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The interaction of a line vortex with a collinearly aligned jet is a prototypical configu-

ration for various important applications in aeronautics. The purpose of this study is to

analyze the impact of the jet flow on the kinematics and dynamics of a trailing vortex. A

particular emphasis is on the effect of a variable relative jet–vortex spacing. To this end,

we realized four different jet–vortex configurations in a wind-tunnel experiment at chord-

based Reynolds number of 1.7× 105 using high-speed stereo particle image velocimetry

measurements in five transversal planes located between 2 and 26 chords behind the wing.

Stochastic analyses reveal that the jet generally contributes an external excitation to the

vortex as a function of the mutual spacing. Compared with the configuration without jets,

the vortex amplification increases upon reducing the jet–vortex spacing. Most notably, for

all but the closest spacing, the vortex response is qualitatively the same, changing mainly

in magnitude. For the closest spacing, however, the dynamics is considerably different,

which we suspect to be a consequence of jet entrainment. Proper orthogonal decomposi-

tion reveals, for the first time, that the collinearly aligned jet tends to excite a progressively

broader range of vortex modes as the jet–vortex spacing is reduced. Close examination of

the vortex mean flow seems to preclude linear vortex instabilities, while the vortex char-

acteristics hint towards some form of receptivity mechanism to disturbances being located

in the free stream. Our analyses are useful to validate simulation tools on configurations

combining simultaneous lift and thrust effects.
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I. INTRODUCTION

The kinematics and dynamics of jet–vortex interaction constitute fundamental problems in fluid

dynamics. In particular, it is the prototypical configuration of the near airplane wake and, as such,

has important bearings on the wake evolution and its impact on the environment1,2. Hence, an

understanding of the kinematic and dynamic characteristics is of central interest both for control

strategies to efficiently reduce the hazard of wake encounters3 and for the initial formation stages

of contrails4,5. The long persistence of trailing vortices of the order of 10km (∼ 103c assuming a

chord length c∼ 10m)6 or equivalently 102 s (assuming a flight speed of the order of 102 ms−1)2

makes them the principal hazard for following aircraft3,7. Efficient control strategies are thus in

need that accelerate their alleviation. Our focus in this study will be on the effect of the jet on

the trailing vortex with a particular emphasis on a variable relative jet–vortex spacing. The impor-

tance of the relative spacing for the efficiency of control applications has also been noted by4,8.

Our configuration has some conceptual similarity with studies on the (synthetic-)jet actuation of

vortices in a control context9–13.

Simulations of jet–vortex interaction mostly relied on idealized initial and boundary conditions,

i.e., computations are carried out in a (streamwise) periodic domain, initialized with the superpo-

sition of a line vortex (Lamb–Oseen, vortex filament) and a (Gaussian) jet flow1,5,14–18. Since,

the near and intermediate wake generally deserved much less attention than the far wake, these

initial-boundary conditions are an acceptable approximation14,16. However, the first phase of the

wake evolution, called jet regime, is spatially developing and poorly represented by such simpli-

fied initial-boundary conditions. The jet regime refers to the wake dynamics in approximately the

first 10s1,2. Taking the order-of-magnitude estimates 102 ms−1 and 10m for airplane cruise speed

and chord length, respectively, leads to a downstream range of about 102c. The consequences of

spatially rather than temporally developing dynamics on the jet regime are highlighted as a future

issue by2.

Due to the the associated numerical difficulties, the near wake has been analyzed mainly ex-

perimentally. Most of these experiments focused on detailed analyses of the very-near wake up

to one4,9, four19 and eight chords12 behind the wing. A larger downstream range in the same jet–

vortex configuration as studied here, has been analyzed by15,20 using laser doppler velocimetry.

These two studies emphasized the effect of the vortex on the distribution and entrainment of the

jet exhaust. Regarding the reverse interaction,20 found that the jets have a small influence on the
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mean vortex characteristics (mean velocity fields and mean centre location). However, the vortex

fluctuation dynamics was observed to be enhanced by the presence of the jets. The objective of

the present study is a detailed characterization and discussion of the mean and fluctuation fields

of the vortex up to 26 chords behind the wing with a particular emphasis on the effect of variable

jet positioning. To this end, we conducted high-speed stereo particle image velocimetry (PIV)

measurements for the same configuration as15,20.

The paper is structured as follows. In § II, we present the experimental setting, instrumentation

and the different jet–vortex configurations analyzed. The subsequent analyses of the experimen-

tal data describe the kinematics and dynamics of the trailing vortex on the basis of the leading-

stochastic moments. After discussing the mean vortex flow in § III, the characterization of the

unsteady vortex kinematics and dynamics is detailed in § IV. Our analysis of the vortex-centre

motion in § IV A is complemented by a discussion of the unsteady vortex dynamics in terms of

Reynolds stresses in § IV B and a proper orthogonal decomposition in§ IV C. We terminate with

a conclusion of the main results in § V.

II. EXPERIMENTAL CONFIGURATION AND MEASUREMENT TECHNIQUE

A. Apparatus

Experiments were conducted at the ONERA centre in Le Fauga-Mauzac in an atmospheric,

closed-circuit wind tunnel having a rectangular test section of 1.4m width, 1.8m height at the

entrance evolving to 1.85m at the exit and 5.0m length. The divergence of the upper and lower

walls (ceiling-floor) at an angle of 0.58° compensates for the streamwise velocity gradient induced

by the development of the boundary layer along the test section walls. The turbulence intensity in

the empty wind tunnel is less than 0.5%.

The test configuration probed in this study consists of a rectangular wing with two jet generators

placed underneath and is identical to the setting studied in20. Schematics of the different views of

the set up are shown in Fig. 1 along with photographs of the installation and the relevant details in

Fig. 2.

The vortex is generated by an airfoil with NACA0012 symmetric profile of chord length

c = 0.125m and wing span b = 0.5m, which is suspended from the wind-tunnel ceiling by a

NACA0015 profile with a chord length of 0.045m. Stabilizing cables have been tensed to prevent

3
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FIG. 1. Schematic of the experimental installation. (a) side view, (b) top view, (c) view from the back.

lateral oscillations as can be seen in Fig. 2a. The wing is placed in the center of the test section,

with the leading edge set at a distance 0.695m (or 5.56c) downstream of the inlet section, cor-

responding to the end of the nozzle of the wind tunnel. The wing tips are located 0.454m (or

3.63c) from the test section side walls. Boundary-layer transition over the airfoil is triggered by

a saw-tooth shaped tape of 6mm width and 0.205mm thickness placed z = 6.5mm (5.2% of the

chord length) downstream of the leading edge. The wing is set at a constant angle of incidence of

α = 9°.

Two identical jet generators are mounted on NACA0015 supporting structures with 0.1m chord

length from the wind-tunnel floor. Their axes are positioned at a height 0.876m above the floor,

which yields a distance of 0.142m below the wing trailing edge. The lateral jet position is variable

and three different locations associated with a mutual spacing of djet/b ∈ {0.44,0.58,0.80} have

been assessed (cf. Figs. 1a,c and Fig. 2b). Boundary-layers transition is triggered along the exter-

nal side of the jet casing and the supporting structures by means of bands of 0.3mm carborundum

grains set at an axial distance of 0.011m from the leading edges of the jet casing. The jet-generator

exit has a diameter of φjet = 0.01m and is equipped with an internal perforated plate of 1.5mm

hole diameter in order to homogenize the jet flow (see Fig. 2). Note that, unlike20, the jets are not

heated. The velocity of the jet is designated as the velocity corresponding to the mass flow rate

and is set to Ujet = 50.2ms−1. It serves as a rough estimate of the flow velocity in the jet core.
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FIG. 2. Photographs showing the experimental installation. (a) global installation showing the suspended

wing with the bottom-mounted jets, (b) detail of the wing and the jets, (c) details of the transition devices,

(d) detail of the jet outlet geometry and internal grid.

The jet momentum and wing angle of incidence are realistic for a typical lift and drag balance of

an aircraft in cruise condition.

For all experiments, the free-stream velocity was set at U∞ = 20ms−1 implying a chord-based

Reynolds number of Rc := cU∞/ν ≈ 1.7× 105. As shown in Fig. 1, the Cartesian coordinate

system is attached to the trailing edge in the symmetry plane with the coordinates x,y,z being

positive starboard, vertically upwards and in the direction of the mean free-stream velocity U∞,

respectively. For convenience, the spatial coordinates are split into the cross-stream coordinate

tuple x= (x,y) ∈M ⊂ R2 in the measurement plane M at fixed streamwise coordinate z.

B. Instrumentation and configurations

Stereo Particle Image Velocimetry (PIV) was used in five transversal planes downstream of the

test model to measure the two-dimensional, 3-component velocity field u(t,x)= (u(t,x),v(t,x),w(t,x)).
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The measurement planes are located at the constant streamwise coordinates z∈{250,500,1545,2500,3280}mm,

corresponding approximately to dimensionless z/c ∈ {2,4,12,20,26}.

The wind tunnel was seeded with DEHS (di-2-ethylhexyl sebacate) tracer particles of density

0.91gcm−3 and mean particle size of the order of 0.5µm (always less than 1µm). The laser sheet is

generated by an ND:YLF pulsed Litron laser system with green visible light of 527nm wavelength

and 25 mJ per pulse. The PIV images are captured by two V710 PHANTOM cameras (maximal

image rate of 7.5kHz) equipped with a NIKON objective with 105mm focus and Scheimpflug

adapter. The cameras are placed opposite to the laser with respect to the sides walls and at each

side of the measurement planes. Forward scattering mode is hence achieved. The calibration of the

PIV images is realized using a LAVISION 0.3m×0.3m calibration body. The image acquisition is

realized with the DAVIS 8.2.2 program of LAVISION at a resolution of 1280 pixels × 800 pixels

with a pixel size of 20µm× 20µm. In each configuration and measurement plane, 10 blocks of

N = 4096 images are taken at a sampling frequency of fs = 3kHz, corresponding to a measurement

time T = N/ fs ≈ 1.37s.

The reconstruction of the velocity field u= (u,v,w) = (ui) (i = 1, . . . ,3 along the coordinates

(x,y,z), respectively) uses the Lucas–Kanade method to solve the optical-flow problem in a multi-

resolution Gaussian pyramid approach in order to prevent convergence to local extrema. This

is implemented in the FOLKI software of ONERA, which is also used to compute the streamwise

vorticity ω = ∂u/∂y−∂v/∂x21 . Windows of 31 pixels× 31 pixels are used, which yields a spatial

resolution of the PIV data of approximately 7mm.

Four different configurations are analyzed. We call no-jet configuration the reference case of

the wing alone without the jet generators. Furthermore, three different jet–vortex configurations

with relative spacing djet/b ∈ {0.44,0.58,0.80} as shown in Fig. 1 have been assessed. The posi-

tion djet/b = 0.80 corresponds roughly to the position of the rolled-up tip vortex and thus deserves

a special attention, as we confirm later on.

C. Characterization of the jet flow

In order to characterize the unperturbed jet flow, PIV measurements have been conducted with-

out the wing model and seeding the jets only. Additionally, the streamwise veolocity w of the

jet flow was measured using hot wires (DANTEC 55P11) placed 1mm downstream of the jet-exit

plane. To measure the whole jet flow, a totality of 169 hot-wire measurements were taken, whereas
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FIG. 3. Hot-wire measurements of the mean and turbulence characteristics of the jet flow at the exit noz-

zle. (a) streamwise component of the mean velocity w̄/Ujet, (b) streamwise component of the turbulence

intensity 103×uz/Ujet. The markers indicate the measurement matrix and the solid circle the jet nozzle exit

outer edge.

a single hot wire was placed at either one of the nodes of a 13×13 test matrix. The 196 hot-wire

probing locations, equi-spaced at 0.5mm (i.e., 0.05φjet), are shown in Fig. 3.

Figures 3–5 show the mean and turbulence characteristics of the jet flow at the jet nozzle using

hot-wire measurements (Fig. 3–4) and at z/c = 1 using PIV measurements (Fig. 5). The stream-

wise component of the mean velocity is normalized on Ujet (the mean being defined in (2)) and the

turbulence intensity is defined as

u :=

√

√

√

√

1

3

3

∑
i=1

u′2i . (1)

where a prime indicates a fluctuation due to Reynolds decomposition (see § III). In the case of the

hot-wire measurements only the streamwise component uz :=

√

u′23 of (1) is available.

The hot-wire measurements at the jet-exit nozzle (Fig. 3–4) show that the streamwise mean

velocity w̄ is close to Ujet, although the jet is not perfectly axisymmetric yet. In particular, the

mean-flow profiles shown in Fig. 4 display a left-right asymmetry. The streamwise turbulence

intensity of the jet flow at the exit nozzle of uz/Ujet
<
∼ 5×10−3 is of the same order of magnitude

as the free-stream turbulence in the empty wind tunnel.

In order to illustrate the downstream evolution of the jet, Fig. 5 additionally shows the stream-
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FIG. 4. Hot-wire measurements across the jet at the exit nozzle. Solid (dashed) line shows the streamwise

component of the mean velocity along a vertical (horizontal) line across the jet centre. Dots (crosses) show

the streamwise component of the turbulence intensity along a vertical (horizontal) line across the jet centre.

The extent of the jet nozzle exit plane is indicated by grey shading.

wise mean velocity and full turbulence intensity (1) at z/ = 1 (or equivalently z/φjet = 12.5) ob-

tained with PIV. We observe that both fields are essentially axisymmetric. The contribution from

the transversal components of the mean velocity ū and v̄ are about one to two orders of magnitude

less than w̄ (not shown). The jet flow spreads laterally while preserving a nearly axisymmetric

structure up to z/c ≈ 7 downstream of the exit nozzle (not shown). The radius of the jet evolves

from 0.055φjet to 2φjet over the chord-length separation between the hot-wire and PIV measure-

ment planes in Fig. 4(a) and Fig. 5(a), respectively. The resulting spreading rate of the round jet is

about 0.12, in close agreement with the regular value of 0.122. The turbulence intensity increases

sharply within the same distance, from 0.5% to 12%, with respect to the jet velocity Ujet, as a

consequence of the turbulent activity in the jet shear layer.
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FIG. 5. PIV measurements of the mean and turbulence characteristics of the jet flow at z/c = 1. (a)

streamwise component of the mean velocity w̄/Ujet, (b) turbulence intensity uz/Ujet.

D. Jet entrainment by the vortex

The jet once released is entrained transversely by the wake vorticity as a function of the mu-

tual jet–vortex spacing. In order to obtain a qualitative idea of this entrainment, we conducted

additional PIV measurements (as described above), but by seeding the jet alone and not the rest

of the incoming flow. This produces images of the jet exhaust identified by the seeding, while the

surrounding is free of particles. Figure 6 shows the transverse distribution of the standard devia-

tion of such images corresponding to the jet exhaust, at z/c ∈ {4,20} for the different jet–vortex

configurations. The vortex and jet positions in the measurement plane are indicated by a cross and

a circle, respectively. From Fig. 6, we observe at once that entrainment is enhanced upon reducing

the distance between the jet and the vortex, in agreement with8.

We see that for all jet–vortex configurations, the roll up of the vortex sheet issued at the wing

trailing edge is centred around a location 5% of the half span inward of the wing tip (marked by

a cross). The trailing vortex is then subject to a gradual inward drift to at least 10% of the half

span at z/c = 20. Note that a detailed discussion of the vortex-centre motion follows in § IV. This

latter vortex-centre position corresponds to the closest jet–vortex spacing of djet/b = 0.8, chosen

for this reason. The more distant jet positions djet/b ∈ {0.44,0.58} are inward this location of the

fully rolled-up vortex.

In the jet–vortex configuration with djet/b= 0.80, the jet is wound up by the trailing vortex right
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after its release. At z/c = 20 the jet fills the entire domain of the vortex and its near periphery.

In the second jet–vortex configuration with djet/b = 0.58, spiraling-up of the jet by the vortex is

delayed and the core of the vortex is not populated significantly by the jet at z/c = 20. Lastly, in

the jet–vortex configuration with djet/b = 0.44, the jet diffuses before significant entrainment into

the vortex becomes possible and the absolute contamination of the core remains weak within the

downstream range investigated.

−2 −1 0
x/c

−0.5

0.0

0.5

y/
c

(e)

−0.5

0.0

0.5

y/
c

(a)

−0.5

0.0

0.5

y/
c

(c)

-2 -1 0
x/c

(f)

(b)

(d)

FIG. 6. Standard deviation of the spatial distribution of the seeding released at the jet in transverse planes at

z/c = 4 (left column) and z/c = 20 (right column) for the various jet–vortex configurations. (a,b) djet/b =

0.80, (c,d) djet/b = 0.58, (e, f ) djet/b = 0.44. The cross indicates the mean location of the vortex centre in

the given measurement plane. The straight line indicates the trailing edge of the wing. The circle indicates

the outflow section of the jet.

III. MEAN FLOW

A. Data analysis

Consider an Eulerian flow field f (x,z, t) which will be either one of the velocity components

(u,v,w) or the thereof derived streamwise vorticity ω . Let M be one of the five measurement
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planes at z = const in which we have measured f (x,z, t), x ∈M over the time interval (0,T ). We

assume f (x,z, t) to be a stationary random process (in t), while it may be non-homogeneous in z.

By the ergodic hypothesis, time and ensemble averages can be identified and we define the mean

as23

f (x,z) := lim
T→∞

1

T

∫ T

0
dt f (x,z, t). (2)

The Reynolds decomposition then reads f (x,z, t) = f (x,z)+ f ′(x,z, t) and we call f ′ the fluctu-

ation.

In order to get meaningful vortex parameters, the measurement data has to be corrected for

the effect of vortex displacement, usually attributed to the meandering phenomenon24–27. A dis-

cussion of the meandering motion is postponed to § IV A. This correction is straightforwardly

implemented in the case of PIV measurements by means of a coordinate transformation into the

reference frame following the vortex motion. That is, for z = const we re-center the snapshots in

the respective instantaneous vortex-centre position f (x,z, t)← f (x−X(z, t),z, t) prior to taking

averages28. Techniques for vortex identification are presented in29. Here, the vortex centre in the

measurement plane at downstream position z is defined by the vector-valued process

X(z, t) :=
1

ΓM

∫∫

M
dx xω(x,z, t), t ∈ (0,T ) (3)

in R2.30–32 The quantity ΓM is the circulation, or the zeroth-order vorticity integral, defined around

the contour ∂M bounding M ⊂ R2 about the vortex. It is defined (applying Stokes’ theorem) by

the spatial vorticity integral30,33

ΓM(z) :=

∫∫

M
dx ω̄(x,z) (4)

The circulation is a convenient measure for the strength of the vortex.

With no further information the variations of X(z, t) appear random, and thus the convenient

way to account for it is to consider the leading stochastic moments, namely the mean and standard

deviation

X(z) :=
1

T

∫ T

0
dt X(z, t) and σ 2

Xi
(z) := (Xi(z, t)−X i(z))2 (i = 1,2), (5)

respectively.

Radial profiles are obtained by mapping the Cartesian x,y grid onto a polar mesh r,θ having

its origin in the instantaneous vortex centre X(z, t). This coordinate transformation automati-

cally corrects for the meandering motion. Assuming approximate homogeneity in the azimuthal

coordinate, we can further average over θ ∈ (0,2π).

11
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All results shown in this section have been mapped to a polar mesh, averaged over the azimuthal

coordinate and measurement time (cf., (2)). Eventually, the mean over the ten identically prepared

runs is taken. In order to avoid overloading symbols, we denote this average with an overline as in

(2) for convenience.

Very low values of the standard deviation between the ten identically prepared runs of the

experiment indicates the repeatability of the experiments.

Due to the symmetries of the vortex flow, we can compute the radial profiles of the mean

circulation as Γ(r,z) = 2πrūθ (r,z)
31,34.

Given the radial profiles, several parameters can be defined to characterize the vortex. We

define the vortex-core radius

r1(z) := argmax
r∈(0,∞)

ūθ (r,z) (6)

as the radial coordinate of the maximum of the mean azimuthal velocity. We make use of the

convention to denote quantities evaluated at the core radius with a subscript 1; e.g., ūθ ,1(z) :=

ūθ (r1,z) and Γ1(z) := Γ(r1,z).

According to35, we define the swirl number

q(z) := 1.57

∣

∣

∣

∣

ūθ ,1(z)

ūz(r = 0,z)− ūz(r→ ∞,z)

∣

∣

∣

∣

, (7)

whereas the mean streamwise velocity difference is relative to the free-stream velocity U∞.

B. Experimental results

Before discussing the radial profiles of the mean vortex flow, it is illustrative to obtain a global

impression of the whole wake flow. To this end, Fig. 7 shows the fluctuation kinetic energy u
2

normalized on the free-stream velocity squared U2
∞ for the no-jet and jet–vortex djet/b = 0.80

configurations at z/c = 2 and z/c = 20, respectively. At the first measurement station, the no-jet

wake is globally dominated by the vorticity sheet shed from the wing. The vorticity sheet is much

less discernible in the djet/b= 0.80 jet–vortex configuration, as the dominating contribution comes

from the jet flow, having about an order of magnitude larger fluctuation kinetic energy. In either

configuration, we see that only the trailing vortex retains a discernible structure in the fluctuation

kinetic energy by z/c = 20.

Figure 8 compares radial profiles of the mean azimuthal and streamwise velocity of the vortex

in the no-jet and jet–vortex configuration with djet/b = 0.80 at the different measurement stations.
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FIG. 7. Fluctuation kinetic energy u
2/U2

∞. (a) no-jet configuration at z/c = 2, (b) no-jet configuration

at z/c = 20, (c) jet–vortex configuration with djet/b = 0.80 at z/c = 2, (d) jet–vortex configuration with

djet/b = 0.80 at z/c = 20. The black line illustrates the wing.

We observe the profiles to have qualitatively similar shapes in the two configurations and for all

measurement planes. The streamwise mean vortex velocity is characterized by a wake-jet co-

existence. That is, the wake-like behavior in the core turns into a jet-like flow in its periphery.

Wake-like core flow is commonly observed in experiments25,36,37. This jet-wake characteristic is

represented in the Moore–Saffman vortex31 (further details can be found in Appendix A). Com-

paring Figs. 8a and b, we see that the coexistence gets much more pronounced in the jet–vortex

configuration, likely as a consequence of the roll-up of the jet by the vortex. In all cases, the mag-

nitude of the axial velocity increases downstream. The jet flow seems to have less structural effect

on the azimuthal mean-velocity profiles, but strongly affects their maximum intensity.

These conclusions also hold true for the intermediate jet–vortex configurations djet/b∈{0.44,0.58}

(not shown), which gradually transition between the two extrema shown in Fig. 8. While placing

the jet at djet/b = 0.44 has almost no effect on the mean vortex flow over the considered measure-

ment range, the intermediate spacing djet/b = 0.58 causes deviations from the no-jet reference

mainly at the last measurement stations. Jet proximity promotes tangential velocity reduction, as

is found for increased level of turbulence by38. The initial transition is likely a smooth function

of djet, however, there seems to be a critical value 0.58 < djet/b < 0.80 beyond which significant
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FIG. 8. Downstream evolution of the radial profiles of the streamwise and azimuthal mean velocity. (a) no-

jet configuration, (b) jet–vortex configuration with djet/b = 0.80 spacing (no measurements were conducted

at z/c = 26 in this configuration). The profiles are averaged over the ten runs at each measurement station

and the error bars, defined as the standard deviation over the runs, indicate the variability between these

runs.

differences in the mean flow are observed. Previous studies by20,39 suggest this discontinuity in

the dynamics to be related with entrainment of the jet in the vortex core already during roll up in

the djet/b = 0.80 configuration, while it is not (or late) entrained in the other configurations. The

azimuthal mean velocity asymptotically decays as ∼ r−n with n≈ 0.8±0.02 in all configurations

and measurement stations. (For comparison, elliptic loading corresponds to n = 0.531.) Slower

than potential-vortex decay is characteristic of the Moore–Saffman vortex and the value of n in

agreement with the findings of34. Section A details the comparison of the vortex profiles against

the Moore–Saffman and Batchelor models.

These findings are supported by Fig. 9a, showing the downstream evolution of the maximum

mean azimuthal velocity and streamwise mean velocity deficit in the core for all configurations.

As stated above, the no-jet and djet/b = 0.44 configuration have very little difference over the

considered measurement range and the djet/b = 0.58 configuration diverges mainly in the last
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measurement planes. Significantly different downstream evolution of the maxima is observed,

however, in the djet/b = 0.80 configuration. We note that the streamwise velocity deficit is of

the same magnitude in all cases and the effect of the vortex-superposed jet flow is mainly in the

creation of an additional jet flow in the core periphery (cf., Fig. 8b). A little surprising, we observe

a much stronger effect of the jet flow on the maximum of the azimuthal mean velocity which we

find to decrease by about a factor two in the djet/b = 0.80 configuration over the measurement

range. These general trends of decaying vortex mean-velocity maxima are analogous to experi-

ments conducted in grid turbulence26,28. We find, however, that the vortex core radius remains at

an essentially constant value of r1/c ≈ 6×10−2 over the measurement range and for all configu-

rations, consistent with previous findings20,25–27.
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0.20
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0.40
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djet/b= 0.58
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FIG. 9. Downstream evolution of the vortex parameters of the mean velocity in the different configurations.

(a) maximum non-dimensional velocities, (b) swirl number q.

The information shown in Fig. 9a is readily combined into a single parameter, viz., the swirl

number q defined in (7), that determines the local linear stability of the isolated Batchelor vortex.

For values larger than about q≈ 2.31 the vortex is inviscidly stable to infinitesimal perturbations40.

Viscous instabilities theoretically exist beyond this threshold for all q41 but are presumably of no
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importance for the present study.

Figure 9b shows the downstream evolution of the mean swirl number for the different con-

figurations. In agreement with the previous conclusions, the principal behavior is qualitatively

similar in all cases but the closest djet/b = 0.80 spacing. Despite this latter configuration, de-

creasing maximium azimuthal velocity and increasing streamwise mean-velocity deficit combine

to downstream-decreasing swirl numbers. However, over the considered measurement range the

minimally attained values of about q ≈ 5 remain well above the theoretical instability threshold.

This suggests linear stability of the trailing vortex in all configurations. Albeit, particularly in the

djet/b= 0.80 configuration the Batchelor vortex is a poor model as can be anticipated from Fig. 8b,

showing a pronounced jet–wake coexistence in the vortex core. A more pertinent stability anal-

ysis should use the Moore–Saffman vortex as a base state. The only such analysis known to the

authors, assuming an inviscid fluid, is due to42. Indeed, this study shows that the Moore–Saffman

vortex gradually looses stability as it deviates from the Batchelor vortex and as long as the core is

wake-like. That is, the unstable parameter range increases in 0.44≤ n≤ 1 and decreases again for

n < 0.44. For n = 0.8,42 report an instability threshold of q = 1.7, which is well below the swirl

numbers q >
∼ 5 in the experiment for all configurations (cf., Fig. 9b).

Figure 10 compares radial profiles of the mean circulation (4) of the vortex in the no-jet and

jet–vortex configuration with djet/b = 0.80 at the different measurement stations. The circulation

increases sharply within a distance approximately equal to r2 ≈ 2r1 ≈ 0.1c in all configurations.

This corresponds to the vortical zone associated with the vortex (cf., also34). The circulation shows

continuous yet mild increments further outward this radius. The intermediate jet–vortex config-

urations (not shown) follow the same transition behavior as discussed in connection with Figs. 8

and 9. In the no-jet configuration, apart from the variation which is observed for z/c ∈ {12,26}

away from the vortex, currently unexplained, the circulation profiles are practically constant over

the entire downstream measurement range. This implies that the vortex roll up is completed within

the first two chords behind the wing, consistent with27,43,44.

On the other hand, the circulation profiles in the djet/b = 0.80 jet–vortex configuration show a

distinct downstream evolution. Apart from the circulation at z/c = 12, the circulation profiles con-

tinuously broaden over a radial range restricted to approximately r/c <∼ 2 . . .3r1. The asymptotic

circulation Γ(r→ ∞), however, seems to be almost unaffected and remains practically constant.

This finding is in principal agreement with34.

For a Lamb–Oseen vortex, the asymptotic circulation Γ(r→ ∞) is identical to the initial value
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FIG. 10. Downstream evolution of the circulation. (a) no-jet configuration, (b) jet–vortex configuration

with djet/b= 0.80 spacing (no measurements were conducted at z/c= 26 in this configuration). The profiles

are averaged over the ten runs at each measurement station and the error bars, defined as the standard

deviation over the runs, indicate the variability between these runs.

Γ0 and, hence, a convenient measure for the vortex strength. Assuming a Lamb–Oseen vortex, Γ0

and the circulation at the core radius Γ1 are related according to Γ0 = 1.397×Γ1
31. Figure 11

shows the downstream evolution of Γ1 for the different configurations. Taking an average value of

Γ1/cU∞ ≈ 0.14, we estimate Γ0/cU∞ ≈ 1.397×0.14≈ 0.20. Comparing with Fig. 10 shows that

Γ0 ≈ Γ(r→ ∞). We thus define the circulation Reynolds number RΓ := Γ0/ν ≈ 3× 104. These

values of the circulation are in agreement with previous studies20,25,26,34.

IV. KINEMATICS AND DYNAMICS OF THE VORTEX

A. Vortex-centre motion

a. Lateral motion of the mean vortex centre. A pair of vortices exhibits a downward motion

as a consequence of mutual Biot–Savart induction. We employ here a point vortex model of the

17



Accepted to Phys. Fluids 10.1063/5.0127634

5 10 15 20 25
z/c

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16
Γ 1

/c
U

∞

no jet
djet/b= 0.44
djet/b= 0.58
djet/b= 0.80

FIG. 11. Downstream evolution of the circulation at the core radius Γ1 for the different configurations.

vortices to evaluate this trend. Such a model agrees with the fact that the separation of the two

counter-rotating trailing vortices, which is of the order of the wing span s×b (cf., Fig. 12a) with

s≈ π/4, is large compared to the vortex size r2. A crude estimate yields r2/b≈ 2.5×10−2. Using

the point vortex model the translation velocity and trajectory are given by33

Ẏ

U∞
=−

1

U∞

2Γ0

π2b
≈−0.01 →

Y (z)

c
=

Y 0

c
−

1

U∞

2Γ0

π2b

z

c
≈ 0.14−0.01

z

c
, (8)

whereas Γ0/cU∞ ≈ 0.2 denotes the circulation of each one of the trailing (point) vortices (cf.,

Fig. 10). Figure 12b shows the vertical downward translation of the mean vortex-centre location

for the different configurations. Superposing the theoretical descent according to (8), assuming a

fictitious origin at Y 0/c = 0.14, we find acceptable agreement with the no-jet configuration in the

last measurement planes.

If the idealization of point vortices was perfectly true, the conservation of momentum would

imply that the spanwise separation between the two point vortices was preserved32. Figure 12a

shows that in the experiment the vortices tend to converge monotonously towards the symmetry

plane (x = 0).
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FIG. 12. Downstream evolution of the mean location of the vortex centre for the different configurations

and comparison with the theoretical downward translation according to (8).

b. Vortex-centre fluctuation around the mean The displacement of the vortex and the effect

of the jet are the most interesting features of the experiment. Figure 13 shows the growth of the

two components of the vortex-centre standard deviation σXi
, (5), for the different configurations as

a function of the downstream distance. The fact that σX(z) ∼ σY (z) over the measurement range

indicates that there is no preferred direction of the transverse motion of the vortex. We observe

that the vortex-centre motion is a function of the mutual jet–vortex spacing. The jet effect remains

low and progressive for djet/b ∈ {0.44,0.58}, however, for djet/b = 0.80 the amplitude shows a

steep initial increment, indicative of a changing mechanism of the jet–vortex interaction. In this

last configuration, the amplitude increase is very rapid within the first 4−5 chord lengths behind

the wing and seems to saturate afterwards at a level approximately 3−4% of c.

Downstream enhancing fluctuation levels of the vortex-centre motion is a generally observed

phenomenon, usually referred to as meandering. An important feature of the meandering ampli-

tude (defined as the standard deviation (5)) is its similarity with a diffusion dynamics, that was

early on pointed out by24. The idea is that the vortices are essentially displaced as a Lagrangian

object by the surrounding free-stream turbulence, which suggests an empirical law for the ampli-

19



Accepted to Phys. Fluids 10.1063/5.0127634

tude growth following

σXi
(z)

c
=

√

2
κ

cU∞

√

z

c
(i = 1,2), (9)

where κ denotes an eddy diffusivity.

A comparison of the square-root downstream growth predicted by the empirical meandering-

amplitude scaling law (9) with the different configurations of the experiment is shown in Fig. 13.

We find good agreement with σXi
(z)/c = 10−3

√

z/c downstream of z/c = 4 for the no-jet con-

figuration. For comparison, identification of the eddy viscosity κ with the kinematic viscosity ν

would lead to a slope prediction of
√

2κ/cU∞ →
√

2/Rc ≈ 10−5/2 with Rc ≈ 1.7× 105 in the

experiment.

As expected from the above conclusions, the empirical law also closely corresponds to the jet–

vortex djet/b = 0.44 configuration. A significant divergence of the meandering amplitude from

this law is, however, observed for the intermediate jet–vortex spacing of djet/b = 0.58. Still,

the experimental result reasonably follows an amplitude scaling law of the form (9) if the eddy-

viscosity parameter is adjusted appropriately. Unlike these three cases, the meandering amplitude

in the djet/b = 0.80 configuration is qualitatively different from the empirical law (9). We note

that the vortex response in this last configuration is reminiscent of the findings of12, although, in

their experiment, the synthetic jet was blowing perpendicular to the trailing vortex at the wing

tip. Our findings suggest that the meandering dynamics is actually qualitatively the same in the

no-jet and jet–vortex configurations with djet/b ∈ {0.44,0.58} (differences are only in terms of

the magnitude), while the dynamics is qualitatively and quantitatively different for the closest

jet–vortex spacing of djet/b = 0.80.

In agreement with24, this finding strongly suggests that vortex meandering is the consequence

of the forcing by disturbances located outside of the vortex. Even more, the dependence on the

relative spacing djet indicates the existence of a preferred location for optimal excitation. We recall

from the previous study of20 that the jet flow does not entrain into the vortex core for djet/b ∈

{0.44,0.58} (over the measurement range). This suggests that the effect of the jet on the vortex

to be not principally different from that of an enhanced free-stream turbulence intensity, e.g., due

to grid turbulence. Indeed, experiments on vortex meandering in grid turbulence support this

conclusion24,34,45.

The previous section § IV A indicates how the kinematics of the vortex is dominated by a

continuous and increasing lateral motion on top of a mean downward movement. The dynamics
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FIG. 13. Double-logarithmic representation of the downstream evolution of the meandering amplitude (5)

for the different configurations and comparison with the scaling law (9).

of the vortex is now analyzed through the second-order statistic moments of the velocity field,

namely Reynolds stresses and proper orthogonal decomposition (POD).

B. Reynolds stresses

Let z/c ∈ {4,20} and x ∈M. We define the second central stochastic moment in each space

point

Ri j(x,z) = u′i(x,z)u
′
j(x,z) (i, j = 1,2,3), (10)

conveniently referred to as Reynolds stresses. Reynolds stresses received not much attention in

previous experiments on trailing vortices. Besides the seminal work by46, Reynolds stresses have

been computed by26,28,36.

A comparison of the Reynolds stresses (10) in the no-jet and jet–vortex configuration with

djet/b = 0.80 is shown in Figs. 14–17 for the measurement planes located at z/c∈ {4,20}. Analo-

gously to our previous remarks, the intermediate jet–vortex configurations continuously transition

between these two extrema.
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FIG. 14. Reynolds stresses at z/c = 4 in the no-jet configuration. (a) transversal fluctuation kinetic energy

(u′2 + v′2)/U2
∞, (b) spanwise-vertical u′v′/U2

∞, (c) spanwise-streamwise u′w′/U2
∞, (d) vertical-streamwise

v′w′/U2
∞. The solid circle of radius r1/c = 6×10−2 and black dot indicate the vortex core and mean centre,

respectively.

We find the fluctuation kinetic energy to have mainly contributions from the transversal com-

ponents R11 +R22 = (u′2 + v′2)/U2
∞, which are shown in the respective top-left Figs. 14a–17a.

The contribution from the streamwise fluctuation kinetic energy R33 = w′2/U2
∞ is at least about an

order of magnitude less in all but the djet/b = 0.80 jet–vortex configuration, viz., u′2 ∼ v′2≫ w′2.

This suggests that the energy-carrying vortex modes are associated with transversal rather than

longitudinal motion. We further observe from Figs. 14a–17a that the fluctuation kinetic energy

is approximately axisymmetric and essentially confined to the vortex core (indicated by a bold

black circle of radius r1). Although this confinement already applies at the first measurement sta-
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FIG. 15. Reynolds stresses at z/c = 4 in the jet–vortex configuration with djet/b = 0.80 spacing.

(a) transversal fluctuation kinetic energy (u′2 + v′2)/U2
∞, (b) spanwise-vertical u′v′/U2

∞, (c) spanwise-

streamwise u′w′/U2
∞, (d) vertical-streamwise v′w′/U2

∞. The solid circle of radius r1/c = 6× 10−2 and

black dot indicate the vortex core and mean centre, respectively.

tions, it becomes gradually more pronounced and sharper as we move downstream. Eventually,

we observe that the transversal fluctuation kinetic energy R11+R22 in the no-jet configuration am-

plifies by about almost an order of magnitude over the measurement downstream range, while the

streamwise component w′2 remains at a nearly constant level (not shown). This also holds for the

djet/b = 0.44 configuration, whereas w′2 is amplified by the same factor of ten in the djet/b = 0.58

configuration (not shown). It remains, however, an order of magnitude less than the transversal

fluctuation kinetic energy. Again the downstream evolution in the djet/b = 0.80 configuration is

qualitatively different in that all fluctuation kinetic energies are of similar order, remaining ap-
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FIG. 16. Reynolds stresses at z/c = 20 in the no-jet configuration. (a) transversal fluctuation kinetic energy

(u′2 + v′2)/U2
∞, (b) spanwise-vertical u′v′/U2

∞, (c) spanwise-streamwise u′w′/U2
∞, (d) vertical-streamwise

v′w′/U2
∞. The solid circle of radius r1/c = 6×10−2 and black dot indicate the vortex core and mean centre,

respectively.

proximately constant over the measurement range.

As of the relative magnitudes, similar trends hold for the remaining Reynolds stresses. The

dominant contribution comes from the transversal stress R12 = u′v′/U2
∞ in all the configurations

(Figs. 14b and 16b), with an amplification of about an order of magnitude, except for djet/b= 0.80.

Again, the two Reynolds stresses involving the streamwise fluctuation velocity, R13 = u′w′/U2
∞

(Figs. 14c and 16c) and R23 = v′w′/U2
∞ (Figs. 14d and 16d), have much less discernible spatial

structure and remain at an approximately constant level. We note that the sharp four-lobed spa-

tial pattern at z/c = 20 is already present at z/c = 4, although less sharp and accompanied by

24



Accepted to Phys. Fluids 10.1063/5.0127634

−0.1

0.0

0.1
(y
−
Y)
/c

(u′2+ v′2)/U2
∞

2

4

6

8

×10−3
(a)

u′v′/U2
∞

−1.0

−0.5

0.0
0.5
1.0
1.5

×10−3
(b)

−0.1 0.0 0.1
(x−X)/c

−0.1

0.0

0.1

(y
−
Y)
/c

u′w′/U2
∞

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

×10−3

−0.1 0.0 0.1
(x−X)/c

v′w′/U2
∞

−8
−6
−4
−2
0

2

4

6×10−4
(d)

FIG. 17. Reynolds stresses at z/c = 20 in the jet–vortex configuration with djet/b = 0.80 spacing.

(a) transversal fluctuation kinetic energy (u′2 + v′2)/U2
∞, (b) spanwise-vertical u′v′/U2

∞, (c) spanwise-

streamwise u′w′/U2
∞, (d) vertical-streamwise v′w′/U2

∞. The solid circle of radius r1/c = 6× 10−2 and

black dot indicate the vortex core and mean centre, respectively.

significant contribution in the core periphery.

The Reynolds stresses in the djet/b = 0.80 configuration are associated with qualitatively simi-

lar spatial patterns. However, the patterns are less confined to the core, having a broader, stronger

and sharper pattern already at z/c = 4. It is remarkable that, besides being less confined, the vortex

develops the same Reynolds stress patterns by z/c = 20 in all configurations.
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C. Proper orthogonal decomposition

a. Background The proper orthogonal decomposition (POD) is the optimal representation

of a stochastic function with respect to the L2-norm, i.e., in terms of the variance contained in a

truncated representation47. Note that the following analysis always assumes measurements being

taken in one plane z = const. so, for readability, we suppress explicit dependence.

Let the Eulerian fluctuation field, after Reynolds decomposition, t 7→ f ′(x, t) ∈ L2(M) be a

stationary random process (cf., § III). The proper-orthogonal decomposition theorem47 then guar-

antees existence of the expansion

f ′(x, t) =
∞

∑
l=1

al(t)φl(x) ∀t ∈ (0,T ), x ∈M (11)

such that (an asterisk denoting complex conjugation)

aka∗l = λlδkl and

∫∫

M
dx φk(x)φ

∗
l (x) = δkl ∀k, l = 1,2, . . . ,∞ (12)

if and only if
∫∫

M
dx′ f ′(x) f ′∗(x′)φ(x′) = λφ(x) ∀x ∈M. (13)

We note that (11) constitutes an expansion of the random function f ′ into a deterministic basis

span{φl} ⊂ L2(M) of the linear manifold f ′ and random expansion coefficients t 7→ al(t). The

expansion coefficients are defined by the L2(M)-projection al(t) :=
∫∫

M dx φl(x) f ′∗(t,x).

In practice, we compute the proper orthogonal decomposition using the method of snapshots47,48.

For this purpose, we note that the actual measurement of the continuous random field yields

a discrete sample on the spatio-temporal grid of dimension K × N, where K and N are the

number of spatial and temporal measurement points in every measurement plane, respectively.

As usual, we call N the number of snapshots and the RK×N-matrix F := (f 1,f 2, . . . ,fN),

f q = f((q− 1)∆t) ∈ RK for q = 1,2, . . . ,N, the snapshot matrix. The sampling interval ∆t is

of the order of the correlation time or larger48, which guarantees approximate independence of

subsequent snapshots23. Under these conditions, the above proper orthogonal decomposition is

equivalent to solving the reduced eigenvalue problem

1

N

N

∑
p=1

(f q,f p)bp = λbq ∀q = 1,2, . . . ,N (14)

with (·, ·) a (weighted) inner product in RK approximating the inner product (12) in L2(M). The

expansion of the eigenvalues in (13) result from φ= ∑N
q=1 bqf

q.
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b. POD results. The previous analysis of Reynolds stresses reveals the governing contribu-

tion to the vortex fluctuation by the transversal components. The transversal dynamics are conve-

niently combined into a scalar field as the streamwise vorticity. We therefore computed the POD

of the fluctuation streamwise vorticity ω ′, in order to characterize the main contributions to the

variance of the transversal motion. Previous POD analysis of vortex-dominated flow have been

done on the vorticity44,49,50 as well as on the velocity12,37.
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−
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−0.1 0.0 0.1 0.2
(x−X)/c

(b)

FIG. 18. Leading POD mode of the streamwise fluctuation vorticity in the first measurement plane at z/c =

2. (a) no-jet configuration, (b) jet–vortex configuration with djet/b = 0.80. Blue (red) color shading and

solid (dashed) contours represent positive (negative) values with an arbitrary and not identical scaling. The

solid circle of radius r1/c = 6×10−2 and black dot indicate the vortex core and mean centre, respectively.

A comparison of the leading POD mode in the no-jet and djet/b = 0.80 jet–vortex configuration

are shown in Figs. 18 and 19 for z/c = 2 and z/c = 20, respectively. We recognize the well-known

dipolar vorticity pattern confined to the vortex core (indicated by a bold black circle) associated

with a displacement wave. The second POD mode is structurally identical but mutually rotated by

90°, while the higher-order modes constitute multi-polar patterns of continuously increasing com-

plexity (not shown) . These results are in agreement with previous experiments, e.g.44,49,50. The

leading POD modes of the intermediate jet–vortex configurations transition continuously between

the patterns shown in Figs. 18 and 19.

At the first measurement station z/c= 2, additional to the typical dipolar vortex response mode,

the leading POD mode in the djet/b = 0.80 jet–vortex configuration contains an important mark
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FIG. 19. Leading POD mode of the streamwise fluctuation vorticity in the first measurement plane at z/c =

20. (a) no-jet configuration, (b) jet–vortex configuration with djet/b = 0.80. Blue (red) color shading and

solid (dashed) contours represent positive (negative) values with an arbitrary and not identical scaling. The

solid circle of radius r1/c = 6×10−2 and black dot indicate the vortex core and mean centre, respectively.

of the jet flow outside the vortex core, which disappears by z/c = 4. From z/c = 4 on, the leading

dipolar POD modes in all configurations remain essentially structurally unchanged, while contri-

butions in the free stream gradually disappear. Recalling the definition of the vortex centre (3), the

greater lateral extent of the leading POD modes upon increasing djet (the jets closer to the wing

tips) explains the observed larger lateral motion amplitudes in Fig. 13.

The downstream evolution of the absolute POD eigenvalue (normalized on c2/U2
∞) associated

with the leading POD mode is compared for the different configurations in Fig. 20a. This result is

reminiscent of the analysis in12.

It is instructive to compare the evolution of the absolute eigenvalue (in Fig. 20a) with that of

the relative share the leading eigenvalue has in the total variance, i.e., λ1/∑N
j=1 λ j. This is shown

in Fig. 20b. We see that in this case the downstream evolution in the different configurations ap-

proximately collapse. Keeping in mind that the absolute values increase with djet (cf., Fig. 13a),

this suggests that the jet tends to excite a wider range of vortex response modes and that this range

becomes larger the smaller the relative jet–vortex spacing is. We support this conclusion by con-

sidering the POD eigenvalue spectra (of the first ten eigenvalues) for the different configurations

in Fig. 21. While we see the almost exclusive excitation of the leading dipolar POD-mode pair in
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FIG. 20. Downstream evolution of the leading eigenvalue of the POD of the fluctuation vorticity for the

different jet–vortex interaction configurations. (a) absolute value normalized on c2U−2
0 as in Fig. 21. (b)

relative contribution of the modal variance with respect to the total variance level in the respective mea-

surement planes. Small markers are the results for the individual runs, while the respective bold markers

(connected by solid lines) are the mean over all runs.

the no-jet configuration (Fig. 21a), progressively more POD modes are amplified downstream as

we increase the jet separation distance djet.

V. CONCLUSION

We presented a wind-tunnel experiment on jet–vortex interaction for variable relative spacing

djet using PIV measurements and a generic apparatus mimicking cruise flight, made of an inclined

rectangular wing equipped with two jets underneath. The strength of the jet flow was designed

to be realistic for the given setting and was kept the same throughout the different configurations.

Despite completing previous experimental studies (e.g.,20), the present analysis, providing all the

inflow conditions, in particular that for the jet exhaust, constitutes a complete and unique data set

to calibrate simulation tools.

Our focus was on the vortex-response characteristics as a function of the different jet positions

djet/b ∈ {0.44,0.58,0.80}. The wake flow comprises the trailing vortices that form near the wing
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FIG. 21. Eigenvalue (mean over all runs) spectra of the largest ten values from POD of the vorticity covari-

ance for the different configurations and measurement stations. (a) no-jet configuration, (b) jet placement

djet/b = 0.28, (c) jet placement djet/b = 0.21, (d) jet placement djet/b = 0.10. The different measurement

stations (see legend in (a)) are shown with the same marker style and color in each configuration.

tips, the rolling-up vortex sheet issued at the wing trailing edge and the jets for all but the no–jet

configurations. The vortices are found to roll-up within the first two chords behind the wing and

to descend under the mutual induction. Their circulation is little influenced by the jet presence

and reaches approximately the value 0.2cU∞. The vortex mean velocity profiles exhibit a close

to Gaussian evolution for the azimuthal velocity, while the streamwise mean velocity yields a

velocity deficit in the core and a local jet-like overshoot in the core periphery, where the jets are

present and entrained, all the more so as the jets are initially located closer to the tips. We show

that the no-jet configuration agrees reasonably well with the Batchelor model, while the jet–vortex

configurations follow the Moore–Saffman model with an n-parameter roughly equal to 0.8.

The most interesting and largely novel result of the experiment is the persistent and strong

unsteady lateral motion of the vortex that is found for all configurations, with increased amplitude

as a function of the jets’ presence and proximity to the wing tips. The statistical analyses of

the leading-order stochastic moments revealed several key conclusions. Namely, (i) the motion

30



Accepted to Phys. Fluids 10.1063/5.0127634

of the vortices shows no preferred direction within the downstream range of the measurement;

(ii) the motion amplitude follows a diffusion-like law in the downstream direction that suggests

a similarity of our observations with many other experiments and what is referred to as vortex

meandering. Lastly, (iii) the closest jet–vortex configuration, with d jet/b = 0.8, departs from

this general behavior by seemingly disrupting the vortices right after their formation close to the

trailing edge, and setting a sudden large amplitude of motion. This discontinuous and qualitatively

different vortex response upon reducing the mutual jet–vortex spacing beyond a certain point has

been reported for the first time.

All governing parameters other than the free-stream turbulence intensity remaining unchanged

points towards the net disturbing influence of the jets as a function of djet. This vortex-response

characteristic suggests that a preferred external excitation location rc exists. Taking the inward

shift of the vortex into consideration, this location can be estimated to be 6 < rc/r1
<
∼ 12. In

particular, this result suggests that vortex meandering is neither due to a linear vortex instability

exclusively present in the core, nor the consequence of a confining effect of the facility walls.

Rather, we have evidence that meandering is in fact the vortex response to disturbances of a generic

nature situated in the near periphery of the core. It is noteworthy that this conclusion is consistent

with the results of recent receptivity studies by 51,52. The pertinence of these and related studies

(e.g.,53) to explain experimental vortex dynamics is emphasized by the evidence for a linear vortex

dynamics implied by our results. Although not conclusive, these conclusions contribute important

novel aspects on the question of the origin and nature of unsteady vortex dynamics.

The vortex tends to concentrate practically all the fluctuation kinetic energy in the core which

is amplified downstream in all but the djet/b = 0.80 configuration and the main contribution to the

Reynolds stresses comes from the transversal components. Based on these findings, we computed

the POD of the streamwise fluctuation vorticity. Analysis of the variance downstream evolution

in the different configurations shows that the main effect of the jet, besides increasing the abso-

lute vortex-response variance levels, is in the excitation of a progressively larger number of POD

modes. To the best of our knowledge, this finding of a broadband excitation of a multitude of

vortex response modes by the jet as a function of spacing is original.

We resume that the jets only have a minor effect on the leading-order statistics of the vortex,

i.e., the mean flow and the mean drift path of the vortex centre, while they do significantly affect

the unsteady vortex dynamics and this influence is a function of the mutual jet–vortex spacing.
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Appendix A: Matching of vortex profile with models

The radial profile of azimuthal and axial mean velocities are fitted to a selection of vortex

models that are often used for this purpose 44. Figure 22 shows the comparison of the vortex

profile in the no-jet configuration with the Moore–Saffman and Batchelor models, respectively.

The Moore–Saffman model offers the best match for the azimuthal mean velocity, while the axial

mean velocity is well represented by both models. The n factor of the Moore–Saffman model,

representing the decay rate of the azimuthal velocity in the potential flow region, equals approxi-

mately 0.8, rather than 1 as expected for the Batchelor vortex and explains the better fitting of the

Moore–Saffman model. The same results are found for the jet–vortex configuration djet/b = 0.80

(not shown).
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r/c

(d)z/c=5
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FIG. 22. Comparison of the vortex profile against the Moore– Saffman model for (a) z/c = 1 and (b)

z/c = 5 and the Batchelor vortex for (c) z/c = 1 and (d) z/c = 5, in the no-jet configuration.

Appendix B: Discussion on the disturbing effect of the jet support structures

As detailed in § II and shown in Fig. 1–2, the jets are installed on bottom-mounted support

structures, which a priori must be expected to contribute an additional disturbance to the vortex.
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In order to estimate the effect of the supports on the vortex, we have conducted additional PIV

measurements of the three different configurations djet/b∈{0.44,0.58,0.80}with the jets installed

but not blowing. On comparing these results against the same configurations but with the jet

switched on and the no-jet case, the disturbing effect of the supports can be estimated.
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/c
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z/c
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jet on djet/b= 0.44
jet on djet/b= 0.58
jet on djet/b= 0.80

jet off djet/b= 0.44
jet off djet/b= 0.58
jet off djet/b= 0.80

FIG. 23. Downstream evolution of the mean location of the vortex centre for the different configurations,

comparing jet-on jet-off.

The distinctly different impact exerted by the supports on the vortex is well illustrated by com-

paring the leading-order vortex-centre stochastic moments (discussed in § IV) for the seven dif-

ferent configurations, which we call for convenience no-jet, djet/b ∈ {0.44,0.58,0.80} jet-on and

jet-off configurations. Figure 23, displaying the mean drift trajectories of the vortex centre, shows

that the variations in the vortex-centre mean location is mainly induced by the supports rather than

the jet flow.

However, we find that the fluctuation dynamics, being the main interest of this study, is only

insignificantly influenced by the support structures. This is shown in Fig. 24, comparing the stan-

dard deviation of the vortex-centre location σ(z)=
√

σ 2
X(z)+σ 2

Y (z) for the various configurations.

Particularly for the djet/b ∈ {0.44,0.58} jet–vortex configurations, the supports have no effect on

the vortex fluctuations at all, as the respective curves in Fig. 24 collapse.
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Y (z) of the vortex centre for

the different configurations, comparing jet-on jet-off.
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