
Machine Learning Framework for Causal Modeling for Process Fault Diagnosis and

Mechanistic Explanation Generation

Abhishek Sivaram

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2023

© 2022

Abhishek Sivaram

All Rights Reserved

Abstract

Machine Learning Framework for Causal Modeling for Process Fault Diagnosis and

Mechanistic Explanation Generation

Abhishek Sivaram

Machine learning models, typically deep learning models, often come at the cost of

explainability. To generate explanations of such systems, models need to be rooted in

first-principles, at least mechanistically. In this work we look at a gamete of machine

learning models based on different levels of process knowledge for process fault diagnosis

and generating mechanistic explanations of processes. In chapter 1, we introduce the thesis

using a range of problems from causality, explainability, aiming towards the goal of

generating mechanistic explanations of process systems. Chapter 2 looks at an approach

for generating causal models purely through data-centric approach, with minimal process

knowledge with respect to equipment connectivity and identifying causality in the domains.

These causal models generated can be utilized for process fault diagnosis.

Chapter 3 and chapter 4 show how deep learning models can be used for both

classification for process fault diagnosis and regression. We see that depending on the

hyperparameters, i.e., purely the breadth and depth of a neural network, the learned

hidden representations vary from a simple set of features, to more complex sets of features.

While these hidden representations may be exploited to aid in classification and regression

problems, the true explanations of these representations do not correlate with mechanisms

in the system of interest. There is thus a requirement to add more mechanistic information

about the features generated to aid in explainability.

Chapter 5 shows how incorporating process knowledge can aid in generating such

mechanistic explanations based on automated variable transformations. In this chapter we

show how process knowledge can be used to generate features, or model forms to generate

explainable models. These models have the ability of extracting the true models of the

system from the model knowledge provided.

Table of Contents

Acknowledgments . ix

Chapter 1: Introduction and Background . 1

Chapter 2: From data to causal models . 5

2.1 Transfer Entropy as a Measure of Causality 8

2.1.1 Generating digraph based on transfer entropy 11

2.2 Tennessee Eastman Benchmark Process . 14

2.3 Hierarchical framework for developing causal maps 17

2.3.1 Tier 1: Plant-level DAG . 19

2.3.2 Tier 2: Subsystem-level graph with possible cycles 30

2.4 Major Results . 33

Chapter 3: Neural Networks for Classification . 35

3.1 Mathematical Background . 38

3.1.1 Problem Formulation . 38

3.1.2 Classification with Neural Networks 40

3.2 Peeking Under the Hood of a Deep Neural Network 42

3.2.1 Feature Extraction: Node-specific Selective Activation of the Input
Space . 43

i

3.2.2 Wider vs Deeper Networks: Complexity of Features 45

3.2.3 From Features to Feature Spaces . 49

3.2.4 The Final Layer: Separating Hyperplanes for Classification 50

3.2.5 Degeneracy of parameters using softmax activation 52

3.3 How does a Neural Network Learn the Mapping?: From Parts to Whole . . . 56

3.4 Major Results . 67

Chapter 4: Neural Networks for Regression . 71

4.1 Mathematical Background . 73

4.1.1 Problem Formulation . 73

4.1.2 Regression with Neural Networks . 74

4.2 Peeking Under the Hood of a Neural Network 77

4.2.1 Node-specific Local Approximation 77

4.2.2 Wider vs Deeper Networks: Complexity of Local Approximations . . 80

4.2.3 Degeneracy of Parameters . 82

4.3 How does a Neural Network Approximate a Function?: From Parts to Whole 90

4.3.1 Illustrative Example: Sinusoidal Function 90

4.4 Demonstrative Example: Energy Function Landscape 95

4.4.1 Effect of Depth and Width on the Predicted Energy Landscape . . . 98

4.4.2 Node specific local approximations 99

4.5 Major Results . 101

Chapter 5: Mechanistic Explanation Generation (MEG) 105

5.1 AI for Mechanistic Explanation Generation – XAI-MEG 105

ii

5.1.1 Temporal and spatio-temporal models for explanation generation . . 108

5.1.2 Feature extraction from measurements 110

5.1.3 Model Estimator . 111

5.1.4 Explanation Generation . 112

5.2 Results and Discussion . 113

5.2.1 Case Study 1: Simple Harmonic Motion 114

5.2.2 Case Study 2: Damped Simple Harmonic Motion 116

5.2.3 Case Study 3: Lotka-Volterra System 117

5.2.4 Case Study 4: Compartmental Models in Epidemiology – S-I-R model 119

5.2.5 Case Study 5: Convection Systems 120

5.2.6 Case Study 6: Diffusion Systems . 122

5.2.7 Case Study 7: Reaction Diffusion Systems 123

5.3 Major Results . 125

Chapter 6: Discussion . 127

Epilogue . 131

References . 132

iii

List of Figures

2.1 (a) A simple case study of mixer simulated in MATLAB simulink (b) Sig-
nificance value matrix and the derived weighted adjacency matrix. Weights
greater than threshold are marked in blue. (c) Transfer entropy-based digraph
generated for the system . 10

2.2 Causal maps (a) and (b) are obtained based on equation (2.8) for examples (c)
and (d) in Table 2.1 respectively. It can be seen that many of the significant
connections are missing. The reason can be attributed to the presence of
feedback loops/recycle streams. 12

2.3 Process flowsheet of the Tennessee Eastman benchmark process, with a de-
centralized control scheme (As seen in [43]) 16

2.4 Dynamic profiles of variables 1, 9, 13 and 20. 18
2.5 (a) Example for a feedback system. All streams except 5 are omitted for

analysis. (b) Example for a unit with recycle stream. The subsystem marked
by the red dotted line is considered as a single unit and thus, only streams 1
and 3 are included for developing plant-level DAG. (c) Example for the case
where 2 units are connected using a recycle stream. 20

2.6 Demerits of data-driven causality detection algorithms. If a data-driven al-
gorithm results in a causal map as shown in (a) for a system S, its true
representation could be any of the causal maps shown in (b). 21

2.7 Plant-level causal map constructed based on transfer entropy for the Tennessee
Eastman benchmark process (Base case). w0 = 0.12 is used as threshold. . . 22

2.8 Plant-level DAG constructed based on transfer entropy for the Tennessee East-
man benchmark process (Base case) by setting w0 = 0.14 as threshold. 26

2.9 A simple case study to show the direct causality detection algorithm. Ŵ shows
a weight of 1 for the indirect edge, whereas its weight was reduced to 0.34 after
transformation. 28

2.10 Final plant-level DAG constructed based on transfer entropy for the Tennessee
Eastman benchmark process (base case) after transformation. w0 = 0.14
is used as threshold. The gray arrows are the once which were nullified in
comparison to the originally obtained graph 29

2.11 A few examples of subsystem-level causal maps for the Tennessee Eastman
case study. 32

2.12 Flowchart of the proposed hierarchical approach. 34

3.1 Activation functions used in this study . 42
3.2 Architecture for 2 input neurons and 1 activated neuron 43

iv

3.3 Activation of the network shown in Figure 3.2 for different regions of the input
space with different activation functions. The red line shows the set of points
satisfying w1x1 + w2x2 + b = 0 (w1 = −1,w2 = 1, b = 0). 44

3.4 Activation of the network shown in Figure 3.2 for different regions of the input
space with different activation functions. The red line shows the set of points
satisfying w1x1 + w2x2 + b = 0 (w1 = −3,w2 = 3, b = 0) 45

3.5 Architecture for 2 input neurons and 1 activated neuron, with 1 hidden layer 46
3.6 Input space activation for each node in the network architecture as shown in

Figure 3.5. The values of the weights and biases are chosen to be w1,w2, b =
−3,3,0, w3,w4, c = 3,3,−3 . 47

3.7 Example transformations of the input space to the feature space. The Input
space (a) is first rotated and stretched (b), then translated to give the z vector
(c). Note how all the transformations are affine so far. The final nonlinear
operation comes from the squishing action based on different activation func-
tion on the transformed space to give the final feature space representation
(d),(e),(f) and (g). The dark regions in the input space are mapped to dark
regions in the subsequent feature space. 50

3.8 Sample architecture for linearly separable problems 51
3.9 (a) Final estimated segregation on the input space. Thickness indicates the

magnitude of w j for class j. The black lines are constructed using the bound-
ary equation– Equation (3.7). (b) Identified probabilities of each point on the
input space . 53

3.10 Example datasets for studying the operation of neural networks 58
3.11 Internal internal representation of network with n = 3,H = 3 and tanh as the

activation function trained on the moons dataset 58
3.12 Internal internal representation of network with n = 3,H = 3 and Gaussian

activation function trained on the moons dataset 59
3.13 Internal representation of the network with n = 3,H = 3 and ReLU as the

activation function trained on the moons dataset 60
3.14 Internal representation of network with n = 3,H = 3 and tanh as activation

function trained on circles dataset . 60
3.15 Internal representation of network with n = 3,H = 3 and Gaussian activation

function trained on the circles dataset . 61
3.16 Internal representation of network with n = 3,H = 3 and ReLU as the activa-

tion function trained on the circles dataset 61
3.17 Node-specific activation of input space for the network with n = 10,H = 10 and

tanh as the activation function trained on the spirals dataset. Blue denotes
activation of −1, and yellow denotes activation of 1 62

3.18 Node-specific activation of input space for the network with n = 10,H = 10
and Gaussian activation function trained on the spirals dataset. Blue denotes
activation of 0, and yellow denotes activation of 1 63

3.19 Node-specific activation of input space for the network with n = 10,H = 10
and ReLU as the activation function trained on the spirals dataset. 64

v

3.20 A comparison of the final hidden layer activation for different architectures
with Gaussian activation in example 3: Architecture (a)n = 10, H = 10
(b) n = 100, H = 3. Blue regions denote area in the input space where
activation of the node becomes 0. Yellow denotes activation of 1. Notice how
deeper networks yield complex activations while, shallow-wide networks have
relatively simple activations. 65

3.21 (a) Fault space data (b) Fault space classification with a simple input output
model . 68

3.22 Fault space classification for different activation functions and architectures . 69

4.1 Testing data (blue) and model predictions (orange) for a 5− layer network
with 2, 5 and 10 neurons in each hidden layer and σ (Row 1), tanh (Row 2)
and ReLU (Row 3) as activation function . 76

4.2 Representation of the absolute function generator with a neural network . . 78
4.3 Triangular wave function . 78
4.4 Activation of individual neurons in a network with ReLU (first row) and tanh

(second row) as the activation function and three neurons in the hidden layer 81
4.5 Activation of individual neurons in a deep network with tanh and ReLU as

the activation function and 3 hidden layers 82
4.6 Representation of absolute function by an untrained neural network 83
4.7 Reduced neural network for approximating the absolute function with two

parameters . 84
4.8 Loss of the reduced network as a function of weights 86
4.9 Trajectory of weights after training with different initializations (green and

red circles represent initial weights and trained weights respectively) 86
4.10 Initializations of the reduced network that converge to a global optimum

(green) and to a local optimum (red) . 87
4.11 (a)Loss of the reduced network corresponding to Equation 4.10 as a function

of weights (b) The final layer loss will be uniquely estimated given all the
other layers weights and biases . 88

4.12 Loss function corresponding to Equation 4.11. It can be seen that regulariza-
tion makes the function locally convex, and helps the training. 89

4.13 Testing data (blue) and model predictions (orange) for different network con-
figurations for approximating the sinusoidal function with rectified linear unit
(ReLU) as the activation function (n and L represent the number of nodes in
each hidden layer and number of hidden layers respectively) 91

4.14 Testing data (blue) and model predictions (orange) for different network con-
figurations for approximating the sinusoidal function with sigmoid (σ) as the
activation function (n and L represent the number of nodes in each hidden
layer and number of hidden layers respectively) 92

4.15 Testing data (blue) and model predictions (orange) for different network con-
figurations for approximating the sinusoidal function with hyperbolic tangent
(tanh) as the activation function (n and L represent the number of nodes in
each hidden layer and number of hidden layers respectively) 93

vi

4.16 Features of hidden layers and final output of the network approximating the
sinusoidal function with 5 hidden layers and 5 nodes per layer with ReLU as
the activation function . 94

4.17 Features of hidden layers and final output of the network approximating the
sinusoidal function with 5 hidden layers and 5 nodes per layer with σ as the
activation function . 95

4.18 Features of hidden layers and final output of the network approximating the
sinusoidal function with 5 hidden layers and 5 nodes per layer with tanh as
the activation function . 96

4.19 Shekel function described using the parameters in Table 4.1(a) 3D represen-
tation of the function approximation task (b) Shows final mapping of the 2D
input to the 1D output . 98

4.20 Increasing depth (H hidden layers) does not yield increase in performance for
a network with 10 nodes per hidden layer . 99

4.21 Increasing width (n nodes per layer) of the neural network increases the ap-
proximation accuracy of the network with 3 hidden layers 100

4.22 Network comparison: N1 and N2. Both have similar performance. 101
4.23 Input region activation of each node in each layer for N1. Each layer plot

contains activation of each of the node corresponding to the input space.
Yellow is a high value of the activation and blue corresponds to low activation
(+1 and -1 respectively) since we are using tanh activation function for each
layer . 102

4.24 Input region activation of each node in each layer for N2. Each layer plot
contains activation of each of the node corresponding to the input space.
Yellow is a high value of the activation and blue corresponds to low activation
(+1 and -1 respectively) since we are using tanh activation function for each
layer . 102

4.25 Input region activation of each node in the final layer for N1 and N2 103

5.1 Architecture of XAI-MEG . 107
5.2 Causal graph for a predator prey model with data provided for t, u(Prey

fraction), v (Predator fraction). Red corresponds to negative parameters, and
blue corresponds to positive parameters. As is seen, du

dt increases with more
u, but is negatively impacted due to a second order effect of uv. 114

5.3 Simple Harmonic Motion - Inferences by XAI MEG 115
5.4 Damped Simple Harmonic Motion - Inferences by XAI MEG 116
5.5 Lotka Volterra Model- Inferences by XAI MEG 118
5.6 SIR Model - Inferences by XAI MEG . 120
5.7 Convection Model - Inferences by XAI MEG 121
5.8 Diffusion Model - Inferences by XAI MEG 122
5.9 Reaction Diffusion Model - Inferences by XAI MEG 124

vii

List of Tables

2.1 Various examples to demonstrate the generation of causal maps using transfer
entropy . 13

2.2 Description of Tennessee Eastman process variables 16
2.3 List of subsystem-level causal maps . 31

3.1 Activation functions and their ranges . 41
3.2 The nature of the Loss function exhibiting degeneracy of parameters 56
3.3 Consolidated results of different architectures after 1000 epochs of training . 59
3.4 Fault diagnosis example – Consolidated results after 1000 epochs of training

on the test sample . 67

4.1 Parameters of the shekel function for the demonstrative example 97
4.2 Depth-Width Effect: Combinations of n and H considered for training

shekel function . 98

viii

Acknowledgements

All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither,

Deep roots are not reached by the frost.

This thesis is a byproduct of my last 5 years at Columbia University. It would not

have been possible without the help and support of a lot of people in my life. While I enter

a new phase, I would like to thank a few of the people responsible for this thesis. Those

who I may have forgotten, I will say that your contribution is not any lesser.

First I would like to thank my advisor, Prof. Venkat Venkatasubramanian. Prof.

Venkat has been a mentor in the truest sense. The vast range of knowledge he has shared

with me will forever make me feel indebted to him. He has been the torch bearer for me to

shine the light in areas which needed attention, at the same time letting me find my own

way – a true Gandalf to my Frodo.

I have had many Sam Wise as well during the course of my study here. I want to

thank all my labmates for the really interesting discussions related, and not related to, my

work.

Last but not the least, I want to thank my family – My mom, dad, brother, cousins,

and my best friend/partner/fiancé. Because of their support these 5 years have been a very

ix

enlightening experience. They did make me find my deepest roots, and I will forever be

grateful to them.

x

Chapter 1: Introduction and Background

The availability of abundant data, powerful hardware, and user friendly software has

unleashed an avalanche of machine learning applications in numerous domains [1]. While

machine learning is valuable for certain class of problems, it is, however, unable to provide

causal explanations or mechanistic insights in general. In this thesis, we look at wide range of

problems using methods from pure data-driven techniques all the way to process knowledge

driven models, for the purpose of prediction of state of the system and generating mechanistic

insights about the process.

We start with the problem of identifying causality between variables in a process system.

Causal models are good tools to create explainable systems that show which variables af-

fect the final output variables, thus providing a cause-and-effect chain of transparency and

mechanistic insights. Considerable work has gone into creating graphical causal models us-

ing data-driven techniques [2, 3] and deriving causal models from equations [4, 5]. While

such models analyze the data or the underlying model equations without the inference of

the parameters, it often requires the use of a known model form to estimate the parameters

from data [6]. Recent work is beginning to address physics-informed machine learning [7,

8, 9], but to truly understand the phenomenology, one requires more transparent machine

learning models that exploit domain knowledge for more interpretability [10].

However, we may be able to identify what the hidden features as extracted by neural

networks for the purpose of classification and regression. While it is not possible to truly

explain the reasons for the underlying structures deep learning models, we attempt to look

into the hidden representations of (sufficiently) deep learning models for fault diagnosis and

function approximation problems. In recent years, deep neural networks have witnessed

great success and widespread acceptance for solving many challenging problems in different

1

fields. As observed by Venkatasubramanian [1], this explosive growth is due to three key

developments: availability of large amounts of data (i.e., "big data"), availability of powerful

and cheap hardware, and advances in user-friendly software environments, all of which can

be traced directly to the unexpected success of Moore’s Law over the last fifty years. While

many ideas such as the back propagation algorithm, convolutional neural nets, recurrent

neural nets, Bayesian learning, reinforcement learning, etc., have been around for a couple

of decades or more, and therefore are not that "new", what is "new", however, is the ease

with which these, and other such techniques, can now be applied in a variety of domains due

to the three factors mentioned above.

This ease of application of powerful tools has the potential to cause their misuse and

abuse, if one is not careful. This concern is similar to what we have witnessed over the years

with statistics [11]. In this regard, the current state of machine learning is akin to that of

alchemy before chemistry and chemical engineering, involving a lot of guess-and-test trials,

as noted by Jordan [12] and Hutson [13].

The vast majority of recent papers on machine learning, particularly in chemical engi-

neering, is aimed at employing a deep neural network as a tool for solving some application,

and not at developing a deeper understanding as to how and why the network derives its

problem-solving capability. These papers seem to reflect an attitude that "Well, this partic-

ular deep neural network that we specifically crafted after many guess-and-test trials seem

to work well enough for this particular application we are interested in, and we don’t really

care why and how it does so! It does the job. For the next application, we will try something

else along these lines, and, hopefully, that will do its job as well!".

Important questions such as what kind of neural network to use, how many hidden layers,

how many neurons in each layer, what kind of activation or squashing function to use, how to

initialize the weights, and on and on, are largely determined by an Edisonian guest-and-test

fashion that reminds one of alchemy more than of chemistry, as noted. A systematic approach

to answering these design questions is largely absent in many applications, and such decisions

2

are highly dependent on the expertise (or the lack their of) of the programmer. Despite the

seeming practical success of deep neural nets, we find this state of affairs deeply unsatisfactory

for at least three reasons. First, it reveals our lack of fundamental understanding of the theory

of deep neural networks. Second, this makes the use of neural networks in some engineering

applications worrisome due to their lack generalizability and to their potential exposure to

adversarial attacks. Such drawbacks are perhaps not very serious in recognizing cats vs

dogs, or in recommendation systems (e.g., Yelp, Rotten Tomatoes, etc.), but can be quite

important in applications such as fault diagnosis, process safety analysis, where the cost of a

mistake could be quite high. Third, there is no causal explanation provided which is needed

in many engineering applications.

How do we incorporate mechanistic knowledge in these models? It is shown that deep

neural networks have been shown to have great degeneracy in their feature extraction perfor-

mance, and hence are not easily interpretable in general [14, 15]. The causal explanations

are important in many science and engineering applications that are governed by fundamen-

tal principles of physics, chemistry, and/or biology. In this regard, these areas are different

from applications such as game playing, computer vision, and recommendation systems,

where there are no such conservation laws or constitutive equations governing their work-

ings. Thus, it makes sense in those domains to be mostly data-driven.

However, our applications are quite different, and we often would like to understand

from first principles why a particular decision was reached (or not reached) by the machine

learning system. This is particularly important for mission-critical applications such as

process control, fault diagnosis, and process safety analysis, where the cost of a mistake

could be potentially quite high in comparison with recommendations systems such as Yelp

or Rotten Tomatoes. If one has a bad experience at a restaurant recommended by Yelp,

one might lose a couple of hours and some money. However, if an intelligent control system

makes a mistake in the domains of chemical engineering, aeronautical engineering, or nuclear

engineering, it could cost lives. In such applications we would prefer not to rely on purely

3

black-box models.

To circumvent the issue of model intractability and explainability, much work has been

done in creating sparse models, under the constraint that only a few modes are active during

the course of the process [16, 17]. This typically involves use of a high dimensional feature

representation, which when combined with sparse optimization results in models where only

few features are active. This is often used for reduced order modeling. However, these

models are driven by identifying higher-order nonlinear features from data, followed by an

estimation of the parameters of the model. A key missing element in such identification is

the lack of leveraging of a priori first-principles knowledge to specify the allowed functional

transformations of variables and their combinations [18, 19]. Further, the use of these features

and parameters to generate a physical explanation of the combinations is often not addressed.

To avoid these use cases, we finally show how causal explanations can be generated for

physicochemical systems, where the underlying model forms may be known to a reasonable

degree, however, the true modes of operations are unknown. Machine learning is used to

identify these underlying causal model forms generated through mechanistic knowledge about

physicochemical systems.

4

Chapter 2: From data to causal models

Cause-and-effect reasoning is at the core of fault diagnosis and hazards analysis in pro-

cess systems, thereby requiring the development and use of causal models for automated

approaches. Furthermore, causal models are also required to explain the decisions and rec-

ommendations of artificial intelligence-based systems, lack of which is a serious drawback of

purely data-driven approaches. Here, we demonstrate an approach for building multi-level

causal models. A hierarchical approach is proposed to capture both cyclic and non-cyclic

features of a process plant. Decoupling these features of the plant by constructing two tiers

of digraphs, one tier representing overall plant and the other representing individual subsys-

tems, helps in better inference of causal relations present in the system. An algorithm that

subsides the effects of indirect causal interactions using reachability matrix and adjacency

matrix ideas is also proposed. The algorithm is tested on the Tennessee Eastman bench-

mark process and the resulting causal model is found to represent the true causal interactions

present in the system.

Causality has been a long debated topic amongst philosophers, and in the last quarter of

a century with the advent of artificial intelligence (AI), within the scientific community as

well [20]. AI-based systems that rely solely on purely data-driven approaches often lack the

ability to provide causal explanations of their recommendations. A deep neural network, for

example, might successfully learn to classify different faults in a process plant from real-time

data, and correctly identify them when they occur, but it typically would not be able to

explain how it arrived at its decision. For instance, it might correctly identify valve failure

in a coolant line as the cause of the high temperature alarm in a reactor, but it wouldn’t be

able to provide the causal chain of how the valve failure led to the high temperature alarm.

The neural net might be able to answer the question of what caused the temperature alarm

5

but not why or how. It also cannot answer why not some other failure as the root cause.

To answer such questions, to generate step-by-step cause-and-effect explanations, one

needs a causal model of the system. This work is about the development of such models from

real-time process data. The causal models are represented in the form of directed graphs, a

widely used tool for diagnosis and safety analysis, which model the directionality of the cause-

effect relationship between variables [21, 22, 23]. This graph theoretic representation with

nodes and edges is termed as a causal map or causal graph1. There is considerable literature

on this topic, particularly towards developing a mathematical framework for causality [24,

25, 26, 27, 28]. One of the most prevalent measures of causality is Granger causality [25],

which has gained popularity in recent decades. The notion that cause(s) should always

precede the effect(s) suggests that the past of the cause(s) contains information about the

future, the effect(s). In his definition, Granger said that a variable, x is said to cause another

y, if knowing the past of x increases the predictability of the future of y. Though initially

applied in a linear setting on time-series from an economics perspective, the metric and

its extensions have shown promise in biological sciences [29]. For nonlinear interactions,

transfer entropy as a causality measure has shown a lot of potential in chemical engineering

and biological examples [30, 31, 32, 33]. For a Gaussian system, both transfer entropy and

Granger causality are the same [34].

Though these different causality measures try to ascertain the cause-effect relationships

from data, they are in fact making causal inferences from correlations in the data. One

of the major issues with these causality measures is that the correlations between variables

could be a result of direct causation, or causation through an intermediary variable. Existing

causality measures are incapable of distinguishing between direct and indirect causations.

This issue of indirect causation is more pronounced in systems with cycles due to cyclic

information transfer. In presence of cycles, every variable would seem to affect every other

variable due to the presence of indirect paths between them. In such systems, use of existing
1The terms ’causal graph’ and ’causal map’ are used interchangeably in this article.

6

algorithms/metrics would result in a causal model that does not differentiate true causes

from indirect causes. Take the example of a control loop. At a finer level of granularity, we

can think of every variable in the loop to causally affect every other variable (due to indirect

causation). However, at a coarser level, the causal information is that the set-point is the

cause and the process variable is the effect. From a utilitarian standpoint, the information

from this coarser level of granularity is more useful while the information that every variable

causes every other variable is not of much use. Knowledge about the system of interest

would be beneficial to avoid such inferences, but this information is typically hard to obtain

for most systems (e.g. biological systems).

However, for most chemical process systems, valuable information in the form of flow-

sheets, first-principles models, etc., is available. While one can extract causal models using

only data-driven techniques, such as transfer entropy, ignoring all this valuable information

seems to be an unwise choice. It will be helpful to augment the causal model generated

from data with such additional information as that would make the resultant causal model

more reliable. This is particularly important because most process plants have control loops

and/or recycles, and hence the blind use of causality measures without contextual infor-

mation could result in inaccurate causal models. Our desire in this paper is to avoid such

pitfalls and to develop a hybrid framework by integrating data-driven and flowsheet-derived

causal information.

Though there are various approaches for developing causal maps using data-driven [30,

31] and process model-based methods[35, 36, 37], our proposed method is a hybrid that

combines data-driven causality with structural information from the flowsheet. The causal

map developed, however, varies for different length scales of the process as explained before

in the case of a simple control loop. It is essential to work at these different length scales and

represent the causal map at these different scales to gain more insight into the causal structure

of the system. A plant-level and subsystem-level hierarchy is set up using information from

the process flowsheet, by choosing variables corresponding to the two levels of granularity.

7

This approach is key for this work as we generate causal maps at two levels – (i) an acyclic

map at plant-level and (ii) a cyclic map at subsystem-level. Since the plant-level graph is an

acyclic system, the resultant causal graph must be a directed acyclic graph (DAG) 2. The

subsystem-level causal map is a cyclic graph as cyclic effects due to the presence of control

loops and recycles are included. We use transfer entropy as the measure of causality in this

article for the purpose of demonstration as it is a reasonable metric for non-linear systems

[30, 33].

This paper is organized as follows – section 2.1 explains the methodology of constructing

causal maps using transfer entropy calculated from real-time data. The method is demon-

strated using various examples. In the following section (section 2.2), we describe the well-

known Tennessee Eastman process which is used as a testbed. Section 2.3 describes our

hierarchical approach to analyze large scale systems and the graph reduction strategy to

obtain a better measure of direct causality. This graph reduction strategy is only applicable

for graphs without cycles, and hence can only be applied to plant level graph. The overall

method is tested on the Tennessee Eastman benchmark process described in section 2.2.

2.1 Transfer Entropy as a Measure of Causality

Although the hierarchical approach proposed in this article can work with any causality

metric, transfer entropy is used for quantifying causality for the purpose of demonstration.

Transfer entropy is an information-theoretic measure introduced by [27] that extracts the

amount of directed transfer of information from one variable (x) to another (y) and is defined

as

tx→y =
∑

i

p(yi+h,yi,xi). log

(
p(yi+h |yi,xi)

p(yi+h |yi)

)
(2.1)

where xi = [xi, xi−τ, ..., xi−(k−1)τ] and yi = [yi, yi−τ, ..., yi−(l−1)τ] are the embedded vectors. k

and l are the embedding dimensions of x and y respectively. The prediction horizon is h and
2DAG is a directed graph with a topological ordering such that there is no path from one vertex/node to

itself.

8

τ is the time interval considered between various variables in the embedding vectors of x and

y. p(·, ·) represents the joint probability distribution function (PDF) while p(·|·) represents

the conditional probability or transitional probability. Joint PDFs can be estimated using

Kernel method, details of which can be found elsewhere [27, 30]. The values of h and τ in

our case were estimated using the lag between the time-series when the value of the cross-

correlation was the highest. k = 2 and l = 1 are chosen for estimation of transfer entropy

throughout this manuscript.

It can be easily seen from Equation (2.1) that if y is independent of x, then p(yi+h |yi,xi)

will be equal to p(yi+h |yi) and hence, tx→y will be zero indicating that no information is

transferred from x to y [27, 30]. As measured data is usually corrupted with noise, we may

not obtain zero transfer entropy for a non-causal pair. Hence, we have to make a judgment

to assess whether the value obtained is significant or not. Given the time-series data of x

and y, to determine whether x causes y or, in other words, to determine whether there exists

an edge from x to y in the causal map, a hypothesis test on the transfer entropy value is

used. This is represented as follows:

Null hypothesis,H0 : tx→y = 0 (2.2)

Alternate hypothesis,Ha : tx→y > 0 (2.3)

[38] proposed a Monte Carlo method using surrogate data sets for hypothesis testing.

Different algorithms are available for generating surrogate data sets and we use the iterative

amplitude adjusted Fourier Transform (iAAFT) technique proposed by [39] for the same.

The principle behind the Monte Carlo-based hypothesis testing is that the surrogate data

sets generated do not have any causal relationship between the variables and hence should

have zero transfer entropy value. Now, assuming that the transfer entropy values of the

surrogate data sets (tsurr,k
x→y ∀ k ∈ {1, . . . ,Ns} where Ns is the total number of surrogate

pairs) fall in a bell-curve, the null hypothesis can be rejected if the transfer entropy of the

9

(a)

(b)

(c)

Figure 2.1: (a) A simple case study of mixer simulated in MATLAB simulink (b) Significance
value matrix and the derived weighted adjacency matrix. Weights greater than threshold
are marked in blue. (c) Transfer entropy-based digraph generated for the system

true data is such that

Significance value, sx→y > s0 (2.4)

where sx→y =
tx→y − µtsurrx→y

σtsurrx→y

(2.5)

where µtsurrx→y
and σtsurrx→y

are the mean and standard deviation of the distribution corresponding

to the transfer entropy values of the surrogate pairs, and s0 is the threshold that defines the

boundary. Above equation suggests that x causes y if their transfer entropy (tx→y) is far from

the distribution of their surrogate-pair transfer entropies. Higher the value of significance for

a pair, more prominent is the causal interaction between them. For this reason, significance

value is an indication of strength of the connection between the variables. Constructing

digraph based on these significance values is discussed next.

10

2.1.1 Generating digraph based on transfer entropy

Let us consider a process with N variables represented by x(j) for j ∈ {1, . . . ,N}. Let

T be an N × N matrix such that T(i, j), or simply Ti j , represents tx(i)→x(j) . Similarly, let S

represent the matrix of significance values such that S(i, j) (or Si j) represents sx(i)→x(j) . The

adjacency matrix estimated from the data is given by,

Â(i, j) = Âi j =

1 if sx(i)→x(j) ≥ s0

0 if sx(i)→x(j) < s0

(2.6)

Similarly, a corresponding weighted adjacency matrix (Ŵ) can be constructed as follows:

Ŵ(i, j) = Ŵi j =

sx(i)→x(j)

smax if
sx(i)→x(j)

smax ≥ w0

0 if
sx(i)→x(j)

smax < w0

(2.7)

where smax is the maximum positive significance value obtained. This weighted adjacency

matrix shows the relative importance of an edge with respect to other edges in the graph. A

higher value of Ŵ(i, j) represents a stronger edge from i to j. Causal maps can be constructed

based on this weighted adjacency matrix. If w0 = 0.05, it means that edges having a

significance value of at least 5% of the maximum significance value (smax) are considered

for constructing the causal map.

To demonstrate the importance of this technique, a simple case study is considered. A

mixer as shown in Figure 2.1(a) is simulated using MATLAB Simulink and the data obtained

is used to calculate transfer entropy. By generating 20 surrogate data sets, significance

value is estimated for each pair. Transfer entropy matrix, significance value matrix and the

corresponding weighted adjacency matrix are provided in Figure 2.1(b). Diagonal elements

are not evaluated as we assume that self-loops are not present in the system. The directed

graph or causal map obtained using this procedure is shown in Figure 2.1(c). Note that the

graph obtained captures all significant causal interactions including indirect effects.

11

(a) (b)

Figure 2.2: Causal maps (a) and (b) are obtained based on equation (2.8) for examples (c)
and (d) in Table 2.1 respectively. It can be seen that many of the significant connections are
missing. The reason can be attributed to the presence of feedback loops/recycle streams.

12

Table 2.1: Various examples to demonstrate the generation of causal maps using transfer
entropy
Example No. System Weighted Adjacency Matrix Causal Map

(a)

(b)

(c)

(d)

The causal map obtained using this approach is capable of incorporating bidirectional

edges, and thus can detect all possible interactions in the presence of cycles. Table 2.1

shows various results obtained using this approach for different simple systems simulated

in MATLAB Simulink. Examples (a) and (b) shows that the technique is able to capture

changes in system properties. The value of ’Gain’ was changed from 2 to 0.02 from example

(a) to (b) and the weighted adjacency matrix was able to capture that effect. It can be seen

that the strength of the edges from v1 to both v3 and v4 reduced considerably from (a) to

(b). This shows the potential of this metric in fault diagnosis applications. Examples (c)

and (d) shows the capability of the algorithm to capture bidirectional edges.

13

If it is known a priori that the system under consideration does not contain any bidirec-

tional edges or if we are interested in constructing a DAG, we can enforce this constrain on

the graph by comparing the values of sx(i)→x(j) and sx(j)→x(i) for every pair of variables and

use the edge with higher weight to construct the graph. The weighted adjacency matrix for

such a graph can be constructed as follows:

Ŵi j =

wi j if wi j ≥ w0

0 if wi j < w0

(2.8)

where wi j =
∆s(i, j)
∆smax , ∆s(i, j) = sx(i)→x(j) − sx(j)→x(i) and ∆smax = max (∆s(·, ·)). The Ŵ matrix

obtained can then be used to construct the corresponding causal map. This approach is

similar to the one presented in [30] except that here the difference of significance values is

considered unlike the difference of transfer entropies in [30]. Although this method works

well for systems that can be represented as a DAG, this approach fails to capture many

significant connections for systems with feedback or recycles. For example, Figures 2.2(a)

and 2.2(b) show the causal maps obtained using equation (2.8) for examples (c) and (d) in

Table 2.1. In Figure 2.2(a), direct interactions between v2 and v3 are not captured. Similarly,

in Figure 2.2(b), direct interactions between v1 and v2 are missing. Fault diagnosis will be

highly biased if we rely on these causal maps instead of the map obtained for systems with

cyclic features. Hence, it is mandatory to ensure that feedback loops and recycle streams are

not present before applying Equation (2.8). Note that if a different measure of causality is

used (instead of transfer entropy), then a weighted adjacency matrix can be generated using

that metric using the same strategy as explained in this section.

2.2 Tennessee Eastman Benchmark Process

For the purpose of demonstration on large-scale process industries, the well studied Ten-

nessee Eastman benchmark process is considered. This process involves the production of

14

G and H from the reactants A, C, D and E. In addition to these 6 components, there is an

inert B and a byproduct F associated with the process. The reactions are as follows;

A(g) + C(g) +D(g) → G(liq) (Product 1)

A(g) + C(g) + E(g) → H(liq) (Product 2)

A(g) + E(g) → F(liq) (Byproduct)

3 D(g) → 2F(liq) (Byproduct)

The process has 5 major units: a reactor, a condenser, a product separator, a compressor

and a product stripper. Table 2.2 shows the list of 41 measured variables and 12 manipulated

variables. Further details of the process can be found elsewhere [40, 41, 42, 43]. Various

control strategies can be applied for this process as discussed in [43, 42]. We consider the

decentralized control strategy presented in [43] for our analysis and the corresponding process

flowsheet including these control loops is shown in Figure 2.3. Details of the controlled

and manipulated variables in the 19 control loops (or 8 multi-level control loops) present

in this flowsheet can be found in [43]. The MATLAB codes and Simulink models for the

simulation of this process can be found at http://depts.washington.edu/control/LARRY/

TE/download.html. Data collected using the Simulink model for the base case scenario

mentioned in [43] is used for analysis. Figure 2.4 shows the dynamic profiles of variables 1,

9, 13 and 20. The data is standardized by dividing the mean-centered data with its standard

deviation before evaluating transfer entropies.

15

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html

Table 2.2: Description of Tennessee Eastman process variables
Legend Type Description Legend Type Description

v1 Measurement A feed (Stream 1) v28 Measurement Composition of F (Stream 6)
v2 Measurement D feed (Stream 2) v29 Measurement Composition of A (Stream 9)
v3 Measurement E feed (Stream 3) v30 Measurement Composition of B (Stream 9)
v4 Measurement A and C feed (Stream 4) v31 Measurement Composition of C (Stream 9)
v5 Measurement Recycle flow (Stream 8) v32 Measurement Composition of D (Stream 9)
v6 Measurement Reactor feed rate (Stream 6) v33 Measurement Composition of E (Stream 9)
v7 Measurement Reactor pressure v34 Measurement Composition of F (Stream 9)
v8 Measurement Reactor level v35 Measurement Composition of G (Stream 9)
v9 Measurement Reactor temperature v36 Measurement Composition of H (Stream 9)
v10 Measurement Purge rate (Stream 9) v37 Measurement Composition of D (Stream 11)
v11 Measurement Product separator temperature v38 Measurement Composition of E (Stream 11)
v12 Measurement Product separator level v39 Measurement Composition of F (Stream 11)
v13 Measurement Product separator pressure v40 Measurement Composition of G (Stream 11)
v14 Measurement Product separator underflow (Stream 10) v41 Measurement Composition of H (Stream 11)
v15 Measurement Stripper level v42 Manipulated D feed flow (Stream 2)
v16 Measurement Stripper pressure v43 Manipulated E feed flow (Stream 3)
v17 Measurement Stripper underflow (Stream 11) v44 Manipulated A feed flow (Stream 1)
v18 Measurement Stripper temperature v45 Manipulated A and C feed flow (Stream 4)
v19 Measurement Stripper steam flow v46 Manipulated Compressor recycle valve
v20 Measurement Compressor work v47 Manipulated Purge valve (Stream 9)
v21 Measurement Reactor cooling water outlet temperature v48 Manipulated Separator pot liquid flow (Stream 10)
v22 Measurement Separator cooling water outlet temperature v49 Manipulated Stripper liquid product flow (Stream 11)
v23 Measurement Composition of A (Stream 6) v50 Manipulated Stripper steam valve
v24 Measurement Composition of B (Stream 6) v51 Manipulated Reactor cooling water flow
v25 Measurement Composition of C (Stream 6) v52 Manipulated Condenser cooling water flow
v26 Measurement Composition of D (Stream 6) v53 Manipulated Agitator speed
v27 Measurement Composition of E (Stream 6)

Figure 2.3: Process flowsheet of the Tennessee Eastman benchmark process, with a decen-
tralized control scheme (As seen in [43])

16

2.3 Hierarchical framework for developing causal maps

Data-driven causality detection algorithms, in general, lack the ability to differentiate

between direct and indirect causality. The effect of this inability becomes more pronounced

when we are dealing with a large-scale chemical plant which has a large number of units.

The presence of control loops and recycle streams aggravates the task at hand. When we

rely on process data for detecting causality in such a plant, it is likely to obtain an intricate

graph that contains many spurious edges due to indirect causality. The value of such a graph

would be limited in terms of fault diagnosis or root cause analysis.

To deal with the complexity of these large-scale systems, we propose a hierarchical ap-

proach where the variables related to control loops or recycle streams are decoupled from the

remaining variables. The resulting causal map contains 2 tiers: first one corresponding to the

whole plant while the second one corresponding to individual units or control loops (subsys-

tems). This segregation helps us analyze the system at two levels of granularity. Hierarchical

approach requires us to manually choose the variables for each causal map based on the in-

formation from flowsheet. The significance of this approach is that at the plant-level, the

causal map would be a directed acyclic graph (DAG) and thus, fault identification is more

straightforward. By comparing plant-level causal map at any particular time with that of the

desired plant-level causal map (reference map) and tracking changes in the edge weights, we

expect to identify the fault propagation path and the root-cause. Once a possible root cause

is identified from the plant-level, we can obtain more insights regarding the fault by looking

at the subsystem-level causal map related to the isolated variable (if a subsystem-level map

exists related to that variable). For example, if the plant-level causal map identifies that

reactor temperature is the root cause, then by probing further into the causal map of the

control loop that manipulates the coolant flow rate to control the reactor temperature, it

can be seen whether the fault is with the controller or the valve or the coolant temperature.

Fault diagnosis using this 2-tier causal map is outside the scope of this article.

17

(a)

(b)

(c)

(d)

Figure 2.4: Dynamic profiles of variables 1, 9, 13 and 20.

18

2.3.1 Tier 1: Plant-level DAG

A subset of variables is chosen from the variables of interest such that the resulting

causal map has minimal cyclic interactions so that we can obtain a DAG for this subset of

variables. Variable selection is performed based on prior knowledge of the process in the

form of a process flowsheet. All variables that would directly result in cycles or bidirectional

edges in the causal map are omitted for plant-wide analysis. Following are a few rules for

choosing the subset of variables for plant-level analysis (Note that these rules may not be

sufficient to obtain DAG for all processes. Variable selection must be carefully performed

for the process under consideration such that the subset of variables form a DAG based on

the flowsheet (prior) information).

Rule 1: For control loops, only controlled variables are chosen. Manipulated variables, con-

troller outputs etc. are omitted (refer Figure 2.5(a)) to avoid possible cycles in the

causal map. Further, this helps us look at control loop interactions with other vari-

ables of interest.

Rule 2: For units like reactors, distillation columns etc., operating conditions like temperature

and pressure of the unit are always chosen to ensure that the effects of operating

conditions on other variables are captured in the causal map.

Rule 3: If an output of a unit is fed back to itself as a recycle stream, the overall system along

with the recycle stream is considered as a subsystem as shown in Figure 2.5(b), and

the input and output streams of this overall system are chosen for plant-level analysis.

Otherwise, there will be cycles in the resulting causal map as the recycle stream (stream

4 in Figure 2.5(b)) and input stream (stream 2 in Figure 2.5(b)) are inter-related.

Rule 4: For each unit, properties of its input and output streams are considered except when

that stream acts as a recycle stream to another unit. For example, in Figure 2.5(c),

all properties of streams 2 and 3 are included while properties of stream 4 and 5 are

19

(a) (b)

(c)

Figure 2.5: (a) Example for a feedback system. All streams except 5 are omitted for analysis.
(b) Example for a unit with recycle stream. The subsystem marked by the red dotted line is
considered as a single unit and thus, only streams 1 and 3 are included for developing plant-
level DAG. (c) Example for the case where 2 units are connected using a recycle stream.

omitted. Again, if streams 2 (or 3) and 4 are considered together, there will be cycles

in the causal map as stream 4 acts as a recycle stream to unit 1. Also, stream 1 can

be considered as far as it doesn’t violate any other rules.

Rule 5: If multiple levels of controllers are used, the controlled variable corresponding to the

master controller (higher level controller) alone is included for analysis. This would

eliminate possible bidirectional edges or cycles due to dependent control loops.

It might seem that these rules restrict the causal structure present in the system. Since

the goal of this section is to obtain an overall causal structure, the rules provide a heuristic

for causal inference based on knowledge about the system, at the plant-level. It might be

possible that there exist a few bidirectional causal interactions between the chosen variables.

To obtain a DAG, we restrict the presence of such bidirectional edges by picking the one

that’s more significant among the two. For example, as properties (say temperature) of all

units are considered for analysis, it is possible that temperatures of two different units affect

each other because of the presence of a recycle stream between these units. However, the

connection that’s more significant would be chosen to construct the plant-level DAG by using

equation (2.8).

For the Tennessee Eastman case study discussed in section 2.2, 22 variables (out of 41

20

(a)

(b)

Figure 2.6: Demerits of data-driven causality detection algorithms. If a data-driven algo-
rithm results in a causal map as shown in (a) for a system S, its true representation could
be any of the causal maps shown in (b).

measured variables) are shortlisted such that there are minimal cyclic interactions among

them and are used for the construction of plant-wide digraph. Variables chosen include 1

flow rate (v6), 3 levels (v8, v12, v15), 4 temperatures (v9, v18, v21, v22), 3 pressures (v7, v13

and v16) and 11 concentrations (v23 to v28 and v37 to v41). Other variables are neglected

either because they are manipulated variables or because they are associated with recycle

streams.

Figure 2.7 shows the digraph obtained for this subset of variables. A total of 60 edges are

obtained for w0 = 0.12. As our aim was to develop a DAG for the plant, we have constrained

the presence of self loops and bidirectional edges, and the variables were shortlisted such that

there are no direct cyclic interactions among them. However, it can be seen that although

the obtained graph does not have any bidirectional edges (or cycles of length 2) or self-loops,

it contains cycles of path length more than 2 (path length here refers to the number of edges

that constitute the cycle). For example, the path v16 → v24 → v25 → v16 is a cycle present

in this causal map. These cycles could be due to the noise present in the data used for

calculations, due to the presence of indirect edges or due to interdependencies between units

(while all unit properties are considered).

Furthermore, by comparing the graph and the actual flowsheet of the process, it is evident

that many of the edges obtained are due to indirect causation. If a variable v1 affects a vari-

21

Figure 2.7: Plant-level causal map constructed based on transfer entropy for the Tennessee
Eastman benchmark process (Base case). w0 = 0.12 is used as threshold.

able v2 which in turn affects another variable v3, then the data is likely to show a dependency

from v1 to v3. But it is also possible that there is in fact a direct causation from v1 to v3. As

a matter of fact, if we observe a causal map as shown in Figure 2.6(a) using a data-driven

algorithm, true representation of that system could be any of the causal graphs shown in

Figure 2.6(b). It is very difficult to distinguish between direct and indirect edges from what

you observe unless we have some prior knowledge about the system. Various researchers have

looked into techniques for the reduction of graphs obtained from data-driven approaches by

identifying indirect causations. In the approach adopted by [30], whenever there exists an al-

ternate path between two variables (say v1 and v3) using intermediate/confounding variables

22

(like v2 in this example), the graph was reduced by completely neglecting the possibility of

a direct path from v1 to v3. There are various other techniques based on partial correlation

[25], partial association [44], partial directed coherence [45], partial transfer entropy [46], di-

rect transfer entropy [31] etc. that evaluate the causal relation from v1 to v3 by conditioning

on v2 to identify direct causality. Though these approaches may be effective in differentiating

direct and indirect causality, it becomes impractical and computationally prohibitive when

we are dealing with large number of variables. There is also a possibility of more than one

intermediary variable in which case the number of evaluations necessary for the reduction to

direct causal graph would be enormous.

Plant-level graph reduction strategies

In this section, we will discuss simple strategies proposed to remove cycles and strengthen

the direct edges present in the causal map obtained from transfer entropy. These strategies

are applicable only for systems with a DAG representation. This technique is based on

the properties of reachability matrix [47] and powers of adjacency matrix. The following

description of this property is adapted from [48]:

A path in a network is any sequence of vertices such that every consecutive pair

of vertices in the sequence is connected by an edge in the network. The length

of a path in a network is the number of edges traversed along the path (not the

number of vertices). For either a directed or an undirected graph the element

Ai j is 1 if there is an edge from vertex i to j, and 0 otherwise. Then the product

Aik Ak j is 1 if there is a path of length 2 from j to i via k, and 0 otherwise. And

the total number N (2)i j of paths of length two from i to j, via any other vertex, is

N (2)i j = [A
2]i j where [...]i j denotes the i jth element of a matrix. Generalizing to

paths of arbitrary length r, we see that N (r)i j = [A
r]i j .

This property can be extended to weighted adjacency matrices where we know the weights

of each edge rather than simply the information about the presence/absence of edges. Sup-

23

pose the matrix W∗ represents the true weighted adjacency matrix of a process such that its

i jth element, W∗i j , is the weight corresponding to a direct edge from variable i to j. Higher

powers of this weighted adjacency matrix would give the weights of the possible indirect

edges between any two variables. For example, the product W∗ikW∗k j is the possible weight

of an indirect path observed from i to j such that the intermediary variable is k and hence,

i jth element of (W∗)2 would give the total weight corresponding to all indirect paths from

i to j with a single intermediary variable. Similarly, i jth element of (W∗)3 would give the

total weight corresponding to all indirect paths from i to j with two intermediary variables

and so on. Now, if we construct a graph that captures all possible direct and indirect causal

interactions, then its weighted adjacency matrix can be written as follows:

W = W∗ + (W∗)2 + (W∗)3 + ... + (W∗)∞ (2.9)

W is the weighted adjacency matrix of the entire graph that contains information about both

direct and indirect causal interactions present in the system. This matrix W is referred to

as the weighted reachability matrix of the system in this article, similar to the reachability

matrix defined as the sum of powers of adjacency matrices [47]. W∗ is the true weighted

adjacency matrix of the system that shows the direct edges alone.

For any matrix H, its geometric series (
∑∞

m=0 Hm) converges iff the absolute values of all

eigen values of H are less than 1, and it converges to (I − H)−1 [49]. Using this property, we

can rewrite the equation (2.9) as follows:

W =
∞∑

m=1

(W∗)m u (I −W∗)−1 − I if max(|λW∗ |) < 1 (2.10)

λW∗ represents the eigen values of W∗. Rearranging the above equation, we get

W∗ = I − (I +W)−1 (2.11)

24

The above analytical expression can be used to convert the weighted reachability matrix

(W) to the true weighted adjacency matrix (W∗). The graph corresponding to W can be

thought of as the graph that we observe from the data of a system as the data would contain

information about both direct and indirect causation present in that system. Similarly, the

graph corresponding to W∗ can be thought of as the desired causal map of the system as it

contains only the direct causal information. Thus, we can use the above relation to transform

the observed causal map to the desired causal map of the system. However, this equation is

valid if and only if max(|λW∗ |) < 1. For a system/process that can be represented in the form

of a DAG without any self-loops (referred to as DAG systems in the following discussions),

this property holds true.

For DAG systems, we can always find a particular order of variables such that its cor-

responding weighted adjacency matrix is upper-triangular 3. Hence, its eigen values are its

diagonal elements. As self-loops are not allowed, its diagonal elements are all zero and thus

the weighted adjacency matrix is always strictly upper triangular. Hence, for such a system,

all eigen values of the true weighted adjacency matrix will always be zero. This particular

feature allows us to use the above approximations for DAG systems. A key point to remem-

ber is that in reality, we do not know the true weighted adjacency matrix (W∗) and hence,

we cannot verify whether this approach is applicable. However, there is another important

property of DAG systems or strictly upper triangular matrices. Powers of a strictly upper

triangular matrix are also strictly upper triangular which implies that W , which is the sum

of all powers of W∗, will be strictly upper triangular. Hence, all eigen values of W will also

be zeros. In other words, if the true system can be represented using DAG, the graph that

we observe based on data which contain all indirect interactions will also be a DAG. The

converse is also true. Hence, it can be concluded that if the observed graph is a DAG, we

can reduce it to its true causal map using equation (2.11).
3This property is also applicable to adjacency matrix. As adjacency matrix can be thought of as a special

case of weighted adjacency matrix with all weights as 1, the discussion is presented in terms of weighted
adjacency matrix.

25

Figure 2.8: Plant-level DAG constructed based on transfer entropy for the Tennessee East-
man benchmark process (Base case) by setting w0 = 0.14 as threshold.

Reduction to obtain DAG As discussed in section 2.3.1, though we chose variables such

that actual cyclic effects are insignificant, the plant-level digraph obtained based on transfer

entropy contains cycles. These cycles captured could be due to the noise present in the data

or due to the presence of indirect edges (resulting from interdependencies between variables).

This speculation is supported by the fact that among the edges that form a cycle, at least

one of the edges has a very small weight. In order to obtain a DAG from this graph, the

best way is to increase the threshold value w0. By choosing a suitable w0 (for equation (2.8))

such that all eigen values of Ŵ are zeros, we can ensure that Ŵ is a DAG.

This approach was tested for the Tennessee Eastman case study discussed in section

2.3.1. This analysis showed that by setting w0 = 0.14, we obtain a DAG. The corresponding

26

causal map obtained is shown in Figure 2.8 and it can be seen that there are no cycles in

this graph. The total number of edges captured in this graph is 51.

Weakening of indirect edges As we have a DAG for the process based on the variables

chosen, we can use the transformation expressed in equation (2.11) to obtain the true graph

of the process. However, it is important to note that this equation is obtained based on

the assumption that the observed weighted adjacency matrix (W) incorporates all possible

indirect interactions between variables and is equivalent to the weighted reachability matrix.

This may not be always true. Hence, in reality, the observed weighted adjacency matrix

based on data (Ŵ) may capture only a subset of indirect causal interactions. However, it

can be observed that though this transformation is not capable of completely removing the

indirect edges, it certainly weakens their weight. Hence, this expression can still serve as an

approximate solution to direct causality detection problem. The weighted adjacency matrix

obtained after transformation will have elements lesser than the threshold w0 and those have

to be removed. By thresholding the weights using w0, the final plant-level DAG for the

system can be represented as ,

ŴDAG =

(I − (I + Ŵ)−1) if (I − (I + Ŵ)−1) ≥ w0

0 if (I − (I + Ŵ)−1) < w0

(2.12)

ŴDAG =
ŴDAG

max(ŴDAG)
(2.13)

A simple case study is given in Figure 2.9. For this system, a DAG was obtained for a zero

threshold (w0 = 0). The figure shows how the transformation using equations (2.12, 2.13)

helps to weaken the weight corresponding to indirect edges. Weighted adjacency matrix

calculated based on the data simulated using MATLAB Simulink showed an indirect edge

from v1 to v3 and interestingly, that indirect edge had the highest significance value and

hence Ŵ13 = 1. However, after transformation using equations (2.12, 2.13), its weight was

27

(a) Simulated system (b) Actual graph of the system

(c) Estimated weighted adjacency matrix and the corresponding graph

(d) Transformed final weighted adjacency matrix obtained using equa-
tion (2.11) and the corresponding graph

Figure 2.9: A simple case study to show the direct causality detection algorithm. Ŵ shows a
weight of 1 for the indirect edge, whereas its weight was reduced to 0.34 after transformation.

reduced to 0.34
(
ŴDAG13 = 0.34

)
. This shows the importance of this approach in weakening

the weights of indirect edges.

For the Tennessee Eastman case study discussed in section 2.2, the same procedure was

adopted to calculate ŴDAG. The graph obtained based on ŴDAG is provided in Figure 2.10.

It can be seen that, there are only 44 edges in the graph unlike 51 in the graph based on

Ŵ (Figure 2.8). The weights corresponding to the remaining 7 edges were weakened during

transformation and thus were removed in the final graph. For example, initial observation

shows a causal interaction from reactor level (v8) to stripper temperature (v18) which is

28

Figure 2.10: Final plant-level DAG constructed based on transfer entropy for the Tennessee
Eastman benchmark process (base case) after transformation. w0 = 0.14 is used as threshold.
The gray arrows are the once which were nullified in comparison to the originally obtained
graph

removed after transformation. As condenser cooling water outlet flow rate is manipulated

based on reactor level, reactor level can be considered the cause of both cooling water outlet

temperature (v22) and product separator temperature (v11). v11 is in turn a cause for stripper

temperature (v18). As product separator temperature is not considered for analysis, it is

acceptable to say that v22 causes v18. The initial causal observation from v8 to v18 is hence a

spurious connection due to the indirect path between these through an intermediary variable

v22. Therefore, it can be seen that the transformation algorithm correctly identifies the

indirect edge. By comparing the final plant-level graph (Figure 2.10) with that of the process

29

flowsheet given in Figure 2.3, it can be seen that the edges derived based on the proposed

algorithm correspond to the actual causal interactions present in the system, though a few

may be indirect effects.

The most important root nodes obtained from this analysis on the Tennessee Eastman

case study are the stripper level (v15), reactor level (v8), composition of B (v24) and D (v26)

in stream 6. The strongest connection in the obtained graph is from v22 to v7, corresponding

to the separator cooling water outlet temperature to the reactor pressure. Note that the

separator cooling water outlet temperature is related directly to the separator temperature,

which will affect the reactor pressure as seen from Figure 2.3 (with the help of compressor).

Apart from this connection, connection from v8 to v22 (reactor level to separator cooling

water outlet temperature), v7 to v16 (reactor pressure to stripper pressure), and v9 to v21

(reactor temperature to reactor cooling water outlet temperature) are some of the other

prominent ones. The following nodes (arranged in the order of significance) are correctly

identified as sink nodes: stripper pressure (v16), reactor cooling water outlet temperature

(v21), composition of E in stream 11 (v38) and composition of H in stream 11 (v41). Though

the algorithm also identifies product separator level (v12) as one of the sink nodes, the

corresponding edge has a very small weight associated with it. From these observations, it

can be seen that the proposed algorithm for plant-level digraph construction indeed captures

the overall causal relations present in the process.

2.3.2 Tier 2: Subsystem-level graph with possible cycles

All subsystems containing some sort of cycles, like recycle streams or feedbacks, are

analyzed separately to construct a subsystem-wise causal map. The number of subsystem-

level graphs and the variables in each such graph have to be decided based on prior knowledge

about the system in the form of process flowsheet. The overall procedure of selection of

variables and units are explained below with the help of the Tennessee Eastman case study

provided in Figure 2.3.

30

Table 2.3: List of subsystem-level causal maps
Number Description Variables

1 Controller for concentration of A and C in feed v1, v4, v23, v25, v44, v45
2 Controller for concentration of G in product v2, v3, v40, v42, v43
3 Controller for reactor temperature v9, v51
4 Controller for reactor pressure v7, v10, v47
5 Controller for reactor level v8, v11, v52
6 Controller for separator level v12, v14, v48
7 Controller for stripper level/product flow rate v15, v17, v49
8 Controller for compressor v5, v20, v46
9 Feed as a mixture of various streams v1, v2, v3, v5, v6

Every control-loop can be associated with a corresponding graph and can be analyzed

separately. For example, in the Tennessee Eastman case study, there are 12 manipulated

variables which are associated with 8 different control loops (Note: multiple levels in a multi-

level controller are considered together). By analyzing the set point, error, controller output,

valve output (manipulated variable) and the controlled variable for each control loop, a graph

is constructed for that control loop. As there is a feedback in case of a control loop, the

associated true graph will have cycles. The causal graph is hence, created using equation

2.7 (and not equation 2.8 as it is applicable only for systems without cycles). It is to be

noted that data-driven approaches including transfer entropy will show interactions between

all variables. However, the intensity of each interaction would vary.

In addition to control loops, we should also construct graphs for systems with recycle

streams. For example, streams 1, 2, 3, 6 and 8 can be used to make a causal map which will

capture the mixing of various streams to give stream 6 and the effect of recycle stream 8 on

the reactor feed.

Overall, we will have 9 subsystem-level causal maps for this case study. Table 2.3 shows

the list of all subsystem-level causal maps and Figure 2.11 shows a few of these causal maps

generated using the data collected for base case scenario. Note that these graphs contain

cyclic components and bidirectional edges as they are intended to capture various cyclic

interactions present in the system. Hence, the transformation discussed in the previous

section cannot be applied for these types of graphs. Figure 2.11(a) shows the control loop

31

(a) Controller for product separator level,
Loop 10

(b) Controller for reactor level, Loop 11

(c) Controller for concentration of A and C in
feed

(d) Feed as a mixture of various streams

(e) Controller for concentration of G in product, Loop 13

Figure 2.11: A few examples of subsystem-level causal maps for the Tennessee Eastman case
study.

32

for the product separator level (LC/10 and RC/6 in Figure 2.3) in which it is shown that

the major effect is seen from separator pot liquid flow to product separator level, which is

expected from a first principles standpoint. Also, it shows no connection from v12 to v14 as

their causal effect is through the intermediate manipulated variable v48. In Figure 2.11(b),

causal map related to reactor level controller is shown. The most prominent effects are from

condenser cooling water flow to product separator temperature, and reactor level to product

separator temperature. It also shows that the lower level manipulated variable v52 is not

affected directly by the controlled variable of higher level controller v8, instead the effect is

through the intermediate variable v11. These effects can be inferred from Figure 2.3.

2.4 Major Results

Major contributions of this work is the hierarchical approach that decouples the cyclic

and acyclic interactions present in the complex system, and the transformation using the

ideas of reachability and adjacency matrices. Hierarchical approach requires us to manually

choose the variables based on the information from flowsheets and this step is performed

off-line. The transformation involves simple matrix inverse and multiplication operations

which are computationally very fast. So, the computational time essentially depends on the

measure of causality used for analysis. Causality metric can be chosen based the system of

interest.

Transfer entropy is used as the metric for causality as it is a reasonable metric for non-

linear systems. Transfer entropy is known to be computationally expensive. Additionally,

we use surrogate data for hypothesis testing. As it is required to estimate transfer entropies

for each surrogate pair, the computational time also depends on the number of surrogate

pairs chosen. It took approximately 1.7 hours (in a 16GB RAM Intel Core i7-2600 CPU)

to generate the complete plant-level causal map when 20 surrogate pairs were used for

hypothesis testing. Instead, if we were to use cross-correlation for quantifying causality, it

takes approximately 1 minute to generate a plant-level causal map on the same computer. So,

33

Start Hierarchical Strategy

Variable
Selec-
tion

Process
Flowsheet

Plant-level variables Subsystem-
level variables

Process
Data

Generate matrix
T based on causal
measure (2.1)

Generate significance
matrix, S (2.5)

Generate weighted
adjacency ma-
trix Ŵ (2.8)

Find the threshold
to obtain DAG

Transform Ŵ to
ŴDAG (2.12)

Generate plant level
causal map (DAG)

Segregate variables to
individual subsystems

Generate causal
measure matrix T for
each subsystem (2.1)

Generate significance
matrix for each

subsystem, S (2.5)

Generate weighted
adjacency matrix
for each subsys-
tem, Ŵ (2.7)

Generate causal map
for each subsystem

Stop Hierarchical Strategy

Figure 2.12: Flowchart of the proposed hierarchical approach.

there will be a trade-off between accuracy and computational time. Based on the application,

a reasonable metric can be chosen. The proposed approach of hierarchical analysis and

transformation is generalizable to any causal metric (Figure 2.12).

Robustness of this approach again depends on the chosen causality metric. For transfer

entropy-based causality metric discussed in the manuscript, the edge weights in the causal

map are based on the significance values obtained during hypothesis testing. Hence, the

robustness of the transfer entropy metric is heavily dependent on the number of surrogate

pairs chosen. The results will be robust if a reasonably large number of surrogate pairs are

generated for hypothesis testing.

34

Chapter 3: Neural Networks for Classification

Deep neural networks have evolved into a powerful tool applicable for a wide range

of problems. However, a clear understanding of their internal mechanism has not been

developed satisfactorily yet. Factors such as the architecture, number of hidden layers and

neurons, and activation function are largely determined in a guess-and-test manner that is

reminiscent of alchemy more than of chemistry. In this chapter, we attempt to address these

concerns systematically using carefully chosen model systems to gain insights for classification

problems. We show how wider networks result in several simple patterns identified on the

input space, while deeper networks result in more complex patterns. We show also the

transformation of input space by each layer and identify the origin of techniques such as

transfer learning, weight normalization and early stopping. This chapter is an initial step

towards a systematic approach to uncover key hidden properties that can be exploited to

improve the performance and understanding of deep neural networks.

In recent years, deep neural networks have witnessed great success and widespread ac-

ceptance for solving many challenging problems in different fields. As observed by Venkata-

subramanian [1], this explosive growth is due to three key developments: availability of

large amounts of data (i.e., "big data"), availability of powerful and cheap hardware, and

advances in user-friendly software environments, all of which can be traced directly to the

unexpected success of Moore’s Law over the last fifty years. While many ideas such as

the back propagation algorithm, convolutional neural nets, recurrent neural nets, Bayesian

learning, reinforcement learning, etc., have been around for a couple of decades or more,

and therefore are not that "new", what is "new", however, is the ease with which these, and

other such techniques, can now be applied in a variety of domains due to the three factors

mentioned above.

35

This ease of application of powerful tools has the potential to cause their misuse and

abuse, if one is not careful. This concern is similar to what we have witnessed over the years

with statistics [11]. In this regard, the current state of machine learning is akin to that of

alchemy before chemistry and chemical engineering, involving a lot of guess-and-test trials,

as noted by Jordan [12] and Hutson [13].

Important questions such as what kind of neural network to use, how many hidden layers,

how many neurons in each layer, what kind of activation or squashing function to use, how to

initialize the weights, and on and on, are largely determined by an Edisonian guest-and-test

fashion that reminds one of alchemy more than of chemistry, as noted. A systematic approach

to answering these design questions is largely absent in many applications, and such decisions

are highly dependent on the expertise (or the lack their of) of the programmer. Despite the

seeming practical success of deep neural nets, we find this state of affairs deeply unsatisfactory

for at least three reasons. First, it reveals our lack of fundamental understanding of the theory

of deep neural networks. Second, this makes the use of neural networks in some engineering

applications worrisome due to their lack generalizability and to their potential exposure to

adversarial attacks. Such drawbacks are perhaps not very serious in recognizing cats vs

dogs, or in recommendation systems (e.g., Yelp, Rotten Tomatoes, etc.), but can be quite

important in applications such as fault diagnosis, process safety analysis, where the cost of a

mistake could be quite high. Third, there is no causal explanation provided which is needed

in many engineering applications.

This chapter is written in a tutorial-like manner to highlight these concerns, particularly

for the newcomers in machine learning, and to explore and understand the hidden internal

representations of deep neural networks to gain some insights for classification problems

(the second part of this series explores function approximation problems, to be published

shortly). We have chosen deliberately simple examples to reveal key insights about the

structure and behavior of deep neural nets, such as the role of depth vs breadth of layers,

the different activation or squashing functions and so on. The kinds of examples we have

36

chosen are to be viewed like the "particle in a box" or "simple harmonic oscillator" case

studies in quantum mechanics, or like the "ideal gas" system in statistical mechanics. As

we know, despite their manifest simplicity, such models have been extraordinarily helpful to

understand and appreciate the critical conceptual issues and their interrelationships. They

often reveal subtle patterns, and in the case of deep neural networks literally hidden internal

representations, which are often hard to perceive in more complex examples.

There have been attempts in the past to explain the functioning of a neural network,

using visualization techniques [50], rule extraction [51], randomization approaches to give

insights into the importance of nodes in a neural network [52], and recently the information

bottleneck approach which seems to give the most insight into the functioning of a neural

network [53, 54, 55].

However, from a network design point of view, there are several questions facing a user

that remain largely unanswered, rendering the task of designing a network for a certain ob-

jective a highly trial-and-error exercise. In addition, there is a general tendency to build deep

networks with complicated units such as convolutional filters, recurrent units and inception

modules that result in better performance without a clear understanding of the trade-offs

involved. It is important to know the minimal neural net architecture for a given problem.

Conventionally, an architecture is chosen based on the complexity of the data distribution,

number of features, and so on. There is a belief that the deeper the neural network, the

better it works - why that is the case is often left as a mystery.

The lack of a clear understanding of the internal mechanism of neural networks partly

stems from the intractability of the operations performed by the network. A neural network

consists of several nodes arranged in layers that can be connected in different layouts, result-

ing in intractable operations of the overall network. In this chapter, we adopt a systematic

approach and make an attempt to understand the operation of the individual components,

their arrangements, and finally an entire network. In that sense, our cases represent simple

yet rich exemplars (along the lines of the simple harmonic oscillator, particle in a box, and

37

ideal gas molecules, as noted) to gain a deeper understanding. We proceed from an un-

derstanding of the individual elements to that of the interactions between them in order to

understand the operation of intermediate layers, and then of the complete neural network.

We hope our findings will be of pedagogical value to the new practitioners in the field. Our

style of investigation should be of particular interest to chemical engineers who have always

prided themselves, historically, as first-principles-based modelers, for whom any "black box"

model would be an anathema. This chapter is an attempt to inject some transparency into

the box, making it more like a "gray box".

In this chapter, we attempt to shed light into the inner workings of the information

transformations in a deep neural network. We test simple examples to understand critical

issues with the training process. We examine loss function landscapes and show that de-

generacy plays a critical role in the parameter space. This in turn results in a degeneracy

of observations. Finally, we show what features are estimated by a neural network during

the training process for different activation functions. We study three examples which have

nonlinear decision boundaries to elucidate this. The generalization of the identified feature

space is also studied for a chemical engineering fault diagnosis problem.

3.1 Mathematical Background

3.1.1 Problem Formulation

The dataset in classification tasks comprises (N) examples of input data and their cor-

responding target classes, represented here as D =
{
x(i),y(i)

}N
i=1 where x(i) ∈ Rm represents

the ith input data and y(i) is a K− dimensional one-hot vector representing the target vector

corresponding to x(i). The problem of classification is mathematically formulated as an op-

timization problem wherein the objective (or loss) function is the cross-entropy between the

38

target vector y(i) and the predicted outputs ŷ(i), defined as:

L = −
1

N

N∑
i=1

K∑
j=1

y
(i)
j log ŷ

(i)
j (3.1)

The target vector as well as predictions in Equation (3.1) represent the probability mass

functions (of the target and predicted classes respectively) so that the quantity in Equa-

tion (3.1) represents the deviation of the predicted outputs (probabilities) from the target,

averaged over all examples.

In the above context, a neural network is then a model N with a predefined architecture

A and a set of parameters Θ that expresses the output as a function of the inputs as:

ŷ(i) = N(x(i);A,Θ) (3.2)

In this article, we consider the architecture A to include the design choices made by the

user and differentiate them from the parameters Θ that are tuned during training. The

architecture A therefore includes:

1. the organisation of layers, eg., fully connected, convolutional, recurrent

2. the activation function: g(·), eg., logistic function, hyperbolic tangent, rectified linear

unit

3. the number of layers L (values ranging from < 10 to ' 150 in the literature)

4. the number of nodes in each layer nl , l = 1,2,3, . . . , L (values ranging from ten to few

hundreds in the literature)

On the other hand, the parameters Θ include the weights W[l] and biases b[l] of each layer,

l = 1,2,3, . . . , L. It is to be noted that once the architecture A is defined, the dimensionality

of the weights and biases and hence, dimensionality of Θ is fixed.

39

3.1.2 Classification with Neural Networks

The network N is required to identify (learn) the boundaries that can be used to dif-

ferentiate data belonging to one class from others. These boundaries, in the simplest case,

form planes (referred to as separating hyperplanes) that divide the input space into multiple

regions allowing one to assign different class labels to different regions. However, in several

applications these boundaries are extremely curved surfaces, referred to as separating hyper-

surfaces. The nature of the separating boundary results in a linear or nonlinear classification

problem, and determines the complexity of a model required to reliably identify the bound-

aries. It must be noted that in some applications such as identifying lion cubs from cats,

it is not possible to manually identify distinct hypersurfaces in the input space, and it be-

comes necessary to extract certain features relevant to the classification problem. Therefore,

achieving classification with neural networks, which entails identifying appropriate separat-

ing boundaries from the data typically involves feature extraction followed by classification.

While the hidden layers are used to extract relevant features from the data, the final layer

is used to identify the separating surfaces necessary for classification.

Let us consider a multi-layer network N with L layers and the lth layer consisting of nl

nodes and an activation function g[l](·). Let z[l], W[l], b[l], g[l](·) and a[l] represent the input,

weights, biases, activation function and output of the lth layer respectively. The output ŷ

of the network can then be obtained through a progression of layer-wise processing of the

input x as:

a[1] = g[1]
(
z[1]

)
= g[1]

(
W[1]x + b[1]

)
a[l] = g[l]

(
z[l]

)
= g[l]

(
W[l]a[l−1] + b[l]

)
∀l ∈ {2, ..., L − 1} (3.3)

ŷ = g[L]
(
W[L]a[L−1] + b[L]

)
The output ŷ is therefore a function of the inputs x, the parameters W[l],b[l], l =

1,2,3, . . . , L and the activation function g[l](·), l = 1,2,3, . . . , L. It must be noted here that

40

while the expressive power of a neural network lies in the architecture chosen for a partic-

ular task, its actual performance depends on the architecture as well as the values of the

parameters. The host of algorithms developed for training neural networks attempt to tune

the parameters Θ of the network N so as to minimize the loss. In the following, we discuss

these factors and highlight the different scenarios considered in this work.

The choice of the the number of nodes in a layer (width), number of hidden layers

(depth), type of connection (fully connected, convolutional, recurrent) and the activation

function (denoted as g(·)) used in each layer together determine the expressive power of a

neural network. In this work, we consider multiple combinations of width and depth for

fully connected networks to identify the influence of these factors on the performance of the

network. In addition, we consider the logistic function σ, hyperbolic tangent function tanh,

Gaussian function G and the rectified linear unit ReLU as different activation functions used

in the hidden layers in the networks. Table 3.1 lists the definitions and ranges of the different

activation functions used in this study. The different activation functions are also shown in

Figure 3.1.

Table 3.1: Activation functions and their ranges
Activation Function (g) Expression Range

Logistic Function (σ)
1

1 + exp (−z)
[0,1]

Hyperbolic tangent (tanh)
exp (z) + exp (−z)
exp (z) + exp (−z)

[−1,1]

Gaussian Function (G) exp (−z2) [0,1]
Rectified Linear Unit (ReLU) max(0, z) R+

In addition to the above, the final layer of the network consists of the so f tmax activation

function, which is used to produce the probability of each class for the input, and is defined

for a layer with K nodes (corresponding to a K - class problem) as follows:

P(y = j) , ŷ j =
exp (z j)

K∑
k=1

exp (zk)

∀ j ∈ {1, ...,K} (3.4)

41

(a) Logistic Function (b) Hyperbolic tangent

−10 −5 5 10 15

0.2

0.4

0.6

0.8

1

Input

Output

(c) Gaussian Function

−4 −2 2 4

1

2

3

4

5

Input

Output

(d) Rectified Linear
Unit

Figure 3.1: Activation functions used in this study

In the following, we present a systematic approach to understanding the internal mech-

anism of a neural network. We begin with a simple network that is the equivalent of a

single-cellular organism, or a particle in a box and that lends itself to a dissection-like study

providing insights about larger networks with complicated architectures. We then investigate

the impact of different components of the architecture A listed earlier on the performance

of a neural network.

3.2 Peeking Under the Hood of a Deep Neural Network

A neural network is made up of multiple neurons arranged in a layer that are connected

to neurons in other layers. Each node in the lth hidden layer of a network activates a portion

of the space spanned by the nodes of l − 1th layer, according to the parameters W[l],b[l] and

the activation function g[l](·). As discussed earlier, a network performs feature extraction

from the input data with the hidden layers, which are then used for performing classification

at the final layer, which are analysed in the same order in the following.

42

3.2.1 Feature Extraction: Node-specific Selective Activation of the Input Space

Let us consider a tiny neural network that consists of two input nodes and one output

node as shown in Figure 3.2. The output activation of the network can be expressed as:

a = g(w1x1 + w2x2 + b)

For this network, let us define a node-specific characteristic equation that determines the

activation of the input space as:

w1x1 + w2x2 + b = 0 (3.5)

The above equation describes a line in the 2 dimensional input space that acts as the

reference for selectively activating different regions of the space.

Figure 3.2: Architecture for 2 input neurons and 1 activated neuron

Figure 3.3 shows the output of the network for different activation functions g(·) used in

the output node. In each plot, the set of points satisfying the characteristic equation (with

w1 = −1, w2 = 1 and b = 0) is shown as a red line, while the value of the output is shown as

a gradient of colour with yellow representing the highest value and deep blue representing

the lowest value. It is noteworthy that each point (X1,X2) in the input space is activated

according to the scaled, rotated and translated value d(X1,X2) = w1X1 + w2X2 + b, which

is also equal to the scaled directional distance of the point (X1,X2) from the line segment

representing the characteristic equation, scaled by the norm of w = [w1,w2]. Henceforth d

43

shall be refered to as the distance.

Different types of activation functions however result in different segments of the input

space being activated as shown in Figure 3.3. It can be observed from Figure 3.3 that while

σ results in the line w1x1 + w2x2 + b = 0 being assigned a value of 0.5, tanh suppresses the

same to zero, activating other points according to their distance from the line. On the other

hand, ReLU suppresses all inputs that satisfy w1x2 + w2x2 + b ≤ 0 while activating others

by an amount equal to their magnitude. Finally, the Gaussian activation results in the line

w1x1+w2x2+b = 0 being activated with the highest magnitude, with the activation decaying

as a function of the distance of the data points from the line.

(a) Logistic Function (σ) (b) Hyperbolic tangent
(tanh)

(c) Gaussian Function
(G)

(d) Rectified Linear Unit
(ReLU)

Figure 3.3: Activation of the network shown in Figure 3.2 for different regions of the input
space with different activation functions. The red line shows the set of points satisfying
w1x1 + w2x2 + b = 0 (w1 = −1,w2 = 1, b = 0).

As mentioned earlier, in addition to the form of the activation function, the magnitude

of activation of an input data point (X1,X2) also depends on its distance from the line

representing the characteristic equation, equal to w1X1+w2X2+b which is tuned at the time of

training. This has two implications on the training of neural networks. First, the parameters

w1, w2 and b can be tuned over a continuum of values resulting in different lines in the input

space and thus different levels of activation. Second, it must be noted that the set of points

that satisfy w1x1 +w2x2 + b = 0 also satisfy the equation αw1x1 +αw2x2 +αb = 0 for all non-

zero values of α. As a result, the magnitude of activation of any given input data point can

also be tuned over a continuum of values by adjusting the value of α. Furthermore, the values

assigned to data points on different sides of the line can be interchanged by accommodating

44

negative values of α. Figure 3.4 shows the the output of the network for different activation

functions g(·) with set of points satisfying the characteristic equation (with w1 = −3, w2 = 3

and b = 0) is shown as a red line and a similar gradient of colour representing different levels

of activation. A comparison of Figures 3.3 and 3.4 reveals that the latter results in a much

greater gradient and/or magnitude of activation resulting from the larger value of | |w| | for

the network. This demonstrates the impact of α on the activation levels for each node, and

the extent of nonlinearity achieved with the same activation function.

(a) Logistic Function (σ) (b) Hyperbolic tangent
(tanh)

(c) Gaussian Function
(G)

(d) Rectified Linear Unit
(ReLU)

Figure 3.4: Activation of the network shown in Figure 3.2 for different regions of the input
space with different activation functions. The red line shows the set of points satisfying
w1x1 + w2x2 + b = 0 (w1 = −3,w2 = 3, b = 0)

.

We discussed the behaviour of a single node in a neural network as a function of the

parameters w, b and the activation function g(·) and identified two different methods of ad-

justing the parameters to selectively extract features from the input space. In the following,

we add more resources to the tiny network and study the impact of depth and width of the

resulting network.

3.2.2 Wider vs Deeper Networks: Complexity of Features

Let us add another neuron at the output layer of the tiny network and combine the

outputs of the nodes to generate the final output of the new network, as shown in Figure

3.5. The output of this network can now be expressed as:

a = g(a1 + a2) = g
(
g(w1x1 + w2x2 + b) + g(w3x1 + w4x2 + c)

)
45

It is now possible to study the activation pattern in each of the three nodes, as shown in

Figure 3.5: Architecture for 2 input neurons and 1 activated neuron, with 1 hidden layer

Figure 3.6 for different activation functions. It can be observed from Figure 3.6 that the two

neurons in the hidden layer activate different segments of the input space according to their

characteristic equations: w1x1 + w2x2 + b = 0 and w3x1 + w4x2 + c = 0. These activations

are then combined to produce the final output that activates different patches in the input

space. It must be noted here that while the nodes in the first layer selectively activated the

input space according to a characteristic equation representing a line, the node in the final

layer activates the input space according to a characteristic equation representing a curve,

which is obtained through combination and composition of the different activations.

It can therefore be observed that with the addition of more number of nodes to the tiny

network, it is imparted with the ability to generate more number of selective activations,

which are simple and characterized by a straight line in the input space. However, with the

addition of more layers to the network, the network can create complex selective activations

that are characterized by arbitrary curves in the input space. These straight lines and

curves are tuned at the time of training such that each node in each layer selectively extract

a portion of the input space that is relevant to the classification task.

A careful examination of Figures 3.4 and 3.6 reveals that in a network N with L layers,

the nodes in the first layer will always result in activations representing straight lines in the

46

(a) a1 with σ (b) a2 with σ (c) a with σ

(d) a1 with tanh (e) a2 with tanh (f) a with tanh

(g) a1 with Gaussian (h) a2 with Gaussian (i) a with Gaussian

(j) a1 with ReLU (k) a2 with ReLU (l) a with ReLU

Figure 3.6: Input space activation for each node in the network architecture as shown in
Figure 3.5. The values of the weights and biases are chosen to be w1,w2, b = −3,3,0, w3,w4, c =
3,3,−3

47

input space, and as one builds a deeper network, these lines are transformed into curved

geometric objects. In other words, the characteristic equation of nodes in the first layer

represent straight lines, which become progressively nonlinear as one goes deep into the

network - irrespective of the task performed by the network. Now, if two networks are

trained to perform different but related tasks, it is likely for the geometric objects identified

by the networks to have similar descriptions. As a result of this generic increase in the

complexity of the characteristic equation and dependence of the characteristic equation on

the final task, it is possible to make use of pre-trained networks as initializations and to train

new networks for achieving related tasks with less computational time, a process referred to

as transfer learning in the literature [56, 57, 58].

For example, consider two networks N1 and N2 that are trained to achieve different, but

related classification tasks, eg., to differentiate cats from other animals (N1) and differentiate

cats from dogs (N2). Both these networks, at the time of training, learn a set of linear and

curved geometric objects in the input space that can be used to achieve their corresponding

classification tasks. However, since both the networks attempt to distinguish cats from other

objects (all other animals for N1 and dogs for N2), it stands to reason that they identify

characteristics explicit to cats in relation to the other objects. As a result, several of the

geometric objects identified by N1 (to distinguish cats from other animals) are likely to

be similar (if not same) to those identified by N2 (to distinguish cats from dogs). A pre-

trained network that distinguishes cats from other animals and has already identified features

relevant to cats can therefore act as a better initialization for a network that is needed to

distinguish cats from dogs, resulting in requirement of tuning of only a few parameters, and

hence faster convergence. This process of using a pre-trained network N1 as the initialization

for achieving a different but related task is referred to as transfer learning. This technique

has been used for classification of abnormalities in brain from magnetic resonance images

using ResNet34 as the pre-trained network [59], computer aided detection problems [60]

with CifarNet, AlexNet and GoogLeNet networks and for detection of cracks and distress on

48

pavements with the VGG-16 network [61].

In this section, we identified the impact of width and depth of a neural network on

the characteristic equations of nodes in different layers of the network. Specifically, while

wider networks exhibit more number of simple characteristic equations and hence activations,

deeper networks exhibit more complex equations describing complex structures in the input

space. We also identified a generic pattern of the complexity of the characteristic equation,

as one builds a deep neural network, and how this is is exploited in the form of transfer

learning in the literature. In the following, we focus our attention on the final layer of the

classifier that takes the features of the pre-final layer and identifies separating boundaries in

the feature space.

3.2.3 From Features to Feature Spaces

We have seen that intermediate nodes of the neural network results in selective activation

of input space and creation of complex patterns for classification. Independent activation of

each of these nodes in the intermediate layers, results in transformation of the input space to

generate intermediate feature spaces on which subsequent layers operate. The different oper-

ations performed on the input space, and the resultant feature spaces for different activation

functions are shown in Figure 3.7. For this illustration, W =

w11 w12

w21 w22

 =

0.5 −0.2

−0.2 0.5

 ,
b =

b1

b2

 =

0.5

0.5

 . The input space – a flat plane – is first rotated and scaled according to

weights in the weight matrix W. This is followed by translation of the rotated and scaled

space according to the bias b. Finally, the translated space is transformed according to

the nonlinear activation function g(·) to produce a curved surface from the flat input space.

Figure 3.7 also compares the transformation achieved with different activation functions. In

a neural network with multiple layers, the feature space of one layer acts as the input space

for the successive layer. In such a network, the input space gets progressively transformed at

49

every successive layer to generate intermediate feature spaces of which the final one is used

for classification.

(a) Input space (b) Rotation and scaling (c) Translation

(d) Logistic (e) tanh (f) Gaussian (g) ReLU

Figure 3.7: Example transformations of the input space to the feature space. The Input
space (a) is first rotated and stretched (b), then translated to give the z vector (c). Note
how all the transformations are affine so far. The final nonlinear operation comes from the
squishing action based on different activation function on the transformed space to give the
final feature space representation (d),(e),(f) and (g). The dark regions in the input space
are mapped to dark regions in the subsequent feature space.

3.2.4 The Final Layer: Separating Hyperplanes for Classification

The final layer of a neural network classifier solving a K-class classification problem

typically employs the so f tmax activation that produces at the output, the probabilities of

the input belonging to different classes. It must be noted that the so f tmax activation is a

linear classifier, implying that it classifies different classes in its input space by identifying

hyperplanes that (potentially) minimise the objective function. The number of nodes and

activation function of the final layer of a neural network are therefore fixed, with only the

50

parameters of this layer playing a crucial in identifying the separating boundaries. In order

to study the properties of the weights of this layer, we consider a dataset with three classes

that are linearly separable, and that are classified with a so f tmax classifier as shown in

Figure 3.8.

Figure 3.8: Sample architecture for linearly separable problems

The so f tmax classifier shown in Figure 3.8 (with K = 3) can be expressed as:

ŷ
(i)
j =

exp
(
w>j x

(i) + b j

)
∑3

k=1 exp
(
w>k x

(i) + bk

) (3.6)

The quantity w>j x+b j represents the distance of a point x on the input space from the line

w>j x+b j = 0, i.e., the characteristic equation of the jth output node. It can thus be observed

that much like the feature extraction in the hidden layers, the classification performed in the

final layer with a so f tmax activation also makes use of the distance of data points on the

input space from the characteristic equation.

Figure 3.9a shows the data points belonging to the three classes highlighted in different

colours, the lines representing the characteristic equations of each node in the so f tmax layer

and the decision boundaries for the three classes identified by the network. The width of the

lines representing the characteristic equations in Figure 3.9a are proportional to the norm

of the corresponding weight vector consisting of two weights per class. The membership of

each point on the input space to each class is characterized by its distance from the class’s

hyperplane. The arrows point in the direction of positive distance/membership. The greater

51

the membership of a point to a given hyperplane, the higher its probability of belonging to

that class. For example, in Figure 3.9a the red line represents the equation 3x1−3.3x2−0.01 =

0 and the arrow represents the region of the input space with positive distance from the red

line. The region highlighted in red has the greatest membership with respect to the red line,

in comparison to the other lines. Using Equation (3.6), we get the final probability vectors

for all the points on the input space (Figure 3.9b). Notice how, due to the constraint that∑3
k=1 ŷk = 1, the final probability vector lies on the diagonal plane. In fact, for K-dimensional

classification problem, when one uses a so f tmax activation in the final layer, the resultant

vector will lie on a K-dimensional diagonal hyperplane.

From the discussion so far, we can say that if a point x in the input space, belongs to

cluster c, then,

w>c x + bc > w>k x + bk k , c

It follows that the decision boundary between any two classes i and j can be identified

using the hyperplanes of said classes, as the set of points x where the memberships are equal,

i.e.,

w>i x + bi = w>j x + b j(
wi − w j

)>
x +

(
bi − b j

)
= 0 (3.7)

As a result, the final layer exhibits severe degeneracy of parameters, which are described

in the following.

3.2.5 Degeneracy of parameters using softmax activation

Translation degeneracy: Consider a set of parameters (W,b) that can accurately classify

the data. Consider vector w0 and scalar b0, w0 ∈ R
m, b0 ∈ R. Then the translated set of

parameters (W+W0,b+b0), where W+W0 =
[
w1 + w0, w2 + w0, · · · , wK + w0

]>
∈ RK×m

52

(a) (b)

Figure 3.9: (a) Final estimated segregation on the input space. Thickness indicates the
magnitude of w j for class j. The black lines are constructed using the boundary equation–
Equation (3.7). (b) Identified probabilities of each point on the input space

and b + b0 =
[
b1 + b0, b2 + b0, · · · , bK + b0

]>
, will also classify the data with the same

accuracy.

Proof: Let a data point x(i) belong to class ci. Then, ∀ i ∈ {1, ...,N} that are correctly

classified by the classifier,

w>cix
(i) + bci > w>k x

(i) + bk, k , ci

=⇒ w>cix
(i) + bci + w

>
0 x
(i) + b0 > w>k x

(i) + bk + w
>
0 x
(i) + b0, k , ci

=⇒ (wci + w0)
>x(i) + (bci + b0) > (wk + w0)

>x(i) + (bk + b0), k , ci

The decision boundary estimated using Equation (3.7), remains the same. In the event of

w0 being a zero vector, one is essentially translating each of the class hyperplanes by the

same magnitude, and the overall effect of this is nullified. In fact it can be seen that the

translated weights and biases give the same set of output probabilities as the untranslated

53

weights and biases, and hence, loss value.

ŷ j(W +W0,b + b0) =
exp

(
(w j + w0)

>x + (b j + b0)
)∑K

k=1 exp ((wk + w0)
>x + (bk + b0))

=
exp

(
w>j x

(i) + b j

)
exp

(
w>0 x + b0

)
∑K

k=1 exp
(
w>k x

(i) + bk

)
exp

(
w>0 x + b0

)
=

exp
(
w>j x + b j

)
∑K

k=1 exp
(
w>k x + bk

)
= ŷ j(W,b)

Multiplicative degeneracy: If a set of parameters (W,b) can accurately classify the data,

the the set of parameters (αW, αb), α > 0 will also classify the data with the same accuracy.

Proof: ∀i ∈ {1, ...,N} that are correctly classified by the classifier,

w>cix
(i) + bci > w>k x

(i) + bk, k , ci

=⇒ αw>cix
(i) + αbci > αw>k x

(i) + αbk, k , ci, α > 0

By a similar argument for the examples that are incorrectly classified, it follows that the

accuracy of the classifier remains the same.

Additive degeneracy: If a set of parameters (W,b) and (W′,b′) can accurately classify

the data, the the set of parameters (W+W′,b+b′), will also classify the data with the same

accuracy. ∀i ∈ {1, ...,N} that are correctly classified by both the classifiers,

w>cix
(i) + bci > w>k x

(i) + bk, k , ci

w′>ci x
(i) + b′ci > w′>k x(i) + b′k, k , ci

=⇒ (wci + w
′
ci)
>x(i) + (bci + b′ci) > (wk + w

′
k)
>x(i) + (bk + b′k), k , ci

Superposition degeneracy: Combining the additive and multiplicative degeneracy, we

54

can see that if a set of parameters (W,b) and (W′,b′) can accurately classify the data, the

set of parameters (αW + βW′, αb + βb′) where α, β > 0, will also classify the data with the

same accuracy.

Table 3.2 shows the impact of degeneracy of parameters as a function of the weights

for two different architectures. It can be observed from Table 3.2 that the loss decreases

sharply for only a limited range of weights and remains relatively flat for majority of the

configurations of weights. It therefore follows that a network that is being trained with the

dataset D can witness decreasing losses solely due to the increase in value of the weights in

the final layer. However, this does not involve any modification of the decision boundaries,

and hence any improvement in the accuracy of classification. In this context, the technique

of weight normalization and regularization [62, 63], that restricts the norm of the weight

vector incoming on a single node to a value of one, and early stopping [64, 65] prevents such

a scenario. It must be noted here that the impact of degeneracy of parameters on the input

space of a layer is different for the hidden and final layers. Specifically, while the degenerate

weights in the hidden layer result in different selective activations of the input space and

hence different features extracted from the input, the degenerate weights in the final layer

do not result in any change in the decision boundaries, and can provide a false sense of better

learning.

In summary, we identified different design choices in building neural networks, including

the number of nodes, number of layers and activation function that influence the performance

of the network. We studied the contribution of each of these factors to the final output of

the network with a systematic analysis of the role of each node, the number of layers and

the number of nodes in the following. In the following, we discuss how these individual

components are combined to achieve a particular classification task.

55

Table 3.2: The nature of the Loss function exhibiting degeneracy of parameters

Label Architecture Loss landscape 2 D projection Loss
landscape

a

b

3.3 How does a Neural Network Learn the Mapping?: From Parts to Whole

In this section we merge the different components of the network and show how the

network activates different segments from the input space, converting a nonlinear classifica-

tion problem into a linear one. We consider three illustrative examples that highlight these

features and an application of classification to fault diagnosis in a continuously stirred tank

reactor. Figure 3.10 shows the dataset for three different examples, i.e., two interlocked

moons, two concentric circles and two spirals. In each case, we varied the number of nodes

in hidden layers (n), number of hidden layer (H = L − 1) and the activation function (g(·))

and trained networks with different combinations. The architectural details, classification

loss and accuracy for all networks trained on the three examples are listed in Table 3.3.

In each case, the network was trained with 80% of the dataset and tested on 20% of the

dataset. Tuning of parameters was carried out with a momentum based gradient descent

algorithm, i.e., Adam implemented in Keras. It can be observed from Table 3.3 that the

performance of the networks are highly sensitive to the architecture as well as the complexity

of the problem. In order to further understand how the behaviour of the network as a whole

is constituted from the individual elements discussed in the previous section, we study the

56

transformation of feature space and selective activation performed by different networks.

We study the network with three hidden layers (H = 3) and three nodes in each hidden

layer (n = 3) for the three illustrative examples. Figures 3.11, 3.12 and 3.13 show the feature

space of the hidden and final layers of the networks trained on the moons dataset with tanh,

Gaussian and ReLU as the activation function respectively. In each case, the interlocked

moons can be observed to be untangled and progressively separated by successive layers of the

network. It can be observed that for the same architecture, the three activation functions

achieve the same objective by untangling the moons in different manners. For example,

while the tanh and Gaussian activation functions can be observed to transform the input

shape in a manner that clearly separates the two classes at the input to the third hidden

layer, the network with ReLU as the activation function is unable the achieve adequate

segregation between the classes. It can also be observed from Figures 3.11 and 3.12 that

the transformation achieved by these networks at the input to the third hidden layer allows

identifying a separating hyperplane in the z[3]− space for the networks. However, the third

layer of the networks further transforms the space to increase the separation between the

classes, and hence result in a lower value of loss (at the same classification accuracy). It

can be inferred from these observations that increasing the depth of a network beyond a

certain threshold, although yielding a decrease in the loss, does not necessarily imply an

improvement in the internal representation of the network. Figures 3.14, 3.15 and 3.16 show

the feature space of the layers of a network trained on the circle dataset with tanh, Gaussian

and ReLU as the activation function respectively. It can be observed that the same network

architecture now results in a different transformation of the input space that results in the

separation of the two concentric circles. In addition, the two classes can be observed to be

separable at the input to the third layer (for the networks with tanh and Gaussian as the

activation function) while the additional layer serves to increase the distance between the

two classes, thereby resulting in a lower loss.

It can be observed from Table 3.3 that networks trained on the spiral dataset require

57

(a) Moons (b) Circles (c) Spirals

Figure 3.10: Example datasets for studying the operation of neural networks

(a) Layer 1, z[1] (b) Layer 1, a[1] (c) Layer 2, z[2] (d) Layer 2, a[2]

(e) Layer 3, z[3] (f) Layer 3, a[3] (g) Output, z[4] (h) Output, ŷ

Figure 3.11: Internal internal representation of network with n = 3,H = 3 and tanh as the
activation function trained on the moons dataset

more resources than those trained on the moons and circles dataset for approximately same

levels of performance. This is because of the highly intertwined nature of the dataset that

results in a highly nonlinear separating boundary between the classes. Figures 3.17, 3.18

and 3.19 show the node-sensitive selective activation of the networks with n = 10,H = 10

and tanh, Gaussian and ReLU as the activation function respectively. Each plot in Figures

3.17, 3.18 and 3.19 represents the selective activation performed by one node in the network,

with the columns representing different layers and rows representing different nodes in one

58

Table 3.3: Consolidated results of different architectures after 1000 epochs of training
Example Activation H n Loss Accuracy

Moons

tanh
1 3 0.14 93 %
1 5 3 × 10−4 100 %
2 3 3.6 × 10−7 100 %
3 3 1.1 × 10−7 100%

ReLU 3 3 0.24 88 %
3 5 0.2 90 %

Gaussian 3 3 6 × 10−5 100%

Circles tanh
1 3 0.46 78 %
1 5 2.2 × 10−3 100 %
2 3 4 × 10−7 100%
3 3 2.9 × 10−7 100%

ReLU 3 3 5 × 10−4 100 %

Spirals

tanh

1 3 0.62 59%
1 10 0.65 61%
1 50 0.65 61%
1 100 0.61 61%
3 10 0.61 60%
3 100 0.65 61 %
10 10 10−5 100%

ReLU 10 10 3 × 10−4 100%

Gaussian 10 10 9 × 10−4 100%
3 100 6 × 10−5 100%

(a) Layer 1 , z[1] (b) Layer 1, a[1] (c) Layer 2, z[2] (d) Layer 2, a[2]

(e) Layer 3, z[3] (f) Layer 3, a[3] (g) Output, z[4] (h) Output, ŷ

Figure 3.12: Internal internal representation of network with n = 3,H = 3 and Gaussian
activation function trained on the moons dataset

59

(a) Layer 1 , z[1] (b) Layer 1, a[1] (c) Layer 2, z[2] (d) Layer 2, a[2]

(e) Layer 3, z[3] (f) Layer 3, a[3] (g) Output, z[4] (h) Output, ŷ

Figure 3.13: Internal representation of the network with n = 3,H = 3 and ReLU as the
activation function trained on the moons dataset

(a) Layer 1, z[1] (b) Layer 1, a[1] (c) Layer 2, z[2] (d) Layer 2, a[2]

(e) Layer 3, z[3] (f) Layer 3, a[3] (g) Output, z[4] (h) Output, ŷ

Figure 3.14: Internal representation of network with n = 3,H = 3 and tanh as activation
function trained on circles dataset

layer. It can be observed from Figures 3.17, 3.18 and 3.19 that the nodes in initial layers

of the network identify simple patterns on the input space, while the final layers operate on

these simple patterns to generate complex shapes, most of which closely resemble the spiral

distribution of the data in the input space.

Figure 3.20 compares the selective activation performed by the final hidden layer of the

60

(a) Layer 1 , z[1] (b) Layer 1, a[1] (c) Layer 2, z[2] (d) Layer 2, a[2]

(e) Layer 3, z[3] (f) Layer 3, a[3] (g) Output, z[4] (h) Output, ŷ

Figure 3.15: Internal representation of network with n = 3,H = 3 and Gaussian activation
function trained on the circles dataset

(a) Layer 1 , z[1] (b) Layer 1, a[1] (c) Layer 2, z[2] (d) Layer 2, a[2]

(e) Layer 3, z[3] (f) Layer 3, a[3] (g) Output, z[4] (h) Output, ŷ

Figure 3.16: Internal representation of network with n = 3,H = 3 and ReLU as the activation
function trained on the circles dataset

networks with n = 10,H = 10 and n = 100,H = 3, which highlights the difference between

the two representations. Specifically, final hidden layer of the deep network reveals complex

geometrical patterns constructed on the input space, while the shallow and wide network

identifies very simple patterns on the input space. This verifies the observation made in the

earlier sections regarding the impact of depth and width of the network on the complexity

61

(a)
Layer 1

(b)
Layer 2

(c)
Layer 3

(d)
Layer 4

(e)
Layer 5

(f)
Layer 6

(g)
Layer 7

(h)
Layer 8

(i)
Layer 9

(j)
Layer 10

Figure 3.17: Node-specific activation of input space for the network with n = 10,H = 10 and
tanh as the activation function trained on the spirals dataset. Blue denotes activation of −1,
and yellow denotes activation of 1

of features extracted by the network.

The above discussion highlighted the transformation of input space performed by each

layer in the network as well as the selective activation performed by the individual nodes

in a layer. It was observed that all the nodes in the network learn (tune their parameters)

towards a common objective of minimising the loss and in the process (i) transform the

space and (ii) identify selective activations to separate the two classes. We also highlighted

the influence of width and depth on the internal representation of the network. We next

62

(a)
Layer 1

(b)
Layer 2

(c)
Layer 3

(d)
Layer 4

(e)
Layer 5

(f)
Layer 6

(g)
Layer 7

(h)
Layer 8

(i)
Layer 9

(j)
Layer 10

Figure 3.18: Node-specific activation of input space for the network with n = 10,H = 10 and
Gaussian activation function trained on the spirals dataset. Blue denotes activation of 0,
and yellow denotes activation of 1

discuss the application of classification to fault diagnosis in Chemical plants and examine

the feature spaces and activations identified by the neural networks.

One of the most common applications of classification in chemical engineering involves

diagnosing the operation of the plant as being normal or abnormal. and has been extensively

studied in the literature [66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. This involves employing the

measurements obtained from sensors installed in the plant and identify the same to belong

one of many classes with each class representing a state of operation. The measurements

63

(a) Layer
1

(b) Layer
2

(c) Layer
3

(d) Layer
4

(e) Layer
5

(f) Layer
6

(g) Layer
7

(h) Layer
8

(i) Layer
9

(j) Layer
10

Figure 3.19: Node-specific activation of input space for the network with n = 10,H = 10 and
ReLU as the activation function trained on the spirals dataset.

from sensors along with appropriate labels therefore constitute the dataset used for training

neural network based classifier.

It is useful to understand how the neural network internally represents and classifies the

different normal and abnormal regions - i.e., peer into the black-box to gain some insights.

The earliest work in this regard in the chemical engineering literature was by Vaidhyanathan

and Venkatasubramanian [76] who studied the fault space classification structure of a CSTR

process. We continue that effort further here to gain more insights by using the more modern

tools available now.

We consider a exothermic first order continuously stirred tank reactor, with temperature

64

(a) (b)

Figure 3.20: A comparison of the final hidden layer activation for different architectures with
Gaussian activation in example 3: Architecture (a)n = 10, H = 10 (b) n = 100, H = 3. Blue
regions denote area in the input space where activation of the node becomes 0. Yellow denotes
activation of 1. Notice how deeper networks yield complex activations while, shallow-wide
networks have relatively simple activations.

control, that operates according the following equations:

Concentration
dC
dt
=

Q
V
(Cin − C) − kC exp

(
−

Ea

RT

)
Temperature

dT
dt
=

Q
V
(Tin − T) +

−∆Hrxn

ρcp
kC exp

(
−

Ea

RT

)
−

U A
ρcpV

(T − Tc)

Coolant temperature
dTc

dt
=

Qc

Vc

(
Tc,in − Tc

)
+

U A
ρccp,cVc

(T − Tc)

and that has two measurements – concentration of feed Cin and temperature of the inlet Tin

that can be used to perform fault diagnosis. The process is simulated using the model in

[77] with disturbances in the feed concentration as well as inlet temperature under normal

operating conditions. The following faults are then introduced into the reactor (in addition

65

to disturbances) by changing the appropriate parameters of the system:

1. Normal operation

2. Fault 1: High inlet concentration

3. Fault 2: Low inlet concentration

4. Fault 3: High inlet temperature

5. Fault 4: Low inlet temperature

6. Fault 5: Low inlet concentration with moderately low inlet temperature

We generated 1200 samples of data for each class and performed training with 70% of the

data, which was first used to train an input-output network that has no hidden layers. Figure

3.21 shows the normalised data of concentration and temperature belonging to different

classes and the separating boundaries of the input-output-network. It can be observed

from Figure 3.21 that, as expected, the input-output network identifies linear boundaries

that separate the different classes, and deliver an accuracy of 96%. Since we now know

that deep networks tend to make complicated features, and shallow-wide networks tend to

exhibit a more varied set of final representation, we want to observe a combined effect of

changing the width and depth simultaneously. We hence, trained networks with n = 3,H =

3 and n = 6,H = 1 and tanh, Gaussian and ReLU as activation functions to study the

combined impact of depth and width, for each activation function on the performance of

the network. The performance of all the models are listed in Table 3.4 while the separating

boundaries identified by the different networks are highlighted in Figure 3.22 for the deep

and shallow networks with different activation functions. It can be observed from Figure 3.22

that the networks with tanh as the activation function tend to identify simple and reasonable

separating boundaries, while the networks with Gaussian activation function identify fairly

complex boundaries. The boundaries identified by the network with n = 3,H = 3 and

ReLU as the activation function also exhibit a similar behavior. In addition, it can also be

66

observed that the networks with Gaussian activation function result in disjoint segments of

the input space being identified as belonging to the same class. It is noteworthy here that all

these boundaries result in a classification accuracy of at least 98.7% and yet exhibit internal

representations that are neither an accurate representation of the truth, nor robust to noise

in the data. For example, one can easily identify regions in the input space which do not

belong to the normal class (shaded in red) which will however be classified with exceedingly

high probabilities as representative of healthy operation of the reactor. These regions and

the corresponding data points constitute adversarial examples [78, 79, 80, 81] that pose a

significant threat to the reliability of the network. This is in contrast with the input-output

network and the networks with tanh as the activation function that do not exhibit such

behaviours.

Table 3.4: Fault diagnosis example – Consolidated results after 1000 epochs of training on
the test sample

Activation H n Loss Accuracy
- 0 0 0.1 96%

tanh 3 3 0.01 99%
Gaussian 3 3 0.03 98.8%
ReLU 3 3 0.009 99.7%
tanh 1 6 0.03 98.8%

Gaussian 1 6 0.03 99%
ReLU 1 6 0.037 98.7%

3.4 Major Results

One of the primary results in this chapter is the degeneracy in parameters using softmax

activation function for classification. While degeneracy has been shown to exist in neural

networks by virtue of nonlinear operations and not due to the choice of the loss-function [82],

we show that parameter dengeneracy occurs even in the final layer of softmax function. We

have identified that in the final layer for classification, one can have – translation degeneracy,

multiplicative degeneracy, additive degeneracy, and superposition degeneracy in parameters.

67

(a) Data (b) Input Output

Figure 3.21: (a) Fault space data (b) Fault space classification with a simple input output
model

There has been general consensus in literature that deeper networks outperform shallow

neural networks, particularly for classification problems. This is shown in the case of residual

neural networks [83]. Further investigation showed that shallow but wide networks can

perform better in the classification task [84]. However the principle guiding the two is

unclear. To look at the underlying feature representations our model test cases were simple

for visualization purposes, without a residual skip connection.

We see that, there is an inherent trade-off between depth and width of neural networks.

Similar performance can be obtained by increasing the depth or the width of neural networks.

The difference however lies in the internal representation of the features. While increasing

depth leads to more complex hidden representations deeper into the network due to nonlinear

operations, increasing width combines many simpler features into complex ones.

We also note that for classification tasks, while generally increasing depth leads to better

performance, one does require enough width of the neural network to exploit the depth.

Changing the intermediary layer activation functions could also result in faulty feature-space

classification, as shown using the CSTR example, for the same network architecture.

In conclusion, this chapter is an initial step towards a systematic approach towards the

understanding of the internal mechanism of deep neural networks, to uncover key hidden

properties that can be exploited to improve such networks. Future work in this direction

68

(a) tanh n = 6, H = 1 (b) Gaussian n = 6, H = 1 (c) ReLU n = 6, H = 1

(d) tanh n = 3, H = 3 (e) Gaussian n = 3, H = 3 (f) ReLU n = 3, H = 3

Figure 3.22: Fault space classification for different activation functions and architectures

would involve understanding how neural networks perform regression with internal repre-

sentations. The goal is to elicit key insights for modeling engineering systems with neural

networks in a manner that allows one to assign physical meaning to the internal representa-

tions and/or to be able to combine them with first-principles knowledge.

Notation

Vectors are bolded lower case. Matrices are bolded upper case. Elements not bolded are

scalars.

If superscript (i)/[l] are absent the quantity is assumed to be for the corresponding

sample/layer respectively.

N number of samples in the dataset

69

m dimension of the input

K dimension of the output

L number of layers in the network (excluding input and output)

H number of hidden layers in the network (= L − 1)

nl number of nodes in layer l of the neural network

x(i) ∈ Rm ith input sample, x(i) =
[
x(i)1 , x

(i)
2 , ..., x

(i)
M

]
y(i) ∈ RK ith output sample, y(i) =

[
y
(i)
1 , y

(i)
2 , ..., y

(i)
K

]
ŷ(i) ∈ RK , ith predicted output

w[l] ∈ Rnl−1 , weights connecting a node in layer l−1 to layer l, w[l] =
[
w
[l]
1 , w

[l]
2 , . . . , w

[l]
nl−1

]>
W[l] ∈ Rnl×nl−1 Weight matrix connecting layer l − 1 to layer l , note that W[l] =

−w[l]>1 −

−w[l]>2 −

...

−w[l]>nl −

b[l] ∈ Rnl bias vector of the nodes in layer l, b[l] =

[
b[l]1 , b[l]2 , . . . , b[l]nl

]>
a[l] ∈ Rnl activation vector of nodes in layer l, codomain dependent on the activation

z[l] ∈ Rnl weighted sum of the inputs to nodes in layer l

g[l](·) Activation function of layer l

70

Chapter 4: Neural Networks for Regression

Models in process engineering can broadly be classified as (i) First-principles models,

(ii) Data-driven models, and (iii) Hybrid models. First-principles models primarily make

use of principles of conservation such as mass, momentum and energy balances, and/or

constitutive equations, the parameters of which are identified using optimization techniques.

In the current age of high throughput data, one of the more prominent modeling frameworks

is data-driven modeling, of which neural networks have been favored greatly for regression

(also called function approximation) and classification tasks. In Part 1 of this series [85], we

presented a systematic approach to study the internal representations of neural networks and

showed how the hidden representations in deep neural networks transform with increasing

depth and width of the network for a classification task. This chapter is an extension of that

paper for the class of regression tasks that aims to shed light on the internal representations

of neural networks for function approximation.

With the advent of AI, much effort has been devoted towards exploiting neural networks

for regression problems such as system identification [86, 87], predicting structure-property

relationships [88], predicting potentials [89, 90, 91], predicting chemical structures [92], ex-

perimental conditions and properties [93, 94, 95]. However, as explained in Part 1, developing

a deep neural network model is more of an art than science. One faces a bewildering array

of choices with respect to the architecture, activation functions, loss functions, initialization

conditions, data segmentation, training regimens, etc. All these, if done incorrectly, can

potentially lead to rather spurious results. One has to understand the underlying structure

of the representations in order to make more informed choices, and exploit the features of

neural network representations for identification and monitoring. This is the challenge we

try to address in this two-part paper.

71

There have been attempts in the past to explain the functioning of a neural network, using

visualization techniques [50, 96], rule extraction [51], and randomization approaches to give

insights into the importance of nodes in a neural network [52]. More recently, information

bottleneck analysis seems to give more insight into the functioning of a neural network [53,

54, 55]. While these methods have shown promise, they need to be extended to include

capabilities such as providing explanations.

Further, some regression tasks may not be possible with simple architectures. For ex-

ample, training of the neural network while traversing the complex loss function landscape

(please see details in Part 1 of this series), can be difficult with simple gradient descent

schemes [97]. We highlight several of these aspects of training a neural network in this

chapter, by visualizing the hidden representations of simple regression tasks as case stud-

ies. These simple problems can be viewed as the equivalent of particle-in-a-box and simple

harmonic oscillator in quantum mechanics. Such models, despite their simplicity, play a key

role in understanding and demonstrating the underlying phenomena of the systems.

Cybenko [98] proved that any continuous function f : Rn → R can be approximated to a

reasonable degree using a sigmoidal functions such that | f (x) − f̂ (x)| < ε for any arbitrary

ε > 0, where f̂ (x) =
∑m

i=1 viσ(w
>
i x+bi), wi ∈ R

n, bi ∈ R. Further, Hornik et al.[99], proved that

multilayer feed forward networks are universal approximators, for any choice of activation.

Multiple theoretical studies have since shown these approximation results for various class

of problems [100, 101, 102, 103].

From a design perspective, however, it is important to get a good idea of an appropriate

architecture. While earlier work prove existence of these solutions, training of such networks

tend to be difficult. Further, effect of noise on the estimates of parameters are not accounted

for. There has been considerable effort on algorithms for neural network training [104, 105,

106]. Though these algorithms need to be well-studied and extended, our focus in this paper

is in understanding the hidden features of the network during the learning of a regression

task.

72

The chapter is organized as follows: we provide a brief background of a neural network

(readers are directed to Part 1 of this 2-part paper for more details), followed by a peek under

the hood of a neural network (this involves a look at the loss function landscape for simple

examples). The following section guides us towards estimating input-output relationship for

a sinusoidal signal. An important domain for neural network models is to estimate potential

energy of configurations of a system, as molecular dynamics simulation are computation-

ally intensive. Hence, we share a demonstrative example of estimating an energy function

landscape, followed by a detailed discussion and conclusion of the chapter.

4.1 Mathematical Background

4.1.1 Problem Formulation

In a regression problem, the dataset D = {x(i),y(i)}Ni=1 consists of (N) examples (i =

1,2,3, ...,N) of the regressors x(i) ∈ Rnx and outputs y(i) ∈ Rny that are used to build a model

of the underlying process. As opposed to classification problems discussed in the last chapter,

the outputs y(i) in regression problems represent continuous-valued measurements obtained

from the system. The problem of parameter estimation in regression tasks is then formulated

as an optimization problem, aimed at minimising the following objective function:

L =
1

N

N∑
i=1

| |y(i) − ŷ(i) | |22 (4.1)

The squared error is typically adopted because of mathematical tractability and convenience,

and a regression technique attempts to minimize the average of the squared error for all

training examples.

A neural network N designed to solve the above problem is described by a predefined

architecture A that is parameterised in Θ and that expresses the outputs as a function of

the regressors as:

ŷ(i) = N(x(i),Θ) (4.2)

73

The architecture A of a neural network N encapsulates all the design choices that can be

made by the user (organization of layers, activation function g(·), number of layers L and

number of nodes in each layer nl, l = 1,2,3, ..., L) while the parameters Θ include the weights

W[l] and biases b[l] of all layers l = 1,2,3, ..., L. Once the architecture of a network is decided

and fixed, the parameters are learnt via training through the iterative training algorithm.

Further discussion on the architecture and parameters can be found in the last chapter. In

the following, we briefly describe the operation of a neural network and present a simple

regression example motivating the rest of the article.

4.1.2 Regression with Neural Networks

The task of regression, as discussed earlier, involves building a model of the underlying

process/system that relates the inputs (regressors) to the outputs. Let us consider a generic

multi-layer neural network N that we intend to use for regression. Each layer of N performs

a (non)linear operation on its inputs, which are equal to the weighted combination of the

outputs of the preceding layer as follows:

a[l] = g[l](z[l]) = g[l](W[l]a[l−1] + b[l]) ∀ l ∈ {1,2,3, ..., L − 1} (4.3)

where a[l], g[l](·), z[l], W[l] and b[l] represent the activation (output), activation function,

input, weights and biases of the lth layer of N respectively, with a[0] = x and a[L] = ŷ. In

this work, we consider four different activation function, i.e., logistic function (σ), hyper-

bolic tangent (tanh)and Rectified Linear Unit (ReLU) to study the influence of g(·) on the

performance of the network. The output activation function is always considered to be a

linear activation. As discussed earlier, several of above factors constitute design choices that

are required to be identified by the user before training a network. It must be noted here

that the performance of a given network depends on the distribution of the underlying data,

and the complexity of the function relating the regressors and outputs. For example, data

74

that is generated according to the logistic function, such as the Verhurlst-Pearl equation

of population growth, can be expressed directly in the form of the logistic activation func-

tion, requiring a network with only one node with logistic activation function. On the other

hand, a neural network with one of the above activation functions is likely to require far

more resources to approximate the current-voltage data generated by an oscillator circuit.

In general, however, because of intractable complexity of the distribution of data and/or the

lack of a clear (qualitative and quantitative) understanding of the contribution of each of the

factors to the performance of the network, these choices are often arrived at with (sometimes

exhaustive) trial-and-error approach. In the following, we illustrate this phenomenon with

an illustrative example, and motivate the rest of the chapter.

Let us consider a scenario in which the regressors and outputs are related as:

y = sin(x) x ∈ [−10,10] (4.4)

In order to train a neural network to capture the above relation, we generated 2000 samples

of the data (without noise) and used a train-test split of 70% − 30%. We designed networks

with 2, 5 and 10 nodes in each layer for a 5−layer networks with σ, tanh and ReLU as the

activation functions. The activation of the final layer was set to be a linear function in all

the configurations. We then trained the networks with the RMSPROP optimizer for 500

epochs with a batch size of 128 samples.All the studies in this article have been implemented

in Python, with Keras. The testing data and predictions of trained neural networks are

presented for each configuration in Figure 4.1. From our earlier discussion, one would expect

the networks with smooth activation functions (σ and tanh) to perform better (because of the

smooth nature of the underlying sinusoidal data) than the discontinuous ReLU. However, it

can be observed that while the network with tanh as the activation perform well, those with

σ are unable to approximate the sinusoidal function with the same amount of resources.

Furthermore, the networks with ReLU as the activation function exhibit very high accuracy

75

of predictions. These non-obvious observations involved with training and evaluating neural

networks, among other factors such as complexity of distribution of data often lead to a

trial-and-error approach being adopted in several applications. The authors believe that it

is the lack of a clear understanding of the internal mechanism of neural networks that leads

to such observations and the trial-and-error approach. This article presents a systematic

study of the internal mechanism, identifying the impact of each architectural design element

towards the performance of the network as a whole for the class of regression problems.

Much like the first part of the article, we begin with a small neural network that lends itself

to a detailed analysis, and build wider and deeper networks to understand the impact of

width and depth on the performance of a network.

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 5

(a) n = 2,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 5

(b) n = 5,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 5

(c) n = 10,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 5

(d) n = 2,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 5

(e) n = 5,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 5

(f) n = 10,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 5

(g) n = 2,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 5

(h) n = 5,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 5

(i) n = 10,H = 5

Figure 4.1: Testing data (blue) and model predictions (orange) for a 5− layer network with
2, 5 and 10 neurons in each hidden layer and σ (Row 1), tanh (Row 2) and ReLU (Row 3)
as activation function

76

4.2 Peeking Under the Hood of a Neural Network

A neural network, in general, consists of L layers of nl neurons in the lth layer connected

together in a manner determined by the architecture, such as fully connected and convo-

lutional connections. In this article, we restrict ourselves to the networks that are fully

connected, i.e., each neuron in a given layer is connected to all neurons in the immediately

preceding layer. Each layer of the network performs a set of non-linear operations on the

data and produces the input to the next layer, which are further processed in a recursive

manner as described in Equation (4.3). We begin by studying the operations performed by

individual nodes followed by layers in a network.

4.2.1 Node-specific Local Approximation

Let us consider a system that takes as input, a one-dimensional variable x and produces

as output, the absolute value of the input as:

y = abs(x) (4.5)

This function can be expressed in terms of the ReLU activation function (very commonly

used in neural networks) as:

y = |x | = ReLU(x) + ReLU(−x) (4.6)

so that a neural network with one input node, one hidden layer with two nodes and an

output layer with one node as shown in Figure 4.2 can exactly learn the absolute function.

In such a neural network, each neuron effectively learns the underlying function for a subset

of of inputs in such a manner that the sum of their outputs replicates the behaviour of y

as a function of x. In other words, each neuron in the tiny network learns the underlying

function in a local neighbourhood. To further illustrate this behaviour, let us consider one

77

x ŷ

1

−1

1

1

Figure 4.2: Representation of the absolute function generator with a neural network

cycle of a triangular wave function as shown in Figure 4.3, which can be expressed as:

y = ReLU(x) − 2ReLU(x − 0.25) + 2ReLU(x − 0.75) − ReLU(x − 1) (4.7)

It can be now be seen that, owing to the limited number of nodes in the tiny network

0.0 0.2 0.4 0.6 0.8 1.0
y

−0.2

−0.1

0.0

0.1

0.2

Figure 4.3: Triangular wave function

considered in Figure 4.2, it cannot be trained to learn this function completely. It can be

observed from the above examples that while the absolute function could be expressed as

the sum of two ReLU terms and thus learnt by a network with two nodes in the hidden

layer, the triangular wave required four terms and would thus need at least four nodes in

78

the hidden layer. Therefore, functions that have complex structures – in relation to the

activation function of a network – will require more neurons (and possibly layers) to be

approximated adequately compared to functions that are relatively simple. Furthermore,

the above examples illustrate the behaviour and contribution of each neuron in the network

towards learning the underlying function. Specifically, each neuron in the network, based

on the parameters associated to itself, identifies a local region in the domain of the function

and learns the functional transformation within the region. In the process of training, the

parameters of the neurons are adjusted with respect to each other in such a manner that

the sum of the individual contributions results in underlying functional transformation being

learnt.

Such an approach of expressing a signal as a sum of the contributions of several units, each

with a functional transformation is akin to decomposition methods such as Fourier transform

and Wavelet transform. However, it must be noted that while the transforms make use of

basis functions that exhibit orthonormality, their equivalent functions, i.e., the activations of

individual neurons do not, in general, exhibit any such properties. These constraints must

be explicitly incorporated for neural networks [107]. Furthermore, the individual neurons

perform local approximation within a region of the domain of the underlying function, with-

out any regard to the data lying outside the combined regions of the individual neurons. For

example, neural network with only three nodes in the hidden layer can also be trained to

learn the triangular wave function when x ∈ [0,1] as shown in Figure 4.3 by excluding the

last term in the expression in Equation (4.7). However, this network would perform poorly

outside the domain x ∈ [0,1]. As a result, neural networks can in general, produce unreliable

extrapolations of the underlying functional transformation. In fact, the dependence on data

can sometimes also result in unreliable interpolation if the training data is not sampled at

appropriate granularity. In the following, we make us of the local approximation performed

by each neuron to study the impact of width an depth of a neural network.

79

4.2.2 Wider vs Deeper Networks: Complexity of Local Approximations

The impact of width of a network on its ability to learn different functions can readily be

observed from the examples considered in the earlier section. Specifically, we observed that

each neuron in the network performs a local approximation of the underlying relationship

between x and y. This resulted in the absolute function being learnt with only two nodes

while the triangular wave cycle with four nodes by dividing the domain of the training

data into regions and learning the function locally in each region with one neuron - in

a piece-wise manner. It then stands to reason that a neural network with an arbitrarily

large number of nodes and only one hidden layer can, in principle, learn any function with

arbitrary precision. However, whether such a network can be trained to identify the values

of parameters to learn any function is a question that remains to be addressed. Increasing

the width of a network, however provides the network with the ability to divide the domain

of the training data to regions with finer granularity thereby allowing it to identify a better

representation of the underlying relationship between the data. It must however be noted

here that since the activation function of networks is fixed, increasing the width results in

more of those nonlinear functional transformations performed by the network. On the other

hand, a deep network performs the nonlinear operations in a recursive manner, effectively

increasing the nonlinearity of the overall operation. This is because of the fact that while the

first hidden layer performs n1 local operations in the domain of the input data, the second

hidden layer performs n2 local operations in the domain of the output of the first layer,

which translates to a more nonlinear operation in the domain of the input data. Figures

4.4 and 4.5 show the activation of individual nodes in a wide network (n = 5,H = 1) and

a deep network (n = 2,H = 3) with ReLU and tanh as activation functions and randomly

generated parameters. It can be observed from Figure 4.4 that the activations of all the three

nodes in the networks exhibit similar degrees of non-linearity with different parameters that

determine their position and shape. However, Figure 4.5 reveals that the activation of

neurons in different layers exhibit different degrees of nonlinearity. Specifically, nodes in the

80

0.0 0.5 1.0
1.75

2.00

2.25

2.50

2.75

Activation of Node 1

0.0 0.5 1.0
0.0

0.1

0.2

0.3

Activation of Node 2

0.0 0.5 1.0
2.0

2.2

2.4

2.6

Activation of Node 3

0.0 0.5 1.0
0.975

0.980

0.985

0.990

Activation of Node 1

0.0 0.5 1.00.92

0.94

0.96

Activation of Node 2

0.0 0.5 1.0
0.94

0.96

0.98

Activation of Node 3

Figure 4.4: Activation of individual neurons in a network with ReLU (first row) and tanh
(second row) as the activation function and three neurons in the hidden layer

first layer exhibit the least nonlinearity, while the nodes in the third layer exhibit the most

nonlinearity obtained as a composition of the activation functions.

Therefore, while both width and depth of a network influence the performance of a

network, they do so in different manners. Specifically, increasing the width of a network

results in increase in the number of local regions of the domain of the function that allows

for a finer approximation. However, the extent of nonlinearity of each neuron is the same for

such a network. On the other hand, increasing the depth of a network results in recursive

composition of the activation function, resulting in increased nonlinearity of the network as

a whole. As a result, a user is often provided with the choice of increasing the width and/or

depth of a network to improve the performance. However, the above discussion suggests

that if one expects highly nonlinear and complex functional forms in the underlying process,

it would be a better choice to build a deep network that inherently performs operations of

increasing nonlinearity and might be well equipped to approximate the underlying function.

On the other hand, a relatively simple function can easily be approximated with a wide

network with an appropriate number of nodes in the hidden layers. It must be noted here

that the above discussion assumes that it is possible to faithfully train a network such that

it identifies the solution to the regression problem. However, challenges such as vanishing

81

−1 0 1

−0.5

0.0

0.5

−1 0 1
x

−0.5

0.0

0.5

(a) tanh Layer 1

−1 0 1

0.4

0.6

0.8

−1 0 1
x

−0.6

−0.4

−0.2

(b) tanh Layer 2

−1 0 1
−1.00

−0.95

−0.90

−0.85

−0.80

−1 0 1
x

−0.14

−0.12

−0.10

−0.08

−0.06

(c) tanh Layer 3

−1 0 1

0.00

0.25

0.50

0.75

1.00

−1 0 1
x

0.00

0.25

0.50

0.75

1.00

(d) Relu Layer 1

−1 0 1

0.75

1.00

1.25

1.50

−1 0 1
x

0.0

0.1

0.2

0.3

0.4

(e) Relu Layer 2

−1 0 1

−0.050

−0.025

0.000

0.025

0.050

−1 0 1
x

2

3

4

(f) Relu Layer 3

Figure 4.5: Activation of individual neurons in a deep network with tanh and ReLU as the
activation function and 3 hidden layers

gradients and dying units can hinder the learning process, influencing the performance of

the network. In addition to these challenges, the degeneracy of solutions in the parameter

space also poses threats such as getting stuck in local optima, some of which are described

in the next section.

4.2.3 Degeneracy of Parameters

In order to study the degeneracy of parameters in a neural network, let us revisit the

problem of learning the absolute value function with the tiny neural network shown in Figure

4.2. While the parameters shown in Figure 4.2 result in the absolute function, an untrained

neural network with such a configuration would express the output as a function of the inputs

82

and parameters as:

ŷ =
[
w
[2]
1 ReLU(w[1]1 x + b[1]1)

]
+

[
w
[2]
2 ReLU(w[1]2 x + b[1]2)

]
+ b[2]1 (4.8)

where w
[j]
i and b[j]i represent the ith weight and bias in the j th layer respectively, as shown

in Figure 4.6. It can be observed that while Equation (4.6) represents the ideal/desired

configuration of parameters, the problem of learning the function from data is seen by an

untrained network as described in Equation (4.8) with many more parameters than required

to express the function. A careful examination of Equation (4.8) reveals that any combination

of the parameters that satisfies:

w
[2]
1 w

[1]
1 = 1

w
[2]
2 w

[1]
2 = −1, w

[1]
2 < 0

b[j]i = 0 ∀ i, j

will result in an exact representation of the absolute function. This indicates the presence

of infinite global optima for a network that is as small as shown in Figure 4.6, as opposed

to two optima shown in Figure 4.2.

x

b
[1]
1

b
[1]
2

b
[2]
1

ŷ

w
[1]
1

w
[1]
2

w
[2]
1

w
[2]
2

Figure 4.6: Representation of absolute function by an untrained neural network

It can be inferred from the above discussion that as a result of posing a regression problem

in the formulation of a neural network, one inherently adds degeneracy to the solutions of

83

the problem, suggesting that one is highly likely to identify a solution. This is contrary to

empirical observations made in training neural networks, where one rarely finds themselves

in a global optimum, i.e., with a loss that is equal to zero or the variance of noise. In order

to further investigate this contradiction, we study the loss as a function of the weights in a

neural network. To that end, we reduce the formulation in Equation (4.8) to one containing

only two parameters as shown in Figure 4.7, that can be obtained from Figure 4.6 making

the following assignments:

w
[1]
1 = w1; w

[1]
2 = w2

w
[2]
1 = 1; w

[2]
2 = 1

b[j]i = 0, ∀i, j

The loss function (mean squared error) of this network can then be expressed as:

x ŷ

w1

w2

1

1

Figure 4.7: Reduced neural network for approximating the absolute function with two pa-
rameters

L =
1

N

N∑
i=1

(yi − ŷi)
2 =

1

N

N∑
i=1

(
yi − (ReLU(w1xi) + ReLU(w2xi)

)2 (4.9)

In order to study the behavior of the above loss as a function of the parameters, we consider

x ∈ [−1,1] and generate data according to Equation (4.5) and calculate the loss as a function

of the weights w1 and w2. Figure 4.8 shows the contour plot of the loss as a function of the

weights, from which it can be observed that there are two global optima at (w1,w2) = (±1,∓1).

However, it can also be observed that there are two regions in the w1−w2 space the gradient

of loss (change in colour in Figure 4.8) is very low. A careful examination of this surface

84

reveals that there exist line segments described by:

w1 = ±1 − w2; w1,w2 ∈ [−1,1]

where the gradient of the loss with respect to both the weights is equal to zero. These lines

represent sub-optimal regions (which can in general be local minima or saddle points) in the

w1 − w2 space. In order to highlight the impact of these sub-optimal regions, we train the

reduced network shown in Figure 4.7 with two different initializations: (w1,w2) = (1.7,0.9)

and (w1,w2) = (1.9,0.9). Figure 4.9 shows the trajectory of the trained weights for the

two initializations where the green and red circles represent the initial and trained weights

respectively. It can be observed from Figure 4.9 that small changes in initial conditions of

the weights result in distinctly different values of the weights after training. Specifically,

while the initialisation (w1,w2) = (1.9,0.9) converges to the global optimum of (1,−1), the

initialisation (w1,w2) = (1.7,0.9) encounters a local optimum. We iterated the training of

weights for different initial conditions in the range w1,w2 ∈ [−2,2] with a step size of 0.008

in both directions and identified the set of initial conditions that resulted in convergence to

the global optimum. Figure 4.10 shows the set of initial weights that result in convergence

to a global optimum (green) and the set that converges to the sub-optimal region (red). It

can be observed from Figure 4.10 that for the reduced network with only two parameters,

there exists a significant region in the weight space that result in the network converging to

only a local optimum, and unable to identify the global solution. This problem of converging

to a local optimum can get worse with increase in number of parameters.

Let us revisit the architecture in Figure 4.2. Instead now we set,

w
[1]
1 = 1; w

[1]
2 = −1

w
[2]
1 = w1; w

[2]
2 = w2

b[j]i = 0, ∀i, j

85

−2 −1 0 1 2
w1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

w
2

0.00

0.18

0.36

0.54

0.72

0.90

1.08

1.26

1.44

1.62

Figure 4.8: Loss of the reduced network as a function of weights

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
w1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

w
2

(a) Initialisation: (w1,w2)=(1.7,0.9)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
w1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

w
2

(b) Initialisation: (w1,w2)=(1.9,0.9)

Figure 4.9: Trajectory of weights after training with different initializations (green and red
circles represent initial weights and trained weights respectively)

The loss function in this neural network would be given by:

L =
1

N

N∑
i=1

(yi − ŷi)
2 =

1

N

N∑
i=1

(
yi − (w1ReLU(xi) + w2ReLU(−xi))

)2 (4.10)

In this problem, we can see that the loss function is convex in w1,w2. This is owing to

the fact that in regression tasks one often uses linear activations in the final layer. Even

on inclusion of biases in the final layer, the loss function will be convex in the final layer

parameters. The loss function landscape is shown for the loss in Equation 4.10, in Figure

4.11.

86

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
w1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

w
2

Figure 4.10: Initializations of the reduced network that converge to a global optimum (green)
and to a local optimum (red)

So far we have only considered parameters in a single layer. Consider the function

ŷ = w1ReLU(w2x). We can see that the loss function in this case will be given by:

L =
1

N

N∑
i=1

(yi − ŷi)
2 =

1

N

N∑
i=1

(
yi − w1ReLU(w2xi))

)2 (4.11)

One would not expect this loss function to be convex in the parameter space (owing to the

nonlinearity). In fact this loss function gives a hyperbolic structure in the parameter space

(Figure 4.12a). Training such parameters can be difficult using conventional gradient descent

schemes, and may result in suboptimal training. Stochasticity in the gradients can allow us

to escape suboptimal regions, however, convergence to a global optimum will be very slow.

Now, let us consider the following loss function,

L =
1

N

N∑
i=1

(yi − ŷi)
2 =

1

N

N∑
i=1

(
yi − w1ReLU(w2xi))

)2
+ λ(w2

1 + w
2
2) (4.12)

The loss function in Equation 4.12, penalizes higher values of the parameters. This tech-

nique is called regularization, and often leads to smoother function relationships which avoids

overfitting. It can be seen that using an L2 norm regularizer (which adds penalty to cor-

responding to square of the weights as in Equation 4.12), the loss function becomes convex

87

0.0 0.5 1.0 1.5 2.0
w1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

w
2

0.000

0.036

0.072

0.108

0.144

0.180

0.216

0.252

0.288

0.324

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
w1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

w
2

(b)

Figure 4.11: (a)Loss of the reduced network corresponding to Equation 4.10 as a function of
weights (b) The final layer loss will be uniquely estimated given all the other layers weights
and biases

locally in the parameter space (Figure 4.12). This ensures that in the case of training using

gradient-based techniques with regularization, one can get optimal training (with bias). In

addition to norm-based regularization, dropout is a popularly used technique for regularizing

deep neural networks. However, since dropout involves a random dropping of nodes during

each forward pass of the input, the impact of such an approach on the loss function is difficult

to track and is not presented in this article.

It must be noted that the above discussion presents the final internal representations of

neural networks and how they contribute towards achieving a regression task without any

regard to the manner in which they are trained. However, the literature of deep neural

networks is filled with several advanced techniques for efficient training of the model. The

impact of several of these techniques on the internal representations can in fact be easily

derived from the above discussion. For example, transfer learning is a technique commonly

used to exploit the parameters of a pre-trained model and achieve faster convergence for

a related task. In doing so, one starts from the internal representations of the pre-trained

model and trains the weights so as to achieve the related task. Such an approach results in

the trained representation being adjusted to the new task, and requires less effort compared

88

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
w1

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

w
2

Loss function without regularization

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

0.135

(a)

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00
w1

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

w
2

Loss function with regularization

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

(b)

Figure 4.12: Loss function corresponding to Equation 4.11. It can be seen that regularization
makes the function locally convex, and helps the training.

to a random representation corresponding to randomly initialized weights. Different opti-

mization techniques that are variants of the gradient descent approach simply work towards

efficient learning of weights, and at times attempt avoiding local optima. The differences

in optimization approaches along with the severe degeneracy of parameters identified above

suggests that different techniques - and in fact the same technique with different initializa-

tions - can indeed result in different representations for the same network architecture and

same regression task. However, as discussed earlier, the impact of techniques that involve

random operations, such as dropout on the representations cannot be traced with the above

approach.

Summarizing this section, we have identified the functionality of each neuron in a network

and studied the impact of width and depth on the representations of the hidden neurons

with respect to the input space. We have also studied the implication of formulating a

regression problem in a neural network framework on the degeneracy of solutions in the

parameter space. Regularization can help with making the loss function convex with respect

to the parameter space (and less flat!). In the following, we present how the individual

contributions of neurons are combined to achieve a complicated regression task.

89

4.3 How does a Neural Network Approximate a Function?: From Parts to

Whole

A neural network achieves a regression task by making use of its ability to (i) divide the

domain of the training data into finer regions by increasing the number of nodes, (ii) perform

increasingly nonlinear operations in each region by increasing the number of layers and (iii)

perform different types of nonlinear functions by choosing different activation functions. In

the following, we present a detailed discussion on these components with an illustrative

example and demonstrate these ideas with the regression of a complicated function.

4.3.1 Illustrative Example: Sinusoidal Function

Let us consider the problem of learning a sinusoidal function as discussed in the previous

section. We consider a fully connected neural network N with L hidden layers that has ni

nodes in the ith layer, and an activation function g(·). We consider the rectified linear unit

(ReLU), sigmoid (σ) and hyperbolic tangent (tanh) activation functions with networks that

have 2, 5 or 10 hidden layers, each with 2, 5 or 10 nodes. As earlier, the activation of the

final layer was kept as linear in all the configurations. We then trained the networks with

RMSPROP optimizer for 500 epochs with a batch size of 128 samples.

The testing data and predictions of the neural networks with ReLU as the activation

function are shown in Figure 4.13. It can be observed from Figure 4.13 that for the networks

with two nodes in each layer, the performance does not improve by increasing the number of

layers while when the network has five nodes in each layer, there is a significant improvement

in performance compared to their two-node counterpart networks, which also increases with

addition of more layers to the network. Finally, when the networks have ten nodes in each

layer, the performance is only comparable with the networks with five nodes in each layer,

which also does not show marked increase with addition of more layers.

Figures 4.14 and 4.15 present the testing and predicted outputs for all the network config-

90

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 2

(a) n = 2,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 5

(b) n = 2,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 10

(c) n = 2,H = 10

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 2

(d) n = 5,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 5

(e) n = 5,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 10

(f) n = 5,H = 10

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 2

(g) n = 10,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 5

(h) n = 10,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; H = 10

(i) n = 10,H = 10

Figure 4.13: Testing data (blue) and model predictions (orange) for different network config-
urations for approximating the sinusoidal function with rectified linear unit (ReLU) as the
activation function (n and L represent the number of nodes in each hidden layer and number
of hidden layers respectively)

urations with the logistic and tanh activations respectively. It can be observed from Figure

4.14 that irrespective of the configurations, the network is unable to adequately approximate

the sinusoidal function. On the other hand, Figure 4.15 reveals that for the networks with

two nodes in each hidden layer, the performance of the model does not improve by making

the network deeper while the networks with five nodes in each hidden layer exhibit signifi-

cantly better performance than the corresponding models with two nodes. In addition, the

performance of these models also increases with addition of more layers to the network. The

networks with ten nodes in each hidden layer exhibit a marginal improvement in performance

with respect to the networks with five nodes in hidden layers. This performance is also seen

to increase with addition of more layers to the network.

A comparison of the performance of models with different configurations and activation

91

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 2

(a) n = 2,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 5

(b) n = 2,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 10

(c) n = 2,H = 10

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 2

(d) n = 5,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 5

(e) n = 5,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 10

(f) n = 5,H = 10

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 2

(g) n = 10,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 5

(h) n = 10,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 10

(i) n = 10,H = 10

Figure 4.14: Testing data (blue) and model predictions (orange) for different network con-
figurations for approximating the sinusoidal function with sigmoid (σ) as the activation
function (n and L represent the number of nodes in each hidden layer and number of hidden
layers respectively)

functions, for the present case, reveals that while networks with ReLU and tanh as activation

function are capable of approximating the sinusoidal function, the ones with sigmoid as

the activation function are incapable of achieving comparable performance with the same

resources. It can also be observed from Figures 4.13 and 4.15 that:

1. As the network is made deeper, the performance improves only when there are at least

a certain number of nodes in each layer. Furthermore, the improvement in performance

with addition of more layers saturates after a certain threshold.

2. As the network is made wider, the performance improves even when there are very

few (2 in this case) number of layers. This improvement in performance also saturates

after a certain threshold.

In order to identify the source of this behaviour and further validate the observations

92

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 2

(a) n = 2,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 5

(b) n = 2,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 2; L = 10

(c) n = 2,H = 10

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 2

(d) n = 5,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 5

(e) n = 5,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 5; L = 10

(f) n = 5,H = 10

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 2

(g) n = 10,H = 2

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 5

(h) n = 10,H = 5

−10 0 10
x

−1

0

1

sin
(x
)

n = 10; L = 10

(i) n = 10,H = 10

Figure 4.15: Testing data (blue) and model predictions (orange) for different network con-
figurations for approximating the sinusoidal function with hyperbolic tangent (tanh) as the
activation function (n and L represent the number of nodes in each hidden layer and number
of hidden layers respectively)

made in the previous section, we study the outputs all nodes in all layers for a few config-

urations of the networks. Figures 4.16, 4.17 and 4.18 show the activations (also referred to

as features) of individual nodes for networks with 5 hidden layers and 5 nodes in each layer

with ReLU, σ and tanh as the activation function respectively.

It can be observed from Figure 4.16 that the neurons in the first hidden layer exhibit

simple activations, which are then converted into complex structures with addition of more

layers, with extremely nonlinear functions obtained in the final layer. On the other hand, the

features of the network with logistic function as the activation function do not evolve into

complex functions with increased nonlinearity with addition of more layers. The network

with tanh as the activation, however exhibits a similar behaviour as that of the network with

ReLU as the activation function, as shown in Figure 4.18. These observations are in line

93

0.00

4.94

0.00

11.66

0.00

3.38

0.00

1.87

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.00

9.97

Features of Layer 1

0.0

5.4

00

0.00

1.31

0.00

1.53

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.00

5.17

Features of Layer 2

00

0.62

3.02

0.00

7.41

0.00

0.06

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.00

2.14

Features of Layer 3

0.00

0.24

0

3

0.00

2.23

0.00

3.63

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.00

0.39

Features of Layer 4

0.0

0.7

0.00

1.34

0.07

3.50

0.00

1.75

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.00

0.47

Features of Layer 5

−10 0 10
x

−1

0

1

si
n

(x
)

n = 5; H = 5

Figure 4.16: Features of hidden layers and final output of the network approximating the
sinusoidal function with 5 hidden layers and 5 nodes per layer with ReLU as the activation
function

with the inferences on the effect of width and depth on the performance of a neural network

drawn in the previous section. It is particularly interesting to note how the activations of

the network with tanh as the activation function result in an increasingly nonlinear function

that exhibit sinusoid-like behaviour in the fifth hidden layer of the network. It must be

noted here that although the logistic function exhibits a similar shape to the tanh activation

function, it also exhibits a lower gradient throughout the domain of x which results in slower

training and at times poor performance

It is noteworthy that the above results are obtained when the network was trained with

RMSPROP to minimize the mean squared error between predictions and the data, and the

observations can vary with changes in either of these factors. It is also important to note

that while the performance of the network seems to increase with increasing depth/width,

this is generally not the case (as will be demonstrated later) and in general results in over-fit

models. While increasing depth/width of the neural network increases the degeneracy in the

94

0

1

0

1

0

1

0

1

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

1

Features of Layer 1

0.02

1.00

0

1

0

1

0

1

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

1

Features of Layer 2

0.10

0.86

0.05

0.91

0.07

0.96

0.18

0.74

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.03

0.94

Features of Layer 3

0.49

0.89

0.25

0.61

0.14

0.37

0.45

0.76

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.10

0.59

Features of Layer 4

0.50

0.63

0.44

0.47

0.20

0.37

0.42

0.56

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.60

0.69

Features of Layer 5

−10 0 10
x

−1

0

1

si
n

(x
)

n = 5; H = 5

Figure 4.17: Features of hidden layers and final output of the network approximating the
sinusoidal function with 5 hidden layers and 5 nodes per layer with σ as the activation
function

parameters and results in the network explaining the data well, this comes at the cost of

poor extrapolation of the model. It is hence, advisable that one use regularization, in the

form of added penalties to higher weights/ drop-out [108].

4.4 Demonstrative Example: Energy Function Landscape

We now present a demonstrative example that involves the approximation of a com-

plicated energy function landscape. These landscapes are often seen in material sciences

towards understanding globally stable configurations of crystalline samples, protein folding,

structure property relationships, and so on. The data is often in the form of different struc-

tures and energy samples, and one attempts to find out the relationships between structure

and energy [91], [90]. Descriptors are created from the structure of the molecules, fed as

an input to the neural network. The output energy data is often estimated from complex

95

−1

1

−0.99

1.00

−1

1

−0.73

0.77

-10 -8 -6 -4 -2 0 2 4 6 8 10
−0.78

0.66

Features of Layer 1

−0.73

0.83

−0.32

0.34

−0.28

0.13

−1.00

0.98

-10 -8 -6 -4 -2 0 2 4 6 8 10
−0.4

0.4

Features of Layer 2

−0.52

0.50

−0.63

0.62

−0.64

0.10

−0.29

0.38

-10 -8 -6 -4 -2 0 2 4 6 8 10
−0.71

0.71

Features of Layer 3

−0.25

0.24

−0.93

0.97

−0.70

0.71

−0.96

0.98

-10 -8 -6 -4 -2 0 2 4 6 8 10
−0.75

0.75

Features of Layer 4

−0.91

0.93

−1

1

−0.85

0.79

−1

1

-10 -8 -6 -4 -2 0 2 4 6 8 10
−0.67

0.63

Features of Layer 5

−10 0 10
x

−1

0

1

si
n

(x
)

n = 5; H = 5

Figure 4.18: Features of hidden layers and final output of the network approximating the
sinusoidal function with 5 hidden layers and 5 nodes per layer with tanh as the activation
function

energy functionals using Density Functional Theory calculations.

One representative model of these energy function landscapes, is the shekel function.

This is a multi-modal function in an arbitrary number of dimensions that can be expressed

as:

y = −

m∑
i=1

1

ci +
∑n

j=1(x j − a ji)
2

(4.13)

The equation is characterized by the number of modes m, and the dimensionality of x, n.

For the demonstrative example we choose 17 modes (m = 17), in a 2 dimensional space n = 2.

The parameter values are listed in Table 4.1. The domain of the function lies in bound R2,

within [−5,5]. A major characteristic of the shekel function is that ci represents the strength

of a mode, and ai = [a1i,a2i] represents the location of the mode. The interaction between

individual modes functional form results in the final input output relation as shown in Figure

4.19a. This can also be visualized as a mapping from the 2D input to the 1D output Figure

96

4.19b.

Table 4.1: Parameters of the shekel function for the demonstrative example
Mode (i) ci a1i a2i

1 1.7 −1 −1
2 1.53 0 −1
3 1.87 1 −1
4 2.55 1 0
5 1.19 1 1
6 1.36 0 1
7 2.04 −1 1
8 1.7 −1 0
9 0.85 0 0
10 1.7 −2 −2
11 1.53 0 −2
12 1.87 2 −2
13 2.55 2 0
14 1.19 2 2
15 1.36 0 2
16 2.04 −2 2
17 1.7 −2 0

Usually these landscapes exhibit multiple local minima in the configuration space, and

hence are difficult to model analytically. A common technique used in such cases is to

identify descriptors of the different configurations, and create a descriptor-energy model in a

supervised manner. Neural networks are increasingly useful in this regard. This is however

contingent on the energy estimates from Density Functional Theory calculations. There are

however, other concerns with the training of these neural networks.

In recreating the energy landscape from data, our goal is to approximate the energy

landscape as well as possible, and identifying a minimal set of network hyperparameters

(width and depth). For this we focus on using one activation function – tanh, as it is seen to

be performing well for smooth function approximation task. The neural network is trained

with sufficient samples from the domain, densely sampled from the regions of minima. This

ensures that any underfit during the training exercise is an artefact of the training, and not

dearth of samples. Each network is trained for 500 epochs.

97

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

y

−15

−10

−5

(a)

−4 −2 0 2 4
x1

−4

−2

0

2

4

x
2

−16

−14

−12

−10

−8

−6

−4

−2

(b)

Figure 4.19: Shekel function described using the parameters in Table 4.1(a) 3D representation
of the function approximation task (b) Shows final mapping of the 2D input to the 1D output

4.4.1 Effect of Depth and Width on the Predicted Energy Landscape

Here, a depth-width study is done towards understanding neural network performance

according to Table 4.2. We start with a study on the effect of depth a neural network, by

considering 10 nodes in each hidden layer.

Table 4.2: Depth-Width Effect: Combinations of n and H considered for training shekel
function

n/H H = 3 H = 10 H = 20
n = 5 X
n = 10 X X X
n = 50 X

As seen in Figure 4.20a, the network with n = 10, H = 3, finds the overall feature

of the model (location of the global minima). The issue however is that with this shallow

architecture with just 3 hidden layers, the granular features of the landscape are not predicted

by the network. An obvious choice in the meanwhile, is to increase the depth. Increasing

the depth of the neural network initially shows that it learns the more granular features,

however, depth of a neural network does not significantly increase the performance of the

98

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−12.5

−10.0

−7.5

−5.0

−2.5

(a) n = 10, H = 3

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−12.5

−10.0

−7.5

−5.0

−2.5

(b) n = 10, H = 10

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−12.5

−10.0

−7.5

−5.0

−2.5

(c) n = 10, H = 20

Figure 4.20: Increasing depth (H hidden layers) does not yield increase in performance for
a network with 10 nodes per hidden layer

neural network despite a width of 10 nodes in each layer. This is however expected as

increasing the depth of the network results in formation of multiple suboptimal regions in

the loss landscape, as seen in earlier section. Though we equip the network to be able to

approximate a wide range of functional forms, accessibility of these varied functional forms

through the parameter space is a huge problem for the network. Depth increases model

complexity, hence is difficult to train.

In the meanwhile, increasing the width of the neural network, shows better function

approximation (Figure 4.21). The depth is kept constant at H = 3. Network with width

of 5 nodes captures the broad detail of the landscape, increasing the width shows better

performance, but to estimate the finer features, we have to use a network with 50 nodes.

In the previous section we showed that the loss function is always convex with respect to

the final layer parameters, irrespective of the width of the final layer. While increasing the

width does give rise to degenerate solutions, it is still easier to train than deep networks. To

get better insight into what the network does in each of the cases, we need to look at what

each nodes mapping would be post training.

4.4.2 Node specific local approximations

The shekel function has a final output activation as shown in Figure 4.19b. This idea can

be extended to visualizing the value of the hidden nodes. In this section we compare two

99

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−10

−8

−6

−4

−2

(a) n = 5, H = 3

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−12.5

−10.0

−7.5

−5.0

−2.5

(b) n = 10, H = 3

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−15

−10

−5

(c) n = 50, H = 3

Figure 4.21: Increasing width (n nodes per layer) of the neural network increases the ap-
proximation accuracy of the network with 3 hidden layers

networks: one network is wide and shallow (N1: n = 50, H = 3), and the other is thinner

and deeper (N2: n = 20, H = 5). From Figure 4.22, it can be seen that these two networks

have similar performance.

N1 : n = 50, H = 3

N2 : n = 20, H = 5

Figures 4.23, 4.24 show that as we go deeper into the network, more complex patterns

are generated as we go deeper into the neural network. This is owing to the fact that deeper

networks results in more nonlinear operations on the features of the previous layer, leading

to nonlinear patterns. In fact if we look at the final hidden representations of the two

networks (Figure 4.25), we see that the deeper network, N2 has more complex features than

the shallower network, N1.

Comparing similar performing networks, tells us that one could have similar performance

by increasing depth or increasing width of a neural network. This however, has a couple

of caveats associated with it. Increasing depth and width, increases the complexity of the

loss function with respect to the parameters. In both these situations, it is difficult to find

an optimum set of parameters. However, we note that deepening leads to more difficult

training. This could be as a result of having hyperbolic regions of flatness (mentioned in

100

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−15

−10

−5

(a) Output: N1

x1

−4 −2
0

2
4

x 2

−4
−2

0
2

4

ŷ

−15

−10

−5

(b) Output: N2

(c) Input-Output Mapping: N1 (d) Input Output Mapping: N2

Figure 4.22: Network comparison: N1 and N2. Both have similar performance.

earlier section), while in increasing width it is due to degeneracy of the intermediate features.

Increasing depth leads to estimating more complicated features (Figure 4.25a), increasing

width gives us a wide range of simpler functions (Figure 4.25b).

4.5 Major Results

There is an inherent trade-off between depth and width of neural networks. Similar

performance can be obtained by increasing the depth or the width of neural networks. While

increasing depth leads to more complex hidden representations deeper into the network due

to nonlinear operations, increasing width combines many simpler features into complex ones.

However, both these tasks inherently lead to complicating the loss function landscape

101

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 4.23: Input region activation of each node in each layer for N1. Each layer plot
contains activation of each of the node corresponding to the input space. Yellow is a high
value of the activation and blue corresponds to low activation (+1 and -1 respectively) since
we are using tanh activation function for each layer

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4 (e) Layer 5

Figure 4.24: Input region activation of each node in each layer for N2. Each layer plot
contains activation of each of the node corresponding to the input space. Yellow is a high
value of the activation and blue corresponds to low activation (+1 and -1 respectively) since
we are using tanh activation function for each layer

with respect to the parameters. Multiple local minima and suboptimal regions are formed in

the process on increasing the dimensionality of the network. So much so that even with high

quality data with no noise, the network sometimes is still unable to perform the function

approximation task. Due to the degeneracy in loss function, regularization aids in making

the landscape convex with respect to the parameter space. This is also supported by work

by [109].

Further, we note that just increasing the depth of the network does not necessarily

increase the performance of the network. High depth, low width networks still do not have

the necessary ability to map the input to the output with low loss. This was shown in the

context of approximating triangular wave functions, sinusoidal functions and approximating

the Shekel function, for each of which we need a given width for mapping the input to the

102

(a) Final Hidden Layer Representation N1 (b) Final Hidden Layer Representation N2

Figure 4.25: Input region activation of each node in the final layer for N1 and N2

output, well.

This leads us to one of the more important questions – Is the performance poor because of

suboptimal training of the network or due to suboptimal architectures? In the case of learning

a complex functional relationship (Shekel function), we noted that similar characteristics are

exhibited in both these problems. It is crucial in this regard that width plays an important

role. While high width and low depth does not allow for necessary ability in the network to

nonlinearly modify the feature space and may result in overfitting, just increasing the depth

of the network without considering the width, is not a viable option either. Convexity of

the loss function helps in the training exercise, and we note that the loss function is convex

with respect to the final layer parameters, given the parameters from every other layer.

In recent years a lot of focus has gone into creating optimal training algorithms for train-

ing a neural network [104, 106, 105]. These training strategies are all in essence variants of

traditional stochastic gradient descent and it can be argued that for training neural networks

using gradient descent schemes, stochasticity is indeed important to navigate really complex

loss function landscapes (including smart parameter initializations). This allows the network

to escape suboptimal regions in the loss landscape that conventional gradient descent strate-

gies will be unable to do. And then there is of course the concern of overfitting. It must be

noted that the results and discussion presented above are based on noise-free data and thus

103

represent solely the features of neural networks as a machine learning algorithm. However,

real life data are almost always corrupted with noise that further introduce complications in

training the network. The impact of noise on the performance of the network as a function

of the size of the network, especially the issue of overfitting is a very well-known property

in machine learning, and is not studied in the article. While we have not addressed over-

fitting in this article explicitly, we note that regularization is the way to avoid overfitting.

Further, regularization creates relatively less complex loss landscapes with respect to the

parameters for us to navigate, and can indeed lead to better training of the network. One

can avoid overfitting during the training exercise by regularizing (penalizing high values of

the parameters, or using techniques such as drop-out [108]).

However, there is little progress in the latter question of optimal architectures for training.

We are at present unable to say whether a deep architecture is indeed capable of capturing a

functional relationship. To give an analogy, if one tries to fit the functional form y = |x | with

a really deep network but of a width of 1 unit, no matter the depth of the network, one cannot

capture the relationship between y and x, irrespective of the activation function used. This

brings us to a very important unsolved problem, what is the minimum architecture required

to solve such a task. At present we use convenient heuristics based on the data distribution,

and that is the guiding principle for regression tasks. More complicated distributions as

in the shekel function require more parameters (more depth/width), while distributions

such as the absolute value function may require lesser parameters. Architectures are highly

dependent on the data generating process and one would need custom architectures for

specific problems in chemical engineering. For example, it is not ideal to use a simple high

depth neural network for functions such as sinusoids and one could potentially do better

with a recurrent architecture owing to the periodic ditribution form for the function. A lot

of recent publications have attempted to answer this question for special class of problems,

and it would be interesting to see how these translate to specific problems in the domain of

chemical engineering.

104

Chapter 5: Mechanistic Explanation Generation (MEG)

To address the challenge of explainability posed by neural networks, we present an

explainable AI framework for mechanistic explanation generation (XAI-MEG) that com-

bines techniques from machine learning (we call this numeric AI), with first-principles-based

knowledge that is modeled using symbolic AI techniques. Symbolic AI refers broadly to the

methods developed in the 1970s and ’80s during the expert systems era to represent symbolic

knowledge and model inference [1].

This chapter is organized as follows: In Section 5.1, we explain the different modules in

the AI. This is followed by Section 5.2, where we consider different process case studies and

models that often arise in many chemical engineering applications, with the results provided

by the XAI.

5.1 AI for Mechanistic Explanation Generation – XAI-MEG

As we know, human modeling experts have the ability to study the data and the process,

develop insights about possible underlying mechanisms, and then formulate the model in

an iterative process of trial-and-error. They are further able to explain their reasoning and

provide causal explanations. They are also often able to judge which models are likely (and

which ones are unlikely) for a given system, given the data. The current machine learning

systems are nowhere near such capabilities. This is the deficiency we try to address and our

work is just an early step in the long journey ahead.

In developing various model hypotheses, there is a dynamic interplay between symbolic

interpretations of data and numerical estimation of the features (i.e., the combination of

variables) to test the hypotheses. The symbolic interpretation deals with the idea that

105

certain features mean certain physicochemical interactions, and restricting the features to

such meaningful interactions would aid in better explainability. For example, in a dynamical

system, the presence of the second-order space derivative term in a model corresponds to

diffusion, and the first-order temporal difference is a result of the rate of change at a point in

space. For a machine to make similar hypotheses, we need to inform the intelligent system

of such a priori fundamental knowledge, and specify the allowed functional transformations

and combinations of variables to make mechanistically plausible models.

For example, one often finds elementary functions such as x2, ex, ln x, sin x, and cosh x

in chemical engineering models that can be explained by relating them to first-principles

mechanisms of the underlying physics and chemistry. One rarely comes across terms such

as ecosh(x
2), ln(sin2 x + ln(x)), exex×e

x

, etc. Such complicated expressions have often been

identified in symbolic regression and in other black-box models [110, 111]. Although such

needlessly complex models may fit the data well, they are quite unhelpful in understanding

the underlying physics and/or chemistry of the system. There is no physicochemical mech-

anism that would have generated such functional forms. We gain no mechanistic insights

from a model of such needless complexity. They are hardly different from black-box neural

network models, which are also known to fit the data well but with no interpretability. In

our approach, we try to avoid such a fate by building-in a priori first-principles-based ele-

mentary functional forms which are part of the knowledge base (Figure 5.1: Knowledge Base

and Feature Extractor). This is part of the symbolic AI component in XAI-MEG.

The models created by XAI-MEG involve ordinary and partial differential equations de-

rived using the identified features (Figure 5.1: Model Estimator). This is guided by templates

of different spatio-temporal models. For example, in the case of reaction-convection-diffusion

systems, this would be analogous to estimating models between rate of change of variables,

gradients of the concentrations, and various orders of reaction terms.

The identified model is then sent to the explanation generator (Figure 5.1: Explanation

Generator) that also takes inputs about the symbolic variables and the features generated

106

Figure 5.1: Architecture of XAI-MEG

to generate causal models. These are represented as signed directed causal graphs where

the directed edges represent the flow of causality and the signs indicate their influence (i.e.,

influence positively or negatively). These types of causal models are useful to understand

which variables and variable transformations in the physicochemical system affect the system

dynamics to gain mechanistic insights. Phenomena like convection, diffusion and reaction

are defined based on the features extracted from data.

While partial measurements of the hidden state of the system is definitely a concern,

we note that u is observable at several points in space and time. Other issues such as the

error in the measurement are a concern as well, but denoising techniques can be used to

generate simple models from data [19, 112]. Based on the process model, the unknown

reaction/generation term, R(·), is expressed based on plausible higher-order terms in u.

An additional assumption made in our approach is that different phenomenon contribute

additively in a PDE model. The level of contribution depends on the parameters of said

107

features. Overall, we assume that:

1. Features of the state of the system are meaningful physical variables

2. All relevant variables of the system are observed

3. The system model does not vary with time and space, and the modes of operation of a

relevant variable is constant (i.e., parameters Ξ is constant and not spatiotemporally

varying)

4. The measurement data has been preprocessed and denoised.

In the following subsections, we delve deeper into the different models used for system

identification for explanation, how features are extracted from measurements, method for

identification of models, and finally explanation generation using the identified process model.

5.1.1 Temporal and spatio-temporal models for explanation generation

Dynamical systems are often modeled in the form of the state-space evolution of the sys-

tem. In these models, the state of the system is mapped to its evolution, and measurements

are made of these states, such as

du

dt
= f (u(t), β̄) + η(t)

y = g(u) + ε (t)

where f (·) is a functional field that maps states of the system (u) to corresponding rate

of changes of the state
(
du

dt

)
, based on parameters β̄. The measurements y depend on a

nonlinear transformation g(·) of the states. It is noted that there are also noise variables in

the process model η(t) and measurement model ε(t), which need to be considered. Many

real world problems often come in these forms of nonlinear differential equations. However,

many nonlinear systems can be approximated as a nonlinear function of the states of the

108

system, but linear in parameters, i.e.,

du

dt
= Θ[u]Ξ (5.1)

y = g(u) + ε (t) (5.2)

where Θ[u(t)] =
[
u1 u2 · · · u21 u22 · · · u1u2 · · · ud−1ud · · ·

]
, is a nonlinear map-

ping of the states to a higher dimensional vector, and Ξ =
[
ξ1 ξ2 · · · ξd

]
are set of

parameter vectors (d is the dimensionality of the state vector). The parameter vector corre-

sponding to the rate variable i, ξ i, says which modes of operations/features affect the rate

variable.

Temporally varying data come in the form of a 2-dimensional data with time and vari-

ables. This could be written as u(t j), where u = {ui} is the set of individual variables. For

these, systems models can be estimated in the form shown in Equation 5.1. The parameter

vectors ξ i can then be sparsely identified to recreate the observed rates of changes in relevant

variables. Meanwhile, in a spatio-temporal system, the state of the system is given for each

point in time at a given point in space, and can thus be written in the form of a tensorial

data u(t j,xk), where u = {ui}. This tensorial representation, gives insight about the value of

the variable (i), at time (j) and at a point in space (k) given by ui j k .

Most spatio-temporal dynamical models can be seen from a reaction-convection-diffusion

standpoint. Consider a system with states {ui}, in a velocity vector field v. In addition to

this convective transport of the states, there is also a diffusive transport characterized by

diffusivities {Di}. The states are generated at a rate {Ri(u)}. This results in the state-space

model for the reaction-convection-diffusion system of the form,

∂u

∂t
= −∇.(vu) + ∇.(D∇u) +R(u)

Under conditions of constant diffusivity and incompressible flow, this can be rewritten

109

as,

∂u

∂t
= −(v.∇) u +D∇2u +R(u)

We see that other phenomenological spatio-temporal models are restrictions to this model

form. For example, under no convection, the equation reduces to the standard multicompo-

nent reaction-diffusion systems,

∂u

∂t
= D∇2u +R(u)

The dynamics of these systems is a combination of terms corresponding to the temporal

gradients, spatial gradients and parameters of the system. The features considered, hence,

must include the variable of interest (u), the temporal difference (∂tu), the spatial derivatives

(∇xu, ∇2xu), and higher order terms of u. In the next subsection we discuss how these features

are generated from data.

5.1.2 Feature extraction from measurements

For temporal models, polynomial features are generated from the measurements, resulting

in a higher-order feature matrix Θ[U]. These features include linear (ui), quadratic (uiu j)

and cubic feature generation (uiu juk). For spatio-temporal systems, in addition to the higher

order feature matrix, we also estimate the time and space derivatives in data using finite

difference. As mentioned earlier, the important features we need to extract from the system of

interest are u(t,x), ∇u(t,x) and ∇2u(t,x), the gradient terms depend on the spatial resolution.

∂tu is estimated based on the sampling-time from the system. Given that the measurements

provided are denoised, it is possible to employ finite derivatives in order to create temporal

and spatial derivatives directly. As noted earlier, the finite-differencing strategy is contingent

on the frequency of the measurements and noise in the data. Denoising strategies and

interpolation techniques can be employed to get an accurate estimate of these variables [19],

110

and their gradients and Laplacian.

The feature generation for the gradient in the rest of the work is done using central

differencing,

∂u
∂x

����
loc=i
=

u(xi+1) − u(xi−1)

2∆x

The Laplacian is estimated using the gradient ∂xu as,

∂2u
∂x2

����
loc=i
=
∂xu(xi+1) − ∂xu(xi−1)

2∆x

For spatio-temporal systems, we customize the regression features Θi[u] based on the

variable of interest ui. Time derivative is first estimated from the t,ui data, using finite

differencing. The spatial derivatives are only generated for the variable of interest ∇ui (con-

vection) and ∇2ui(diffusion). These features are then concatenated with higher order features

corresponding to the reaction terms. This would result in models of the form,

|

∂ui

∂t
|

=

| | | | | | | | | | |

∇ui ∇
2ui u1 u2 · · · u21 u22 · · · u1u2 · · · ud−1ud · · ·

| | | | | | | | | | |

[
ξ i

]
∀i ∈ {1, ..., d}

5.1.3 Model Estimator

Once the features are generated, the model estimator module takes as inputs the deriva-

tive and polynomial features generated by the feature extractor, ({Θi[u]}, ∂tu), and symbolic

representation of the features, to develop a linear parametric model (Equation 5.3).

dui

dt
= Θi[u]Ξ ∀i (5.3)

111

The estimated time derivatives,
dui

dt
(t), and features, {Θi[u]}, are then used to estimate

the parameters for each feature i, based on the optimization problem:

arg min
ξ i

��������dui

dt
− Θi[u]ξ i

��������2
2

+ λ | |ξ i | |1 + λ(1 − α)| |ξ i | |
2
2 ∀i

This is an elastic-net optimization problem, where the hyper-parameters are estimated

using a λ sweep. A bias term (denoted by symbolic variable ‘1’) is also added to estimate an

affine relationship between the outputs and the regressors, instead of a linear relationship.

The optimal ξ i is estimated using the region where the R2 score starts decreasing, rapidly.

Based on the parameter λ, we can promote sparse models for this identification exercise.

Hyper-parameter is tuned based on the R2 score via cross validation. A general cutoff of the

smoothened reconstruction with an R2 of 0.99 is considered for a good/sparse model. While

R2 does weakly increase with number of features, since all models are sparse, a uniform

cutoff is chosen. This in-fact is a hyperparameter that should be tuned, and will depend on

the problem.

5.1.4 Explanation Generation

In recent years, most natural language generation work involves showing a wide range

of examples to an AI system so that it is able to create language models. However, such a

large corpus of examples is typically lacking for chemical engineering systems. Therefore, we

require a different approach for our task. We require a system that uses symbolic interpre-

tation of features in the model, and automatically tags model features and equations into

different classes such as convection, diffusion, reaction, etc. This is similar to a multi-class

classification problem, where each model form could have multiple phenomenology.

Each identified feature is tagged based on the symbolic manipulation of the main vari-

ables. This symbolic manipulation along with the parameters is used to explain the model

based on built-in explanation rules. As we have considered the domain of reaction, convec-

112

tion and diffusion, these explanation rules are driven purely by these individual features. For

example, in a reaction-convection-diffusion system, if the sparse model shows importance of

features corresponding to ∂u
∂x and ∂2u

∂x2 , tags corresponding to convection and diffusion are acti-

vated. Presence of polynomial features are automatically tagged as reaction systems. These

tags are then used to explain the underlying mechanisms in the form of causal relationships

between the independent variable transformations and dependent variable. Further, for nat-

ural language explanation of the feature transformations, a sample template of the following

form is created:

The rate variable {} is affected by {}, {}. The system is governed by {},

{}.

A causal model is established relating each rate variable to the corresponding causal vari-

able transformations. Features corresponding to the significant parameters in the estimated

process model are first established to estimate the causal relationships. The variables that

are transformed to give rise to these significant features are then used to estimate the final

causal model. Figure 5.2 shows a causal model estimated for the Lotka-Volterra/Predator-

prey model. The figure shows that the rate variable corresponding to u is influenced by u

positively and uv negatively. uv in turn is estimated combining u and v. Similarly, the rate

variable corresponding to v is affected by uv positively and v negatively. This requires the

symbolic mapping of the estimated features and parameters, to the actual output rate vari-

able. These kinds of directed causal graphs, in conjunction with graph-theoretic algorithms

[4, 5, 113], can be used for more complex reaction networks, and chemical processing for

applications such as fault detection and detection.

5.2 Results and Discussion

In this study, we have considered prototypical model systems (temporal and spatio-

temporal) commonly featured in many physics and chemical engineering textbooks that

113

Figure 5.2: Causal graph for a predator prey model with data provided for t, u(Prey fraction),
v (Predator fraction). Red corresponds to negative parameters, and blue corresponds to
positive parameters. As is seen, du

dt increases with more u, but is negatively impacted due to
a second order effect of uv.

teach modeling techniques. The following subsections discuss the performance of XAI-MEG

for these model systems.

5.2.1 Case Study 1: Simple Harmonic Motion

Simple harmonic motion is one of the most important prototypes with applications in

many different areas. Here the position x and the velocity v, as functions of time, are required

to model the system. This yields the coupled system of first-order ordinary differential

equations,

dx
dt
= v

dv

dt
= −k x

We simulated the system with k = 0.05 and fed the position and velocity data (as a function

of time) to XAI-MEG.

The features identified by the system, using its knowledge base of allowed elementary

functions based on first-principles knowledge, include transformations involving linear and

second order terms in position (x) and velocity (v). From Figure 5.3, it is seen that in the

identified model, position contributes the most to the rate of change of velocity, and velocity

114

Figure 5.3: Simple Harmonic Motion - Inferences by XAI MEG

directly affects the rate of change of position (as expected from first-principles). XAI-MEG

correctly identifies the model, listed above as the two coupled ODEs. The causal graph

automatically generated for the system reflects the same. XAI-MEG identifies the positive

relationship between v and Derivative(x, t) (denoted in blue), and the negative relation-

ship between x and Derivative(v, t) (denoted in red). Finally, a simple explanation is

generated stating that Derivative(x, t) is affected by v and Derivative(v, t) is affected

by x.

115

5.2.2 Case Study 2: Damped Simple Harmonic Motion

Here we add a velocity dependent damping term (−ζv) to the dynamics of the simple

harmonic motion, giving rise to,

dx
dt
= v

dv

dt
= −k x − ζv

This kind of model forms is generally seen in dissipative systems, where the oscillatory modes

decay over time. We simulated the system with k = 0.05, ζ = 0.01.

Figure 5.4: Damped Simple Harmonic Motion - Inferences by XAI MEG

The simulated dynamical data corresponding to the time, position, and velocity (similar

116

to SHM) are provided to XAI-MEG. Again, XAI-MEG correctly identifies the model equa-

tions that we used in the simulation. The model identification shows an additional negative

contribution of the velocity (v) to the rate of change of velocity (dvdt) (Figure 5.4: Feature

Contribution). The weights of the different contributors to the dynamics are shown in the

causal graph, especially for the rate of change of velocity. A higher contribution is seen

w.r.t. to the position, with low contribution from the velocity feature in the velocity dynam-

ics (Figure 5.4: Causal Graph). Based on these estimated contributions, the explanations

are also generated about the causal relationships (Figure 5.4: Explanation Generation).

5.2.3 Case Study 3: Lotka-Volterra System

Lotka-Volterra system [114] shows a competition between two components (similar to a

coupled nonlinear reaction setup), where species U and species V react with each other in

the following form,

U
k1
→ 2U

U + V
k2
→ 2V

V
k3
→ Φ

The same system is used to model the dynamics of the population of the predator and

prey, where the prey (U) grows in the case of abundance of resources, exponentially, and

the presence of predator (V) results in the depletion of the prey population. The predator

consumes the prey to grow its population, and in the absence of the prey population deplete

over time. This results in a two-component ordinary differential equation of the form,

du
dt
= k1u − k2uv

dv

dt
= k2uv − k3v

117

This is one of the prototypical case studies, where we see nonlinear contributions. We

simulate the system with k1 = k2 = k3 = 0.05.

Figure 5.5: Lotka Volterra Model- Inferences by XAI MEG

XAI-MEG automatically examines linear and quadratic features from its knowledge base

that correspond to different rate expressions. From Figure 5.5, it is seen that the XAI-MEG

correctly identifies the model. It recognizes that u and uv terms contribute most for the

dynamics of u and v, and uv term contributes most for the dynamics of v. These significant

terms are also seen in the explanations in the form of the causal graph (Figure 5.5: Causal

Graph) and the natural language explanations (Figure 5.5: Explanation Generation). As

mentioned in the previous section, these terms correspond to the growth, decay, and the

competition between the predator and the prey.

118

5.2.4 Case Study 4: Compartmental Models in Epidemiology – S-I-R model

Similar to the competing dynamics in the Lotka-Volterra system, the S-I-R model for

disease spread [115] shows similar competing dynamics between the susceptible population

and infected population. This model is used for modeling the dynamics of the spread of a

disease considering the dynamics of the susceptible population (S), the infected population

(I) and the recovered population (R),

S + I
β
→ 2I

I
γ
→ R

These result in the system of ordinary differential equations,

dS
dt
= −βSI

dI
dt
= βSI − γI

dR
dt
= γI

The system is simulated for β = 0.05, γ = 0.01.

For this case, interactions up to the second order are allowed, and the system correctly

identifies the main modes of operation of the system (Figure 5.6: Feature Contribution).

It is seen that the rate of change of the susceptible population is correctly identified to be

dependent on the second order term involving the susceptible population (S) and the infected

population (I). In the dynamics of I, however, we see additional effects from second order

I2 and IR effects from the model. While these added modes do not contribute as severely

to the dynamics as the main mode, SI, it raises a question on whether the dynamics from

the compartmental model can be a explained by additional interactions within and between

population I and the recovered population R. The recovered population dynamics however,

is correctly identified to be dependent on the infected population.

119

Figure 5.6: SIR Model - Inferences by XAI MEG

5.2.5 Case Study 5: Convection Systems

Convection systems are modeled using a first-order partial differential equation of the

form,

∂u
∂t
= −vx

∂u
∂x

These systems are common in many convection-driven applications of heat and mass. The

species of interest, u, in the above case convects along the x axis with a velocity, vx = 0.001

at all points in space.

The spatio-temporal data (Figure 5.7: Data) is provided for variable u of the system.

120

Figure 5.7: Convection Model - Inferences by XAI MEG

Based on this data first-order spatial derivative, second-order spatial derivative, and poly-

nomial features are generated up to order two. The XAI-MEG identifies the dynamics to

be only dependent on the first-order derivative feature (Figure 5.7: Feature Contribution).

The causal graph shows the same interactions (Figure 5.7: Causal Graph), and the expla-

nation generator (Figure 5.7: Explanation Generation) correctly classifies the system to be

a convective system, because of the rate’s dependence on purely the first spatial derivative.

121

5.2.6 Case Study 6: Diffusion Systems

Diffusion systems are systems where components diffuse in space. Diffusion of tempera-

ture, species, etc., are governed by a parabolic partial differential equation of the form,

∂u
∂t
= D

∂2u
∂x2

In this study we consider the species diffusing with the diffusion coefficient, D = 10−5.

Figure 5.8: Diffusion Model - Inferences by XAI MEG

Similar to the convection data, the spatio-temporal data (Figure 5.8: Data) is sent to

the XAI-MEG. The rate is seen to be highly affected by the second-spatial derivative, with

minimal dependence on a constant factor which is seen as a reaction class (Figure 5.8: Causal

122

graph). Based on these identified parameters, the explanation generator shows that the rate

variable is dependent on the second-spatial derivative, and hence classifies the system as a

reaction diffusion system, while the reaction is in minimal amount.

5.2.7 Case Study 7: Reaction Diffusion Systems

Higher order reaction-diffusion systems are commonly studied in a variety of pattern

formation problems, addressed first by Alan Turing [116], and has been used to model a

variety of systems in ecology, geology, among other fields of interest. In these systems

species diffuse and react in space. We consider a sample case of the Gray-Scott model [117],

which is governed by the chemical reactions,

U + 2V
k1
→ 3V

V
k
→ Φ

Under the condition that k1 = 1, and U is constantly fed into the reactor at a feed rate of

f , and species V is constantly killed at a rate of k to give rise to the inert product Φ, the

system results in a set of nonlinear partial differential equations of the form,

∂u
∂t
= Du

∂2u
∂x2
− uv2 + f (1 − u)

∂v

∂t
= Dv

∂2v

∂x2
+ uv2 − (k + f)v

where we consider the system with Du = 10−1,Dv = 5 × 10−2, k = 0.062, f = 0.055.

The two species data on the concentration of the different species is provided in the

form of tensorial data of time and space (Figure 5.9: Data). For the dynamics of u, the

first and second spatial derivative features only include derivatives of u, while for v we

see only derivatives of v. Further, we see additional polynomial features of u and v and

various interactions up to the third order. These third order interaction variables are seen to

123

Figure 5.9: Reaction Diffusion Model - Inferences by XAI MEG

affect the rate variables the most. We do see additional second order interactions, of lower

magnitude appearing in the final estimated model form (Figure 5.9: Feature contribution).

However, the system is correctly tagged based on the features and the parameters, as a

reaction, diffusion system.

In summary, the identified relationships are linear in parameters in all these prototypical

systems, and hence one can work with simple linear models over the time-frame of experi-

mentation. For simple harmonic motion (SHM), the system correctly identified the feature

contributions and the causal map corresponding to the system. Damped SHM also shows

similar characteristics with a velocity contribution to the v dynamics, that is involved in the

damping. The Lotka-Volterra system is also correctly identified with contributions from the

first order terms – u and v – and the second order term of uv. For the SIR model system,

124

XAI-MEG does not identify the correct contributions for the different terms, but still shows

maximum contribution corresponding to the true modes of operation. This is further made

understandable through the causal map based on the contribution of the different features

(variable transformations) and corresponding parameters.

In the case of the spatio-temporal systems, the data has two independent variables, time

and space, where the variables have a particular value for each point in time and space. We

see that the model for the convection system was correctly identified to be dependent on the

first-derivative features. For diffusion, the feature contributions are similar to the contribu-

tions in the true process model. However, there is minimal contribution of concentration-

independent reaction mechanism (tagged as ’1’). For reaction-diffusion systems, it is seen

that the feature contribution of the constant term corresponding to addition of the species is

seen in the dynamics of u, with no effect shown due to convection features. A contribution of

diffusion is also seen in this case, suggesting that the system is a reaction-diffusion system.

Apart from the third order reaction term, an additional effect of a second order reaction

is also seen in the reaction-diffusion system. In all these cases, the explanation generation

module correctly identifies the underlying mechanisms contributing to the dynamics.

5.3 Major Results

We have currently looked at a variety of case studies with phenomenology of reaction,

convection and diffusion. For these prototypical examples, we see that all the underlying

phenomenology were identified based on the data from the system, and possible variable

transformations. While the underlying model structure is linear in parameters, it is to

be noted that such models can still be utilized to generate surrogate models [118, 119].

The advantage however, is that these models are rooted in physics and chemistry, and the

surrogate models generated are based on mechanistic variable interactions and not just data

driven models like kriging or artificial neural networks. These insights aid in generating

causal explanations of the variables and parameters involved during the occurrence of a

125

fault in the system for each time/space window considered for mechanism identification.

126

Chapter 6: Discussion

We have looked at the use of machine learning for causal modeling for process systems,

generating information about the hidden representations in neural networks, and generating

process models for mechanistic explanation generation.

Cause-and-effect reasoning is central to fault diagnosis and hazards analysis of process

systems, which require the development and use of causal models. This is also critical to

generating explanations of system behavior, particularly under abnormal conditions. Since

complex process systems operate at different length and time scales, it is important to model

the causality at different levels of granularity. We have proposed a hierarchical approach for

causal inferencing that captures causal maps at two levels – the overall plant-level and

the subsystem-level. This method decouples the cyclic and non-cyclic effects present in the

system and improves the accuracy and reliability of data-based causal inferencing algorithms

by reducing the number of spurious predictions. Prior information from the process flowsheet

is used to choose variables for each causal map. A matrix transformation algorithm that

subsides the effects of indirect causal interactions using the reachability matrix and adjacency

matrix ideas is also presented in this work. The proposed approach of hierarchical analysis

and matrix transformation can be used with any causal metric. In this article, transfer

entropy is used to quantify the causal interactions present between various variables for the

purpose of demonstration. We have demonstrated the proposed algorithm on the Tennessee

Eastman case study. The causal interactions are represented using a digraph. As cyclic

and non-cyclic effects are decoupled to generate a directed acyclic graph for the plant, the

fault diagnosis, root cause analysis, and explanation generation would become much easier.

Onset of a fault would be accompanied by changes in transfer entropies, which would lead

to modulations in both the tiers of causal maps identified. Sequential tracking of these

127

modulations in the plant-level and subsystem-level causal maps can be used as a metric for

identification of faults.

Deep neural networks have evolved into a versatile and powerful tool applicable for a

wide range of problems. However, a clear understanding of their internal mechanism that

allows for interpretations of internal representations and the parameters involved has not

been developed completely yet. We presented our findings from a systematic approach to

understanding the operation of neural networks for classification tasks. We began with

an individual node and identified a characteristic equation that dictates the nature of the

node-specific selective activation of the input space. We then studied how several of these

activations are processed by nodes in the successive layers to generate complex patterns

whose characteristic equations represent non-linear curved geometric objects. We showed

how wider networks result in several simple characteristic equations and hence simple pat-

terns identified on the input space, while deeper networks result in complex patterns in the

input space. Although both types of networks are capable of achieving comparable levels

of performance, each has its own advantages and disadvantages. Wider networks result in

simple patterns which are fairly generic and can potentially be used for multiple tasks. How-

ever, wider networks result in a large number of parameters as compared to deeper networks

with comparable performance. On the other hand, deeper networks result in complex shapes

that cannot be used as generic templates of patterns.

We also studied the transformation of input space by each layer and examined the degen-

eracy of parameters in the final layer. Specifically, we identified that there exist an infinite

number of configuration of weights of the classifying layer that will result in the same clas-

sification accuracy. We also identified that while the weights of hidden layers also exhibit

degeneracy, implying that the different weights result in the same characteristic curve on

the input space, they result in different activations of the space relative to the characteristic

curve and hence different internal representations. All the above entities constitute the in-

dividual components of a neural network, which when working together towards minimising

128

the loss function, result in relevant features being extracted from the input space. These are

then used for classification of the input data.

We also identified the source of techniques such as transfer learning, weight normalisation

and early stopping that are employed to improve the convergence of training algorithms. We

also identified the origin of adversarial examples in neural networks, which result in incorrect

interpretations, and in safety-critical applications they can lead to concerns. These behaviors

and properties were illustrated with three standard classification examples - the intertwined

moons, concentric circles and spirals. Their implications for a fault diagnosis task were

demonstrated with a continuously stirred tank reactor. In all the cases, it was observed that

building deeper networks, while possibly resulting in a decrease of the loss function, does

not necessarily imply a better learning or representation of the data. We also observed that

networks with more hidden layers are more likely to identify arbitrarily shaped patterns that

need not be representative of the true structure of the data, leading to adversarial challenges.

Most machine learning applications in chemical engineering lack the ability to provide

mechanistic insights and causal explanations for the recommendations made by them. Ad-

dressing this crucial deficiency requires the integration of symbolic AI with numeric AI,

namely, machine learning. We have studied a particular methodology to combine symbolic

AI and numeric AI to generate mechanistic insights and causal explanations of the dynamical

model of the system.

While the framework is general, we only consider prototypical systems commonly found

in many modeling textbooks. One key idea in our approach is that we only allow functional

transformations that can be directly linked to fundamental physicochemical principles and

mechanisms. This is a first step in formulating a reasoning engine that integrates symbolic

manipulation and reasoning with the power of machine learning models.

Our knowledge base, at present, only explores reaction, convection, and diffusion systems,

and currently requires full observability. It is true that the requirement for full observability

of a system is a challenge. In cases where the system is not fully observable, our approach can

129

be used to discover reduced-order models. With regards to sparse and noisy data, various

denoising techniques and interpolation methods can be used successfully as discussed in [19].

Further improvements would include the estimation for time and spatially varying systems,

where parameters could change as a function of time and space. Additional advances need

to be made to include algebraic models for reasoning. These directions would also require

encoding knowledge and inference based on an ontology of physicochemical model forms and

phenomenology.

130

Epilogue

Machine learning models cannot be blindly used in process systems without having

the notion of the underlying causality in these systems. A good rule of thumb is to

generate process explanations wherever possible, and using machine learning only in

situations where interpolation may be valid. Such data availability is often not possible in

a variety of process applications. We work in a field where extrapolation is key. Further

research is required to make sure such extrapolation is possible.

131

References

[1] V. Venkatasubramanian, “The promise of artificial intelligence in chemical engineer-
ing: Is it here, finally?” AIChE Journal, vol. 65, no. 2, pp. 466–478, 2019.

[2] H. Vedam and V. Venkatasubramanian, “PCA-SDG based process monitoring and
fault diagnosis,” Control engineering practice, vol. 7, no. 7, pp. 903–917, 1999.

[3] R. Suresh, A. Sivaram, and V. Venkatasubramanian, “A hierarchical approach for
causal modeling of process systems,” Computers & Chemical Engineering, vol. 123,
pp. 170–183, 2019.

[4] M. R. Maurya, R. Rengaswamy, and V. Venkatasubramanian, “A systematic frame-
work for the development and analysis of signed digraphs for chemical processes. 1. Al-
gorithms and analysis,” Industrial & engineering chemistry research, vol. 42, no. 20,
pp. 4789–4810, 2003.

[5] ——, “A systematic framework for the development and analysis of signed digraphs for
chemical processes. 2. Control loops and flowsheet analysis,” Industrial & Engineering Chemistry Research,
vol. 42, no. 20, pp. 4811–4827, 2003.

[6] J. Peters, S. Bauer, and N. Pfister, “Causal models for dynamical systems,” arXiv preprint arXiv:2001.06208,
2020.

[7] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nature Reviews Physics, pp. 1–19, 2021.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–
707, 2019.

[9] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A.
Ramadhan, and A. Edelman, “Universal differential equations for scientific machine
learning,” arXiv preprint arXiv:2001.04385, 2020.

[10] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable machine learning
for scientific insights and discoveries,” IEEE Access, vol. 8, pp. 42 200–42 216, 2020.

[11] M. S. Thiese, Z. C. Arnold, and S. D. Walker, “The misuse and abuse of statistics in
biomedical research,” Biochemia medica: Biochemia medica, vol. 25, no. 1, pp. 5–11,
2015.

132

[12] M. Jordan, “Artificial intelligence—the revolution hasn’t happened yet,” Medium. Apr,
vol. 19, 2018.

[13] M. Hutson, “Ai researchers allege that machine learning is alchemy,” Science, vol. 360,
no. 6388, p. 861, 2018.

[14] A. Sivaram, L. Das, and V. Venkatasubramanian, “Hidden representations in deep
neural networks: Part 1. classification problems,” Computers & Chemical Engineering,
vol. 134, p. 106 669, 2020.

[15] L. Das, A. Sivaram, and V. Venkatasubramanian, “Hidden representations in deep
neural networks: Part 2. Regression problems,” Computers & Chemical Engineering,
vol. 139, p. 106 895, 2020.

[16] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the national academy of sciences,
vol. 113, no. 15, pp. 3932–3937, 2016.

[17] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of
partial differential equations,” Science Advances, vol. 3, no. 4, e1602614, 2017.

[18] A. Chakraborty, A. Sivaram, L. Samavedham, and V. Venkatasubramanian, “Mecha-
nism discovery and model identification using genetic feature extraction and statistical
testing,” Computers & Chemical Engineering, vol. 140, p. 106 900, 2020.

[19] A. Chakraborty, A. Sivaram, and V. Venkatasubramanian, “AI-DARWIN: A first
principles-based model discovery engine using machine learning,” Computers & Chemical Engineering,
p. 107 470, 2021.

[20] P. Judea and D. Mackenzie, The Book of Why: The New Science of Cause and Effect.
Basic Books, 2018, isbn: 978-0465097616.

[21] C Zhao, M Bhushan, and V Venkatasubramanian, “PHASuite: An automated HA-
ZOP analysis tool for chemical processes: Part I: Knowledge engineering framework,”
Process Safety and Environmental Protection, vol. 83, no. 6, pp. 509–532, 2005.

[22] ——, “PHASuite: An automated HAZOP analysis tool for chemical processes: Part
II: Implementation and case study,” Process Safety and Environmental Protection,
vol. 83, no. 6, pp. 533–548, 2005.

[23] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri, “A review of process
fault detection and diagnosis Part II: Qualitative models and search strategies,”
Computers and Chemical Engineering, vol. 27, no. 3, pp. 313–326, 2003.

133

[24] P. Suppes, A probabilistic theory of causality. North-Holland Publishing Company
Amsterdam, 1970.

[25] C. W. Granger, “Investigating causal relations by econometric models and cross-
spectral methods,” Econometrica: Journal of the Econometric Society, pp. 424–438,
1969.

[26] ——, “Testing for causality: A personal viewpoint,” Journal of Economic Dynamics and control,
vol. 2, pp. 329–352, 1980.

[27] T. Schreiber, “Measuring information transfer,” Physical review letters, vol. 85, no. 2,
p. 461, 2000.

[28] J. Pearl, Causality. Cambridge university press, 2009.

[29] S. L. Bressler and A. K. Seth, “Wiener–Granger causality: A well established method-
ology,” Neuroimage, vol. 58, no. 2, pp. 323–329, 2011.

[30] M. Bauer, J. W. Cox, M. H. Caveness, J. J. Downs, and N. F. Thornhill, “Finding the
direction of disturbance propagation in a chemical process using transfer entropy,”
IEEE transactions on control systems technology, vol. 15, no. 1, pp. 12–21, 2007.

[31] P. Duan, F. Yang, T. Chen, and S. L. Shah, “Direct causality detection via the transfer
entropy approach,” IEEE transactions on control systems technology, vol. 21, no. 6,
pp. 2052–2066, 2013.

[32] W. Yu and F. Yang, “Detection of causality between process variables based on in-
dustrial alarm data using transfer entropy,” Entropy, vol. 17, no. 8, pp. 5868–5887,
2015.

[33] R. Vicente, M. Wibral, M. Lindner, and G. Pipa, “Transfer entropy – A model-free
measure of effective connectivity for the neurosciences,” Journal of computational neuroscience,
vol. 30, no. 1, pp. 45–67, 2011.

[34] L. Barnett, A. B. Barrett, and A. K. Seth, “Granger causality and transfer entropy are
equivalent for Gaussian variables,” Physical review letters, vol. 103, no. 23, p. 238 701,
2009.

[35] M. R. Maurya, R. Rengaswamy, and V. Venkatasubramanian, “A systematic frame-
work for the development and analysis of signed digraphs for chemical processes. 1. Al-
gorithms and analysis,” Industrial & engineering chemistry research, vol. 42, no. 20,
pp. 4789–4810, 2003.

134

[36] ——, “Application of signed digraphs-based analysis for fault diagnosis of chemical
process flowsheets,” Engineering Applications of Artificial Intelligence, vol. 17, no. 5,
pp. 501–518, 2004.

[37] J. Thambirajah, L. Benabbas, M. Bauer, and N. F. Thornhill, “Cause-and-effect anal-
ysis in chemical processes utilizing XML, plant connectivity and quantitative process
history,” Computers & Chemical Engineering, vol. 33, no. 2, pp. 503–512, 2009.

[38] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge university press,
2004, vol. 7.

[39] T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D: Nonlinear Phenomena,
vol. 142, no. 3-4, pp. 346–382, 2000.

[40] A. Bathelt, N. L. Ricker, and M. Jelali, “Revision of the Tennessee Eastman process
model,” IFAC-PapersOnLine, vol. 48, no. 8, pp. 309–314, 2015.

[41] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control problem,”
Computers & chemical engineering, vol. 17, no. 3, pp. 245–255, 1993.

[42] T. Larsson, K. Hestetun, E. Hovland, and S. Skogestad, “Self-optimizing control of a
large-scale plant: The Tennessee Eastman process,” Industrial & engineering chemistry research,
vol. 40, no. 22, pp. 4889–4901, 2001.

[43] N. L. Ricker, “Decentralized control of the Tennessee Eastman challenge process,”
Journal of Process Control, vol. 6, no. 4, pp. 205–221, 1996.

[44] J. Shi, J. Zhao, X. Liu, L. Chen, and T. Li, “Quantifying direct dependencies in biologi-
cal networks by multiscale association analysis,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2018.

[45] R. Kannan and A. K. Tangirala, “Correntropy-based partial directed coherence for
testing multivariate granger causality in nonlinear processes,” Physical Review E,
vol. 89, no. 6, p. 062 144, 2014.

[46] V. A. Vakorin, O. A. Krakovska, and A. R. McIntosh, “Confounding effects of indi-
rect connections on causality estimation,” Journal of neuroscience methods, vol. 184,
no. 1, pp. 152–160, 2009.

[47] H. Jiang, R. Patwardhan, and S. L. Shah, “Root cause diagnosis of plant-wide oscil-
lations using the concept of adjacency matrix,” Journal of Process Control, vol. 19,
no. 8, pp. 1347–1354, 2009.

[48] M. Newman, Networks: An introduction. Oxford university press, 2010.

135

[49] N. Young, “The rate of convergence of a matrix power series,” Linear Algebra and its Applications,
vol. 35, pp. 261–278, 1981.

[50] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding neural
networks through deep visualization,” arXiv preprint arXiv:1506.06579, 2015.

[51] R. Setiono and H. Liu, “Understanding neural networks via rule extraction,” in IJCAI,
vol. 1, 1995, pp. 480–485.

[52] J. D. Olden and D. A. Jackson, “Illuminating the “black box”: A randomization ap-
proach for understanding variable contributions in artificial neural networks,” Ecological modelling,
vol. 154, no. 1-2, pp. 135–150, 2002.

[53] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,”
arXiv preprint physics/0004057, 2000.

[54] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,”
in 2015 IEEE Information Theory Workshop (ITW), IEEE, 2015, pp. 1–5.

[55] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via
information,” arXiv preprint arXiv:1703.00810, 2017.

[56] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering,
vol. 22, no. 10, pp. 1345–1359, 2009.

[57] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains: A
survey,” Journal of Machine Learning Research, vol. 10, no. Jul, pp. 1633–1685, 2009.

[58] K. Weiss, T. M. Khoshgoftaar, and D.Wang, “A survey of transfer learning,” Journal of Big data,
vol. 3, no. 1, p. 9, 2016.

[59] M. Talo, U. B. Baloglu, Ö. Yıldırım, and U. R. Acharya, “Application of deep transfer
learning for automated brain abnormality classification using mr images,” Cognitive Systems Research,
vol. 54, pp. 176–188, 2019.

[60] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M.
Summers, “Deep convolutional neural networks for computer-aided detection: Cnn ar-
chitectures, dataset characteristics and transfer learning,” IEEE transactions on medical imaging,
vol. 35, no. 5, pp. 1285–1298, 2016.

[61] K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, and A. Agrawal, “Deep convolu-
tional neural networks with transfer learning for computer vision-based data-driven
pavement distress detection,” Construction and Building Materials, vol. 157, pp. 322–
330, 2017.

136

[62] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on artificial intelligence and statistics,
2010, pp. 249–256.

[63] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” in Advances in Neural Information Processing Systems,
2016, pp. 901–909.

[64] L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks of the trade, Springer,
1998, pp. 55–69.

[65] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets: Backpropaga-
tion, conjugate gradient, and early stopping,” in Advances in neural information processing systems,
2001, pp. 402–408.

[66] V. Venkatasubramanian and K. Chan, “A neural network methodology for process
fault diagnosis,” AIChE Journal, vol. 35, no. 12, pp. 1993–2002, 1989.

[67] K. Watanabe, I. Matsuura, M. Abe, M. Kubota, and D. Himmelblau, “Incipient fault
diagnosis of chemical processes via artificial neural networks,” AIChE journal, vol. 35,
no. 11, pp. 1803–1812, 1989.

[68] J. Hoskins, K. Kaliyur, and D. M. Himmelblau, “Fault diagnosis in complex chemical
plants using artificial neural networks,” AIChE Journal, vol. 37, no. 1, pp. 137–141,
1991.

[69] J. Fan, M Nikolaou, and R. E. White, “An approach to fault diagnosis of chemical
processes via neural networks,” AIChE Journal, vol. 39, no. 1, pp. 82–88, 1993.

[70] M. Askarian, G. Escudero, M. Graells, R. Zarghami, F. Jalali-Farahani, and N.
Mostoufi, “Fault diagnosis of chemical processes with incomplete observations: A
comparative study,” Computers & chemical engineering, vol. 84, pp. 104–116, 2016.

[71] P. Jiang, Z. Hu, J. Liu, S. Yu, and F. Wu, “Fault diagnosis based on chemical sensor
data with an active deep neural network,” Sensors, vol. 16, no. 10, p. 1695, 2016.

[72] A. Shokry, M. H. Ardakani, G. Escudero, M. Graells, and A. Espuña, “Dynamic
kriging based fault detection and diagnosis approach for nonlinear noisy dynamic
processes,” Computers & Chemical Engineering, vol. 106, pp. 758–776, 2017.

[73] H Gharahbagheri, S. Imtiaz, and F Khan, “Root cause diagnosis of process fault using
kpca and bayesian network,” Industrial & Engineering Chemistry Research, vol. 56,
no. 8, pp. 2054–2070, 2017.

137

[74] Z. Zhang and J. Zhao, “A deep belief network based fault diagnosis model for complex
chemical processes,” Computers & Chemical Engineering, vol. 107, pp. 395–407, 2017.

[75] H. Wu and J. Zhao, “Deep convolutional neural network model based chemical process
fault diagnosis,” Computers & Chemical Engineering, vol. 115, pp. 185–197, 2018.

[76] R Vaidyanathan and V Venkatasubramanian, “On the nature of fault space classifica-
tion structure developed by neural networks,” Engineering Applications of Artificial Intelligence,
vol. 5, no. 4, pp. 289–297, 1992.

[77] K. E. Pilario, Feedback-controlled cstr process for fault simulation, (https://www.
mathworks.com/matlabcentral/fileexchange/66189- feedback- controlled-
cstr- process- for- fault- simulation), MATLAB Central File Exchange, Re-
trieved June 10, 2019, 2019.

[78] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, et al., “Adversarial classification,” in
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
ACM, 2004, pp. 99–108.

[79] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[80] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

[81] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adver-
sarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[82] D. M. Elbrächter, J. Berner, and P. Grohs, “How degenerate is the parametrization of
neural networks with the relu activation function?” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[83] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[84] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146,
2016.

[85] A. Sivaram, L. Das, and V. Venkatasubramanian, “Hidden representations in deep
neural networks: Part 1. classification problems,” Submitted to Computers and Chemical Engineering,
2019.

138

https://www.mathworks.com/matlabcentral/fileexchange/66189-feedback-controlled-cstr-process-for-fault-simulation
https://www.mathworks.com/matlabcentral/fileexchange/66189-feedback-controlled-cstr-process-for-fault-simulation
https://www.mathworks.com/matlabcentral/fileexchange/66189-feedback-controlled-cstr-process-for-fault-simulation

[86] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical sys-
tems using neural networks,” IEEE Transactions on neural networks, vol. 1, no. 1,
pp. 4–27, 1990.

[87] S. Chen, S. Billings, and P. Grant, “Non-linear system identification using neural
networks,” International journal of control, vol. 51, no. 6, pp. 1191–1214, 1990.

[88] J. Schmidt, M. R. Marques, S. Botti, and M. A. Marques, “Recent advances and appli-
cations of machine learning in solid-state materials science,” npj Computational Materials,
vol. 5, no. 1, pp. 1–36, 2019.

[89] Y. Pan, J. Jiang, and Z. Wang, “Quantitative structure–property relationship studies
for predicting flash points of alkanes using group bond contribution method with
back-propagation neural network,” Journal of hazardous materials, vol. 147, no. 1-2,
pp. 424–430, 2007.

[90] N. Artrith, T. Morawietz, and J. Behler, “High-dimensional neural-network potentials
for multicomponent systems: Applications to zinc oxide,” Physical Review B, vol. 83,
no. 15, p. 153 101, 2011.

[91] G. Schmitz, I. H. Godtliebsen, and O. Christiansen, “Machine learning for potential
energy surfaces: An extensive database and assessment of methods,” The Journal of Chemical Physics,
vol. 150, no. 24, p. 244 113, 2019.

[92] D. T. Jones, “Protein secondary structure prediction based on position-specific scoring
matrices,” Journal of molecular biology, vol. 292, no. 2, pp. 195–202, 1999.

[93] H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green, and K. F. Jensen, “Using
machine learning to predict suitable conditions for organic reactions,” ACS central science,
vol. 4, no. 11, pp. 1465–1476, 2018.

[94] A. Parlak, Y. Islamoglu, H. Yasar, and A. Egrisogut, “Application of artificial neural
network to predict specific fuel consumption and exhaust temperature for a diesel
engine,” Applied Thermal Engineering, vol. 26, no. 8-9, pp. 824–828, 2006.

[95] A. Sundaram, P. Ghosh, J. M. Caruthers, and V. Venkatasubramanian, “Design of
fuel additives using neural networks and evolutionary algorithms,” AIChE Journal,
vol. 47, no. 6, pp. 1387–1406, 2001.

[96] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in European conference on computer vision, Springer, 2014, pp. 818–833.

[97] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747,
2016.

139

[98] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of control, signals and systems,
vol. 2, no. 4, pp. 303–314, 1989.

[99] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[100] K. Hornik, “Some new results on neural network approximation,” Neural networks,
vol. 6, no. 8, pp. 1069–1072, 1993.

[101] T. Chen and H. Chen, “Universal approximation to nonlinear operators by neural net-
works with arbitrary activation functions and its application to dynamical systems,”
IEEE Transactions on Neural Networks, vol. 6, no. 4, pp. 911–917, 1995.

[102] B. Hanin, “Universal function approximation by deep neural nets with bounded width
and relu activations,” arXiv preprint arXiv:1708.02691, 2017.

[103] D. Yarotsky, “Error bounds for approximations with deep relu networks,” Neural Networks,
vol. 94, pp. 103–114, 2017.

[104] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

[105] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[106] G. Hinton, “Neural networks for machine learning - lecture 6a - overview of mini-batch
gradient descent.,” 2012.

[107] B. R. Bakshi and G. Stephanopoulos, “Wave-net: A multiresolution, hierarchical neu-
ral network with localized learning,” AIChE Journal, vol. 39, no. 1, pp. 57–81, 1993.

[108] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detectors,”
arXiv preprint arXiv:1207.0580, 2012.

[109] M. Carlsson, “On convex envelopes and regularization of non-convex functionals
without moving global minima,” Journal of Optimization Theory and Applications,
vol. 183, no. 1, pp. 66–84, 2019.

[110] M. Schmidt and H. Lipson, Eureqa, version 0.98 beta, 2013.

[111] B. Babu and S Karthik, “Genetic programming for symbolic regression of chemical
process systems.,” Engineering Letters, vol. 14, no. 2, pp. 42–55, 2007.

140

[112] F. Van Breugel, J. N. Kutz, and B. W. Brunton, “Numerical differentiation of noisy
data: A unifying multi-objective optimization framework,” IEEE Access, vol. 8, pp. 196 865–
196 877, 2020.

[113] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review of
process fault detection and diagnosis: Part i: Quantitative model-based methods,”
Computers & chemical engineering, vol. 27, no. 3, pp. 293–311, 2003.

[114] A. J. Lotka, “Contribution to the theory of periodic reactions,” The Journal of Physical Chemistry,
vol. 14, no. 3, pp. 271–274, 2002.

[115] D. Smith, L. Moore, et al., “The SIR model for spread of disease-the differential
equation model,” Convergence, 2004.

[116] A. M. Turing, “The chemical basis of morphogenesis,” Bulletin of mathematical biology,
vol. 52, no. 1, pp. 153–197, 1990.

[117] J. E. Pearson, “Complex patterns in a simple system,” Science, vol. 261, no. 5118,
pp. 189–192, 1993.

[118] K. McBride and K. Sundmacher, “Overview of surrogate modeling in chemical process
engineering,” Chemie Ingenieur Technik, vol. 91, no. 3, pp. 228–239, 2019.

[119] M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. Martins, “A
python surrogate modeling framework with derivatives,” Advances in Engineering Software,
vol. 135, p. 102 662, 2019.

141

	Acknowledgments
	Introduction and Background
	From data to causal models
	Transfer Entropy as a Measure of Causality
	Generating digraph based on transfer entropy

	Tennessee Eastman Benchmark Process
	Hierarchical framework for developing causal maps
	Tier 1: Plant-level DAG
	Tier 2: Subsystem-level graph with possible cycles

	Major Results

	Neural Networks for Classification
	Mathematical Background
	Problem Formulation
	Classification with Neural Networks

	Peeking Under the Hood of a Deep Neural Network
	Feature Extraction: Node-specific Selective Activation of the Input Space
	Wider vs Deeper Networks: Complexity of Features
	From Features to Feature Spaces
	The Final Layer: Separating Hyperplanes for Classification
	Degeneracy of parameters using softmax activation

	How does a Neural Network Learn the Mapping?: From Parts to Whole
	Major Results

	Neural Networks for Regression
	Mathematical Background
	Problem Formulation
	Regression with Neural Networks

	Peeking Under the Hood of a Neural Network
	Node-specific Local Approximation
	Wider vs Deeper Networks: Complexity of Local Approximations
	Degeneracy of Parameters

	How does a Neural Network Approximate a Function?: From Parts to Whole
	Illustrative Example: Sinusoidal Function

	Demonstrative Example: Energy Function Landscape
	Effect of Depth and Width on the Predicted Energy Landscape
	Node specific local approximations

	Major Results

	Mechanistic Explanation Generation (MEG)
	AI for Mechanistic Explanation Generation – XAI-MEG
	Temporal and spatio-temporal models for explanation generation
	Feature extraction from measurements
	Model Estimator
	Explanation Generation

	Results and Discussion
	Case Study 1: Simple Harmonic Motion
	Case Study 2: Damped Simple Harmonic Motion
	Case Study 3: Lotka-Volterra System
	Case Study 4: Compartmental Models in Epidemiology – S-I-R model
	Case Study 5: Convection Systems
	Case Study 6: Diffusion Systems
	Case Study 7: Reaction Diffusion Systems

	Major Results

	Discussion
	Epilogue
	References

