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ABSTRACT 
The Shake-The-Box (STB, Schanz et al. 2016) three-dimensional Lagrangian Particle Tracking (LPT) technique 
introduced the concept of particle prediction in order to integrate the temporal domain into the particle reconstruction 
process based on Iterative Particle Reconstruction (IPR, Wieneke 2013). Taking advantage of long time-resolved (TR) 
recording sequences, the STB technique is able to cope with high particle image densities while delivering the accurate 
measurement of the particles position, velocity and acceleration along individual tracks. The Multi-Pulse STB (MP-
STB, Novara et al. 2016a, 2019) extended the range of applicability of the algorithm to high flow velocities, where 
time-resolved recordings cannot be attained due to the limitation frequency of the high-speed acquisition systems, by 
adopting multi-pulse systems (i.e. dual illumination and imaging setup). 
Nevertheless, dual-frame 3D acquisition systems, consisting in a dual-cavity laser and double-frame cameras, remain 
commonly used for many particle-image-based investigations in a wide range of flow velocities and applications. As 
a consequence, a 3D LPT approach capable of dealing with two-pulse recordings is of high interest for both the 
scientific community and industry. 
In the present study, a Two-Pulse Shake-The-Box approach (TP-STB) is proposed, based on the advanced IPR 
algorithm presented b y Jahn et al. 2021, in combination with the iterative scheme of reconstruction and tracking 
introduced for the Multi-Pulse STB algorithm development. 
The performances of TP-STB are assessed by means of comparison with the results from the time-resolved STB 
algorithm (TR-STB) on synthetic data. Application to a n experimental dataset of Rayleigh-Bénard-Convection proves 
the concept in real-life conditions. 

1. Introduction 

The problem of reconstructing the three-dimensional position of particle flow tracers from their 
projection on multiple cameras lies at the heart of several 3D particle-image-based velocimetry 
and Lagrangian particle tracking (LPT) measurement techniques.  
While cross-correlation-based techniques such as tomographic-PIV (Tomo-PIV, Elsinga et al. 2006) 
make use of algebraic methods (e.g. MART, Herman and Lent 1976) to reconstruct particles as 
intensity peaks in a discretized voxel space, triangulation-based methods (3D-PTV, Nishino et al. 
1989, Maas et al. 1993 and Iterative Particle Reconstruction, IPR, Wieneke 2013, Jahn et al. 2021) 
leverage epipolar geometry to reconstruct individual particles as positions and peak-intensity 
values in the 3D domain. 
Despite the inherent differences concerning accuracy, robustness and computational cost between 
the two approaches, in both cases the 3D reconstruction represents a bottleneck when the spatial 
resolution (i.e. particle image density, indicated in particles per pixel, ) of the measurement is 
considered.  
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In fact, as the number of particles to be reconstructed increases (assuming constant properties of 

the imaging system), the reconstruction process become increasingly difficult due to the 

underdetermined nature of the problem. This typically results in a lower number and positional 

accuracy of the reconstructed particles, as well as an increasing number of spurious particles (ghost 

particles, Elsinga et al. 2011) which affect the accuracy of the measurement. 

As a consequence, during the last decade, several methods have been developed to increase the 

performances of the reconstruction technique; an overview of these developments can be found 

in Scarano 2012 and Jahn et al. 2021. Among these methods, a number of techniques have been 

proposed to improve the accuracy of the reconstruction of instantaneous recordings by exploiting 

the coherence of the particle tracers moving with the flow over two or more realizations in the 

recording sequence. 

Concerning cross-correlation-based methods, the Motion Tracking Enhancement technique (MTE, 

Novara et al. 2010) proposed the combined use of two or more recordings (for double-frame and 

time-resolved acquisition respectively) to produce an enhanced initial guess for the Tomo-PIV 

algebraic reconstruction algorithm; for time-resolved recording sequences, a time-marching 

approach was introduced by Lynch and Scarano 2015 (sequential MTE, SMTE). 

On the other hand, when Lagrangian Particle Tracking techniques are considered, the Shake-The-

Box algorithm (STB, Schanz et al. 2013, 2016) introduced a predictor/corrector scheme to integrate 

the temporal domain into the IPR-based reconstruction process. Taking advantage of long time-

resolved recording sequences, where particle tracers can be followed over hundreds of 

realizations, the STB technique further extends the performances of IPR in terms of particle image 

density that can be dealt with. While Wieneke 2013 reported 0.05 𝑝𝑝𝑝 as an upper limit for IPR 

(already one order of magnitude larger than that typically employed for 3D-PTV single-pass 

triangulation), STB can deliver practically ghost-free tracks exceeding 0.1 𝑝𝑝𝑝 (Huhn et al. 2017, 

Bosbach et al. 2019); particle image densities up to 0.2 𝑝𝑝𝑝 have been successfully tackled for 

synthetic data (Sciacchitano et al. 2021). The combination of accurate LPT results from STB and 

data assimilation algorithms (FlowFit, Gesemann et al. 2016, VIC+, Schneiders and Scarano 2016) 

allows to further enhance the spatial resolution of the measurement and provides access to the 

spatial gradients (i.e. flow structures) and to the instantaneous 3D pressure field. 

When high-speed flows are considered, due to the frequency limitation of current acquisition 

systems, time-resolved sequences of recordings are not available. In order to overcome this 

limitation and extend the advantages of STB to higher flow velocities, the use of multi-pulse 

systems (i.e. dual illumination and imaging setup) in combination with an iterative STB approach 

(Multi-Pulse Shake-The-Box, MP-STB) was proposed by Novara et al. 2016a; an iterative strategy 

based on the sequential application of IPR and particle tracking is employed to progressively 

reduce the complexity of the reconstruction problem. The use of multi-exposed frames (Novara et 

al. 2019) allows to acquire multi-pulse recordings for MP-STB making use of only a single imaging 

system. 
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While performing LPT with STB requires either the availability of time-resolved recordings (TR-

STB) or the use of a relatively complex multi-pulse setup for MP-STB, dual-frame 3D acquisition 

systems, consisting in a dual-cavity laser and double-frame cameras, are commonly used for many 

particle-image-based investigations in a wide range of flow velocities and applications. As a 

consequence, a STB approach for two-pulse recordings is of high interest for the scientific 

community as it would allow to extend the benefits of accurate LPT analysis to a wider range of 

applications and users, as well as to enable the processing of datasets recorded with dual-frame 

systems (i.e. existing Tomo-PIV experiments). 

These considerations motivated a number of attempts to perform Lagrangian particle tracking 

with dual-frame recordings.  

Fuchs et al. 2016 proposed a hybrid method that leverages the robustness of tomographic PIV in 

order to enable carrying out 3D particle tracking for double-frame recordings. The technique 

makes use of tomographic reconstruction as a predictor for locating the corresponding particle 

images on the image plane, therefore enabling an educated triangulation procedure, followed by 

two-frames particle tracking.  

An iterative algorithm based on IPR reconstruction, 3D cross-correlation and two-pulse tracking 

was used by the DLR Göttingen group to analyze the single-exposed double-frame recording 

relative to Case C of the 4th International PIV Challenge in 2014 (Kähler et al. 2016). The same 

synthetic dataset was analyzed by Jahn et al. 2017 adopting the simultaneous IPR reconstruction 

of the two frames combined with a particle-matching-based filtering technique; every two IPR 

iterations, reconstructed particles which did not form a two-pulse track (based on an 

approximation of the expected velocity field) were iteratively deleted to progressively reduce the 

complexity of the reconstruction problem.  

A non-iterative 2D/3D particle tracking velocimetry algorithm was proposed by Fuchs et al. 2017. 

Following 3D reconstruction (Fuchs et al. 2016), a statistical analysis of all possible particle 

displacements within a search area is performed considering the neighbors of the particle of 

interest to determine the most probable displacement. The authors reported that the technique 

was successful in tackling images with a particle image density up to 0.06 𝑝𝑝𝑝. Lasinger et al. 2020 

presented a variational approach to jointly reconstruct the individual tracer particles in two time-

steps, as well as the dense 3D velocity field in a hybrid Lagrangian/Eulerian model.  

A novel technique for performing 3D-PTV from double-frame images (DF-TPTV) has been 

proposed by Cornic et al. 2020. A sparsity-based reconstruction method allows for the 

reconstruction of the particle tracers on a voxel grid; reconstructed particles are then tracked with 

the aid of a low-resolution displacement predictor from correlation, followed by a global 

optimizing procedure to refine the particle tracking. The DF-TPTV algorithm has been applied to 

experimental data from a round jet in air at 0.06 𝑝𝑝𝑝. 

Recently, an advanced version of the IPR algorithm has been proposed (Jahn et al. 2021), which 

significantly improves the performances of the reconstruction; single recordings can be 
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reconstructed up to a particle image density of 0.14 𝑝𝑝𝑝 with a very low occurrence of ghost 

particles even at realistic conditions concerning the image noise. 

In the present study, a Two-Pulse STB approach (TP-STB) is presented which makes use of the 

enhanced IPR algorithm combined with the iterative STB strategy commonly adopted for MP-STB 

(Novara et al. 2016a, 2019), and aided by velocity field prediction from Particle Space Correlation 

(PSC, Novara et al. 2016b). The TP-STB algorithm was successfully applied to analyze two-pulse 

synthetic images from the First Challenge on Lagrangian Particle Tracking and Data Assimilation 

(Leclaire et al. 2021) conducted in the framework of the European Union’s Horizon 2020 project 

HOMER (Holistic Optical Metrology for Aero-Elastic Research).  

Results presented in Sciacchitano et al. 2021 showed that nearly the totality of particle tracers could 

be reconstructed up to 0.16 𝑝𝑝𝑝, with an almost negligible number of spurious ghost particles and 

a very high particle position accuracy (positional mean error magnitude of approximately 

0.06 𝑝𝑥).  

The excellent results of the LPT and DA challenge, together with the aforementioned 

considerations on the relevance of dual-frame applications, motivate the present investigation.  

The TP-STB algorithm is presented in section 2. A performance assessment is carried out in section 

3 based on the application of TP-STB to two recordings from a time-resolved sequence, where the 

TR-STB results provide a reference for the ground-truth solution. Both synthetic data from a 

significantly more challenging (high image noise level) database generated within the HOMER 

project (Sciacchitano et al. 2022) and experimental data from a Rayleigh Bénard convection 

investigation (Weiss et al. 2022) have been used for the assessment (sections 3.1 and 3.2 

respectively).  

2. Iterative STB for two-pulse recordings 

The iterative particle reconstruction/tracking strategy for TP-STB is shown in Figure 1-left; the 

working principle of the algorithm is based on the MP-STB processing technique from Novara et 

al. 2016a, 2019. The 3D particle positions and intensities are reconstructed by means of advanced 

IPR (Jahn et al. 2021) for both recordings in the two-pulse sequence. Then, two-pulse tracks are 

identified, possibly with the aid of a velocity field predictor, between the two reconstructed 3D 

particle fields (see section 2.1).  

As the position of ghost particles mainly depends on geometrical properties (i.e. relative position 

of the tracers with respect to the cameras line-of-sight), the displacement of spurious peaks is 

typically not coherent with the flow field (Elsinga et al. 2011). For this reason, only the particles 

that can be tracked over the two recordings are retained; unmatched particles (in gray in Figure 1-

left), possibly ghosts, are discarded (i.e. filtering step).  

Retained particle peaks are back-projected onto the image plane (projected images) and subtracted 

from the original recordings (recorded images) to obtain the residual images; the IPR reconstruction, 

tracking step and evaluation of projected/residual images constitute a single STB iteration. 
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Assuming that a number of tracks can be successfully identified in the first STB iteration, the 

residual images will exhibit a lower particle image density than the original recordings, therefore 

offering a progressively easier reconstruction problem for the following iterations. If a particle is 

erroneously discarded during the filtering step (e.g. untracked particles due to insufficiently large 

search radii or to an inaccurate displacement predictor field) the relative particle image will remain 

on the residual images, making it possible for the particle to be reconstructed and tracked at a 

subsequent iteration.  

The number of STB iterations required to achieve convergence depends on the experimental and 

imaging conditions (i.e. particle image density and diameter, number of cameras, image quality); 

the effect of this processing parameter is discussed in the performance assessment (section 3).  

 

2.1. Particle tracking strategy 

The two-pulse particle tracking strategy is shown in Figure 1-right. A search area is established 

around the reconstructed particles in the first pulse (𝑡1); if a particle from 𝑡2 is found within the 

search area, a track candidate is identified. If a predictor for the displacement field is available 

(orange arrow in Figure 1-right), the search radius 𝛿2𝑝 can be reduced to avoid ambiguities.  

For each candidate, a cost function is defined as the standard deviation of the particle intensity 

along the track candidate (𝜎𝐼); if a velocity predictor is available, the magnitude difference between 

the velocity estimated from the track candidate and that from the predictor (𝜀𝑝𝑟𝑒𝑑) is integrated in 

the cost function. The relative contribution of these two parameters to the cost function can be 

weighted based on the level of confidence in the particle peak intensity consistency and in the 

accuracy of the predictor field. 

Two-pulse tracks are obtained by filtering the track candidates to solve possible ambiguities; 

among multiple candidates sharing the same particle, the one which minimizes the cost function 

is retained, while the others are discarded.  

 
Figure 1. Left: iterative processing strategy for TP-STB (adapted from Novara et al. 2019); two-pulse tracks are 

indicated in black, untracked particles in gray. Right: particle tracking scheme without (top) and with (bottom) 

the aid of a displacement predictor (orange arrow). 
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An additional filtering of the tracks can be applied by defining maximum accepted values for the 

cost function terms; tracks exhibiting values exceeding these thresholds (𝜎𝐼
𝑚𝑎𝑥and 𝜀𝑝𝑟𝑒𝑑

𝑚𝑎𝑥 ) are 

discarded from the reconstruction in order to avoid possible outliers.  

For the first TP-STB iteration, an estimate of the instantaneous 3D velocity field to be used as a 

displacement predictor can be obtained by analyzing the two 3D point clouds reconstructed from 

IPR with the Particle Space Correlation algorithm (PSC, see Appendix).  

The PSC consists of a 3D cross-correlation approach in the particle space; unlike for tomographic 

PIV, where the cross-correlation is applied to the voxel space, the PSC makes use only of the 

particle peak locations and intensities as obtained from IPR. An iterative procedure analogous to 

that proposed for the volume deformation multigrid cross-correlation technique (Scarano and 

Poelma 2009) can be applied to progressively increase the spatial resolution of the estimated 

velocity field. A tri-linear interpolation is used to evaluate the predicted displacement from the 

PSC result at the location of the reconstructed particles (orange arrow in Figure 1-right). 

Due to the large cross-correlation volumes, the resulting velocity field from PSC (𝑢𝑃𝑆𝐶) is typically 

strongly modulated; for subsequent STB iterations, a displacement predictor can be obtained by 

interpolating the scattered velocity measurements from the tracks identified in the previous 

iterations (𝑢𝑡𝑟𝑎𝑐𝑘𝑠). Alternatively, a constant shift can be used as a displacement predictor (𝑢𝑐𝑜𝑛𝑠𝑡); 

𝑢𝑐𝑜𝑛𝑠𝑡 = 0 corresponds to a situation where no displacement predictor is used (Figure 1-right-top).  

A different set of particle tracking parameters (i.e. search radius 𝛿2𝑝, cost function parameters 

𝜎𝐼 , 𝜀𝑝𝑟𝑒𝑑, relative weights and threshold values (𝜎𝐼
𝑚𝑎𝑥, 𝜀𝑝𝑟𝑒𝑑

𝑚𝑎𝑥 ), the use and choice of velocity 

predictor  (𝑢𝑐𝑜𝑛𝑠𝑡, 𝑢𝑃𝑆𝐶 , 𝑢𝑡𝑟𝑎𝑐𝑘𝑠)) can be employed for each TP-STB iteration, depending on the 

experimental conditions and image quality. 

 

3. Performance assessment: comparison with time-resolved STB 

Typically, the performances of a novel algorithm are assessed by applying it to a dataset where 

the ground-truth solution is known (i.e. synthetically generated dataset).  

On the other hand, the results presented in Sciacchitano et al. 2021 concerning the assessment of 

STB applied to time-resolved recordings, show that TR-STB is capable to provide a close-to-perfect 

reconstruction up to 0.2 𝑝𝑝𝑝 with a very low number of ghost particles (< 0.1%) and a high particle 

peak positional accuracy (positional mean error magnitude < 0.05 𝑝𝑥). 

As a consequence, it can be assumed that, under a wide range of particle image densities and 

imaging conditions, the results offered by TR-STB provide an accurate reference for the actual 

ground-truth 3D particle distribution. Therefore, in the present study, the performance assessment 

of TP-STB is carried out by analyzing a two-pulse recording sequence extracted from a longer 

acquisition, where the reference solution is obtained from a TR-STB analysis in the converged state 

(Schanz et al. 2016). 
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This approach offers the twofold advantage of allowing the assessment of the performances of TP-

STB based on a synthetic dataset where the actual ground-truth is not known (HOMER internal 

database, Sciacchitano et al. 2022, section 3.1) and on experimental data from a time-resolved 3D 

investigation (Rayleigh Bénard convection, Weiss et al. 2022). 

 

3.1. Synthetic dataset: HOMER Lagrangian Particle Tracking database  

A detailed description of the HOMER LPT database can be found in Sciacchitano et al. 2022; 

synthetic images from a 3D imaging system have been generated based on a simulation of the air 

flow around a cylinder in ground effect, where the wall contains a flexible oscillating panel. 

Among the several cases within the database, a time-resolved sequence of recordings from a four-

camera system is produced, where particle images with a significant noise level have been 

generated at 0.05 and 0.12 𝑝𝑝𝑝. For each particle image density, a two-pulse sequence is analyzed 

by means of TP-STB; as mentioned above, performances in terms of reconstruction positional 

accuracy and velocity estimate error are assessed against a result extracted from a converged time-

resolved STB (Schanz et al. 2016) analysis. 

The simulated free-stream velocity 𝑉∞ is 10 𝑚/𝑠, the cylinder has a diameter 𝐷 of 10 𝑚𝑚 and it is 

located 15 𝑚𝑚 upstream of the upstream edge of the 100 × 100 𝑚𝑚 panel at a distance of 

10 𝑚𝑚 from the undeformed wall location (𝑍 = 0 𝑚𝑚). The 𝑋 axis is aligned with the streamwise 

direction, the wall-normal 𝑍 axis is directed away from the wall and the spanwise 𝑌 axis 

orientation follows the right-hand rule.  

The measurement volume spans 100 × 100 × 30 𝑚𝑚3 in the 𝑋, 𝑌 and 𝑍 directions respectively; the 

1920 × 1200 𝑝𝑥 camera sensors have a pixel pitch of 10 𝜇𝑚. The four cameras are arranged in in-

line configuration with viewing angles of −30°, −10°, +10° and +30° with respect to the 𝑍 axis; the 

average digital resolution is approximately 10.94 𝑝𝑥/𝑚𝑚. 

The time-resolved sequence (TR) contains 501 recordings with a time separation between pulses 

of 20 𝜇𝑠; recordings 330 − 331 have been chosen for the TP-STB analysis.  

Approximately 52,000 and 114,000 tracks are identified by the TR-STB analysis for the 0.05 and 

0.12 𝑝𝑝𝑝 cases. The ground-truth reference result from TR-STB for recording 330 is shown in 

Figure 2-left for the 0.12 𝑝𝑝𝑝 case; tracked particles are indicated by markers color-coded by the 

streamwise velocity component 𝑢 (details on the TR-STB analysis can be found in Sciacchitano et 

al. 2022).  

A detail of the original particle images for camera 2 is presented in Figure 2--right for both particle 

image densities; due to the high image noise level, before TP-STB processing, a constant value of 

130 𝑐𝑜𝑢𝑛𝑡𝑠 is subtracted from the recorded images.  

The main processing parameters are summarized in Table 1. The TP-STB analysis was carried out 

applying 11 STB iterations. The IPR settings have been optimized for the 0.12 𝑝𝑝𝑝 case and applied 
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for the lower seeding density as well for sake of consistency and ease of description; however, for 

the 0.05 𝑝𝑝𝑝 case a leaner processing could have sufficed to produce results of the same quality.  

A single 3D particle field is reconstructed in about 2 and 1 minutes for 0.05 and 0.12 𝑝𝑝𝑝 

respectively; as the particle image density on the residual images decreases with the STB iterations 

so does the IPR processing time, depending on the fraction of tracks successfully reconstructed in 

the previous iterations. For a detailed description of the IPR algorithm and settings used within 

the TP-STB the authors refer to Jahn et al. 2021. 

The displacement field predictor was estimated by PSC with a final cross-correlation volume of 

20 × 20 × 5 𝑝𝑥 (approximately 1.8 × 1.8 × 0.45 𝑚𝑚3). The search for two-pulse track candidates 

was conducted without the aid of a predictor field (search predictor in Table 1 set to 𝑢𝑐𝑜𝑛𝑠𝑡 = 0); 

instead, a large enough search radius (4 𝑝𝑥) was used which ensures that even the largest particles 

displacements with the time separation between the pulses (estimated as ≈ 2.5 𝑝𝑥) can be 

captured. On the other hand, the displacement predictor fields 𝑢𝑃𝑆𝐶  and 𝑢𝑡𝑟𝑎𝑐𝑘𝑠 have been used to 

 
Figure 2. Left: ground-truth reference result from TR-STB for 0.12 𝑝𝑝𝑝; approximately 114,000 particles color-

coded by streamwise velocity component. Right: details of particle images at 0.05 (top) and 0.12 𝑝𝑝𝑝 (bottom). 

STB iteration(s) 1 2 - 11 

Main IPR parameters 

Number of outer iterations  50 

2D peak intensity threshold [counts] 100 

Allowed triangulation error [px] 0.4 − 1.0 

Number of shaking iterations 8 

Particle tracking parameters 

Predictor (search/residual) 𝑢𝑐𝑜𝑛𝑠𝑡 = 0 / 𝑢𝑃𝑆𝐶 𝑢𝑐𝑜𝑛𝑠𝑡 = 0 / 𝑢𝑡𝑟𝑎𝑐𝑘𝑠 

Search radius 𝛿2𝑝 [px] 4.0 

Cost function terms (weight factor) 𝜎𝐼 (0.5) / 𝜀𝑝𝑟𝑒𝑑 (1.0) 

𝜎𝐼
𝑚𝑎𝑥 [counts] / 𝜀𝑝𝑟𝑒𝑑

𝑚𝑎𝑥   [m/s] ∞ / 1.0 ∞ / 1.0 − 10.0 

Table 1. Summary of TP-STB processing parameters for the synthetic test case. 
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evaluate the cost function term 𝜀𝑝𝑟𝑒𝑑 (residual predictor in Table 1); a linearly increasing value of 

𝜀𝑝𝑟𝑒𝑑
𝑚𝑎𝑥  is used to filter out possible outliers. 

The performance assessment of the TP-STB results follows the same approach presented in 

Sciacchitano et al. 2021, 2022; a reconstructed particle is considered correct (i.e. hit) if a reference 

particle (from TR-STB) is found within a radius of 1 𝑝𝑥. On the other hand, a particle is considered 

a ghost either when no reference particle is present in its vicinity, or when a found reference particle 

has already been matched to a closer reconstructed particle (i.e. when two particles are 

reconstructed near a reference particle, the closest one is labelled as hit and the other one as ghost).  

As only particles that could be tracked between the two pulses are considered for the analysis, the 

terms particle and track are used interchangeably in the present document. 

The fraction of correct and ghost particles as obtained from the TP-STB analysis of both particle 

image density levels is presented in Figure 3 as a function of the number of STB iterations applied. 

The dotted lines refer to the result of a TP-STB processing where only one STB iteration was 

applied; this situation reflects the performances of two-pulse particle tracking applied to the 

individual IPR reconstruction of the two recordings.  

The same tracking scheme has been applied for both the iterative and the single-iteration TP-STB. 

For the single-iteration case, the iterative tracking parameters presented in Table 1 are applied to 

the same 3D point clouds from IPR, and only the final result is shown in Figure 3. On the other 

hand, the rather conservative tracking parameters used for the first iterations (i.e. 𝜀𝑝𝑟𝑒𝑑
𝑚𝑎𝑥 ) are 

responsible for the lower number of reconstructed tracks attained by the iterative method for STB 

iterations 1 − 5. 

Due to the already excellent performances of the single-recording enhanced IPR (Jahn et al. 2021), 

the beneficial effect of the iterative STB scheme depicted in Figure 1-left can only be appreciated in 

 
Figure 3. Fraction of reconstructed tracks from TP-STB with respect to the number of tracks from the reference TR-

STB solution for both particle image densities. The fraction of correctly reconstructed tracks (hits in blue) and of 

ghost tracks (ghosts in orange) are shown for a single iteration (dotted line) and for the complete iterative TP-STB 

strategy.   
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the higher seeding density conditions; for 0.12 𝑝𝑝𝑝, 12% more tracks can be correctly identified 

when an iterative approach is adopted (≈ 81%) with respect to the single iteration result (≈ 69%).  

On the other hand, the ghost particle level remains low in both cases (≈ 2 − 3%). When the fraction 

of spurious particles is considered, it is interesting to note that the ghost level for a single-recording 

IPR reconstruction (i.e. no particle is discarded when failing to build a two-pulse track) is 

approximately 7% and 16% for 0.05 and 0.12 𝑝𝑝𝑝 respectively. This result shows once again the 

significant impact of exploiting the time information embedded in a sequence of recordings.  

Given the better performances in terms of tracks yield, the results presented in the remainder of 

this section refer to the iterative TP-STB processing results; the fraction of correctly reconstructed 

tracks in the converged state is approximately 89% (46,700 tracks) and 81% (93,600 tracks) for 

0.05 and 0.12 𝑝𝑝𝑝 respectively.  

The analysis of the 3D particle peak positional accuracy is carried out by comparing the TP-STB 

results with the reference TR-STB solution making use of the matched particles (hits) for both 

seeding densities; the histograms of the errors in the streamwise (𝑋) and wall-normal (𝑍) directions 

are presented in Figure 4. The results in the spanwise component (𝑌) are not shown as they 

resemble closely those for the 𝑋 direction. For the low seeding density case (Figure 4-left), the root-

mean-square (RMS) errors for the 𝑋 and 𝑍 positions are approximately 5.6 𝜇𝑚 (0.06 𝑝𝑥) and 

14.6 𝜇𝑚 (0.16 𝑝𝑥) respectively; the 2.6 factor between the accuracy in the two directions can be 

ascribed to the viewing direction of the imaging system being aligned with the wall-normal 

direction (𝑍). For the 0.12 𝑝𝑝𝑝 case, due to the higher complexity of the reconstruction problem 

(i.e. overlapping particle images), as expected, the positional errors increase to 7.6 𝜇𝑚 (0.08 𝑝𝑥) 

and 19 𝜇𝑚 (0.21 𝑝𝑥) for 𝑋 and 𝑍 respectively. The results shown in Figure 4 compare well with 

those presented in Sciacchitano et al. 2022, confirming that the TR-STB method is capable of 

providing a good approximation of the actual ground-truth particle distribution.  

 
Figure 4. Histograms of the particle peak positional error for the streamwise (𝑋 in blue) and wall-normal (𝑍 in 

orange) components for 0.05 and 0.12 𝑝𝑝𝑝. Right: results from the 0.05 𝑝𝑝𝑝 case shown as shaded areas for sake 

of comparison. 
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Please note that the relatively high positional errors are mainly attributed to the high noise levels 

and the broad particle size distribution, which inhibits the detection of over 20% of the particles 

even for TR-STB (see Sciacchitano et al. 2022); when dealing with lower image noise levels, 

significantly higher accuracies can be achieved (see Sciacchitano et al. 2021). 

 

3.2. Experimental dataset: Rayleigh Bénard convection flow 

The performance assessment of TP-STB based on experimental data is carried out by analyzing a two-pulse 

sequence from the time-resolved recordings from the Rayleigh Bénard convection cell investigation 

presented by Weiss et al. 2022. 

As for the analysis presented in the previous section, the results from TR-STB are taken as a reference of 

the unknown ground-truth 3D particle tracks field.  

The convection flow is issued within a rectangular cell of 320 × 320 × 20 𝑚𝑚3 filled with water; a heated 

copper plate is located at the bottom of the cell, while a cooled borosilicate glass plate is used at the top in 

order to provide optical access for the imaging system (Figure 5-left).  

The applied temperature difference between the top and the bottom plate varies between 2 and 20 𝐾. The 

flow was seeded with fluorescent 50 𝜇𝑚 polyethylene microspheres, illuminated by two pulsed UV-LED 

arrays. A detailed description of the experimental setup can be found in Weiss et al. 2022. 

A system of six scientific CMOS cameras was operated at a frequency 𝑓𝑎𝑐𝑞 = 10 − 40 𝐻𝑧 to acquire time-

resolved sequences of recordings; a detail of a 2160 × 2560 𝑝𝑥 camera image is shown in Figure 5-right.  

The particle image density is approximately 0.075 𝑝𝑝𝑝; around 332,000 instantaneous particles are 

successfully reconstructed and tracked by the TR-STB algorithm.  

In order to increase the dynamic range of the measurement, a time separation of three frames has been 

chosen between the two recordings used for the two-pulse reconstruction; given a digital resolution of 

approximately 7.15 𝑝𝑥/𝑚𝑚, a maximum particle displacement of 11 𝑝𝑥 is expected for the case presented 

in this section (𝑓𝑎𝑐𝑞 = 19 𝐻𝑧, maximum flow velocity magnitude of 𝑉𝑚𝑎𝑥 ≈ 0.01 𝑚/𝑠).  

 
Figure 5. Left: Sketch of experimental setup (reproduced from Weiss et al. 2022). Right: detail of CMOS camera 

image; the full-frame image size is 2160 × 2560 𝑝𝑥. 
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Due to the relatively low image noise and good image quality (i.e. consistent particle peak intensity for all 

cameras in the imaging system and over the recording sequence), a single iteration of TP-STB has been 

employed for the results shown in the present section; the main processing parameters are presented in 

Table 2. 

The displacement field predictor was estimated by PSC with a final cross-correlation volume of 

20 × 20 × 10 𝑝𝑥 (approximately 2.8 × 2.8 × 1.4 𝑚𝑚3).  

Approximately 87%  of the reference tracks (≈ 290,000 tracks) are correctly reconstructed by TP-STB; the 

ghost particle level remains below 1% (≈ 2,800 tracks).  

The number of correct tracks reconstructed by TP-STB, as well as their positional error, is computed with 

respect to the reference tracks from TR-STB obtained after filtering the particle positions along the tracks 

by means of the TrackFit spline interpolation scheme (Gesemann et al 2016); the cut-off frequency of the 

low-pass filter is determined from the spectral distribution of the unfitted tracks in order to remove the 

high-frequency measurement noise and preserve the physical fluctuations.  

The reference velocity values are computed by linear fit of the reference particle positions from the fitted 

TR-STB tracks extracted at the two time-instants used for the TP-STB processing; this allows to isolate the 

contribution to the velocity error associated to the random positional noise due to the IPR reconstruction. 

On the other hand, the truncation error due to the finite time separation between the two pulses is not 

included in the present analysis.  

This choice is motivated, on the one hand, by the fact that the magnitude of the truncation error strongly 

depends on the particular investigated flow (i.e. ratio between the temporal scales and the chosen time 

separation between pulses). On the other hand, the smallest time separation adopted for dual-frame 

investigation is not a free parameter that can be changed in post-processing, but it is typically set in order 

to limit the maximum particle displacement between the two frames to a value that would allow a robust 

velocimetry analysis either by cross-correlation or particle tracking (≈ 11 𝑝𝑥 in the present investigation). 

The positional and velocity analysis based on the correctly reconstructed tracks is presented in Figure 6. In 

the chosen reference system, the 𝑋𝑌 plane is parallel to the top and bottom plates of the cell; on the other 

hand, 𝑍 is aligned with the imaging system viewing direction. The finite aperture of the imaging system 

justifies the larger errors in the 𝑍 direction by a factor of approximately 3.5. The positional RMS errors are 

approximately 5 𝜇𝑚 (0.04 𝑝𝑥) and 19 𝜇𝑚 (0.14 𝑝𝑥) for 𝑋 and 𝑍 respectively; the velocity RMS errors are 

Main IPR parameters 

Number of outer iterations  5 

2D peak intensity threshold [counts] 600 

Allowed triangulation error [px] 0.6 − 0.9 

Number of shaking iterations 6 

Particle tracking parameters 

Predictor (search/residual) 𝑢𝑃𝑆𝐶 / 𝑢𝑃𝑆𝐶 

Search radius 𝛿2𝑝 [px] 2 

Cost function terms (weight factor) 𝜎𝐼 (0.5) / 𝜀𝑝𝑟𝑒𝑑 (1.0) 

𝜎𝐼
𝑚𝑎𝑥 [counts] / 𝜀𝑝𝑟𝑒𝑑

𝑚𝑎𝑥   [m/s] ∞ / 0.02 

Table 2. Summary of TP-STB processing parameters for the Rayleigh-Bénard-convection case. 
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approximately 0.69% 𝑉𝑚𝑎𝑥 and 2.27% 𝑉𝑚𝑎𝑥 for the in-plane and out-of-plane components respectively. A 

visualization of the 3D instantaneous tracks obtained with TP-STB is presented in Figure 7. 

Acknowledgments 

This work has been carried out in the context of the HOMER (Holistic Optical Metrology for Aero-Elastic 

Research) project, funded by the European Union’s Horizon 2020 research and innovation programme 

under grant agreement No 769237.  

The authors of Sciacchitano et al 2022 are kindly acknowledged for providing the synthetic dataset 

described in section 3.1. The authors of Weiss et al 2022 are kindly acknowledged for providing the 

experimental dataset for section 3.2. 

 

 
Figure 6. Histograms of the particle peak positional (left) and velocity (right) errors for the in-plane (X in blue) and 

out-of-plane (𝑍 in orange) components. 

 
Figure 7. Instantaneous result from TP-STB; particles color-coded with the velocity component along 𝑍. Blue 

indicates sinking particles while yellow indicates rising ones. Left: complete track field (approximately 290,000 

particles) marked with velocity vector. Right: spherical particle markers in a 8 𝑚𝑚 𝑋𝑌-slice (top) and  10 𝑚𝑚 𝑋𝑍-

slice (bottom). 
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