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Abstract: Several aspects of software product quality can be assessed and measured using product
metrics. Without software metric threshold values, it is difficult to evaluate different aspects of
quality. To this end, the interest in research studies that focus on identifying and deriving threshold
values is growing, given the advantage of applying software metric threshold values to evaluate
various software projects during their software development life cycle phases. The aim of this paper
is to systematically investigate research on software metric threshold calculation techniques. In this
study, electronic databases were systematically searched for relevant papers; 45 publications were
selected based on inclusion/exclusion criteria, and research questions were answered. The results
demonstrate the following important characteristics of studies: (a) both empirical and theoretical
studies were conducted, a majority of which depends on empirical analysis; (b) the majority of papers
apply statistical techniques to derive object-oriented metrics threshold values; (c) Chidamber and
Kemerer (CK) metrics were studied in most of the papers, and are widely used to assess the quality
of software systems; and (d) there is a considerable number of studies that have not validated metric
threshold values in terms of quality attributes. From both the academic and practitioner points of view,
the results of this review present a catalog and body of knowledge on metric threshold calculation
techniques. The results set new research directions, such as conducting mixed studies on statistical
and quality-related studies, studying an extensive number of metrics and studying interactions
among metrics, studying more quality attributes, and considering multivariate threshold derivation.

Keywords: object-oriented metrics; software metrics; object-oriented measures; thresholds;
systematic mapping; software quality

1. Introduction

Software engineering aims to determine and advance the quality of software through-
out the software development life cycle. For achieving this aim, software metrics are
applied to consider the qualitative aspects of software components quantitatively [1]. Arar
and Ayan [1] observed that software metrics can measure software from different per-
spectives, but embody the internal quality of software systems. Software metrics without
threshold values do not help much to evaluate the quality of software components [2]. In
order to tackle this problem, it is crucial that dependable threshold values be selected [3].
The application of metrics encompasses thresholds to ascertain if a specific value is accept-
able or abnormal and, thus, provides denotation to metrics, enabling them to become a
decision-making device pre- and post-software release [4]. However, determining appro-
priate threshold values is a rigorous task as thresholds attained by achieving a correlation
analysis are only for a defined group of identical software systems [5]. This is further
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supported by Zhang et al. [6], who note that thresholds cannot be inferred and depend on
distinct domains. Arar and Ayan [1] observed that process of defining a threshold is built
on benchmark data related to views and that data should be analyzed statistically. Alves
et al. [7] and Sanchez-Gonzalez et al. [8] pointed out that this process should be repeatable
and clear. Beranic and Hericko [3] concluded that thresholds are critical for software metric
analyses and, hence, they are important in practice [2]. Beranic and Hericko [3] stressed that
software metric threshold calculation is a significant research topic, and for this reason, the
present study is an attempt to further this research direction. Ferreira et al. [2] stated that a
lack of knowledge on metric threshold values constrains the wide use of software metrics,
and several metrics are very useful to improve software design. Lanza and Marinescu [9]
also recommended focusing on the calculation of metrics to be able to use them in practice.
The sources, namely statistical information and widely accepted knowledge, are given in
their article.

Over the last decade, the object-oriented programming paradigm and systems based
on this paradigm have been used in the software industry to build efficient, effective,
and scalable systems. Object-oriented metrics were proposed in the early 1990s and
are widely used by researchers to design better software systems [10]; however, it is
difficult to evaluate the qualities of software based on a single value. Therefore, threshold
values are vital to have a generic view of different software applications. An appropriate
threshold value is an orientation for the developer in the task of maintenance, testing, and
evolution. Ferreira et al. [2] calculated some threshold values for object-oriented metrics
based on several characteristics of software and reported that these threshold values are
valid for object-oriented systems. They further observed that recommended thresholds
could help to identify problematic classes, which do not follow design principles, and
metric threshold values can help for this purpose. However, a threshold value might be
affected by several factors, such as organization, programmer experience, language, and
development tools [11]. Several studies have been conducted to conclude the threshold
values for different types of metrics, such as Chidamber and Kemerer (CK) metrics [10].
These threshold values have been applied to evaluate various software projects.

Although several threshold calculation methods exist in the literature, there is no
systematic mapping study on threshold calculation methods. In this paper, we focus on
object-oriented metrics. Systematic mapping is one of the main mechanisms of evidence-
based software engineering [12], which helps to categorize research papers within a field.
Metric threshold values help in maintainability prediction, quality assessment, vulnerability
prediction, and fault prediction [13–17]. Arar and Ayan [1] reported that compared to the
immense interest in software fault-prediction studies, there are fewer metric threshold
derivation studies. Boucher and Badri [18] suggested that non-supervised fault-proneness
prediction models, notably thresholds-based models, can efficiently be automated and
provide valuable insights to developers and testers. Therefore, this study can contribute to
novel research perspectives about this area. In essence, a systematic mapping study in this
area is timely because the knowledge of threshold calculation methods is growing rapidly.
Not only academics, but also practitioners in the software market, can benefit from this
study and identify the available methods to implement as a utility within products. To
have an illustration of the existing research, a systematic mapping study of object-oriented
metrics and their threshold values is discussed in this paper.

The following sections are structured as follows. Section 2 provides an analysis of the
object-oriented metrics and previous studies in this field. Section 3 explains the systematic
mapping study. Section 4 shows the results. Section 5 provides a discussion of the results.
Section 6 shows the limitations. Finally, Section 7 concludes the paper.

2. Background and Related Work

To better understand the rest of the paper, this section contributes a brief backdrop on
the concept of object-oriented metrics and their threshold values. Furthermore, since the
present work is a secondary study, a brief review of other secondary studies in software
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metrics is provided. These recent studies show that this area is an active field of research
interest among software engineering researchers. Therefore, our study advances these two
earlier studies in terms of rigor of analysis, digital libraries, and research questions.

2.1. Object-Oriented Metrics

Software metrics are measures of software development processes and the quality
of the produced software. The current software metrics have been classified into tradi-
tional and object-oriented metrics [19]. This paper focuses on object-oriented metrics. A
significant number of these metrics are suggested in the literature. For example, there are
CK metrics proposed by Chidamber and Kemerer [10], Li’s metrics [20], and Lorenz and
Kidd’s metrics [4]. Among these, the CK metrics are the most frequently used.

Chidamber and Kemerer (CK) are the researchers who defined the CK metric suite,
which includes the following six metrics: Number of Children (NOC), Depth of Inheritance
Tree (DIT), Coupling Between Objects (CBO), Weighted Methods per Class (WMC), Lack of
Cohesion in Methods (LCOM), and Response for a Class (RFC). The purpose of this metric
suite is to measure the complexity of object-oriented software. Li [21] proposed another
metric suite for object-oriented software; it includes six metrics: Number of Ancestor
Classes (NAC), Class Method Complexity (CMC), Number of Local Methods (NLM),
Number of Descendent Classes (NDC), Coupling Through Message Passing (CTM), and
Coupling Through Abstract Data Type (CTA). Lorenz and Kidd [4] defined a metric suite
consisting of eleven metrics to calculate the static aspects of software design. These metrics
were classified into three groups, namely, class size (Number of Public Methods (NPM),
Number of Methods (NM), Number of Public Variables (NPV), Number of Variables per
Class (NV), Number of Class Variables (NCV), Number of Class Methods (NCM)), class
inheritance (Number of Methods Inherited (NMI), Number of Methods Overridden (NMO),
and Number of New Methods (NNA)), and class internal (Average Parameters per Method
(APM) and Specialization Index (SIX)).

2.2. Object-Oriented Metrics Thresholds

Despite the importance of object-oriented metrics in software engineering, they have
not been adequately applied in the software industry [2,22,23]. The reason is that the
thresholds of a majority of metrics are not identified. The thresholds are described as
“heuristic values used to set ranges of desirable and undesirable metric values for measured
software” [4]. Identifying these values is crucial because they allow the metrics to be
applied to evaluate quality issues in software. Furthermore, without the insight of these
thresholds, one cannot comment on questions such as “which class has the largest number
of methods?” or “which method has a large number of parameters?” [24].

In recent years, several studies have been performed to derive the threshold values of
object-oriented metrics. These studies use different methods to determine threshold values
for various metrics categories. Shatnawi used log transformation to derive threshold values
for CK metrics [25], alternatively, Malhotra and Bansal [26] used a statistical model derived
from logistic regression to identify the thresholds of CK metrics. These two studies are only
two examples of a large number of research papers that will be analyzed and classified in
the present study.

2.3. Related Work

There have been some secondary studies in the area of software metrics. Beranic and
Hericko [3] presented a preliminary review on approaches for software metrics threshold
derivation from 14 primary studies. According to their observations, the majority of the
studies presented new ways and generally applied statistical techniques for threshold
derivation. In addition, they selected a programming language, for which the metrics are
derived (i.e., Java, C, C++, and C#). They answered four research questions related to
approaches and methods used for software metrics threshold derivation, as well as the
objective of threshold derivation for which software metrics thresholds are derived, and
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finally the available tools for metric collection and threshold derivation. In another study,
Ronchieri and Canapro [27] provided a preliminary mapping study of software metrics
thresholds, which was limited to the Scopus database and two research queries: which
papers are currently most important in the software metrics threshold research community,
and whether software metrics threshold papers can be meaningfully aggregated. Thus,
this study was the first attempt, but its scope was very limited in terms of topic and
venue of publications (i.e., journals and conferences). Kitchenham conducted a preliminary
mapping study of software metrics research to identify influential software metrics research
published between 2000–2005. In addition, the authors aimed to investigate the possibility
of using secondary studies for integrating the research results [28].

Tahir and MacDonell [29] published a systematic mapping study of research on
dynamic metrics. They identified and evaluated 60 papers, which were classified based on
three different aspects: research focus, research type, and research contribution. Vanitha
and ThirumalaiSelvi [30] performed a literature review to identify and analyze the metrics
for some quality factors. In addition, their review aimed to provide a general overview of
the software metrics to guide researchers in identifying which metrics can be applied to
assess different software quality attributes. Despite their contributions to the field, none of
these studies focused on object-oriented metrics, nor did they pay attention to identifying
the threshold values.

3. Systematic Mapping Process

Systematic mapping studies are applied to structure a research area and to provide a
classification (i.e., structure) of the type and results of articles that have been published
by classifying them. The main process steps of this systematic mapping research are to
include the research questions, conducting the search for relevant papers, screening of
papers, keywording of abstracts, data extraction, and mapping [31]. Figure 1 illustrates
the steps of a systematic mapping study. In this article, systematic mapping is applied to
software quality in studies that focus on threshold values of object-oriented metrics.
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3.1. Definitions of Research Questions

The main objective of the present systematic mapping study is to understand, clarify,
and identify threshold values of object-oriented metrics that were most used and published
in relevant papers. According to the area and the application of object-oriented metrics, the
research questions are formulated in Table 1.
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Table 1. Research questions and main motivations.

Research Questions Main Motivation

Q1. What kinds of threshold calculation
methods exist in the literature?

Analyze directions and a good fit for threshold
calculation methods.

Q2. What are the quality attributes of the
derived thresholds?

Identify which quality attributes exist in
threshold calculation methods.

Q3. What are the combinations of metrics
found in literature? Support metrics threshold calculation studies.

Q4. What are the methodologies used in
studies to derive thresholds?

Understand the different research
methodologies of threshold calculation
methods and their implications.

Q5. Which metrics thresholds are found
correlated with software quality attributes?

Identify relevant and irrelevant metrics for
threshold calculation methods.

3.2. Search Strategy

Based on the current trend in software metrics, we extracted some keywords to query
the primary study. The essential keywords were initially identified as “thresholds value”,
“object-oriented metrics”, and “software metrics”. To build search strings, we used different
combinations of keywords with potential synonyms and required logical operations. The
resulting search strings were: “Threshold values” AND (“Object-Oriented metrics” OR
“Object-Oriented measurements” OR “Software metrics”), (“Threshold values of object-
oriented metrics”). These search strings were applied in five digital libraries, namely IEEE
Xplore (Institute of Electrical and Electronics Engineers), Science Direct, Springer, Wiley,
and ACM. Papers published in the last 20 years were included.

3.3. Screening

In this phase, we focused on the title, abstract, keywords. However, in some papers,
the entire text had to be read. After finishing this step, a set of inclusion/exclusion criteria
was applied to select the relevant papers. The third column of Table 2 reports articles that
are initially selected. Table 3 indicates the selection criteria for articles; these are mainly
inclusion and exclusion criteria to select or reject any article for our study. Papers were
included if:

• They mention the object-oriented metrics and thresholds in the title, abstract, or
keywords;

• The threshold values are the main topic in the study; and
• They provide approaches and applications to calculate the threshold values.

Papers were excluded if:

• They do not identify threshold values of object-oriented metrics;
• They explain object-oriented metrics without focusing on thresholds; and
• They are duplicate papers.

Table 2. Selection of articles from the different databases at various phases.

Database Total Results Initial Results Final Selection

IEEE Xplore 52 24 16
Science Direct 64 28 11

Springer 46 16 7
Wiley 39 18 2
ACM 26 10 7

Others 11 7 2
Total 238 103 45
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Table 3. Inclusion and exclusion criteria.

Sources Criteria Category

Source 1 Articles that have been registered are database indexed. Relevant

Source 2 Articles that are selected are relevant to Software
Engineering. Relevant

Source 3 Articles that describe various thresholds in software
quality. Relevant

Source 4 Articles that discuss different case studies about various
metric thresholds. Relevant

Source 5 Articles that do not focus on quality issues of software
systems. Irrelevant

Source 6 Articles that are not related to various metrics values
and calculation strategies. Irrelevant

Source 7 Articles that are written in languages other than English. Irrelevant

Certain contradictory papers were examined by two members of the team to make a
better decision whether to include or exclude them. After the screening phase, the number
of papers was reduced to 45 for final inclusion in this mapping study.

3.4. Classification Scheme

The papers were classified based on the general expert knowledge (i.e., attributes) and
specific information extracted during the screening phase. We defined twelve classification
attributes. The last column of Table 2 represents the number of final studies that were
selected. The following information was recorded for each study as general properties:

• Paper title sorted from A to Z.
• Year, when the paper was published.
• Author.
• Publication type (e.g., conference, journal, workshop).

In addition to the classification of research works, this study also addresses the
following issues in detail:

• Threshold calculation methods: to determine calculation methods used in each paper.
• The quality attributes for threshold calculation methods: to determine the quality

attributes for threshold calculation methods.
• Metrics categories used: to identify which metrics sets are used in research papers.
• The most relevant and least relevant metrics: to list relevant and irrelevant metrics to

the method that was used in the studies.
• The types of projects used in the studies.

3.5. Extraction

The real mapping of relevant papers to categories of the classification scheme is
executed during this phase. An excel sheet was used to document the data extraction
process based on the attributes provided in the classification scheme. When the reviewers
filled in the data of a paper into the scheme, they provided a short rationale why the paper
should be in a certain category (e.g., why the paper has been considered to be an empirical
approach). From the final table, the frequencies of publications in each category could
be calculated.

3.6. Final Pool of Research Studies

After the primary search and the analysis to exclude unrelated works, the pool of the
selected papers was finalized to 45 studies as listed in Appendix A. The classification of
the selected publications according to the classification scheme is described in Section 3.4.
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We present the annual trend of the included studies and the number of studies
according to the publication type. Figure 2 shows the annual trend of publications included
in our mapping study. We can observe that the earliest research paper was published in
2000. Figure 3 shows the number of research studies based on the publication type (e.g.,
conference, journal, workshop). We can observe that most of the studies were published
in conferences (45%), and the fewest have appeared in workshops, book chapters, and
thesis (2%).
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Table 4 shows the evaluation phases and the corresponding scope.

Table 4. Phase, scope, and criteria for selection.

Phases Scope Criteria for Selection

First Phase Title 1, 2, 3, 4, 5, 6, and 7
Second Phase Abstract and Conclusion 1, 2, 4, 5, and 6
Third Phase Entire article 3, 4, 5, 6, and 7
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3.7. Quality Assessment

After primary papers were selected based on the study selection criteria, we performed
a quality assessment for the selected studies. We used eight quality criteria derived from
Kitchenham et al. [6] and another SLR study [32]. Each quality assessment question was
answered based on the following options: yes = 1, no = 0, somewhat = 0.5. If the total score
of the paper received was less than or equal to 4, it was excluded from the list because
the quality threshold was set to a value of 4. All authors were involved in the quality
assessment. When there was a conflict about the scoring per paper, an additional meeting
was held. Figure 4 shows the quality distribution of selected papers. Details of the quality
assessment are provided in Table A2 in Appendix B.
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The quality criteria are listed as follows:

• Q1: Are the aims of the study clearly stated?
• Q2: Are the scope and experimental design of the study defined clearly?
• Q3: Are the variables in the study likely to be valid and reliable?
• Q4: Is the research process documented adequately?
• Q5: Are all the study questions answered?
• Q6: Are the negative findings presented?
• Q7: Are the main findings regarding creditability, validity, and reliability stated?
• Q8: Do the conclusions relate to the aim of the purpose of the study?

4. Systematic Mapping Process

The results are shown in this section, and each research question is answered in
each subsection.

4.1. Q1 What Kind of Threshold Calculation Methods Exist in the Literature?

In these studies, a variety of threshold calculation methods have been used. We cate-
gorized papers into the following categories: programmer experience, statistical properties,
quality-related, and review studies, as shown in Table 5.

Programmer experience: The proposed survivability model by Sodiya et al. [33] is
for object-oriented design, which is aimed to fix the problem of software degradation
caused by increasing growth in classes and methods. They proposed a model based on
the code rejuvenation technique triggered by a threshold value. Li and Shatnawi [34]
found a positive correlation between source code and bad smells that were identified
using programmers’ thresholds. Bad smells are considered patterns associated with bad
programming practices and bad design decisions. Alan and Catal [35] presented an outlier
detection algorithm using object-oriented metrics thresholds. In another paper by Suresh
et al. [36], the numerical thresholds have been specified for every metric, as given by
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Rosenberg and Stapko [37]. Catal et al. [13] applied clustering algorithms and metrics
threshold values for the software fault prediction problem.

Statistical properties: Vale et al. [38] compared three methods from Alves et al. [7],
Ferreira et al. [2], and Oliveria et al. [39] to calculate thresholds for software product
lines. Paper [25] aimed to provide a technique to calculate thresholds in the SPL (software
product line). The proposed method relies on data analysis and considers the statistical
properties of the metrics. Herbold et al. [11] defined a data-driven methodology to calculate
thresholds. They calculated thresholds using machine learning by dividing the dataset
into training set (50%), selection set (25%), and evaluation set (25%). They proposed an
algorithm called rectangle learning for calculating the thresholds. Alves et al. [7] designed
a method that defines the thresholds of metrics from measurement data with respect to
the statistical properties of the metric. Shatnawi [25] used log transformation for metrics
thresholds calculation. In this study, all metric data are transformed into a natural log.
After that, they are used to calculate the mean and standard deviation to derive thresholds.
A statistical model derived from logistic regression (LR) was used in the paper [40] to
calculate the OO threshold values. Ferreira et al. [2] derived the thresholds based on a
statistical analysis of the data and commonly used values of thresholds in practice. In
their paper of Singh and Kahlon [41], the logistic regression model was used to derive the
metrics threshold value for the identification of bad smells. Benlarbi et al. [42] presented a
statistical technique for calculating and evaluating thresholds of object-oriented metrics. In
the paper of Lavazza and Morasca [43], the authors used three distribution-based statistical
methods, namely adapted distribution-based (ADB), Alves et al. [7], and Vale et al. [38].
Shatnawi et al.’s [17] method selects the threshold value, which has the maximum value
for sensitivity and specificity as the threshold value. However, Catal et al. [44] chose
the threshold value, which maximizes the area under the ROC curve, and passes from
the following three points, namely (0, 0), (1, 1), and (PD, PF). The reason is that there
might not always exist a threshold value that maximizes sensitivity and specificity. The
other researchers, in their work (Bansiya and Davis, [45]; Martin, [46]; Tang et al., [47];
Henderson-Sellers, [48]), used the statistical properties of metrics to derive thresholds
from a large corpus of systems. Lochmann [49] applied the benchmarking approach
of Lanza and Marinescu [9] to determine thresholds. Veado et al. [50] implemented a
threshold calculation tool based on the Alves et al.’s approach [7], Ferreira et al. [2], Olivria
et al. [22,39], and Vale et al. [38] method. In Oliveira et al.’s [22] paper, the authors
suggested the concept of the relative threshold to evaluate metrics that follow heavy-
tailed distributions.

Quality related: The survivability approach was proposed in [26] for object-oriented
systems for solving the problem of software degradation commonly caused by increasing
growth in classes and methods. In [17], the threshold values of the metrics were used
to detect code bad smells. These thresholds were presented in Gronback [51]. Al Dallal
applied a significance threshold (a = 0.05) for four studies of object-oriented metrics,
namely [24,52,53]. This threshold is used to understand if a metric is a significant fault
predictor. The data-driven method was suggested by Fontana et al. [14], which is repeatable
and transparent, and enables the extraction of thresholds. This method is also based on the
metric’s statistical distribution. Threshold values are derived for five different bad smells;
for example, WMC has separate thresholds for the God class and data class. Moreover,
the receiver operating characteristic (ROC) curve is a technique that has been used for
the first time to identify object-oriented metric threshold values in work [17]. Oliveira
et al. [39] presented a tool to calculate relative thresholds using measurement data. Arar and
Ayan [1] proposed a hybrid model that uses Shatnawi et al. [17] and Bender’s [54] approach.
Hussain et al. [55] used Bender’s [54] approach to detect object-oriented threshold values.
Catal et al. [44] proposed a new threshold calculation by modifying Shatnawi’s threshold
method [25]. Shatnawi and Althebyan [56] proposed a statistical power-law distribution
to calculate threshold values. In work by Singh and Kahlon [41], Shatnawi et al.’s [17]
method, which is based on ROC analysis, was applied to calculate matrix threshold values.
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Bender [54] derived thresholds for change-proneness using the ROC technique. In the paper
of Malhotra et al. [15], threshold values obtained by Shatnawi et al. [17] were used as-is.

Table 5. Summary of thresholds kinds.

Technique Papers #

Programmer experience [3,33–36] 5
Statistical properties from a corpus [2,7,11,13,15,22,23,25,38,41,42,44,49,50,56–63] 23
Quality related [1,14,16–18,24,26,38–40,52,53,55,64–66] 16
Review study [27] 1

Review study: Beranic and Hericko [3] performed a review study and showed the
importance of software metrics in software engineering. Ronchieri and Canapro [27]
provided a preliminary mapping study of software metric thresholds calculation papers
based on the Scopus database.

The review of the selected papers has found a taxonomy of three types of research
in threshold calculation as shown in Table 5. The taxonomy is based on the evolution of
threshold studies. In early works, researchers considered metrics as simple measures of
quality and therefore, researchers proposed thresholds based on their experience. However,
thresholds were not proved to have any link with quality. A set of studies started to link
thresholds to quality attributes such as fault-proneness and change-proneness. These
studies although found the link could not report consistent thresholds among different
systems. The researchers have proposed to find thresholds from a large corpus of systems.
The linkage of thresholds with a quality attribute is limited by the number of systems that
report bug data. The use of prediction models was deemed complex and time-consuming
on a large corpus of systems. To resolve such complexity, statistical properties of metrics
were proposed to find thresholds from the corpus of systems. Therefore, finding thresholds
from a corpus depends on statistical properties.

4.2. Q2 What Are the Quality Attributes for Threshold Calculation Methods?

There are different quality attributes of threshold calculation methods that have been
addressed in the research studies. As shown in Table 6, we divided them into five categories:
fault detection, bad smells detection, reuse-proneness, other design problems, and none
when no quality attribute was targeted.

Table 6. Summary of quality attributes under investigation.

Quality Attributes Papers #

Fault detection [1,16–18,25,26,35,38,39,43,55,60,62,64–66] 16
Bad Smells detection [14,34,52,58,59,63] 6
Design problems [2,11,15,24,33,40,42,53,56] 10
Reuse-proneness [61] 1

The method suggested by Vale et al. [38] has various applications, including fault
prediction and bad smell detection. Software system design, maintenance, and testing are
the quality attributes for the object-oriented metrics that appeared in the paper of Shat-
nawi [62], which proposes a method based on the regression models. Li and Shatnawi [17]
studied the evolutionary design process. Furthermore, they investigated the relationships
between bad smells and class-error probability. Alan and Catal [35] provided an outlier
detection algorithm used to improve the performance of fault predictors in the software
engineering domain. The application domains for the threshold calculation method in the
paper by Fontana et al. [14] are software quality and maintainability assessments, and they
are especially useful for code smell detection rules. The scope of the paper by Herbold
et al. [11] can determine the source of code discrepancies.
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Al Dallal et al. (2010) introduced a new cohesion metric (SCC) for software. These
metrics let early design artifacts be evaluated at early phases. Moreover, in another
research article [52], Al Dallal proposed a model to predict classes that require the Extract
Subclass Refactoring (ESR) and presents these classes for improvement. In 2011, this
author published two papers [24,53]. In the first one, he defined the values of cohesion
metrics, which considerably improved the detection of fault-prone classes. Furthermore,
in the second paper, he extended the definition of the lack of cohesion (LCOM) metric
as transitive LCOM (TLCOM), which improves its quality in predicting faulty class and
in indicating class cohesion. As industrial applications, the thresholds derived with the
method in the paper by Alves et al. [7], have been successfully utilized for software analysis,
benchmarking, and certification.

Shatnawi [25] proposed an approach using log transformation to reduce data skewness.
Log transformation has affected how metrics are used in reviewing software quality, such
as threshold derivation and fault prediction. In another research, Shatnawi et al. [17]
identified threshold values of CK metrics, which classify classes into several risk levels.
Suresh et al. [36] analyzed a subset of object-oriented metrics as well as traditional metrics
to compute system reliability and complexity for real-life applications. Prediction of fault-
prone classes based on object-oriented metrics threshold values in earlier phases of the
software development life cycle was the subject of study by Malhotra and Bansal [26]. This
early prediction helps developers to allocate necessary resources accordingly.

Ferreira et al. [2] suggested some threshold values that determine the problematic
classes with respect to design flaws. The work in [41] derives a threshold metrics value
against the bad smell using risk analysis at five different levels. The authors in [39] and
their tool (RTOOL) presented a way to calculate the metrics thresholds. Benlarbi et al. [42]
specify that the test theory is useful to predict fault and the effect of OO measures and
show the principles in dealing with metrics.

Lavazza and Morasca [43] showed that thresholds according to distribution-based
techniques are not practical in identifying fault-prone components. Vale et al. [38] de-
fined metrics thresholds values to detect God classes in software product lines. Arar and
Ayan [1], Hussain et al. [55], and Shatnawi and Althebyan [56] derived metrics thresholds
for predicting faults on Eclipse projects. Catal et al. [44] used threshold values to identify
noisy modules in software fault prediction datasets. Singh and Kahlon [41] aimed to
predict faulty classes. Prioritization of classes for refactoring was targeted in the paper
by Malhotra et al. [15]. Lochmann’s [49] research was prioritized on quality assessment.
Veado et al. [50] proposed a practical tool to measure threshold values in software projects.
Oliveira et al. [22,39] aimed to control and monitor technical depth.

Malhotra and Bansal [40] have replicated the derivation of thresholds using ROC
curves on the change-proneness of modules. The derivation and validation of thresholds
were confirmed on five versions of the Android operating system. Filo et al. [58] used a
cumulative relative frequency graph to identify thresholds. The technique was validated
on the detection of large classes (one of the code bad smells). Stojkovski [23] selected the
mean as the threshold value if the distribution is normal; otherwise, percentiles (70% and
90%) were used to select thresholds of the large corpus of Android applications. Vale
et al. [63] proposed a benchmark-based threshold identification technique from a large
corpus of systems. The authors identified thresholds at different risk assessment levels (i.e.,
very low, low, moderate, high, and very high). Thresholds were used to detect two bad
smells (i.e., large classes and lazy classes). Mori et al. [60] have derived thresholds from a
large benchmark composed of more than 3000 systems. The study derives thresholds by
choosing the top ranks, 90%, and 95 modules as problematic. The problematic modules
were considered as bad smells. Boucher and Badri [64] replicated the use of ROC curves,
VARL, and Alves rankings. The authors compared the performance of these techniques
in detecting faults in twelve open-source systems. The results have shown that the ROC
curve outperforms all others in fault detection. Table 6 summarizes the studies into quality
attributes. As shown in Table 6, fault detection was the most studied quality attribute.
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4.3. Q3 Which Metrics Combinations Have Been Used?

In research papers collected in this study, there are various categories of metrics pro-
posed to evaluate the software systems. Paper [25] uses four different metrics that belong
to CK metrics and other traditional metrics. These metrics capture different attributes, i.e.,
size, coupling, complexity, and refinement. In addition, papers [16,23,24,26,36,49,57,58,60,
61,63,65,66] utilized CK metrics for analysis and measures and identified threshold values
for these metrics. The McCabe complexity metrics were applied in papers [7,18,26,41,63].
The work in [17] applied six of the bad smells identified by using a metrics model proposed
by Gronback [51].

Al Dallal [24,35,53], focuses on cohesion metrics. Moreover, he used more than one
category in another study [52]: the existing size, cohesion, and coupling metrics. Paper [14]
applied cohesion and complexity metrics, which contain a code smell metrics set.

In [11], metrics for maintainability and classes were identified. CK metrics have been
used in paper [25]. In addition, the CK metrics suite has been used to compute system
reliability in another research paper [36]. In addition, this paper used Martin’s metrics suite
and traditional metrics such as cyclomatic complexity to compute software complexity.
Because CK metrics address several aspects of software design, Malhotra et al. [26] used
them as independent variables. Apart from the CK metrics suite, “lines of code” (LOC) is
used to measure size because that is the most common metric for this purpose. Shatnawi
et al. [17] used 12 metrics from different categories, including CK metrics, Li’s metrics [20],
and Lorenz and Kidd’s [4] metrics. These metrics are categorized as inheritance, coupling,
cohesion, polymorphism, class-size metrics, and class complexity. Six of the object-oriented
software metrics have been studied in their research paper [2]. Paper [41] selected a set
of metrics, characterized as Inheritance, Coupling, Class Complexity, Cohesion, Class
Size, Information hiding, and Encapsulation. Heavy-tailed distribution metrics were used
in [39], which illustrated a specific tool called RTTOOL for relative thresholds.

References [1,43] used additional metrics from QMOOD [58], Tang [63] metrics, Sto-
jkovski [23] metrics, and McCabe metric suits. Arar et al. also investigated Henderson-
Sellers metrics. Hussain et al. [55] used metrics QMOOD metrics [15] and Stojkovski [23]
metrics. Catal et al. [44] used additional metrics from the Halstead [44] approach. In the
paper of Singh and Kahlon [41], coupling and cohesion metrics [61], and Li and Henry [21]
metrics were applied. Lochmann [49] used static code checkers’ rules as metrics.

Research studies in threshold opt to find a link between metrics and software quality
attributes. Researchers validate metrics to find this link in two scenarios, individually
and in combination. However, the combination of metrics has always been found to
be better in predicting quality and therefore, the researchers have validated the use of
many combinations to find the least number of metrics that provide the best prediction
performance. The CK metrics are one of the best combinations of metrics to predict quality.
The research on thresholds is a replication of studies on fault prediction and therefore,
researchers select a combination of metrics to validate their methodology of threshold
calculation. The CK metrics were the most metrics reported in the quality prediction fields
and therefore, this should reflect on threshold studies. This question reports the most
reported combination of metrics. The number of metrics used in research is very large and
therefore, it is difficult to report each metric individually, considering that some metrics
have variations. Therefore, we have reported in Table 7 a summary of metrics combinations
based on the use of CK metrics.

Table 7. A summary of CK metrics suites.

Metric Suits Papers

CK only [15,25,35,42,57,61,62,66]
CK combined with size metrics only [18,23,26,50,59,60,63,64]
CK and other metrics [1,2,11,13,17,22,33,34,38–41,43,55,56,58,65]
No CK metrics [3,7,14,24,44,52,53]



Appl. Sci. 2021, 11, 11377 13 of 25

4.4. Q4 What Are the Types of Studies?

We observed that not all studies are empirical. Some researchers identified thresholds
based on experience. For example, McCabe has identified thresholds based on experience.
Empirical studies evaluate existing thresholds or methods for its calculation, while theo-
retical studies explain and review issues related to software engineering and any form of
software metrics thresholds. There are other researchers such as Malhotra and Bansal [40]
who studied thresholds of CK and other metrics in predicting the change-proneness of
code. Filó et al. [58] studied the use of the CK and size metrics thresholds in code bad
smell detection. Stojkovski [23] derived thresholds for only five metrics (NOM, RFC, CBO,
NOC, DIT), four of which are from the CK suite. Vale et al. [63] derived and validated the
metrics (i.e., LOC, CBO, WMC, NCR) on the detection of bad smells. In the work of [18,60],
thresholds of the CK and LOC metrics were also derived and validated for bad smell and
fault detection.

According to the nature of object-oriented metrics and depending on measures and
practical methods, major papers in this study are empirical studies. There are also papers
that are theoretical and reviews in nature, while others include both empirical and theoreti-
cal content. Table 8 shows a categorization of the paper types into empirical, both empirical
and theoretical, and theoretical and review. Due to the space limitation, we did not present
all the papers based on these categories and aimed to show the available categories.

Table 8. Types of studies.

Category Studies/Papers

Empirical

Alves et al. [7], Aman et al. [67], Arar and Ayan [1], Boucher
and Badri [18], Barkmann et al. [68], Ferreira et al. [2],
Malhotra and Bansal [40], Mihancea and Marinescu [69],
Rodriguez et al. [70], Shatnawi et al. [17]

Empirical and Theoretical Ampatzoglu et al. [71], Al Dallal [52], El Emam et al. [72],
Sodiya et al. [33], Shatnawi [62]

Theoretical and Review Beranic and Hericko [3], Ronchieri and Canaparo [27]

4.5. Q5 What Are the Correlated Metrics with Tested Quality, and Which of Them
Are Uncorrelated?

This question is answered for the most closely connected or appropriate metrics to
each model or algorithm provided in the papers. The metrics are correlated if questions
are answered based on these metrics. The relevant and irrelevant metrics are illustrated in
Table A3 in Appendix C. All studies included one or more of the many software metrics
that were proposed and validated in the literature. For example, the CK metrics have been
studied in many research papers.

5. Discussion

• Q1 (Type of threshold calculation methods):

Studies of thresholds were categorized into four groups: programmer experience,
statistical properties, quality-related, and review study. Considering the result of this
question implies that the most common approach applied to identify the threshold values
for object-oriented metrics is statistical analysis [7,43,59]. Additionally, log transformation
and receiver operating characteristic (ROC) curves are two other methods used in some
other studies [17,44]. The number of studies that use pure statistical techniques to derive
threshold is the largest among all studies (i.e., 22 studies). In addition, quality-related
studies were conducted in many papers [2,17,26]. The utilization of programmer experience
for threshold identification was considered but limited to some studies [33–35]. There
were some review studies on threshold derivation. However, these studies were not as
comprehensive as in our study and did not answer these research questions.
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Statistical methods are the most used among other techniques. The reason is that it
depends on data that can be collected easily using static analysis tools that are available
abundantly. However, most researchers do not compare many techniques except a few
such as [50]. Therefore, there is a need for research that puts all previous techniques in one
study on the same datasets to get a fair comparison among different techniques.

Quality-related techniques require collecting extra data such as faults, changes, and
code refactoring in the lifetime of software. This extra information is not always available
and ready to use for most software systems. Quality information requires extra effort
and costs and developers may not have time to add them to the code repository. Such
data are mostly available for the open-source field, which also suffers from problems
like the correctness of recording the data or missing information. Therefore, statistical
techniques are more common than quality-related techniques. We notice that there are no
mixed techniques on both large corpora of data as in statistical techniques and quality data
because collecting quality data for a large corpus of systems is time-consuming. Future
works can focus on building tools that combine collecting quality data and at the same
time static metrics for a large corpus of systems.

• Q2 (The quality attributes for threshold calculation methods):

The papers in this study were categorized based on quality attributes as follows: fault
detection, bad smells detection, design problems, reuse-proneness, and no application.
According to Seliya et al. [73], fault detection is important to assure desired software
reliability and is vital in bringing anticipated allocated cost and time. Reviews on software
fault-proneness have shown the significance of this quality attribute on software quality
(Kitchenham [28]; Hall et al. [74]; Rathore and Kumar [75]; Radjenovic et al. [76]).

Smell detection and refactoring also have an important effect on software quality,
and many research papers discussed their effect on software quality (Fernandes et al. [77];
Zhang et al. [78]; Rasool and Arshad [79]). These two quality attributes are the most
reported ones in our mapping study.

Predicting faulty classes based on threshold values received attention in these research
papers to improve the quality of the class design (i.e., 16 studies). Additionally, threshold
values have been used to isolate non-faulty classes from other classes that have risky
classes. Some papers focused on detecting bad smells to be used as a methodical approach
to classifying problematic classes (i.e., 9 studies). There are a considerable number of
studies that have not validated thresholds on quality attributes (i.e., 12 studies) [3,7,13,22,
23,27,36,39,49,50,56,57].

Collecting quality data is a time-consuming activity and open-source systems do not
provide enough information to find, for example, the fault-prone modules. The refactoring
of code is not systematic in most systems and depends greatly on efforts available for
refactoring. The developers do not publish enough information on code refactoring and
software processes. Therefore, collecting information about faults and code refactoring
is not plausible, but the consideration of mixed models that depends on two or more
quality attributes is not studied as shown in the selected studies. The results of threshold
derivation have shown different metric values for the same techniques and for different
systems. These results indicate inconsistencies among techniques and among different
software systems. There are factors that affect consistency in threshold derivation. For
example, threshold techniques for more than one quality attribute are potential future
research that may give accurate or consistent thresholds for software metrics.

• Q3 (Metrics categories):

Answering Q3 shows that a well-known suite of metrics (CK) has been used in most
research papers [25,35,62]. Among 300 metrics found in literature, most studies proposed
and validated the CK metrics as opposed to other metrics such as the LOC as a size measure
by Nuñez-Varela et al. [80]. The authors in the study by Srinivasan and Devi [81] observed
that metrics are an important factor for both currently developed software and also, for the
future improvement of the software. To measure different quality factors, these metrics,
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such as complexity, are applied. Some papers only focused on applying one of these factors,
like cohesion. In addition to CK metrics, Martin’s metrics, McCabe’s complexity, Li’s,
and Lorenz and Kidd’s metrics also have been used in some studies [2,39,41]. There is a
number of studies that have not considered the CK metrics at all [14,24,52]. These studies
derived thresholds for non-object-oriented systems. However, Shatnawi et al. [17] used
12 metrics in different categories, including CK metrics, Li’s metrics [20], and Lorenz and
Kidd’s [4] metrics.

There are inconsistencies in threshold values identified for the same metric for different
software systems and using different metrics analysis tools. The definition of some metrics
is not used consistently in different tools. The researchers considered different tools,
which affect the consistency of derived thresholds for the same system. There is a need to
compare metric thresholds using the same analyzer for several systems to know whether
the inconsistencies come from the metric definition and collection or the technique itself. In
addition, a large number of metrics exist in research and are not considered for threshold
derivation, which is also potential future research. Threshold derivation techniques should
be compared and validated on the same software and using the same tool.

• Q4 (The types of studies):

The result of this question was as expected because the object-oriented metrics thresh-
olds are practical areas, which are based on calculations and experimentation. Conse-
quently, most of the papers included in this research have empirical nature [7]. However,
the type of study also includes empirical and theoretical studies, supported by Ronchieri
and Canaparo [27]. The review papers, such as Beranic and Hericko’s study [3], have been
further added in this direction to show that it is an active area of interest among researchers.

Thresholds were proposed early with metric proposal and definition. For example,
some researchers have used percentiles to identify God classes because they were selecting
a portion of the system for investigation. However, the connection between metrics and
many quality attributes has appeared and the need for advanced threshold techniques
became a requirement. Thresholds need to be validated and empirical studies are the most
suitable setting. There is a need for comprehensive research on threshold identification
by considering all possible techniques and metrics analysis tools to reach valid and more
accurate threshold values. Threshold values should be validated theoretically and em-
pirically. In addition, empirical works should include other important quality attributes
such as reusability, maintainability, security, and performance. Furthermore, a few research
studies have considered multi-value attributes such as bug severity and priority and how
they affect threshold identification, and whether the binary classification is better than
multivariate classification.

• Q5 (Relevant metrics):

We observed that many of the papers did not report the relevant metrics. However,
there are also some studies that clearly explain whether the metrics threshold values were
calculated properly or not. Table A3 in the Appendix C shows these metrics per paper.

There are plenty of metrics for measuring internal code properties such as size, inher-
itance, cohesion, and coupling. Coupling metrics were the most correlated with quality
attributes. However, how these metrics interact and how they affect threshold derivation
was not studied in previous works. There is a need to understand the profound relationship
between metrics. Although some studies have considered the profound effect of size, there
is a need for more studies on studying, for example, the interaction between coupling
and other metrics. For example, it is well-known that low coupling and high cohesion are
preferred in systems’ quality; however, how each metric affects the thresholds of the other
is not considered in the literature.

6. Threat to Validity and Limitations

Five well-known electronic databases have been investigated to reach papers that
focus on threshold-related studies. These libraries are IEEE Explore, Science direct, ACM
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Digital Library, Springer, and Wiley. There are variations of systematic mapping and
experimental studies that can have limitations on our study.

The papers searched in this work are limited to well-known digital libraries. Therefore,
there is a possibility of missing relevant papers. The authors have focused on well-known
databases. The authors used synonyms related to threshold values of object-oriented
metrics. Threshold calculation papers are usually related to fault prediction papers, and
there is no complete separation between threshold papers from quality-related papers.

Bias over publications: It is a human tendency to report more favorable outcomes
over adverse outcomes in every publication. If any work is reported, negative results have
low chances of getting accepted and vice versa.

We have not limited to search analysis and selection techniques. We have searched
all types of work related to this review, irrespective of their specific data or method.
The selected studies for the review process from different periods when various institu-
tions/practitioners utilized such methods. The broad acceptance of such methods leads to
influence the researchers to use such methods.

Searching and selecting of studies: Our strategy was designed to find as many articles
as possible. We built a wide range of search strings over digital databases. Although the
search outcomes included many irrelevant articles, we decided to keep the search string
fixed, as such, we do not miss any relevant papers. We considered regulating the search
string to diverse our search results. We applied the inclusion and exclusion principle to
choose relevant papers. Three researchers examined the principle of selection and discarded
criteria. Therefore, the possibility to exclude the paper incorrectly was minimized.

Quality assessment: Usually, quality assessment is conducted by one researcher and
validated by another researcher. However, in our review, the second researcher performed
data extraction and quality assessment. Most biases were expected in quality assessment
because research questions may be hard to justify. The score of articles may vary from one
researcher to another.

7. Implications for Researchers and Practitioners

Researchers and practitioners can focus on building tools that combine collecting
quality data and at the same time static metrics for a large corpus of systems.

Threshold techniques for more than one quality attribute are potential future research
that may give accurate or consistent thresholds for software metrics.

A large number of metrics exist in research and are not considered for threshold
derivation; researchers can focus on this direction. Threshold derivation techniques should
be compared and validated on the same software and using the same tool.

There is a need for more studies on threshold values evaluation in context to the
interaction between coupling and other metrics.

There is a need for industrial studies and cases to know practitioners’ perspectives on
threshold calculation techniques.

8. Conclusions and Future Work

In this paper, we performed a systematic mapping study on software metrics threshold
calculation techniques and presented our results. The result of this study showed that most
of the papers were published in recent years, which means that the field of identifying the
object-oriented metrics threshold values has received more attention recently, and this is
a very active research area among software engineering researchers. In addition, results
demonstrated that most of the methods proposed to calculate the thresholds are based
on statistical analysis techniques. Another result from this paper is the wide use of the
CK metrics in different projects. The use of object-oriented metrics threshold values was
investigated in a variety of quality attributes such as software design, software maintenance,
industrial and medical applications. The study has found that threshold derivation was not
comprehensive in most studies and further studies are needed to fill the gaps. The threshold
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derivation research has not covered many quality attributes and has not covered a large
number of metrics. Furthermore, thresholds for severity and priority are not investigated.

For future work, we recommend extending this study to include papers published
after our screening period and the other search engines and electronic databases. In
addition, a systematic literature review of this field based on specific research questions
can be conducted on the limitations of software metrics.
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Systems. IEEE Journal of Transactions on Software Engineering. Volume: 36, issue: 2.

[S3] Sodiya, Adesina S., Aborisade, Dada O., Ikuomola, Aderonke J. (2012). A Survivability Model for Object-Oriented Software
Systems. Fourth International Conference on Computational Aspects of Social Networks (CASoN), pp 283–290.

[S4] Li, W. and Shatnawi, R. (2007) An empirical study of the bad smells and class error probability in the post-release
object-oriented system evolution. Journal of Systems and Software, volume 80, issue 7, pp 1120–1128.

[S5] Al Dallal, J. and Briand, L. C. (2010) An object-oriented high-level design-based class cohesion metric. Inf. Softw. Technol. 52,
12 (December 2010), 1346-1361.

[S6] Alan, O., Catal, C. (2009). An Outlier Detection Algorithm Based on Object-Oriented. 24th International Symposium on
Computer and Information Sciences, pp 567-570.

[S7] Fontana, F. A., Ferme, V., Zanoni, M., Yamashit, A. (2015). Automatic metric thresholds derivation for code smell detection. 6th
International Workshop on Emerging Trends in Software Metrics.

[S8] Herbold, S. Grabowski, J. Waack, S. (2011). Calculation and optimization of thresholds for sets of software metrics. An
International Journal of Empirical Software Engineering, volume 16, issue 6, pp 812–841.

[S9] Al Dallal, J. (2012). Constructing models for predicting extract subclass refactoring opportunities using object-oriented quality
metrics. Journal of Information and Software Technology, volume 54, issue 10, pp 1125–1141.

[S10] Alves Tiago L., Christiaan Ypma, Joost Visser. (2010). Deriving Metric Thresholds from Benchmark data. IEEE International
Conference on Software Maintenance (ICSM), pp 1-10.

[S11] Shatnawi, R. (2015), Deriving metrics thresholds using log transformation. Journal of Software Evolution and Process, volume
27, issue 2, pp 95–113.
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Table A1. Cont.

[S12] Suresh, Y., Pati, J., and Rath, S. K. (2012). Effectiveness of software metrics for object-oriented system. 2nd International
Conference on Communication, Computing & Security. Volume 6, pp 420-427.

[S13] Malhotra, R. and Jain Bansal, A. (2014). Fault prediction considering threshold effects of object oriented metrics. Journal of
Expert System. Volume 32, issue 2, pp 203-219.

[S14] Shatnawi, R., Li, W., Swain, J. and Newma, T. (2009). Finding software metrics threshold values using ROC curves. Journal of
Software Maintenance and Evolution: Research and Practice, Volume 22, issue 1, pp 1–16.

[S15] Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S., Mendes, L. F. O., and Almeida, H. C. (2012). Identifying thresholds for
object-oriented software metrics. Journal of Systems and Software, volume 85, issue 2, February 2012, pp 244–257.

[S16] Al Dallal, J. (2011) Improving the applicability of object-oriented class cohesion metrics. Inf. Softw. Technol. 53, 9 (September
2011), 914-928.

[S17] Singh, S. and Kahlon, K.S. (2014). Object oriented software metrics threshold values at quantitative acceptable risk level.
Journal of CSI Transactions on ICT, volume 2, issue 3, pp 191-205.

[S18] Oliveira, P., Lima, F. P., Valente, M. T., Serebrenik, A. (2014). RTTOOL: A Tool for Extracting Relative Thresholds for Source
Code Metrics. IEEE International Conference on Software Maintenance and Evolution (ICSME), pp 629-632.

[S19] Benlarbi, S., El Emam, K., Goel, N., Rai, S. (2000). Thresholds for Object-Oriented Measures. 11th International Symposium on
Software Reliability Engineering, pp 24–38.

[S20] Al Dallal, J. (2011) Transitive-based object-oriented lack-of-cohesion metric, Procedia Computer Science 3 (2011) 1581–1587

[S21] Lavazza, L. and Morasca, S. (2016, September). An empirical evaluation of distribution-based thresholds for internal software
measures. In Proceedings of the The 12th International Conference on Predictive Models and Data Analytics in Software
Engineering (p. 6). ACM

[S22] Vale, G., Albuquerque, D., Figueiredo, E., and Garcia, A. (2015, July). Defining metric thresholds for software product lines: a
comparative study. In Proceedings of the 19th International Conference on Software Product Line (pp. 176-185). ACM.

[S23] Arar, Ö. F. and Ayan, K. (2016). Deriving thresholds of software metrics to predict faults on open source software: Replicated
case studies. Expert Systems with Applications, 61, 106-121.

[S24] Hussain, S., Keung, J., Khan, A. A., and Bennin, K. E. (2016, August). Detection of fault-prone classes using logistic regression
based object-oriented metrics thresholds. In Software Quality, Reliability and Security Companion (QRS-C), 2016 IEEE International
Conference on (pp. 93-100). IEEE.

[S25] Catal, C., Alan, O., and Balkan, K. (2011). Class noise detection based on software metrics and ROC curves. Information
Sciences, 181(21), 4867-4877.

[S26] Shatnawi, R., and Althebyan, Q. (2013). An empirical study of the effect of power law distribution on the interpretation of OO
metrics. ISRN Software Engineering, 2013.

[S27] Malhotra, R., Chug, A., and Khosla, P. (2015, August). Prioritization of classes for refactoring: A step towards improvement in
software quality. In Proceedings of the Third International Symposium on Women in Computing and Informatics (pp. 228-234).
ACM

[S28] Lochmann, K. (2012). A benchmarking-inspired approach to determine threshold values for metrics. ACM SIGSOFT Software
Engineering Notes, 37(6), 1-8.

[S29] Veado, L., Vale, G., Fernandes, E., and Figueiredo, E. (2016, June). TDTool: threshold derivation tool. In Proceedings of the
20th International Conference on Evaluation and Assessment in Software Engineering (p. 24). ACM.

[S30] Oliveira, P., Valente, M. T., and Lima, F. P. (2014, February). Extracting relative thresholds for source code metrics. In Software
Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on (pp.
254-263). IEEE.

[S31] Malhotra R. and Bansal A. (2017) Identifying threshold values of an open source software using Receiver Operating
Characteristics curve (ROC), Journal of Information and Optimization Sciences, 38:1, 39-69, DOI: 10.1080/02522667.2015.1135592.

[S32] Filó, T. G., Bigonha, M., and Ferreira, K. (2015) A catalogue of thresholds for object-oriented software metrics. Proc. of the 1st
SOFTENG, 48–55.

[S33] Stojkovski M. (2017) Thresholds for Software Quality Metrics in Open Source Android Projects, Department of Computer
Science, Norwegian University of Science and Technology, December 2017.

[S34] Vale, G., Fernandes, E., and Figueiredo, E. (2018) On the proposal and evaluation of a benchmark-based threshold derivation
method. Software Quality Journal, 27(1), 1-32.

[S35] Mori, A., Vale, G., Viggiato, M., Oliveira, J., Figueiredo, E., Cirilo, E., Jamshidi, P. and Kastner, C., (2018) Evaluating
domain-specific metric thresholds: an empirical study. In International Conference on Technical Debt (TechDebt).
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[S36] Boucher A., Badri M. (2018) Software metrics thresholds calculation techniques to predict fault-proneness: An empirical
comparison, Information and Software Technology, 96, 2018, pp. 38-67.

[S37] Padhy N., Panigrahi R. and Neeraja, K. (2019) Threshold estimation from software metrics by using evolutionary techniques
and its proposed algorithms, models, Evolutionary Intelligence, 1–15.

[S38] Mohovic M., Mausa G. and Grbac T. (2018) Using Threshold Derivation of Software Metrics for Building Classifiers in Defect
Prediction, Proceedings of the Seventh Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications.

[S39] Shatnawi, R. (2017) The application of ROC analysis in threshold identification, data imbalance and metrics selection for
software fault prediction, Innovations Syst Softw Eng, 13: 201

[S40] Boucher A. and Badri M. (2016) Using Software Metrics Thresholds to Predict Fault-Prone Classes in Object-Oriented
Software, 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational
Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science & Engineering
(ACIT-CSII-BCD), Las Vegas, NV, 2016, pp. 169-176.

[S41] Mauša G. and Grbac T.G. (2017) The Stability of Threshold Values for Software Metrics in Software Defect Prediction. Lecture
Notes in Computer Science, vol 10563. Springer, Cham

[S42] Aniche M., Treude C., Zaidman A., v. Deursen A. and Gerosa M. A. (2016) SATT: Tailoring Code Metric Thresholds for
Different Software Architectures, 2016 IEEE 16th International Working Conference on Source Code Analysis and Manipulation
(SCAM), Raleigh, NC, 2016, pp. 41-50.

[S43] Catal, C., Sevim, U., and Diri, B. (2009) Clustering and metrics thresholds based software fault prediction of unlabeled
program modules, ITNG 2009—6th International Conference on Information Technology: New Generations.

[S44] Beranic T. and Hericko M. (2017) Approaches for Software Metrics Threshold Derivation: A Preliminary Review, Proceedings
of the Sixth Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications.

[S45] Ronchieri E., and Canaparo M. (2016) A preliminary mapping study of software metrics thresholds, Italy conference ICSOFT
2016—Proceedings of the 11th International Joint Conference on Software Technologies.

Appendix B

Table A2. Details of the Quality Assessment.

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

S1 1 1 1 1 1 1 1 1 8
S2 1 1 1 1 1 1 1 0 7
S3 1 1 1 1 1 1 0 1 7
S4 1 1 1 1 1 1 1 1 8
S5 1 1 1 1 1 1 1 1 8
S6 1 1 1 1 1 0.5 0.5 1 7
S7 1 1 1 1 1 1 1 1 8
S8 1 1 1 1 1 1 1 1 8
S9 1 1 1 1 1 1 1 1 8

S10 1 1 1 1 1 1 0 1 7
S11 1 1 1 1 1 1 1 1 8
S12 1 1 1 1 1 1 0 1 7
S13 1 1 1 1 1 1 1 1 8
S14 1 1 1 1 1 1 1 1 8
S15 1 1 1 1 1 1 1 1 8
S16 1 1 1 1 1 1 1 1 8
S17 1 1 1 1 1 1 1 1 8
S18 1 1 1 1 1 1 0 1 7
S19 1 1 1 1 1 1 0 1 7
S20 1 1 1 0.5 1 1 0 1 6.5
S21 1 1 1 1 1 1 1 1 8
S22 1 1 1 1 1 1 1 1 8
S23 1 1 1 1 1 1 1 1 8
S24 1 1 1 1 1 0.5 0.5 1 7
S25 1 1 1 1 1 0.5 1 1 7.5
S26 1 1 1 1 1 1 0.5 1 7.5
S27 1 1 1 0.5 1 0.5 0.5 1 6.5
S28 1 1 1 1 1 0.5 1 1 7.5
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Table A2. Cont.

ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

S29 1 1 1 0.5 1 0.5 0.5 1 6.5
S30 1 1 1 1 1 0.5 1 1 7.5
S31 1 1 1 0.5 1 0.5 0.5 1 6.5
S32 1 1 1 1 1 0.5 0.5 1 7
S33 1 1 1 1 1 0.5 1 1 7.5
S34 1 1 1 1 1 1 1 1 8
S35 1 1 1 1 1 0.5 1 1 7.5
S36 1 1 1 1 1 0.5 1 1 7.5
S37 1 1 1 1 1 0 0 1 6
S38 1 1 1 1 1 0 0.5 1 6.5
S39 1 1 1 1 1 1 1 1 8
S40 1 1 1 1 1 1 0.5 1 7.5
S41 1 1 1 1 1 1 0 1 7
S42 1 1 1 1 1 1 1 1 8
S43 1 1 1 1 1 0.5 1 1 7.5
S44 1 1 1 1 1 0.5 0.5 1 7
S45 1 1 1 1 1 0.5 0 1 6.5

Appendix C

Table A3. Relevant and Irrelevant Metrics.

References Relevant Metrics Irrelevant Metrics

[S1] LOC (Lines of Code), CBO (Coupling between Objects), WMC (Weighted
Methods for Class), and NCR (Number of Class Reused) Not mentioned

[S2] CBO, RFC (Response for a Class), and WMC
DIT (Depth of inheritance tree)

and NOC (Number of Children)
metrics

[S3] WMC Not mentioned

[S4]

NAM (Number of Accessor Methods), WOC (Weight Of Class), NOPA
(Number of Public Attributes), TCC (Tight Class Cohesion), WMC, LOC,

NOLV (Number of Local Variables), NOP (Number of Parameters), MNOB
(Maximum Number of Branches), AIUR (Average Inheritance Usage Ratio),

DIT, CM (Changing Methods), ChC (Changing Classes), ALD (Access of Local
Data), NIC (Number of Import Classes), AID (Access of Import Data), and

AOFD (Access of Foreign Data)

Not mentioned

[S5]

SCC (Similarity-based Class Cohesion), CAMC (Cohesion Among Methods in
a Class), NHD (Normalized Hamming Distance), SNHD (Scaled NHD), Lack
of Cohesion in Methods metrics (LCOM1, LCOM2, LCOM3, Coh, TCC, and

LCC)

Not mentioned

[S6] WMC, DIT, NOC, CBO, RFC, LCOM. Two metrics of CK

[S7]
ATFD (Access to Foreign Data), WMC, NOPA, NAM, LOC, CYCLO/CC

(Cyclomatic Complexity), MAXNESTING (Maximum Nesting Level), NOAV
(Number of Accessed Variables), CINT (Coupling Intensity), CM, ChC

TCC, DIT

[S8]

Metrics for methods: VG/CC (Cyclomatic Number), NBD (Nested Block
Depth), NFC (Number of Function Calls), NST (Number of Statements)
Metrics for classes: WMC, CBO, RFC, NORM (Number of Overridden
Methods), LOC, NOM (Number of Methods), NSM (Number of Static

Methods)

LCOM, DIT and NOC
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Table A3. Cont.

References Relevant Metrics Irrelevant Metrics

[S9]

LOC, NOM, NOA, RFC, MPC (Message Passing Coupling), DAC1 (Data
Abstraction Coupling), DAC2, OCMEC (Number of distinct classes used as

types of the parameters of the methods in the class), LCOM1, LCOM2,
LCOM3, LCOM4, LCOM5, Coh, TCC, LCC, DCD, DCI, CC, SCOM, LSCC,

CBMC (Cohesion Based on Member Connectivity), ICBMC, OLn, and PCCC
(Path Connectivity Class Cohesion)

Nonlocal coupling measures (e.g.,
CBO)

[S10] LOC Not mentioned

[S11] RFC, CBO, LCOM, NOC, DIT, and WMC Not mentioned

[S12]

McCabe’s Complexity: MLOC (Method Lines of Code), TLOC and Nested
Block DepthCK Metrics: WMC, LCOM, DIT AND NOCR.C.Martin’s: Ca

(Afferent Coupling), Ce (Efferent Coupling), I (Instability), A (Abstractness),
and Dn (Normalized Distance from Main Sequence)

Not mentioned

[S13] WMC, CBO, RFC, LCOM, and LOC NOC and DIT

[S14] CBO, RFC, WMC, CTM, and NOO LCOM, DIT, NOC, CTA, NOAM,
NOOM, and NOA

[S15] LCOM, DIT, coupling Not mentioned

[S16] LSCC, LCOM3, LCOM4, Coh, TCC, LCC, DCD, DCI, LCOM1, LCOM2,
LCOM5, CC, SCOM, CAMC, and NHD. Not mentioned

[S17] DIT, NOC, RFC, WMC, LCOM, Co, CBO, NOA, NOOM, NOAM, PuF, EncF,
WMC

DIT, NOC, LCOM, Co, NOOM,
NOAM and PuF

[S18] NOA, NOM, FAN-OUT, RFC and WMC DIT and Dn

[S19] WMC, DIT, NOC, CBO, RFC LCOM

[S20] LCOM Not mentioned

[S21] Not mentioned Not mentioned

[S22] Not mentioned Not mentioned

[S23] AVG_CC (Average CC), MAX_CC (Maximum CC), LOC, WMC, CBO, CE,
NPM, RFC, LCOM, AMC Not mentioned

[S24] Not mentioned Not mentioned

[S25] Not mentioned Not mentioned

[S26] NOC, WMC, NOM, NOV, SLOC CBO, RFC

[S27] WMC, RFC, CBO, LCOM, DIT, NOC None

[S28] Not mentioned Not mentioned

[S29] LOC, CBO, WMC, NCR Not mentioned

[S30] NOM, LOC, FAN-OUT, RFC, WMC, PUBA/NOA, LCOM Not mentioned

[S31] CBO, NOA, NIV (Number of Instance Method), NLM (Number of Local
Methods), NPRM (Number of Private Methods), LOC, LCOM, WMC NOC

[S32]
NOC, NOM, NOF (Number of Fields), NORM, PAR (Number of parameters),

NSM, NSF, MLOC, SIX (specialization index), VG, NBD, MC), DIT, NSC
(Number of Children), LCOM), Ca/Ce

Not mentioned

[S33] NOM, RFC, CBO, NOC, DIT Not mentioned

[S34] LOC, CBO, WMC, NCR Not mentioned

[S35] CBO, WMC, LCOM, DIT, LOC None

[S36] CBO, RFC, WMC, LOC LCOM, DIT, NOC
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Table A3. Cont.

References Relevant Metrics Irrelevant Metrics

[S37] CK Metrics, MOOD Metrics Not mentioned

[S38]

LOC, CC, number of comment lines, CBO, cohesion, DIT, number of external
method calls, fan-in, fan-out, RFC, LCOM, Halstead volume, Halstead length,

number of interfaces, number of attributes, number of local method calls,
Message Passing Coupling

Not mentioned

[S39] WMC, CBO, RFC, LCOM NOC, DIT

[S40] CK Metrics, SLOC (Source Lines of Code) Not mentioned

[S41]

LOC, physical executable source lines of code, logical source lines of code,
blank lines of code, the total number of Java statements in class, maximum

cyclomatic complexity of any method in the class, total cyclomatic complexity
of all the methods in the class, cumulative Halstead length of all the

components in the class

DIT

[S42] NOM, WMC, CBO, RFC, LCOM Not mentioned

[S43] LOC, WMC, NCR (Number of Constant Refinements) Coupling between Objects classes
(CBO),

[S44] LOC, CC, Unique Operator (UOp), Unique Operand (UOpnd), Total Operator
(TOp), Total Operand (TOpnd) Not mentioned

[S45] CK object-oriented metrics Not mentioned
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