use the same setting (use four sub-

inputs in total) as in the covariance measurement of Section 5.4.1. As shown in Table 5.10,

when solely using one sub-input’s outcome, the ensemble model produces a lower accuracy

than the baseline. This is because each sub-input’s outcome only sees part of the ensemble

block’s input; but its counterpart of the baseline sees the entire input. When combining

two or more sub-inputs’ outcomes, the ensemble model produces a higher accuracy than the

baseline. Noticeably, when combining all four sub-inputs’ outcomes, the ensemble model

produces an mAP of 0.5961, which is much higher than the baseline’s 0.5503.

Table 5.10. Mean average precision (mAP) on CIFAR-100, when leveraging the transforma-
tion outcomes of 1, 2, 3, and 4 sub-inputs. 4 sub-inputs are used in total.

Sub-input 1 Sub-input 2 Sub-input 3 Sub-input 4 Baseline Ensemble

✓ - - - 0.5329 0.5192
- ✓ - - 0.5303 0.5162
- - ✓ - 0.5181 0.5077
- - - ✓ 0.5213 0.5199
✓ ✓ - - 0.5473 0.5677
- - ✓ ✓ 0.5355 0.5628
✓ ✓ ✓ - 0.5486 0.5847
- ✓ ✓ ✓ 0.5453 0.5822
✓ ✓ ✓ ✓ 0.5503 0.5961

5.5.4 Group ensemble block in other tasks

This experiment shows that it is easy to deploy the proposed group ensemble block in

other tasks and improve the model’s performance. We provide an example of CIFAR-10

classification using ResNet50 [126]. The usage of the proposed group ensemble block is

effortless: we replace the last linear layer of ResNet50 with a group ensemble block that

has the same input and output dimension as the replaced linear layer. This ensemble block

97

Figure 5.6. CIFAR-10 training and testing accuracy by ResNet50 and its variant where its
last linear layer is replaced with a group ensemble block.

contains 10 groups as CIFAR-10 contains 10 classes. Each group has 10 subspaces, consistent

with our other experiments where the number of groups is equal to the number of subspaces

in each group. This modification results in a negligible increase to the number of parameters

and computations compared to the network’s other parts, as analyzed previously in Section

IV-B and V-C. The training time is also not increased after the modification: using one

NVIDIA P100 graphics card, both models take 4.5 hours for 200 epochs with a batch size of

256. The accuracy on the test set is noticeably increased from 94.82% to 95.76%, averaged

over 5 runs. The model also converges significantly faster in the first 50 epochs, as shown in

Figure 5.6.

98

5.6 Conclusion

We study the special task of coarse-to-fine image retrieval, where the retrieval images

are encouraged to be from a category that is finer than the annotations. We propose a low-

complexity group ensemble block that leverages numerous subspaces of the block’s input,

and make it possible to combine ensemble learning with other approaches such as class-level

discrimination and instance-level discrimination. Quantitative evaluation proves that various

subspaces’ process outcomes are low-correlated and complementary to each other. State-of-

the-art accuracy on CIFAR-100, ImageNet-C16, and ImageNet-1K shows the effectiveness of

the proposed group ensemble block. Future applications of the proposed method could be

extending the proposed group ensemble block to other tasks.

99

Chapter 6: Conclusion and future directions

6.1 Conclusion

• In the first chapter, I start with the limitation of the nowadays popular CNNs, serving

as a background of capsule networks and GLOM. Then I introduce how the general

ideas of capsule networks and GLOM potentially solve the problems of CNNs, followed

by the weaknesses of current capsule networks and GLOM. The first chapter ends with

a summary of the contributions of this dissertation.

• The second chapter gives a brief introduction to capsule networks and GLOM, which

details the general ideas introduced in the first chapter.

• The third chapter illustrates the proposed non-iterative cluster routing for capsule

networks, which accelerates capsule networks and facilitates the usage of segmentation

on large-size images.

• The fourth chapter illustrates the proposed Twin-Islands model, which achieves many

desired properties of GLOM such as equivariance, model interpretability, and adver-

sarial robustness for point clouds.

• The fifth chapter illustrates the proposed group ensemble block, which extends the

usage of capsule networks and GLOM. It is used with the CNNs-based self-supervised

learning method, and applied to tasks such as image classification and retrieval.

• The last chapter concludes this dissertation and also gives future directions.

100

6.2 Future directions

Capsule networks and GLOM are still quickly developing at this time. There are many

promising future directions as the following:

• For part-whole hierarchy, once what the intermediate layers have learned become clear,

it may be possible to have further applications, e.g., prune and assemble models. No-

ticeably, it may be possible to do all basic vision tasks simultaneously using the same

part-whole hierarchy, including classification, detection, and segmentation, even with

capturing the rich attributes of every object part such as color and shape.

• For model interpretability, it should be possible to quantitatively measure to what

extent the model is interpretable. Generally, this can be measured by comparing the

transformation weight and embedding islands with the segmentation ground truth.

• For the adversarial attacks, it would be interesting to theoretically prove how much

the high-dimensional coincidence filtering technique improves compared to other types

of neural networks, e.g., CNNs.

• In terms of rapid GLOM development in the community, it will be very helpful to

explore an efficient propagation strategy and also find a robust baseline GLOM model

that achieves a decent accuracy on the well-recognized benchmark dataset, e.g., Ima-

geNet.

101

References

[1] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing.

In International conference on learning representations, 2018.

[2] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015.

[3] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and

Anh Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses

of familiar objects. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4845–4854, 2019.

[4] Geoffrey Hinton. How to represent part-whole hierarchies in a neural network. arXiv

preprint arXiv:2102.12627, 2021.

[5] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between cap-

sules. In NIPS, 2017.

[6] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing.

In International conference on learning representations, 2018.

102

[7] Jaewoong Choi, Hyun Seo, Suii Im, and Myungjoo Kang. Attention routing between

capsules. In Proceedings of the IEEE International Conference on Computer Vision

Workshops, pages 0–0, 2019.

[8] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between cap-

sules. In Advances in neural information processing systems, pages 3856–3866, 2017.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[11] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. In Advances in neural information

processing systems, pages 91–99, 2015.

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In

Proceedings of the IEEE international conference on computer vision, pages 2961–2969,

2017.

[14] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip

code recognition. Neural computation, 1(4):541–551, 1989.

103

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[16] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

[17] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Learning deep features for discriminative localization. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2921–2929, 2016.

[18] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via

extremal perturbations and smooth masks. In Proceedings of the IEEE/CVF interna-

tional conference on computer vision, pages 2950–2958, 2019.

[19] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. In In Workshop

at International Conference on Learning Representations. Citeseer, 2014.

[20] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and

Stan Sclaroff. Top-down neural attention by excitation backprop. International Journal

of Computer Vision, 126(10):1084–1102, 2018.

[21] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”

explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, pages 1135–1144,

2016.

[22] Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object files:

Object-specific integration of information. Cognitive psychology, 24(2):175–219, 1992.

104

[23] Geoffrey Hinton. Some demonstrations of the effects of structural descriptions in mental

imagery. Cognitive Science, 3(3):231–250, 1979.

[24] Geoffrey Hinton. Taking inverse graphics seriously, 2013.

[25] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders.

In International conference on artificial neural networks, pages 44–51. Springer, 2011.

[26] Geoffrey Hinton, Alex Krizhevsky, Navdeep Jaitly, Tijmen Tieleman, and Yichuan

Tang. Does the brain do inverse graphics. In Brain and Cognitive Sciences Fall Col-

loquium, volume 2, 2012.

[27] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.

Artificial intelligence, 267:1–38, 2019.

[28] Karim Ahmed and Lorenzo Torresani. Star-caps: Capsule networks with straight-

through attentive routing. Advances in neural information processing systems, 32:9101–

9110, 2019.

[29] Zhihao Zhao and Samuel Cheng. Capsule networks with non-iterative cluster routing.

Neural Networks, 143:690–697, 2021.

[30] Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti, Leonidas

Guibas, and Federico Tombari. Quaternion equivariant capsule networks for 3d point

clouds. In European Conference on Computer Vision, pages 1–19. Springer, 2020.

[31] Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara Sabour, Soroosh Yazdani, Ge-

offrey Hinton, and Kwang Moo Yi. Canonical capsules: Unsupervised capsules in

canonical pose. arXiv preprint arXiv:2012.04718, 2020.

[32] Jindong Gu, Baoyuan Wu, and Volker Tresp. Effective and efficient vote attack on

capsule networks. In International Conference on Learning Representations, 2021.

105

[33] Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski. Group equivariant capsule

networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,

Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing Systems

2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 8858–8867, 2018.

[34] Sai Raam Venkataraman, S. Balasubramanian, and R. Raghunatha Sarma. Building

deep equivariant capsule networks. In International Conference on Learning Repre-

sentations, 2020.

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for

view synthesis. In ECCV, 2020.

[36] Nicola Garau, Niccolò Bisagno, Zeno Sambugaro, and Nicola Conci. Interpretable

part-whole hierarchies and conceptual-semantic relationships in neural networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 13689–13698, 2022.

[37] Congcong Zhu, Xintong Wan, Shaorong Xie, Xiaoqiang Li, and Yinzheng Gu.

Occlusion-robust face alignment using a viewpoint-invariant hierarchical network ar-

chitecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 11112–11121, 2022.

[38] Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rota-

tion and a translation suffice: Fooling cnns with simple transformations. arXiv preprint

arXiv:1712.02779, 1(2):3, 2017.

[39] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and

Anh Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses

106

of familiar objects. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4845–4854, 2019.

[40] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders.

In International conference on artificial neural networks, pages 44–51. Springer, 2011.

[41] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhut-

dinov. Capsules with inverted dot-product attention routing. arXiv preprint

arXiv:2002.04764, 2020.

[42] Karim Ahmed, Lorenzo Torresani, and Advances. Star-caps: Capsule networks with

straight-through attentive routing. In in Neural Information Processing Systems, pages

9101–9110, 2019.

[43] Hongyang Li, Xiaoyang Guo, Bo DaiWanli Ouyang, and Xiaogang Wang. Neural

network encapsulation. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 252–267, 2018.

[44] Zhenhua Chen and David Crandall. Generalized capsule networks with trainable rout-

ing procedure. arXiv preprint arXiv:1808.08692, 2018.

[45] Suofei Zhang, Quan Zhou, and Xiaofu Wu. Fast dynamic routing based on weighted

kernel density estimation. In International Symposium on Artificial Intelligence and

Robotics, pages 301–309. Springer, 2018.

[46] Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos D Kollias. Capsule routing

via variational bayes. In AAAI, pages 3749–3756, 2020.

[47] Dilin Wang and Qiang Liu. An optimization view on dynamic routing between capsules.

2018.

107

[48] Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski. Group equivariant capsule

networks. In Advances in Neural Information Processing Systems, pages 8844–8853,

2018.

[49] Adrien Deliege, Anthony Cioppa, and Marc Van Droogenbroeck. Hitnet: a neural

network with capsules embedded in a hit-or-miss layer, extended with hybrid data

augmentation and ghost capsules. arXiv preprint arXiv:1806.06519, 2018.

[50] Ayush Jaiswal, Wael AbdAlmageed, Yue Wu, and Premkumar Natarajan. Capsulegan:

Generative adversarial capsule network. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 0–0, 2018.

[51] Raeid Saqur and Sal Vivona. Capsgan: Using dynamic routing for generative ad-

versarial networks. In Science and Information Conference, pages 511–525. Springer,

2019.

[52] Yash Upadhyay and Paul Schrater. Generative adversarial network architectures for

image synthesis using capsule networks. arXiv preprint arXiv:1806.03796, 2018.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[54] Rodney LaLonde and Ulas Bagci. Capsules for object segmentation. arXiv preprint

arXiv:1804.04241, 2018.

[55] Kevin Duarte, Yogesh Rawat, and Mubarak Shah. Videocapsulenet: A simplified

network for action detection. In Advances in Neural Information Processing Systems,

pages 7610–7619, 2018.

108

[56] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point cap-

sule networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1009–1018, 2019.

[57] Yiyi Zhou, Rongrong Ji, Jinsong Su, Xiaoshuai Sun, and Weiqiu Chen. Dynamic

capsule attention for visual question answering. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33, pages 9324–9331, 2019.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008, 2017.

[59] Zhang Xinyi and Lihui Chen. Capsule graph neural network. In International confer-

ence on learning representations, 2018.

[60] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016.

[61] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

A system for large-scale machine learning. In 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[62] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[63] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European

conference on computer vision (ECCV), pages 3–19, 2018.

109

[64] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International conference on machine

learning, pages 448–456. PMLR, 2015.

[65] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The

missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[66] Adrien Deliège, Anthony Cioppa, and Marc Van Droogenbroeck. An effective hit-or-

miss layer favoring feature interpretation as learned prototypes deformations. arXiv

preprint arXiv:1911.05588, 2019.

[67] Sai Samarth R Phaye, Apoorva Sikka, Abhinav Dhall, and Deepti Bathula. Dense

and diverse capsule networks: Making the capsules learn better. arXiv preprint

arXiv:1805.04001, 2018.

[68] Canqun Xiang, Lu Zhang, Yi Tang, Wenbin Zou, and Chen Xu. Ms-capsnet: A novel

multi-scale capsule network. IEEE Signal Processing Letters, 25(12):1850–1854, 2018.

[69] Prem Nair, Rohan Doshi, and Stefan Keselj. Pushing the limits of capsule networks.

Technical note, 2018.

[70] Zhen Zhao, Ashley Kleinhans, Gursharan Sandhu, Ishan Patel, and KP Unnikrishnan.

Capsule networks with max-min normalization. arXiv preprint arXiv:1903.09662, 2019.

[71] Taylor Killian, Justin Goodwin, Olivia Brown, and Sung-Hyun Son. Kernelized capsule

networks. arXiv preprint arXiv:1906.03164, 2019.

[72] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object

recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004., volume 2, pages II–104. IEEE, 2004.

110

[73] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[74] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[75] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[76] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09, 2009.

[77] Rodney LaLonde, Ziyue Xu, Ismail Irmakci, Sanjay Jain, and Ulas Bagci. Capsules

for biomedical image segmentation. Medical image analysis, 68:101889, 2021.

[78] Binbin Zhang, Shikun Huang, Wen Shen, and Zhihua Wei. Explaining the pointnet:

What has been learned inside the pointnet? In CVPR Workshops, pages 71–74, 2019.

[79] Hanxiao Tan and Helena Kotthaus. Surrogate model-based explainability methods for

point cloud nns. In Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 2239–2248, 2022.

[80] Daniel Liu, Ronald Yu, and Hao Su. Extending adversarial attacks and defenses to deep

3d point cloud classifiers. In 2019 IEEE International Conference on Image Processing

(ICIP), pages 2279–2283. IEEE, 2019.

[81] Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang, Wenbo Zhou, and Nenghai Yu.

Dup-net: Denoiser and upsampler network for 3d adversarial point clouds defense. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

1961–1970, 2019.

111

[82] Jiachen Sun, Yulong Cao, Christopher B Choy, Zhiding Yu, Anima Anandkumar,

Zhuoqing Morley Mao, and Chaowei Xiao. Adversarially robust 3d point cloud recog-

nition using self-supervisions. Advances in Neural Information Processing Systems,

34:15498–15512, 2021.

[83] Alioscia Petrelli and Luigi Di Stefano. A repeatable and efficient canonical reference for

surface matching. In 2012 Second International Conference on 3D Imaging, Modeling,

Processing, Visualization & Transmission, pages 403–410. IEEE, 2012.

[84] Wen Shen, Binbin Zhang, Shikun Huang, ZhihuaWei, and Quanshi Zhang. 3d-rotation-

equivariant quaternion neural networks. In European Conference on Computer Vision,

pages 531–547. Springer, 2020.

[85] F Landis Markley, Yang Cheng, John L Crassidis, and Yaakov Oshman. Averaging

quaternions. Journal of Guidance, Control, and Dynamics, 30(4):1193–1197, 2007.

[86] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on

point sets for 3d classification and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660, 2017.

[87] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space. Advances in neural infor-

mation processing systems, 30, 2017.

[88] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and

Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Trans-

actions On Graphics (tog), 38(5):1–12, 2019.

112

[89] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the

recognition of 3d point cloud models. In Proceedings of the IEEE international con-

ference on computer vision, pages 863–872, 2017.

[90] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Point2sequence:

Learning the shape representation of 3d point clouds with an attention-based sequence

to sequence network. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 8778–8785, 2019.

[91] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis.

Learning so (3) equivariant representations with spherical cnns. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 52–68, 2018.

[92] Yang You, Yujing Lou, Qi Liu, Yu-Wing Tai, Lizhuang Ma, Cewu Lu, and Weiming

Wang. Pointwise rotation-invariant network with adaptive sampling and 3d spherical

voxel convolution. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 12717–12724, 2020.

[93] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet: Unsupervised learning of

rotation invariant 3d local descriptors. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 602–618, 2018.

[94] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Simon Lucey. Point-

netlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7163–

7172, 2019.

[95] Wentao Yuan, David Held, Christoph Mertz, and Martial Hebert. Iterative transformer

network for 3d point cloud. arXiv preprint arXiv:1811.11209, 2018.

113

[96] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In

International Conference on Learning Representations, 2018.

[97] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,

and Ananthram Swami. Practical black-box attacks against machine learning. In

Proceedings of the 2017 ACM on Asia conference on computer and communications

security, pages 506–519, 2017.

[98] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Cnn image retrieval learns from

bow: Unsupervised fine-tuning with hard examples. In European conference on com-

puter vision, pages 3–20. Springer, 2016.

[99] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. Beyond part models:

Person retrieval with refined part pooling (and a strong convolutional baseline). In

Proceedings of the European conference on computer vision (ECCV), pages 480–496,

2018.

[100] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In

Advances in neural information processing systems, pages 1857–1865, 2016.

[101] Zhirong Wu, Alexei A Efros, and Stella X Yu. Improving generalization via scal-

able neighborhood component analysis. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 685–701, 2018.

[102] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In International confer-

ence on machine learning, pages 1597–1607. PMLR, 2020.

114

[103] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-

trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[104] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,

Elena Buchatskaya, Carl Doersch, Bernardo Pires, Zhaohan Guo, Mohammad Azar,

et al. Bootstrap your own latent: A new approach to self-supervised learning. In

Advances in Neural Information Processing Systems, 2020.

[105] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, pages 15750–15758, 2021.

[106] Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware deeply cascaded embedding.

In Proceedings of the IEEE international conference on computer vision, pages 814–

823, 2017.

[107] Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof. Deep metric

learning with bier: Boosting independent embeddings robustly. IEEE transactions on

pattern analysis and machine intelligence, 42(2):276–290, 2018.

[108] Artsiom Sanakoyeu, Vadim Tschernezki, Uta Buchler, and Bjorn Ommer. Divide and

conquer the embedding space for metric learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 471–480, 2019.

[109] Hong Xuan, Richard Souvenir, and Robert Pless. Deep randomized ensembles for met-

ric learning. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 723–734, 2018.

115

[110] Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze, Matthieu Cord, and Hervé

Jégou. Grafit: Learning fine-grained image representations with coarse labels. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

874–884, 2021.

[111] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE

transactions on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[112] Zhiwen Yu, Daxing Wang, Jane You, Hau-San Wong, Si Wu, Jun Zhang, and Guoqiang

Han. Progressive subspace ensemble learning. Pattern Recognition, 60:692–705, 2016.

[113] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[114] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for

transfer learning? arXiv preprint arXiv:1608.08614, 2016.

[115] Guy Bukchin, Eli Schwartz, Kate Saenko, Ori Shahar, Rogerio Feris, Raja Giryes, and

Leonid Karlinsky. Fine-grained angular contrastive learning with coarse labels. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 8730–8740, 2021.

[116] Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon.

Attention-based ensemble for deep metric learning. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 736–751, 2018.

[117] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image retrieval:

Learning global representations for image search. In European conference on computer

vision, pages 241–257. Springer, 2016.

116

[118] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embed-

ding for face recognition and clustering. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 815–823, 2015.

[119] Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neigh-

bourhood components analysis. Advances in neural information processing systems,

17, 2004.

[120] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and

Saurabh Singh. No fuss distance metric learning using proxies. In Proceedings of

the IEEE International Conference on Computer Vision, pages 360–368, 2017.

[121] Yali Amit and Donald Geman. Shape quantization and recognition with randomized

trees. Neural computation, 9(7):1545–1588, 1997.

[122] Wengang Zhou, Houqiang Li, and Qi Tian. Recent advance in content-based image

retrieval: A literature survey. arXiv preprint arXiv:1706.06064, 2017.

[123] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis,

University of Toronto, 2009.

[124] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee, 2009.

[125] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras. Robustness

(python library), 2019.

[126] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

117

[127] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch

sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[128] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.

Autoaugment: Learning augmentation policies from data. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 113–123,

2019.

[129] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing

data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 13001–13008, 2020.

[130] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadiyaram, and Dhruv Mahajan.

Clusterfit: Improving generalization of visual representations. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6509–

6518, 2020.

118

