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Abstract

Detection, Triage, and Attribution of PII Phishing Sites

Dennis Roellke

Stolen personally identifiable information (PII) can be abused to perform a multitude of

crimes in the victim’s name. For instance, credit card information can be used in drug business,

Social Security Numbers and health ID’s can be used in insurance fraud, and passport data can be

used for human trafficking or in terrorism. Even Information typically considered publicly

available (e.g. name, birthday, phone number, etc.) can be used for unauthorized registration of

services and generation of new accounts using the victim’s identity (unauthorized account

creation). Accordingly, modern phishing campaigns have outlived the goal of account takeover

and are trending towards more sophisticated goals. While criminal investigations in the real world

evolved over centuries, digital forensics is only a few decades into the art. In digital forensics,

threat analysts have pioneered the field of enhanced attribution — a study of threat intelligence

that aims to find a link between attacks and attackers. Their findings provide valuable information

for investigators, ultimately bolster takedown efforts and help determine the proper course of legal

action. Despite an overwhelming offer of security solutions today suggesting great threat analysis

capabilities, vendors only share attack signatures and additional intelligence remains locked into

the vendor’s ecosystem. Victims often hesitate to disclose attacks, fearing reputation damage and

the accidental revealing of intellectual property. This phenomenon limits the availability of

postmortem analysis from real-world attacks and often forces third-party investigators, like

government agencies, to mine their own data. In the absence of industry data, it can be promising



to actively infiltrate fraudsters in an independent sting operation. Intuitively, undercover agents

can be used to monitor online markets for illegal offerings and another common industry practice

is to trap attackers in monitored sandboxes called honeypots. Using honeypots, investigators lure

and deceive an attacker into believing an attack was successful while simultaneously studying the

attacker’s behavior. Insights gathered from this process allow investigators to examine the latest

attack vectors, methodology, and overall trends. For either approach, investigators crave

additional information about the attacker, such that they can know what to look for. In the context

of phishing attacks, it has been repeatedly proposed to "shoot tracers into the cloud", by stuffing

phishing sites with fake information that can later be recognized in one way or another. However,

to the best of our knowledge, no existing solution can keep up with modern phishing campaigns,

because they focus on credential stuffing only, while modern campaigns steal more than just user

credentials — they increasingly target PII instead.

We observe that the use of HTML form input fields is a commonality among both credential

stealing and identity stealing phishing sites and we propose to thoroughly evaluate this feature for

the detection, triage and attribution of phishing attacks. This process includes extracting the

phishing site’s target PII from its HTML <label> tags, investigating how JavaScript code

stylometry can be used to fingerprint a phishing site for its detection, and determining

commonalities between the threat actor’s personal styles. Our evaluation shows that <input> tag

identifiers, and <label> tags are the most important features for this machine learning

classification task, lifting the accuracy from 68% without these features to up to 92% when

including them. We show that <input> tag identifiers and code stylometry can also be used to

decide if a phishing site uses cloaking. Then we propose to build the first denial-of-phishing

engine (DOPE) that handles all phishing; both Credential Stealing and PII theft. DOPE analyzes

HTML <label> tags to learn which information to provide, and we craft this information in a

believable manner, meaning that it can be expected to pass credibility tests by the phisher.
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Preface

History of Internet Crime

Today, over half of the world’s population has access to the Internet and with the exception of

Columbia University alumnus Warren Buffet, nine out of ten of the wealthiest people alive have

made their fortune from software products. At this stage, people might find it hard to imagine daily

life without access to the plentiful services available on the Internet.

0.1 Internet

With great power comes great responsibility and when a research team at the Defense Advanced

Research Projects Agency (DARPA) invented the Internet in the 1960s, they soon found out that

"The ARPA Computer Network is susceptible to security violations", and there is an "affection for

the challenge of breaking someone’s system" [1]. This affection still drives the hacking community

today, presenting itself in gamified learning approaches such as Hackathons and Capture-the-Flag

challenges. Computer system security quickly became a note-worthy problem for the DARPA

project and its significance grew even further when in 1989 Tim Berners-Lee et al. invented and

standardized the Hypertext Transfer Protocol (HTTP) protocol - a foundational step to maturing

the DARPA project into the Internet we know today [2]. In 1993, over one million public hosts

had Internet access and this number rose to 171 million hosts in 2003. The dot-com era is also

considered the digital gold rush of the 1990s, and the movement has culminated in over one billion

hosts accessible through the Internet since late 2013 [3], accounting for over 99% of all global
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communications [4]. The growth and influence of the Internet show no sign of stopping, but as

the scale of the Internet grew, so did the motivation for attackers to corrupt the communication.

The omnipresence of the Internet on our computers and phones has made it convenient to even

communicate the most sensitive information, such as health care records and financial data over

the Internet. That makes it a lucrative target for criminals. As the threat rises, most companies

make great efforts to protect their systems and plenty of sophisticated cyber security solutions are

available today. It has become an established career path for Software Engineers to specialize

as Security Engineer, Penetration Tester, or Threat Analyst and governments have legislated sev-

eral laws, like the Computer Fraud and Abuse Act of 1986 (CFAA), industry-specific regulations

like the Health Insurance Portability and Accountability Act of 1996 (HIPAA to protect )patient

health information and the Payment Services Directive Two (PSD2) that requires strong customer

authentication for certain online money transfer. In the face of enhanced protection mechanisms,

criminals shift their efforts to the weakest link. They bypass corporate security and directly assault

Internet users, scamming them with social engineering campaigns, often in the form of phishing.

Although considered rather unsophisticated, phishing is the most common web attack today and

most successful attacks use phishing as the initial step [5].

0.2 Cybercrime

Criminal activity in the online space is referred to as cybercrime or electronic crime, and just

like traditional crime, it is conducted by individuals, criminal organizations, and even nation-

states [6]. Compared to traditional crime, cybercrime mitigation is uniquely challenging. Entrance

barriers are low since no physical tools are required other than an Internet connection and an

attack may be direct against anyone on the Internet, across the entire world. Simultaneously, crim-

inals have increasing access to anonymization techniques to cover their tracks and underground

economies are growing, providing malicious tools to anyone mal-intended, not matter how techni-

cally unskilled [7]. The fact that cybercrime can be conducted by anyone and from anywhere leads

to the rapid adaption of technology trends. In addition to that, information theft on the Internet has
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the unique characteristic that criminals steal copies of the data, meaning that the data cannot be

noticed as missing.

Legal prosecution of cybercrime is highly complicated because solid evidence is often either

entirely absent or spread across multiple non-collaborative institutions such as Internet Service

Providers (ISP), VPN providers, web hosters, underground forums, or legitimate Software-as-a-

Service providers that have to value their user’s privacy unless proven guilty. To further complicate

this situation, evidence may be subject to a different jurisdiction if it accrued in different states or

nations with different rules, or such who do not collaborate with each other. In recent years, we

saw a number of prominent convictions of distinguished cybercriminals behind big hacks, but the

situation has not improved with regard to small attacks against a very large number of victims. It is

important to understand that everyday cybercrime does not necessarily make headlines, as it often

involves smaller attacks that the victims do not bother to report, or the victims feel pitty for being

a victim. The frequency of smaller attacks makes them collectively no less significant than high-

profile threat campaigns. As part of their campaigns, criminals host thousands of fake websites

each day to trick their victims into making payments or revealing sensitive information [8]. The

variety of different schemes observed [9] suggests a high number of unrecorded threats and a vari-

ety of techniques that are difficult to predict and prevent due to their complexity. The complexity,

number of stakeholders and international distribution of attacks also makes it difficult to measure

the damage caused by cybercrime. Many researchers agree that the damage of cybercrime must be

under-reported by victims and underestimated by governments [10].

In late 2020, security vendor McAfee estimated annual global damage due to cybercrime to

cross the $1 trillion dollar mark for the first time ever. Over 1% of the total GDP of the world’s de-

veloped economies, and a stark increase over the last years. Recent incidents with broad real-world

impact illustrate the increasing consequences of cybercrime crossing the boundaries of computer

networks. In 2017, "Half of All Americans" [11] detailed financial information was stolen in

a single unprecedented breach of Equifax, an American credit scoring company. The estimated

$1 billion of direct damage to Equifax are negligible compared to the long-term consequences

3



like irreversible brand damage, espionage [11] and mass identity theft. A different type of attack

known as ransomware made headlines around the same time. The encryption-trojan WannaCry

took hostage of over 300,000 computer systems worldwide and caused real-world damage by dis-

rupting hospitals, production factories, and public transportation networks [12].

Ultimately, criminals lurk everywhere on the Internet, causing cause damages in terms of time,

money, information, or intellectual property. As one could expect, a variety of defenses has already

been proposed to protect victims from many such attackers. However, the burden of effectively

implementing these defenses falls upon the individuals, organizations, and governments involved,

who have to make a huge effort to defeat each risk. Defense efforts are caught in a cat-and-mouse

game trying to maintain a proper understanding of attacks and implementing sufficient mitigation

to keep up with the attackers sophistication.

0.3 Phishing

In phishing campaigns, fraudsters use social engineering to trick their victims into sharing sen-

sitive information. Here, we loosely distinguish between spear-phishing, which is targeted toward

certain user groups, whale-phishing, which targets high net-worth individuals, and lastly, the gen-

eral untargeted phishing attacks against general Internet users. The latter attacks can be thought

of as spray-and-pray attacks that strategically value the quantity of careless Internet users over the

quality of a specific target. These undirected, campaigns can be implemented easily and are consid-

ered to be operated by script-kiddies, who use easy-to-use phishing kits to orchestrate their attacks.

This type of phishing is a prime example of the everyday cybercrime we mentioned in the preface:

It has a low entrance barrier, results in smaller damages, but is found at a large scale. At first

glance, a spray-and-pray campaign may seem trivial, and one might falsely assume that protecting

against them does not require much sophistication. This assumption shows to be wrong since the

threat exists until today and in spite of many solutions have been proposed over the years. Early

solutions, like individual security toolbars for the browser [13] have been replaced by collabora-

tive systems natively available in modern browsers [14, 15, 16]. Similarly, most email providers
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protect their users with solid security suits and companies invest in anti-phishing solutions like

user awareness training [17] and two-factor authentication [18]. Despite all efforts the number of

phishing attacks continues to increase and the campaigns evolve in sophistication. In response, the

academic community started to collaboratively face the challenges of "phishing, crimeware, and e-

mail spoofing" by founding the Anti-Phishing Working Group (APWG), a platform for businesses,

organizations, and governments to share experiences and expertise in defeating the distributed

problem. The APWG shares phishing intelligence and regularly publishes trend reports on phish-

ing. In an original report from October 2004 the APWG counted 1,142 unique phishing websites

and 6,597 unique phishing e-mails [19]. Today, the numbers have surged to hundreds of thousands

unique instances per month [8, 20]. The Google Safe Browsing initiative’s Transparency Report

presents phishing to be at an all-time high, and concludes that phishing has almost completely

replaced malware as the primary threat against web browsers [21]. Monetary losses to phishing

alone cumulated up to $6.9 billion in 2021 [22].

Both commercial and independent anti-phishing reports naturally survey an ever evolving sub-

ject and adjust and improve the ways in which metrics like the number of phishing domains are

gathered. Although this degree of change we observe from one report to another makes the re-

ports little reliable, we can agree that the amount of phishing attacks is not becoming any less.

Longterm, the ratio of phishing websites to all Internet hostnames has more than doubled rising

from approximately 0.047% in 2005 to 0.102% in 2018 [23]. Subsequently, the anti-phishing

community generally agrees that despite all efforts phishers are still making a lucrative return on

investment to justify growing their campaigns.

The persistent threat posed by phishing is both cause and effect of many difficult challenges

faced when trying to protect victims, who are often unaware and defenseless. Although a plentiful

legislature is in place to outlaw phishing campaigns and hackers as criminal organizations, the

technical challenges of detection, triage and attribution have yet to be solved. Finding technical

countermeasures against the distributed, unpredictable threat has become the key to user safety at

scale. Any such technical solution must consider that phishing attacks tend to leverage the targeted
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human’s carelessness or lack of attention as the weakest link. For example, human targets may find

themselves ignoring even the most expressive anti-phishing systems if their warnings frequently

raise false alerts and become an annoyance (the threshold for which is individual and context

dependent).

In this game, phishers are generally at an advantage because their success does not depend on

every single target, whereas defenders aim to defeat every single attack. Additionally, the wide

availability of exploitable Internet infrastructure and the lack of universal authentication on the

internet enables these attacks to be performed at a large-scale low cost.

It is commonly understood that organizations impersonated by phishers have a crucial role in

this duel, basically facing (corporate-) identity theft and unwillingly providing the battleground for

this attack-defense game.
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Chapter 1: Introduction And Background

1.1 Thesis Statement

The fight against online crime is an ongoing cat and mouse game and the incentive for online

fraud rises with the ongoing expansion of the Internet. Particularly phishing attacks are easy to

execute by using phishing kits and the incentive for the crime scales with an increasing number

of Internet users. The attacker’s use of independent services distributed across the Internet com-

plicates the mitigation of phishing, such that today, lowering the phishers‘ incentive is the best we

can do. Any data point about the criminals can help to understand their operations, and learn how

to stop the malicious efforts — ideally prosecuting the individuals behind it. We hypothesize that

spray-and-pray phishing campaigns are created with phishing kits that leave an implicit mark on

the sites. Furthermore, we observe that security solutions like Multi-Factor Authentication raised

the bar for Credential Theft by protecting the user’s passwords. Similarly, recent payment network

regulations were established to raise the bar for fraud on financial transactions. We hypothesize

that criminals today found ways to directly bypass these mitigations and indirectly bypass them

by shifting their focus from these increasingly well-protected assets to another asset, which is at

least as valuable: Personally Identifiable Information (PII). We propose to measure this shift and to

quantify a phishing site by the PII it steals. Finally, we claim that active infiltration is a suitable way

to study crime operations and that our analysis provides a promising foundation to automate decoy

deployment. Properly crafted decoys can trick phishers into believing they were victim informa-

tion and the data can then be traced throughout the Internet. Our case study provides a reference

of which decoy information phishers reuse, when, and where. This knowledge provides evidence

of abuse and coordinate between the affected parties, e.g. government institutions, merchants,

financial service providers, and internet service providers. We examine the following hypothesis
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Hypothesis Phishing is s shifting from Credential Theft to PII Phishing. PII Phishing cam-

paigns are created with phishing kits that leave an implicit mark on the sites. The mark can be

used for phishing classification and threat actor fingerprinting. Properly crafted decoys can trick

PII Phishers into believing they are victim information and the data can then be traced throughout

the Internet.

1.2 Contributions

The studies presented in this thesis provide the following contributions to the academic com-

munity:

• A five year dataset of raw phishing websites including the page source

• The feature importance of input field identifiers as a new phishing site feature

• The feature importance of input field descriptions as a new phishing site feature

• Application of code stylometry to de-anonymize phishers

• A new method to categorize phishing sites into three distinct threat levels

• Study PII Phishing over five consecutive years

• Study the distribution of natural languages in phishing campaigns

• A PII reference list

• A new method to profile phishing sites

• Reference study to show the implications of phishing kit profiling

• A new method to draw links between phishing sites

• A system to automatically generate believable fake input data for phishing sites

• Evaluation of the relevance for decoy data to be believable
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• Trace the phisher’s use of fake input data through the internet

• Reference study of phishers’ attempted reuse of decoy data

1.3 Background

The preface contextualized phishing as an instance of cybercrime. We discussed the historic

evolution of the threat, its current state, and the importance of anti-phishing programs. On today’s

internet, fraud is omnipresent and was estimated to cause over 44 million USD in losses in 2021

alone [22]. Prior to presenting our contributions, we will now provide the technical background

for phishing attacks and we delimit phishing attacks from other fraud.

Phishing is a commonly used term, and one could argue that almost everyone in society has

heard of phishing and has an intuitive understanding of what it is. However, some might think of

email phishing, while others think of a phishing website and it quickly becomes clear that the term

is not as narrowly defined as it could be. Therefore we will now delimit what we mean when we

talk about phishing. The next section covers the work of a phisher and the section thereafter covers

the work of a threat analyst. Figure 1.1 illustrates how their operations.

1.3.1 Phishing Deployment and Distribution

On a high level, the initiator of a phishing campaign is concerned with two main steps, the

deployment of the phishing site on the web, and the distribution of a link to that website. In a first

step, the phisher prepares a web server, which can either be hosted through public service, or it can

be someone else’s web server that the phisher compromised by exploiting a vulnerability on that

system. E.g. vulnerability scanners provide straightforward ways to succeed with this step [24].

On the webserver, the phisher then clones a target site and rehosts it, mimicking the original brands’

appearance, but being connected to the phisher’s backend instead of the original platform. In the

meantime, the phisher registers a domain name that points to that phishing site and distributes a

hyperlink to that website via email or other distribution channels, such as text messages. Note that

every phisher has mutiple options within this framework, such as choosing different distribution
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Figure 1.1: Deployment, distribution, discovery and defense of phishing.

channels or not registering a domain name, using e.g. the compromised website’s domain or the

server’s IP address directly. Different strategies may be more or less successful to evade discovery

by the anti-phishing community as we will see in the next section.

1.3.2 Phishing Discovery and Detection

On the other side of the table, a threat analyst tries to discover as many phishing sites as

possible and confirm whether they are phishing or not. Once it is confirmed the analyst publishes

the phishing URL on a blocklist, which will block future victims from visiting the dangerous

site. In particular, the threat analyst takes on the tasks of discovery and detection, meaning the

confirmation and blocking.

The discovery is often done using DNSTwist, a generator for suggestive domain names that

look like real brand names. For example, using a polygraph of the site paypal.com with the digit
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1 instead of the letter l - paypa1.com, which looks deceptively similar - or typo-squatting domains

like YouTub.com instead of YouTube.com. Another discovery method is to monitor domain name

registration, but with over 250,000 1 domains registered per day, this is a mammoth task that only

a few companies approach [25]. A more efficient method is to monitor unexpected spikes in traffic

to a site, because if a formerly unknown site sees a high access rate it is fair to ask where this

sudden popularity comes from and if it may be a scam. While these methods depend on domain

names, not every phishing site has a domain name associated with it. Especially if the phisher

decides to host the site on a compromised server, the domain name will still point to the benign

website. In this case, the malicious landing page is commonly dropped in a subdirectory using

polygraphs for the directory name rather than the domain name itself. These cases are generally

reported by a victim or by the victim’s web server itself. When a URL is reported as potential

phishing it is the threat analyst’s task to confirm the accusation in order to avoid harming benign

websites with false-positive blocklisting. Unfortunately, the classification of community reports is

inherently retroactive, because it can only be done after there was a first victim who reported it.

After the detection, URLs are shared with blocklists, lists that prevent the user from visiting the

blocklisted site and showing a warning instead. We differentiate between three types of blocklists:

In-browser blocklists, most prominently represented by Google Safe Browsing in Chrome, Safari,

and Firefox, or Microsoft Smart Screen in the Edge Browser. Commercial solutions like APWG’s

eCrime Exchange are often found in corporate intrusion detection systems and open source so-

lutions like OpenPhish and PhishTank are frequently used in research experiments. Section 2.2

debates the importance of a unique agreed-upon dataset. Another approach to blocklists is to block

the distribution of the site’s hyperlink. These solutions are often integrated into corporate intrusion

detection systems rather than the browser because most of them leverage the access to the mail

server and network traffic which they leverage to recognize patterns. We see a positive develop-

ment in several services’ integration of free solutions like email providers now often run phishing

filters for their customers. The details of phishing email mitigation are out of scope for this work,

1note that a similar amount is deleted every day
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in which we focus on phishing websites only.

A careful review of each of the threat analysts’ steps reveals several limitations. Any discovery

apart from domain registration monitoring is inherently incomplete, and even domain registration

monitoring suffers from the phisher’s ability to change the website’s content on-the-fly. In other

words, a crawler might classify the newly discovered domain as “benign”, but later on the phisher

can swap it with a malicious site.

The detection, meaning the confirmation and blocking, of phishing sites is rather slow, taking

about one hour from reporting it to getting it on the blocklist. Research shows that there is a strong

bias for certain sites and non-commercial sites like government websites are generally less well

detected. On average, 30-60% of sites bypass detection through the use of cloaking. Distribu-

tion vector blocking is much more successful, but is still estimated to oversee 5%. Of those 5%,

approximately 10% of recipients eventually click the link.

At the bottom line, deployment and distribution of phishing sites are straightforward opera-

tions, but the discovery and detection require great efforts of coordination between multiple par-

ties. The ease of deployment and distribution is further facilitated by the availability of so-called

phishing kits, which we describe in the next section.

1.3.3 Phishing Kits

A phishing kit is an abstract concept, describing the toolboxes used for the deployment of a

site on a server. The complexity of these kits varies widely and while some phishing kits offer

an administration panel to manage spam message distribution others offer unhindered access to

readily compromised web servers. In this work, we focus on kits that help with the hosting of the

phishing website itself. They may integrate custom phishing sites, provide phishing site templates,

or create clones of a target brand [82]. Crucially though, they also implement the backend to

handle the data dump for the fraudster. They may for instance store the stolen user data in a text

file or directly transmit it to the phisher via email. Furthermore, it is common phishing kit practice

to automatically move the page source from one subdirectory to another, effectively changing the
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URL and thereby bypassing blocklists. Although we can expect some phishers to use their self-

written kits themselves, it is important to understand that the creation and distribution of phishing

kits is a business in and of itself, where some criminals even offer custom feature requests for the

kit [12] or so-called phishing-as-a-service (PhaaS) solutions [74].

Phishing kit creators compete in underground markets where they get ranked based on the

effectiveness, ease of use, or perceived security (i.e., from anti-phishing systems) of their kits. All

in all, easy access to these tools lowers the barrier to entry and allows minimally skilled criminals to

become successful phishers. In fact, these tools even remove the need to speak the target language

and they can often be deployed multilingual and across borders. This ease of access has primed

the term script-kiddie, a kid (the minimally skilled criminal), who uses a script (the phishing kit)

without fully understanding the details of the script. A script-kiddie just purchases the kit online,

enters the destination email address to send the stolen information to, and uploads the generated

code to the readily available web server. Down to the spam email distribution, every step of the

way can be fully managed for the scammer, so she can lean back and wait for stolen credentials to

fly into the mailbox.

The heavy sharing of phishing kits in underground communities is the foundational observation

that motivates and enables our phishing detection research in Chaper 2.4.5 Section 3.1 and the

attribution of a phishing landing page to a phishing kit in Chaper 2.4.5 Section 3.3.

1.3.4 PII Phishing

Online fraud is an ever-growing problem causing billions of dollars of losses. While the fraud

is generally motivated by financial opportunity behind the scam schemes, we distinguish between

trick scams and identity theft. Trick scams like fake products, or ransomware are solely finan-

cially motivated and usually end with a transaction. Identity theft on the other hand extends the

threat from financial harm to an impersonation of the victim. When compared to trick scams, iden-

tity theft may also target the victim’s finances, but the real impact often remains unknown. E.g.,

victims’ bank accounts may be used as mule accounts, their address for drug trafficking, or their
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work account for industrial espionage. All three of the above are the result of a so-called Account

Takeover. In most cases, an account can be taken over by abusing the username and password

combinations obtained from phishing. However, Account Takeover is becoming increasingly dif-

ficult for hackers, who are now facing the wide adoption of Multi-Factor Authentication and the

FIDO standards. It has been shown that Man-in-the-Middle attacks can overcome these protection

mechanisms, but they reasonably lift the bar. Simultaneously, we observe an increasing theft of

personally identifiable information (PII), discussed in Chapter 4. This trend suggests the new risk

is Unauthorized Account Creation (UAC). Our case study in Chapter 10 shows that cybercriminals

today, leverage stolen PII to create fake accounts in the victim’s name. We propose a system to

infiltrate the hackers and learn more about their intentions. At this point, it is not clear what UAC

is being used for.

1.3.5 Summary

As technology advances more and more people get access today and today, most of the de-

veloped world is on the Internet around the clock. An ever-increasing number of Internet users

provide an ever-increasing number of victims for cybercriminals and while technology advances

so do the tooling for fraudsters. The simplicity in which phishing occurs at the first glance may

falsely suggest that it is straightforward to mitigate it, or one might even expect it to be a solved

problem today. In reality, though, the threat is rising. It is the volume and the diversity of cam-

paigns that make it difficult to discover or detect them and on the other hand, it is alarmingly easy

for criminals to engage in phishing campaigns without any prior technical knowledge.

In the next chapters, we study the use of two new features of phishing websites for the Detec-

tion, Triage, and Attribution of phishing campaigns. We unveil the trend of PII phishing and we

propose to fight back by interacting with phishers through decoy-data-based sting operations.
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Chapter 2: Technical Approach

In the previous chapter, we have learned that phishing is a social engineering technique that is

easily accessible even for criminals with comparatively low technical sophistication. Any criminal

mind can run phishing campaigns by using easily accessible phishing kits that automatically deploy

malicious websites and send the access link to potential victims. We observe that many phishing

kits leave an implicit mark on the website they create. This chapter introduces this "mark" as new

feature set to train machine learning algorithms on. Different combinations of the two new features

are particularly well suited to detect if a site is a phishing site, to triage if it is a PII phishing site

and to attribute the site to a known set of phishing kits. We motivate this use with a case study in

Section 2.4.

2.1 Features Engineering for Phishing Classification

Even though the technical depth of the threat may seem shallow, the threat is real and its true

danger lies in the low entry barrier yielding a large quantity of small independent attacks from

distributed origins and targeting independent victims. The anti-phishing landscape has matured

and we see native implementations of free blocklists in almost all modern web browsers today,

but we also exhibit room for improvement when it comes to proactive phishing detection and the

quantification of a phishing site. This chapter will introduce two new features to detect and triage

phishing sites by. The features can be extracted from any given (phishing) website and they can

be used in any given machine learning algorithm. Next, this section delimits our approach from

existing approaches in the motivation section, Section 2.1.1, that includes related work. Then, we

present the details of our method (see Section 2.1.2) and the case study in Section 2.4 examine

its implications. As a result, we will see that in addition to the classification of whether a site is

phishing or not, and what is being phished for, the features are well suited to perform a phish-
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ing kit attribution of each site. Chapter 2.4.5 considers the application to Detection, Triage, and

Attribution of PII Phishing attacks.

2.1.1 Motivation

Existing anti-phishing solutions either implement the detection of content similarity or behav-

ioral similarity between a phishing site and a brand. Behavioral similarity analyzes patterns in the

data by leveraging access to meta-information about the attack. It is therefore well suited for use

in Security Operation Centers (SOC), but the general public does not have access to such enter-

prise resources when surfing the Internet from personal devices. Hence, we consider behavioral

solutions outside of the scope of this work and focus on the presentation of content similarity-

based solutions. Historically, various hash comparisons of all source files in a web project have

been proposed as an intuitive solution [26] and they have been extended to URL segment compar-

ison [26]. Since then, smarter solutions have investigated the high-level "style" of websites using

techniques such as HTML tag enumeration, word count, and image profiling [27, 28, 29]. Today’s

cutting-edge solution in detection research is a 16 layer convolutional neural network called Vi-

sualPhishNet that classifies phishing sites based on screenshots. VisualPhishNet is the result of a

long line of AI and Deep Learning applications to the phishing task, but most of which assumes

prior knowledge about which site the phisher is cloning, e.g., the classifier asks: "Is x a clone of y

given y?". Furthermore, it has been shown that even VisualPhishNet’s high accuracy of 89% can

be can be decreased to 69% through adversarial examples [30]. A different line of work considers

the de-anonymization of programmers. Intuitively, an application of de-anonymazation techniques

to phishing seems intriguing. A paper by Caliskan et al. attributed C/C++ source code to one of

250 programmers based on their implicit preferences for layout, lexical, and syntax when writing

code [31, 32]. They used a random forest model and achieved 98% accuracy, but the approach

has not been applied to web applications. By generalizing a hacker’s programming style, one may

be able to detect entirely new cases, zero-days, that are cloning formerly unsupported brands. We

follow this work’s intuition and analyze the criminal web developer’s programming preferences,
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asking where do phishing sites differ from benign sites?

2.1.2 Form Field Labels and Identifiers

The technology stack of a phishing site is identical to that of a benign website. While the

backend may be arbitrarily complex, frontend technologies are standardized by the World Wide

Web Consortium (W3C) and they mainly use HTML, CSS, and JavaScript. Especially if we assume

that a phishing site is a direct clone of a benign target brand most of its page source components

will be identical, or at least similar. We know that HTML anchor tags have been studied at length

and many phishing classifiers use the ratio between external and internal links as a feature. The

number of image tags in a website is another popular phishing classification feature. Carefully

dissecting page source components, we observe that more features exist, that have no yet been

investigated in the academic literature to the best of our knowledge. Given that it is a phishing

sites primary purpose to catch victim data almost every phishing site implements a form field to

enable data submission. Form fields commonly use the HTML <input> tag, which we will now

study in detail.

According to the HTML language specifications, each <input> tag on a website can be uniquely

Figure 2.1: Most if not all phishing sites implement form fields.
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identified by its ID attribute. Other tags can therefore use the ID attribute to refer to an input field.

For example, the <label> tag has a an attribute called for to maintain which input field it is labelling.

It provides a description for the user to know which information to enter into which field of the

form. According to the HTML5 standard, we can find user-facing label information at five distinct

locations [33], highlighted in Listing 2.1.
1 <input type='email' label='Email'>
2 <input type='email' *-label='Email'>
3 <input type='email' placeholder='Email'>
4 <label for='asd'> Email </label> <input type='email' id='asd'>
5 <div> Email <input type='email'> </div>

Listing 2.1: Standard implementations of HTML labels to query users for specific pieces of

information.

Similar to the <label> tag, other web technologies, most prominently JavaScript, can access

HTML components by their ID. For example, it is a common practice to process user input using

JavaScript. In this case, JavaScript implicitly uses the input field’s ID attribute as a variable name

to store user input in. In doing so, the input field’s ID leaks the phisher’s personal preferences -

the choice of a variable name. As we will show in the case study in Section 2.4 phishers modifiy

these variable names for integration with the phishing kit backend, or the site may not be a clone

but be generated by a phishing kit that supports the impersonation of many kits, but all using the

same form fields. Similarly, to the input field ID, the input field descriptor leaks information about

the phisher. Regardless of whether the descriptor is implemented as a label or a placeholder (see

Listing 2.1), it summarizes what the phisher is interested in stealing .

This work proposes to use the both the HTML <input> tag’s ID attribute and its descriptor as

a new feature for the Detection, Triage, and Attribution PII Phishing Campaigns. This approach is

promising under the hypothesis that even if most of a phishing site’s page source is copied from a

target brand, fraudsters modify the input fields for their individual needs. Chapter 2.4.5 Section 3.1

discusses how we use a phisher’s personal preferences, like the ID attribute, for phishing detection.

Chapter 2.4.5 Section 3.2 shows how we parse input field descriptors to triage a phishing site as one

of three threat categories, Contact Gathering, Credential Theft or PII phishing, and Chapter 2.4.5

Section 3.3 promotes the how we can use the features to profile a phishing site and build clusters
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Figure 2.2: Overview

of related phishing kits.

Our analysis engine is designed to dynamically execute phishing websites, such that on top of

the site’s static HTML all JavaScript-generated content modifications are rendered. This way, it

is ensured that we analyze exactly what a potential victim is presented with. At first, we parse

the page source to extract the lexical, layout and syntax features from Caliskan et al. [31] that we

introduced in the previous section 1 . Then, we extract input field descriptors 2 , and input field

identifiers according to Listing 2.1 3 . We then use respective combinations of these features to

Detect, Triage and Attribute PII Phishing Campaigns as depicted in Figure 2.2

First, the detection engine uses all three feature classes. The evaluation in Chapter 2.4.5 Sec-

tion 3.1 highlights that stylometry features cannot decide the task by themselves, but using label

values and input field ID attributes raises the accuracy from 68% to 92%. Second, the triage sys-

tem only uses an ordered word vector of label values to abstract any given website. For example,
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a generic landing page that asks for the visitor’s email address and account password will be ab-

stracted as the vector <email, password>.

The word vector is then used to identify the personal or sensitive information that the phisher is

trying to steal. Each element in the word vector indicates a threat category. Our engine facilitates

this mapping and ranks the site with respect to its most severe threat category. Details in 2.4.5

Section 3.2. As a side-effect, this process iteratively refines a PII reference list that we discuss

further in Chapter 2.4.5 Section 3.2. Furthermore, label vectors can be used for language detection,

revealing the target audience of the scam. The third piece of our system fingerprints phishing sites

for threat actor attribution in Chapter 2.4.5 Section 3.3. Here, attribute phishing sites to phishing

kits they may have been created with. In the absence of a ground truth dataset with labeled phishing

kits, we propose to use the CorpRank algorithm to build a hierarchical social network of phishing

kits. This approach is based on the observation that JavaScript and PHP internally use the HTML

<input> tag ID attributes as variable names. In other words, a phisher, or phishing kit needs to

specify them to send the stolen information from the frontend to the backend of the site. As a

consequence, these development artifacts may hint at the phishing kit that generated, used, and

reused them. The presence of identical variable names between two or more websites indicates a

relationship between the toolkits that generated the site.

The next section presents the dataset that we use for the rest of this project. After that, we

illustrate the empirical results of a case study in which we manually reviewed the implications of

this feature. Chapter 2.4.5 Section 3.3 further elaborates on the topic of phishing kit fingerprinting

and shows how mapping them into a social network allows us to quantify relationships between

phishers.

2.2 Dataset

Along with new methods for employee training [34, 35, 36, 37, 38], life cycle analyses [39],

and case studies [40], many new techniques to detect phishing have been proposed in the last

years [41, 42, 43, 44, 45, 46, 47, 48, 49]. We found that the attempt to compare these techniques
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unveils a structural limitation in state-of-the-art phishing research: the lack of a uniform, agreed

upon, and consistent benchmark dataset. Related work suggests the availability of many different

phishing datasets, but most of them are blunt collections of tabular index data. They fall short

by not providing raw data. Recently, the PhishBench project introduced a framework to compare

new machine learning classifiers [50]. While this is a tremendous contribution, PhishBench is only

helpful for model comparison, and less so for developing solutions that go beyond the choice of the

model. For example, PhishBench uses a fixed set of already extracted features, which is restrictive

since without raw data we cannot research new features. We present a new source code-based

feature that differs from existing content-based features like the frequency of internal and external

hyperlinks. Similarly, though it has been repeatedly reported which industries are targeted, raw

data allows us to ask additional questions, such as what information has been stolen. A com-

mon alternative to a benchmark dataset is to leverage publicly accessible feeds like PhishTank and

OpenPhish. In fact, Chiew et al. compare 38 phishing papers, 36 of which evaluate their systems on

PhishTank (two rely on OpenPhish and Google Safe Browsing) [51]. While we agree that this is a

good solution, we note that the feeds themselves are error-prone and their sources are not reported,

hence, even with raw data from phishing feeds, the ground truth may be skewed[52]. Furthermore,

any point in time evaluation may be subject to seasonal biases like the difference between phishing

hosted around Christmas compared to tax season[53]. Lastly, we know the indexing of phishing

feeds to be delayed by several hours, meaning that the data can only reflect sites from a later life

cycle phase, and cannot be used to study an attacker’s initial activity profile. Once a site is listed by

a phishing feed, it is likely that the phisher has already abandoned the project [39]. Researchers de-

veloping new phishing classifiers often overcome this hurdle by leveraging their proprietary access

to company data and insider information. Utilizing proprietary data is invaluable for classifier de-

velopment and the insights benefit the community through stronger and faster detection, but from

an academic standpoint, it is crucial to facilitate an objective comparison of models - even among

models that use different features. Other research branches, like the bug-finding community, have

long realized this issue and they have employed a number of easy-to-use representative benchmark
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Dataset Name Collection Period Data Source Tool(s) # Pages # Features

PhishBench (2.0) [50]
9/5/2018
- 10/30/2018 PT, OP, APWG n/a 95,524 200/X

UCI Phishing [57] 03/26/2015 n/a n/a 181,559 30/X

PhishMonger[58]
3/15/2016
- 5/13/2016 PT wget 88,754 all/

Phishing Dataset
for ML: Feature Eval. [59]

5/2017
- 6/2017 PT, OP n/a 5,000:5,000 48/X

UNIMAS
Phishing Dataset [51]

5/2017
- 6/2017 PT

wget, webshot,
whois 15,000:15,000 all/

BlackPhish[60]
4/2018
- 10/2018 PT Propr. Java app 4,097:5,438 all/

Table 2.1: Overview of state-of-the-art phishing datasets

datasets that have become broadly adopted [54, 55, 56]. In our need for a representative dataset,

we found three peer-reviewed studies that open source their raw phishing data. We combine these

datasets and extend them with our own data collection. We compile them as one benchmark dataset

and we open source five years’ worth of raw phishing data - a bundle of 165,387 sites that meet the

following criteria:

1. Visual renderability

• Raw Client Side Source Code (HTML, CSS, JS)

• Media and Image Files (.png, .jpg, ...)

2. Hosting Information

• Raw URL/ Domain Name Information

• WHOIS Records

Table 1 lists six open-source phishing datasets published in prior work.

We note that the datasets are anywhere between three and six years old and range in size from

4,097 to 181,559 phishing sites. However, the largest dataset is also the oldest, and the two largest

datasets do not provide raw data. For our new dataset, we aggregate the three datasets that have

raw data, indicated by a checkmark in Table 1 column Features. We then complement it with our

own collection from September to October 2019 and January to February 2020.
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Original Dataset Rendered (erroneous) Unique URL
Benign
2016
2017
2018
2019

35,983
5,077
20,206
4,097
100,004

16,023 (19960)
3,732 (1345)
11,275 (8931)
3,661 (436)
63,638 (36366)

11,697
3,559
3,364
2,979
46,405

Total 165,367 98,329 68,004

Table 2.2: Overview of the dataset compiled for this study, showing year of collection, size,
whether we were able to render it, and the availability of original domain names.

During these time periods, we scraped the OpenPhish live feed and stored non-duplicate in-

stances of raw phishing sites using wget. We further add WHOIS entries and URLs to the data.

We note that any change in the phishing landscape due to the global health crisis recognized in

March 2020 is out of scope for this study [61].

While our dataset can only approximate the real phishing landscape, the aggregation of diverse

collections over different time periods and varying peer-reviewed publications reduce potential

biases and it does not introduce additional collection bias compared to existing collections that also

use proprietary detection mechanisms or rely on public feeds. However, we provide potentially

interesting historical data for longitudinal studies and time series analysis. The details of our

dataset can be found in Table 2. We will now use this dataset to evaluate our approach to Triage,

Detect, and Attribute PII Phishing Campaigns.

We will now share the results of an empirical study performed on this dataset and we will

thereby review the implications of our newly introduced features.

2.3 Case Study

We have motivated the use of input field identifiers and input field descriptors as potential

indicators for phishing. We have also reasoned that they reveal the phishers goals, and they leak

a bit of information about the phisher himself, e.g., which phishing kit she prefers. To better

understand the implications of the leakage, we will now present our findings from a manual review

of the dataset. Mainly, we extract the new features from every site in the dataset and group the sites
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(a) First instance of an obvi-
ous phishing attempt using five
brands at once.(2017)

(b) Second instance of the same
kit but supplied with slightly
different logos. (2017)

(c) A third caption of the same
kit but from a different year in
the dataset (2016).

Figure 2.3: Three instances generated by the same phishing kit. Hard to detect by image processing
and URL monitoring, but easily detectable by our novel technique - clustering input field IDs.

by similar feature values. Then, we randomly open a sample set of the sites and visually compare

them.

While the dataset holds over 150,000 websites, it would not be very interesting to enumerate

the number of kits in the dataset. Instead, we manually review cases that reflect novel insights

such as the relationship between the kits. To evaluate the value of these insights for active defense

and enhanced attribution one would need a playground or ground truth dataset, which we have for

phishing classification, but not for underlying kit usage. Alternatively, we perform five case studies

to demonstrate how the new datapoints can contribute to threat intelligence investigations.

2.4 Case Study Findings

2.4.1 Case Study 1: Variable Names as Phishing Detector

Some phishing attempts are easy to spot for the trained eye. The Example shown in Figure 2.1

shows a fake website that suggests access to Dropbox files through one of four different authenti-

cation methods, none of which is Dropbox itself. The mock-up fails to use any of the five brand

logos correctly and seems intuitively suspicious. While recognizing such counterfeit is an easy task

for the human eye, it may still be challenging to provide a technical solution that is able to label

this site as phishing. Most recently, image classification-based approaches have been proposed to

detect phishing, but an image classifier may be fooled by the far-from-real logos and it may not be

able to attribute the page to a particular brand, as it incorporates five brands at once. Our solution
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however abstracts the visuals away and emphasizes the fact that the three slightly different fakes

in Figure 3.2 rely on identical input-field variable names:

<Emailother, Passwdgmail, Passwdother, Passwdyahoo, username, mailtype, Emailgmail, i0118,

lgnId1, pwdId1, Emailyahoo, passwd, Email, Passwdhotmail, Emailhotmail, Emailaol, Passwdaol,

Passwd >

Here the same kit was used to create two visually different sites. While our 2016 data set does not

contain image files (see Figure 2.3c), we can learn from it that the same kit has been active in at

least 2016 and 2017. This case demonstrates our claim that input field ID analysis can be used not

just to cluster sites but also to initially detect a phishing site.

2.4.2 Case Study 2: A social graph can track phisher’s adaptation

We can use overlapping vector elements to build clusters, by linking vectors that (partially)

include each other. For example, we find the following vector in the dataset:

<bgresponse, Passwdhidden, emr, sessionstate, SessionState, Email, checkedDomains, continue,

identifiercaptchainput, checkConnection, gxf, GALX, scc, ProfileInformation, identifiertokenaudio,

(a) Phishing site of a unique variable name vector,
indicating the use of a distinct phishing kit or evo-
lution of a kit.

(b) Visually different phishing site, but
with a variable vector that’s a subset of the
vector presented in Figure 2.4a.

Figure 2.4: The evolution of a phishing kit or a phisher’s technique.
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pstMsg, osid, Page, identifiertoken, profileinformation, ss, utf8, identifiertoken, rm, ltmpl, identi-

fiertokenaudio, historystate0, service, rmShown>

Which fully includes the vector:

<checkedDomains, checkConnection, pstMsg>

Here, either phisher A has learned from phisher B, like built a phishing kit on top of an existing

one, or phisher A has improved the attack over time - a claim that’s further backed when two seem-

ingly different pages use the same label, the same variable names and target the same brand, like

in this example from Figure 2.4.

2.4.3 Case Study 3: Linking Variable Names

Variable names link to individual Threat Actors

Our method leverages the nature of hacker culture where obscure techniques are executed by

individuals who hide their traces but still long for credit and reputation. This psychological aspect

is not the least reason why our method works and this can be further understood and emphasized

by the hacker’s banner we found inside an HTML comment: Figure 2.5 shows the same nickname

(or handle) from the banner was used to declare variable names and our analysis from Section 2.1.2

successfully detected it as one of the 158 unique fingerprints we exfiltrated from the dataset.

Variable names link to Phishing Kits

Phishers use kits to automate their business. An investigation of existing phishing kits can

be challenging because they are not commonly shared in public. While some tools can be found

on GitHub we expect the darknet market for it to be much larger and much more sophisticated.

However, one kit stands out for being distributed with Kali Linux and its wide adoption by many

professionals such as penetration testers. The Social Engineering Toolkit (SET) is arguably one of

the most popular phishing kits out there - if not the most - and thus we decided to employ it as a

reference point for our case study [62]. SET offers an function to create a template website that

mimics Google’s Workspace login page. That Workspace clone is visually similar to the original,
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but a look at its page source shows how SET implicitly marks its sites with a unique choice of

input field IDs. Figure 2.6 shows the benign landing page, and its SET clone side by side.

Variable names link to Victim Brands

Other programs are created with less malicious intentions. HTTrack, for instance, does not

provide capabilities to administer a campaign or even to harvest inputs. Instead, it solely focuses

on generating an exact clone of its input [63]. Motivated by HTTrack we investigate and find that

phishers frequently adopt variable names used in the original target page. Figure 2.7 shows this

by comparison of an original page, a fake of that brand, and their respective source codes side by

side. Specifically, Microsoft uses the variable i0118 for its password fields.

(a) The same hacker’s banner as discussed by threat intelligence on Twitter.

(b) A hacker’s banner we found by following the variable name analysis.
The hacker was active in 2017 and 2019.

Figure 2.5: A cyber criminal’s unique fingerprint.
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(a) Original Login page at google.com
(b) Fake Google Login page created by SET. Using
different variable names than the original

Figure 2.6: A benign site and its malicious clone, implementing different input IDs - an artifact of
the underlying phishing kit called SET

(a) Original Login page at microsoft.com (b) Fake Microsoft Login page created using identi-
cal (unique) variable names

Figure 2.7: A benign site and its malicious clone, utilizing identical input IDs - an indicator that
can be used to link a site to its target brand.

2.4.4 Case Study 4: Variable Names make good clusters

Not all phishing is based on cloning real web pages. Some phishers compose web pages that

look like unique landing pages, unassociated with any target brand (see Figure 2.8). Here, the

linkage is not possible via visual similarity, but these instances are detectable by the technique of

analyzing the input field’s ID attribute, which are identical for both subfigures.

2.4.5 Case Study 5: PII Phishing sites feel more authentic than Credential Stealing

As we will show later, PII Phishing is an increasing trend (see Chapter 2.4.5 Section 3.2. When

it comes to the technical implementation of this threat it is striking that even sites with overlapping

vectors appear vastly different, with the only commonality being variable names that indicate PII

Phishing such as asking for credit card security codes or social security numbers. From our manual
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review, we conclude that these websites are much more structured, more authentic-seeming, and

more believable. We reason that PII Phishing is more likely to be custom-made as opposed to

utilizing a kit. This conclusion is further backed by our observation that those phishinng sites that

implement unique input field ID attributes, ask for PII more frequently than sites that overlap with

others a lot. Four examples of such professional seeming PII Phishing sites can be compared in

Appendix D.

(a) Generic login page.
(b) Different looking generic login page from the
same cluster.

Figure 2.8: Two visually different instances of the same phishing kit creating generic webmail
login pages.
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Chapter 3: Detection, Triage, and Attribution

In the previous chapter, we have learned about two website-features that every phishing site im-

plements. To ask user’s for their sensitive data, phishing sites need input fields and these input

fields’ ID attributes and their descriptive labels make for an interesting characteristic. The previ-

ous chapter also motivated the use of these two features for the Detection, Triage, and Attribution

of PII Phishing, which we will evaluate in more detail now. Section 3.1 considers the detection

of PII phishing using JavaScript stylometry plus the two new features. A thorough evaluation of

feature importances quantifies how valuabe the two new features can be for this particular task. In

Section 3.2, we use the input field descriptors to categorize which information a phishing site is

stealing. The section illustrates a trend study, a language distribution study, and a PII reference

list. Lastly, we leverage the two new features as fingerprints of the phishing kit that generated the

site, as was motivated in Chapter 1.3.5 Section 2.4.

3.1 Threat Detection

This section will build up from related work to our proposed method of using input field fea-

tures for phishing detection. We compare the importance of input field features to other JavaScript

programming artifacts and we will find that the password fields ID attribute constitutes the most

informative indicator of whether a site is phishing or not. Since passwords intuitively comprise the

essential piece of information to be stolen in credential theft, this finding confirms our claim that

phishers modify the fields they care about and phishers implicitly leave a mark on them, if they are

not careful.
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3.1.1 Introduction and Related Work

Comparison-based phishing detection has been a popular technique for over 10 years [64] and

the similarity between clone (phishing) and cloned site (target) has been studied extensively [27].

Naturally, comparison-based techniques expect the target brand to be known a priori. This work

focuses on improving the detection of phishing sites without using brand labels because brand

labels introduce bias and do not protect victims who are not represented by a label. We found

that related work is based on a rather small feature set of around 30 features and feature engi-

neering has not been discussed recently. Therefore, we investigate a feature set that has not been

applied to phishing detection yet. In De-anonymizing Programmers via Code Stylometry the au-

thors suggest that programming languages, just like natural languages, are subject to the speaker’s

individual style [65]. The authors show that a random forest trained on 51 lexical, syntactic and

layout features can successfully be used to attribute source code authors based on only a few lines

of code. The paper reports 97% accuracy in a closed world experiment, analyzing the labeled

submissions of Google Code Jam participants. This method has reportedly been picked up by sev-

eral government institutions and intelligence agencies and is currently being used to identify threat

actors [66]. The method was originally demonstrated for C/C++ and Python code and the adap-

tation to JavaScript has been proposed but has not been evaluated on real-world web applications

yet [67].

3.1.2 Phishing Detection

We are the first, to the best of our knowledge, to apply code stylometry to real-world JavaScript.

We reimplement the original algorithm in Python, using scikit-learn’s RandomForestClassifier and

VarianceThreshold based feature selection. We respect all 51 suggested features, except for word

unigrams which have been shown to be secondary and which cause a lot of runtime complexity

overhead for large codebases like ours. Our Abstract Syntax Tree (AST) features are based on

the esprima project’s AST builder for JavaScript [68]. From the analysis of 165,387 phishing

sites’ embedded and external JavaScript, we learn that code stylometry cannot easily be applied
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to de-anonymize phishers. In the closed world binary task, our random forest can only achieve

68% accuracy when deciding if a site is phishing or not. Carefully reviewing the feature selection

highlights multiple issues that are unique to real-world JavaScript and do not commonly occur in

the originally studied C/C++ code, or artificial codebases:

1. The ratio of proprietary code to common library code

2. White space optimization to reduce network overhead

3. Code obfuscation to hinder detection and unsolicited reuse

While all three characteristics may occur in C/C++ projects we reason that they are more com-

mon for JavaScript. Compiled, low-level code like C/C++ is used with performance optimization

in mind, which makes it more likely to be handwritten, and even external libraries may be rewritten

to avoid linking overhead. On the other hand, white space optimization and source code obfusca-

tion are more of a concern for interpreted code, like JavaScript, where the source code is delivered

to the user in plain text. Although we could reason that these characteristics are more prevalent in

phishing sites, our results suggest that they are not unique enough to be used as phishing indicators

and that they heavily influence the source code style, rendering most of the features suggested by

Caliskan et al. redundant.

3.1.3 Evaluation

Figure 3.1 show the feature importance calculated by our random forest classifier. Contradic-

tory to the original findings, AST features are the weakest feature group, as only 3 out of 1,660

possible AST node bi-gram combinations are part of the top 10 most important features. The av-

erage line length and frequency of some keywords (if, for, new, this, package, function, instanceof

) create the rest of the top 10 list. The results are unsurprising since we remember that phishing

sites are trying to closely resemble their benign counterparts. On the other hand, we hypothesize

that the phisher may adjust the input forms to handle the harvested information. Subsequently, we

relax the feature vector to only use the HTML <input> tag’s id-attribute. This is promising because
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Figure 3.1: Feature importance of lexical and layout features

id-attributes are internally used as JavaScript variable names to store and process the user input.

Phishers who operate at scale are likely to use phishing kits to make these changes and integrate

the frontend (phishing site) with the backend (verification and retailing). A case study in Chap-

ter 1.3.5 Section 2.4 shows that the phishing kits are likely to leave a mark on the input fields they

work with, and this analysis shows that input field IDs and input field labels can be used to detect

(a) Input field labels only (b) Input field id-attributes only
(c) Labels and id-attributes com-
bined

Figure 3.2: JavaScript Stylometry features and their respective importance measured. Our two new
features (identifiers and descriptors) add significant value.
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(a) ROC curve of phishing classifier (b) Confusion Matrix of phishing classifier

Figure 3.3: ROC curve and Confusion Matrix measuring the quality of our model. It is similarly
good at both tasks, making negative predictions correctly and making positive predictions correctly.

a phishing site with 92% accuracy. In addition to the high accuracy itself, we can show that the

accuracy was achieved due to the features we newly introduced. The most important features indi-

cate that the labels of password fields and the variables used to store phished passwords contribute

to the two most important features (see Figure 3.1). This shows that input field identifiers and in-

put field descriptors can improve over state-of-the-art stylometry features and they add significant

value.

3.1.4 Cloaking Detection

The newly introduced feature set has been shown to successfully aid phishing detection in the

last chapter. A recent development in phishing is the use of detection evasion techniques, so-called

cloaking. This chapter considers the use of HTML <input> tag id-attributes for the classification

of phishing sites as cloaked or not, and it shows that the feature may help to decide if and which

cloaking technique a phishing site is using. This experiment bolsters the hypothesis that HTML

<input> tag id-attributes expose information about the phisher’s technology stack.

Phishers naturally aim to avoid detection. Therefore, modern campaigns analyze their visitors

to decide which content to present. This strategy is commonly referred to as cloaking and has

been investigated extensively in recent work [70], [71]. From a high-level view, it has to be dif-
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ferentiated between server-side techniques to reject certain connections [30,37,44] and client-side

cloaking techniques that use JavaScript to profile the victims behavior on the site. The popularity

of JavaScript for client-side cloaking makes it a perfect use-case for our newly introduced method,

the evaluation of a sites JavaScript Sylometry. Client-side cloaking can be particularly dangerous

because it enables the implementation of complex interactions with potential victims.

CrawlPhish: Large-scale Analysis of Client-side Cloaking Techniques in Phishing by Zhang

et. al. defines a set of eight different client-side cloaking techniques, namely, User-Agent, HTTP

referrer, time zone, geolocation, mouse movement, cookies, random access, captcha, and popup

all are used in the wild. Note that this list also supports our reasoning about offensive deception

techniques in Chapter 6, saying that phishers verify their victims and stuffing engines will have to

overcome some obstacles.

Methodology

To evaluate the use of JavaScript Stylometry features for cloaking detection, we propose to

reuse the dataset collected by the CrawlPhish project. The dataset is compiled of 42,123 HAR files

and a list of the features and labels that the authors used for their own research. We will extract the

HTML and JavaScript from the HAR files, such that we can parse the JavaScript for stylometry

and the HTML ofr input field identifiers and input field descriptors. Using this feature set, which

we originally introduced in Chapter 1.3.5, we will then explore the following experiments:

1. Binary Cloaking task

• CodeStylometry only

• CodeStylometry + labels + identifiers

2. Muli-Class Cloaking task

• CodeStylometry only

• CodeStylometry + labels + identifiers
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A random forest classifier is trained on each of these feature sets. From the original dataset, we

select such instances that either use JavaScript through external linking, or embedded in the HTML

via <script> tag, or both. Of those source code files we keep the one that can be successfully

processed by our AST parser, which detect unknown node types in 5.8% of them. In the end we

work with 13,397 sites that use external scripts and xxx sites that embed the code. Note that some

sites use multiples <script> tags so we work with 249,266 script and count the features across those

that came from the same HTML.

Like in the last chapter, we extract 1600 AST node bi-grams, 54 lexical and 6 layout features.

Then, we reduce the feature set by removing all features that do not meet a variance threshold.

The threshold is set to cut off features that are 0 or 1 more than 80% of the time and this threshold

reduces our feature set from 1661 to 400. Then, we split the data into 80% training and 20% test

cases. and use the training dataset to train a random forest model with a maximum tree depth of

9 nodes, at each node, the tree considers up to 𝑙𝑜𝑔2(# 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) = 9 features, evaluating each

possible split’s information gain using Shannon entropy; and using out-of-bag samples to estimate

the generalization score.

In a second experiment, we split the binary labels into the specific cloaking techniques that the

phishers used. We use the same classifier configuration, but now we predict 71 labels instead of

(a) ROC curve of cloaking classifier. (b) Confusion Matrix of cloaking classifier.

Figure 3.4: ROC curve and Confusion Matrix measuring the quality of our cloaking detection
model. It is particularly good at predicting uncloaked sites as uncloaked.
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Class 0 4 6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 26 27 28 29
Precision 0.73 0.82 0 1 0 1 0 0 0.6 0 1 0.75 0.7 0.45 0.85 0 0.5 0 0 0 0.75
Recall 1 0.07 0 0.5 0 0.67 0 0 0.28 0 1 0.6 0.88 0.97 0.79 0 1 0 0 0 1
F1 Score 0.84 0.13 0 0.67 0 0.8 0 0 0.38 0 1 0.67 0.78 0.62 0.81 0 0.67 0 0 0 0.86

Class 30 34 36 37 38 39 42 43 44 50 51 53 56 57 59 62 63 65 66 69 70
Precision 0.83 0 0 0 1 0.68 0 0.93 0 0 0.25 0.57 0.54 1 1 0.67 0.5 0 0 0 1
Recall 0.99 0 0 0 0.05 0.42 0 0.7 0 0 1 0.48 0.3 1 1 0.67 0.33 0 0 0 0.25
F1 Score 0.91 0 0 0 0.1 0.52 0 0.8 0 0 0.4 0.52 0.39 1 1 0.67 0.4 0 0 0 0.4

Accuracy 0.52

Table 3.1: Model metrics for the cloaking detection binary class

two. All 71 labels are found in the original CrawhlPhish Dataset and each of them represents either

one of eight cloaking techniques, or a combination of multiple cloaking techniques. For the multi-

class tasks, the random forest achieves an average accuracy score of 52%. Table 3.1 summarizes

each quality metric per class.

3.1.5 Discussion

We will now discuss the implications of our measurements. For the binary tasks, the confusion

matrix in Figure 3.4b suggests that the model is very accurate at confirming if a site is not cloaked,

which it tells with 95% confidence. For cloaked sites however, the model performs almost as bad

as guessing. We see that the model classifies a cloaked sites as cloaked or not with a ratio of 49

to 51. The ROC curve in Figure 3.4a shows a steep increase, meaning that the classifier makes

confident decisions up to about 58% accuracy before it starts to make more mistakes. From there,

the curve makes a jump, meaning that it can only make more good predictions at a very high risk

of making false predictions. Knowing the strengths and weaknesses of this model, we envision to

use it as a preprocessor for an un-cloaking system. When threat analysts want to get past cloaking,

many different methods have to be tested, and significant time effort has to be made, not the last

expensive manual reviews. Knowing that a site is unlikely to be cloaked can tell the analyst not

spend too further resources on them..
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3.2 Threat Triage

In the last section, we have seen that the two newly introduced features, input field IDs and

input field descriptors are valuable indicators of whether a website is phishing or not. It appears

that the phishers use of phishing kits that predeclare these values for post processing purposes and

better integration with the rest of the kit. Especially the ID attribute associated with password

fields tells if a site is a threat. In this section we investigate the other one of the two features, the

input field descriptor. The descriptor is a plaintext user-facing text value to tell a website visitor

what information to enter. A collection of all input field descriptors summarizes the malicious

site’s implicit goal, and it thereby implicitly leaks information about the phisher, like e.g., which

information the phisher is stealing may tell which sort of crime the phisher engages in. We propose

to use the new feature for the triage phishing sites into different threat categories. Knowing the

purpose of an attack provides an additional data point to prioritize take down efforts and to poten-

tially notify impacted parties what to be wary of. We will now introduce how phishing is mitigated

today, showing that a strong focus on password security yielded a shift from Credential Theft to

PII Phishing in Section 3.2.2. Another insight of the descriptor analysis can be which nationalities

the phisher target (see Section 3.2.4) and we summarize all or findings in Section 3.2.5 to build a

PII reference list that can be use to implement data protection rules.

3.2.1 Introduction

Promising anti-phishing solutions, such as Multi-Factor Authentication (MFA), the FIDO stan-

dard, public blocklists, email, and call filters are evidence of a recent race to mitigate credential

theft - not just for corporate network users, but also for public Internet users. At the same time,

these solutions may convey a false sense of protection and distract from other threats. As a com-

monality, all phishing attacks exploit the human factor but their ultimate goals can be very different.

While some phishers are looking to make a quick buck from careless end users, others aim to in-

filtrate foreign governments, perform industry espionage or run underground crime by setting up
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mule accounts for money laundering, drug deals, human trafficking, or terrorism. Stealing account

credentials is only one way for criminals to achieve these objectives. Stealing personally identifi-

able information (PII) is an overlooked but ongoing and ever-growing threat that allows criminals

to impersonate their victims. It can pose tremendous financial consequences to the impersonated

victims including the cost and time it takes to initiate or defend against legal actions, the potential

impact on credit scores, and the unrecoverable loss of reputation. Recently we see government and

law enforcement agencies collaborating to prosecute e-criminal activities [], but their job is diffi-

cult since many criminal activities occur within unfriendly national borders and are geo-fenced to

avoid attacking their hosting country. Even server take-down requests can be vain if the hosting

organization does not collaborate because the investigator does not provide the right evidence. In a

race to prevent crime, and protect innocent victims, it is important to gather extensive threat intel-

ligence and not leave any trace unnoticed. The academic community has intensely studied whether

a website is a phishing website or not and we propose to extend this question by asking: What is

being phished for? In this paper, we analyze the content of a confirmed phishing site and represent

it as a word vector of form field labels that indicate what information the offending site asks for.

3.2.2 Triage Schema

We triage phishing landing pages based on the observation that phishing has matured beyond

credential stealing and is increasingly being used for identity theft. Typically, phishing campaigns

may either target the general public, or carefully chosen individuals (spear-phishing/ whale phish-

ing). Regardless of the victim, every phishing campaign results in the victim’s loss of sensitive

information. In this study, we do not analyze which victim class experiences a higher threat or

which of these campaigns have a higher impact. Instead, we focus on whether the stolen in-

formation can be used to impersonate the victim, namely, we triage based on what information

is targeted. Understanding the risk of identity theft is a valuable first step toward detecting and

mitigating its threat. The following rating scheme without loss of generality delineates phishing

websites according to the sensitivity of the information they steal:
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Contact Gathering Gathering of (publicly available) contact information for subsequent tar-

geted attacks, but without tricking the user into providing secret/private information. For example,

phishing websites that pose as coupon sites may gather email addresses, without passwords, for

use by the phishers in later campaigns, or for sale on the black market for future phishing cam-

paigns by other phishers. Similarly, phishing by invitation requests only the user’s mobile number

for future targeted vishing campaigns.

Credential Stealing Gathering of user credentials that provide access to some valuable third-

party resource, account, or service. Here, the phishing website may convince the user to provide

their login account and password which provides access to their banking website, and hence, access

to their bank account. Notice that no other PII information is requested by the site.

Identity Theft A phishing website may be designed to gather the victim’s sensitive PII, suffi-

cient to steal the victim’s identity and create new accounts using that stolen identity. Identity loss

can impose significant financial losses and years of effort to deal with repairing the damage. Some

phishing websites that are spoofed, or cloned from a legitimate source, request sensitive PII well

beyond what the original legitimate site required. For example, a user’s banking website is not

likely to require their complete social security number each time the user logs on.

Intuitively, the three categories constitute a hierarchy of threat levels. Contact gathering col-

lects publicly available information, likely resulting in either spam or follow-up phishing attacks.

Credential Theft is about platform specific access tokens and only some cases may lead to a higher

threat of identity theft if PII is stolen from within that account. PII Phishing poses the highest

threat based on the following three observations:

• PII Phishing escalates the threat from the online world to the physical world (as opposed to

credential theft)

• PII Phishing can be used for identity theft which may go unnoticed by the victim (as opposed

to scam purchases)

• Stolen PII can be used repetitively and in multiple locations (as opposed to one-time scams)
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We implement this three tier model and assign each website from our dataset (see Section 2.2)

to its exclusive threat level. Each threat level is defined by a subset of 36 information categories,

that we manually derived from the dataset. Each information category is indicated by one or more

of 356 unique category indicators that we use to summarize the actual terms extracted from the

website. For example, a site that asks for the indicators "e-mail" or "email", is mapped to the

information category email, which is evidence of contact gathering (see Figure 3.5 1 & 2 ), or

credential theft, if asked in combination with a password ( 3 & 4 ).

While we are aware that our category list cannot be complete, we have met a level of granularity

that allows us to attribute each of the 66,634 labels (8003 of which were unique) to at least one

category. We achieved this by starting with a brainstormed reference list of PII categories, mapping

HTML labels to those categories, and manually reviewing unmapped labels, iteratively adding their

respective categories and indicators to the list. To the best of our knowledge, there is no equally

detailed list of PII categories available today.

The hierarchical treemap in Figure 3.5 shows a series of nested rectangles of sizes proportional

to the corresponding frequency of label terms in our dataset. The outmost large rectangles illus-

trate information categories, framing several indicators, illustrated by the smaller rectangles. The

mapping from indicator to category is further improved by a set of rules to handle edge cases. For

instance, we ensure that any name indicators in fact indicate legal names, not usernames, and ad-

dress indicators in fact indicated the physical mailing address, not the email address. Some other

indicators like ”Last 4-digits of . . . ” are also ambiguous. E.g. they can refer to either an SSN or a

bank account. However, we have found that all seemingly ambiguous indicators map to categories

that pose the same type of risk. Therefore it would not skew the threat category triage. In other

words, they form tolerable false positives at worst. Noticing that our best-effort approach is prone

to errors, we invite the reader to manually review the quality of our analysis. A complete triage

of our dataset is hosted online. The interactive sunburst diagram shows each phishing site’s label

word vector, the PII category mapping, and its threat level. In the future, we will add a feature to

click an instance to open the original phishing site, too.
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Figure 3.5: Overview of 36 information categories. each of which contains multiple indicatorss.
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Figure 3.6: Five year trend showing what information the phishing sites in our dataset target over
time.

3.2.3 The Trend of PII Phishing

We triage all sites in our dataset as one of the three threats. which enables a longitudinal trend

study showing how threat levels evolve over time. In Figure 3.6, we have measured the frequency

of each category over five consecutive years.

The graph shows that traditional Credential Theft is on the decline and it is gradually being

replaced by PII Phishing. In comparison, it is very rare for benign websites to inquire about this

kind of information. The right plot shows a threat level distribution among our ground truth data

set of benign sites. Only less than 20% of benign sites ask for PII while asking for low-risk

information is much more common there (>60%). Credential Theft (center) declined from 72% to

54%. Identity Theft (top) increased from 16% to now 31%. Contact Gathering (bottom), remained

at around 15%.A baseline dataset recorded in the year 2017 shows how common Contact Gaterhing

(bottom) is among legitimate/benign websites and how rarely they ask for PII (top).

3.2.4 Natural Language Distribution

In addition to the categorization of keywords, the victim-facing input labels reveal another

characteristic: the natural human language used by the campaigns. Language is an unambiguous

indicator of the phishing campaigns’ target audience. We used Python langdetect module [69] to

44



Figure 3.7: The datasets distribution of natural human languages.

detect languages from input field descriptors. The majority of sites are in English as the pie chart

in Figure 3.7 shows. Other languages are plotted as a bar chart using different colors per year.

We found that over half of the campaigns are crafted in English. We also find 48 other languages

including widespread languages like German which has over 100 million native speakers in the

DACH region and French, which is not only spoken in France but also in the Arabic World and

Francophone Africa. We also see a high representation of Russian and Portuguese which can be

explained by high levels of cybercriminal activity in Russia and Brazil [70, 71]. The report Usage

statistics of content languages for websites [72] allows us to compare the distribution of phishing

languages to ground truth distribution of languages on the internet (see Appendix Table C). These

statistics highlight that phishing is a global problem affecting all languages and stealing all types

of information.

3.2.5 PII Reference List

There is general agreement on what constitutes sensitive personally identifiable information,

but the abstract idea discussed by law and policy-makers does not provide actionable reference

lists [73, 74, 75, 76]. To implement data protection in practice, such a list is crucial, so many

organizations maintain their own [77]. Some policymakers distinguish between private and pub-

lic PII, where ”public” includes, e.g., birth date and address and ”private” includes financial and
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medical information, among others. This distinction depends on the context. Information such as

employment status can be public, or not depending on how much a person shares on social media,

like LinkedIn. By reversing what the phishing sites in our dataset attempt to steal we derive an

initial list of identifiers. We then iteratively refine our list by reviewing all sites not yet covered by

our identifiers. We propose a granular categorization of 36 categories derived from (currently) 356

unique identifiers and we compare this categorization to existing lists, like NIST [78] and Google

Cloud DLP [77]. Google Cloud DLP provides a list of 132 categories to de-identify data, however,

93 of these categories are country-specific identifiers for tax, medical and government IDs, so in

our notion, they constitute indicators rather than categories. Others are technical identifiers or ma-

chine identifiers, like IP address, or authentication tokens, like web cookies. In our notion, Google

Cloud DLP presents only 28 PII categories that we propose to extend with 11 additional categories

of our own:

1. Education

2. Origin

3. Genetic

4. Biometric

5. Family Status

6. Employment

7. Preference

8. Brokerage

9. Travel

10. Airline

11. Toll
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The categories AIRLINE and TOLL are service-specific categories, so their sensitivity depends

on the context, but other categories we add are clearly worth protecting. For example, TRAVEL

information includes redress numbers that are used to enter countries, PREFERENCE includes sex-

ual orientation that may lead to persecution in many parts of the world, additionally BIOMETRIC,

GENETIC and information of ORIGIN that can be used for impersonation. Our comprehensive

PII reference list appears in Appendix A where we directly compare it against the Google Cloud

DLP list.

3.2.6 Discussion

PII Sensitivity

To rate the sensitivity of PII, one may assign different instances of PII, or combinations of PII,

to a different threat level as the context may require. Each phishing website analyzed would be

assigned the appropriate threat level based on this assignment. Sensitive personally identifiable

information includes:

• Employee personnel records and tax information, including Social Security number and Em-

ployer

• Identification Number

• Passport and government ID information

• Medical records covered by HIPAA laws

• Credit and debit card numbers

• Banking accounts

• Bitcoin/Wallet Accounts

• Electronic and digital account information, including email addresses and internet account

numbers
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• Passwords

• Biometric information

• School identification numbers and records

Hence, if a phishing website analysis reveals that some of these digital identity attributes are

being gathered, that site is considered extremely dangerous since sufficient information is available

to create a new digital identity. Other phishing websites may be deemed highly dangerous but not

extreme if only non-sensitive PII is gathered. Non-sensitive PII is generally publicly available

information and includes:

• Birth dates

• Place of birth

• Addresses

• Religion

• Ethnicity

• Sexual orientation

• Business and public personal phone numbers

• Employment-related information

Other phishing websites may be deemed to be worrisome, even if they do not target sensitive

PII nor non-sensitive PII. For example, a single email address without a password is troublesome,

but ultimately it may only pose a threat to the user’s spam folder.
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Relevance for Law and Governance

Industry regulations such as GDPR, CCPA, CPRA, and HIPAA approach the concern of con-

sumer data protection through demand for compliance[79, 74, 80, 73]. Additionally, industry-

specific regulations address edge cases of PII usage in trading, marketing, consumer credit eval-

uation, and many others [81, 82, 83, 84, 85, 75]. To the best of our knowledge, these acts em-

ploy individual, normative definitions of PII by indicating similar intent. One anchor-definitions

that’s frequently used as a reference can be found in The Code for Federal Regulations (CFR 2 §

200.79 [76]), which normatively defines PII as follows: PII means information that can be used to

distinguish or trace an individual’s identity, either alone or when combined with other personal or

identifying information that is linked or linkable to a specific individual The CFR definition also

distinguishes PII that’s publicly available, it continues:

Some information that is considered to be PII is available in public [...] includes, for

example, first and last name, address, work telephone number, email address, home

telephone number, and general educational credentials.

However, the definition emphasized that the categorization of information as PII or

Non-PII has to be met dynamically, as circumstances may change: Non-PII can be-

come PII whenever additional information is made publicly available, in any medium

and from any source, that, when combined with other available information, could be

used to identify an individual.

And therefore it concludes:

[...] it requires a case-by-case assessment of the specific risk that an individual can be

identified.

The normative, non-descriptive, regulations that define PII refrain from concrete suggestions on

how to assess PII in practice. Hence, we refer to The National Institute for Standards in Technology

(NIST) as an (independent) reference guideline for PII assessment and PII protection. The NIST
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suggests assessing PII based on four external factors: Quantity, Quantity of Harm, Context of Use,

Access to, and Location of PII. Once assessed the NIST suggests concrete methods to protect the

sensitive information:

• Purging unnecessary PII from records.

• Implement access control measures.

• Encrypt all sensitive information.

• De-identifying (anonymizing) data and feedback so that it cannot identify.

While the first three methods can be statically applied once a piece of information is catego-

rized as PII the de-identification of automatically processed data at scale is a big- ger challenge.

Cloud providers such as Google and IBM [77] have picked up on the issue and offer products to au-

tomatically detect and de-identify PII without data loss [86]. For automated detection, the service

providers have to leave the abstract domain of norms and regulations and convert the descriptions

into actionable implementations. For example, Google Cloud DLP employs more than 132 dis-

tinct classifiers to filter sensitive information in customer data [87]. Accordingly, state-of-the-art

actualizations of legal compliance are achieved through a finite list of identifiers. When answering

the "What?" part of our research question, we find 13 additional information classes that fraudsters

have an interest in stealing, which means that the information is valuable for impersonation and

which thus can be considered PII. Subsequently, we propose the following alternative definition

for PII: "Any information that is valuable to and targeted by Identity Theft constitutes PII."

3.2.7 Summary

Phishing is typically considered a credential-stealing attack. That is not correct. The over-

whelming majority of phishing sites are typically designed to steal digital identities allowing at-

tackers to impersonate victim users, rather than simply gaining access to their accounts or services.

An analysis of over 131,023 phishing sites indicates a rising number of over 31% of those sites

50



pose an extreme danger since they are designed to steal a victim’s PII. A declining percentage,

of 54% on average is primarily designed to steal credentials posing a high danger to users. A far

smaller percentage of 15% trick users into providing contact information alone, such as a phone

number or email address, likely for future use in phishing, smishing, and vishing campaigns. The

ease of using automated phishing kits has made phishing a global phenomenon with fraudulent

sites deployed in 49 languages. English still dominates the collection of phishing sites, with a sub-

stantial number of substantiates in recent years growing in languages such as French, German, and

Portuguese. The cautionary tale for companies is that their websites are being used by phishers to

steal their customers’ identities, not just to gain access to their customers’ accounts. Two-factor

authentication and FIDO do nothing to stop customer identity theft. Consequently, their brands

may be at risk of inheriting liability for identity theft. A key contribution of this work is the auto-

matic acquisition of ground truth data about malicious attackers based on their own programming

style and tools used in large collections of phishing sites, and the automatic evaluation of the threat

level a phishing site poses based on which kind of PII the site attempts to steal from its unwitting

victims. The evaluation metrics have been outlined in general terms of three distinct levels of dan-

ger, but may be extended to finer granularity depending upon the context. Furthermore, profiling

attacker behaviors has tremendous value as advanced threat intel for defenders seeking fast detec-

tion of likely adversary threats. We developed detailed profiles of the code within each phishing

website to identify clusters of different websites likely created by the same phisher, or phishing

team. The analysis is greatly simplified by focusing entirely on input variable names and terms

displayed to the user. This provides insight into the number of distinct phishers in the dataset,

and provides data for longitudinal studies, as well as data for predictive analysis of what phishers

do over time. The method of extracting phisher-defined variable names may also be an excellent

indicator to quickly detect likely phishing sites.
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3.3 Threat Attribution

We have now seen the use of input field IDs and input field descriptors for the detection and

the triage of PII phishing sites. Our case study in Chapter 1.3.5 Section 2.4 also motivated the

attribution of a phishing site to the phishing kit it was created by. We will further investigate this

use case in this following section. In particular, the examine relationship between phishing sites

that may have been created by the same phishing kits or by related phishing kits.

3.3.1 Introduction

We have to understand an enemy in order to defeat him, prominently suggested by Sun Tzu in

The Art of War [88]. Enhanced Attribution applies this philosophy by analyzing unique features of

a threat and linking them to the threat actor behind it, a valuable step towards tackling PII Phishing

since the severity of phishing lies in its uncertain nature. Not knowing what information was

stolen and whom it is used by makes it much harder to mitigate the impacts that may only become

apparent years later when the original incident is long forgotten. Personal circumstances and soft

values like credibility or reputation may be costly or even impossible to restore. As identity theft

is a matter of national security, active take-down programs and enhanced attribution campaigns

are also run by government agencies [66]. However, there is no global unity on how to solve

the issue and in some countries, phishing may not be illegal or is even encouraged [89, 90, 91],

other countries may simply not have the infrastructure or law enforcement capacities to prosecute

phishers. Allowing for organized crime and unashamed fraud operations. Although it is often

believed that all online fraud originates from countries with the aforementioned shortcomings,

news reports show that many large scale threat actors get caught in Western Europe and the United

States of America, but they may hide parts of their operations or host servers on the other end

of the world [92, 93, 94]. Uncooperative hosters, VPN and proxy providers as well as ultimately

the Tor Network provide sufficient disguise to avoid enhanced attribution. Further, phishing sites

are not necessarily self-hosted but squatted on hacked, benign servers [95]. Extremely short life
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cycles further complicate the analysis of phishing campaigns [39]. With all legal, IT, and network

fingerprinting-based methods being exhausted, we propose to take a closer look at the additional

information fraudsters reveal about themselves: The phishing sites source code, including its input

field identifiers and input field descriptors as we motivated in Chapter 1.3.5.

3.3.2 Social Graph of Phishing Kits

Like every professional, criminals tend to specialize. Hence, the tactics of threat actors who

engage in PII phishing likely vary from those of solely financially motivated scammers. While it is

almost impossible to pinpoint individual actors (see Section 6) and categorizations such as script

kiddies, government institutions, or terrorists are subject to interpretation and likely to be biased,

we focus on what we can objectively quantify. This study is interested in who acts underground,

who is connected to whom, and who is learning from one another. We hypothesize that phishers

write - and share - phishing kits that are refined and adjusted over time and for different campaigns’

needs. We investigate the use of the same victim-facing input field identifier attributes as an artifact

of such phishing kits and we find that many of them are in fact connected. As motivated by the

feature engineering chapter, chapter 3, we can generally represent a phishing site (or really any

website) as a sorted word vector. For the technology fingerprint analysis, we extract identifiers

rather than labels. In this highly reduced representation, we maintain the original structure of

each vector, when we compare two vectors, however, the order of words becomes less important.

We assume that phishers either fully reuse, or don’t reuse existing code. Hence, comparing two

vectors is modeled using case sensitive (and stripped) equality, and we refrain from any similarity

or distance measure between words themselves. They are either fully equal or not equal. For

instance, ”email”, ”Email” and ”mail” are fully orthogonal and share as little commonality as ”usr”

and ”pwd”. Figure 1a shows the frequencies of vectors found in the 2019 dataset and highlights in

bold letters how vectors 1, 2, 5, and 8 are connected. The undirected weighted graph in Figure 1

shows an edge between nodes that have one or more elements in common. The number of shared

elements is used as edge weight signifying the strength of an overlap. We hypothesize that we can
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use the overlap of identifiers to map out a social network of phishers who are sharing their kits,

learning from each other, and improving themselves.

Unfortunately, the data for this social network is dirty, and it is not intuitively clear which

node has more influence. For example, we can analyze a social network from several perspectives,

such as which node has the highest outgoing edges (degree), participates in the most complete

subgraphs (cliques), or connects the most other vertices via shortest paths (betweenness). To the

best of our knowledge, the CorpRank algorithm [96] is the first algorithm to consider all (!) of the

above-mentioned features. CorpRank leverages Principal Component Analysis (PCA) to derive

additional weight coefficients for the features.
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The score provides a hierarchy of influence, which in practice, can serve as an additional data

(a) An example of the most frequent vectors in 2019
and their respective frequencies.

(b) Graph model showing phishing kits as word-
vectors and edge weight based of shared terms. The
same concept is used to plot Figure 7.

Figure 3.8: An example of how the second most frequent vector in of 2019 is presented in the
network. The connecting edges are weighted based on the shared elements "email" and "pass".
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Figure 3.9: Social Graph of Phishers

point for threat actor attribution. It can lead investigations towards related attacks, or guide deci-

sion making by revealing whether a site seems to be hosted by a lone wolf indicating a sophisti-

cated targeted attack or a common spray’n’pray strategy - indicated by a low or high CorpRank

respectively.

In Figure 3.9 we present how we use CorpRank to add structure to a social network of phishing

kits. The undirected weighted graph resizes each node by its CorpRank score and sets the edge

weight to the number of input field identifiers shared between two kits. The node’s color maps to

the year that it was first observed in and we highlight the minimal spanning tree of the graph with

black edges. Figure 3.8 zooms in on a node and adds details for a better understanding.

When reviewing the CorpRank score of each node, by looking at its size in the plot we can

roughly say if a node is small medium or large and we get an idea for its influentialness. We may

reason that a large node, is a popular kit that a small node copied from. In practice, the score can be

used as a numeric value and we can use it to guide digital forensics operations. For example, this

knowledge can be used whenever a new threat is detected. Linking the new threat to an existing
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one is a promising step to gather intelligence about it and the CorpScore-based social graph can

help to prioritize which known threats to consider the most.
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Chapter 4: Offensive Deception

In the preceding sections, we present how JavaScript Stylometry can be used for the Detection,

Triage, and Attribution of PII Phishing Campaigns. We evaluate the importance of a newly in-

troduced feature, the HTML input form identifier attributes, and we show that it can significantly

improve the accuracy of a phishing classifier. We also show proof for the hypothesis that identifiers

reveal information about the threat actor and we organize this information into a social network

of phishing kits that are built upon one another. Without a ground truth set of phishing kits, this

social network can only serve as an unsupervised clustering model, so we investigate further to

determine the relative importance of each node (phishing kit instance) using the CorpRank algo-

rithm. We also show that the related HTML label tags can be used for the triage of PII phishing

and we derive a unique PII reference list. The final chapter of this thesis will focus on a denial-

of-phishing engine (DOPE) that submits fake data to phishing sites. DOPE leverages the threat

triage system’s label analysis and automatically generates decoy information according to a site’s

expectations. We further establish evaluation sensors to monitor if decoy information was picked

up by the phisher and we perform A/B Testing to compare the different attack parameters. This

comparison provides insights into the state-of-art of phishing techniques and it serves the evidence

for several common industry claims such as that phishers test their catch.

4.1 Introduction

The detection of an attack is crucial, but it does not leverage all that is technically feasible

to mitigate a threat and prevent further damage. One popular form of incident response is to de-

ceive the attacker with fake information and divert her focus from the actual target. Deception

systems date back to 1998 [97] and have been proposed for all layers of a system (e.g. HoneyPots

[98], HoneyTokens [99], bogus credentials, decoy documents [100], fake network traffic [99], and
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source code traps [101]). Some projects go as far as hosting purposefully vulnerable web applica-

tions to enable phishers to exploit them and host phishing campaigns [102]. This way the threat

analysts have studied the complexity of phishing kits and proposed to cluster their interdepen-

dence [103], and cloaking scripts [7] the phisher’s use of proxies and tor [7]. This method has

further discovered that most compromised hosts get abandoned by the phisher after less than 21

hours, which dates the average lifetime of a phishing attack to less than one day [104]. Although

these examples provide powerful countermeasures and meaningful insights, they still do not fully

leverage the interaction with an attacker. We propose to organize the deception technology into de-

fensive and offensive deception technologies, where defensive are the technologies we described

and offensive is leverages the attacker interaction to fight back. To the best of our knowledge, no

existing work introduces this distinction yet and published surveys focus on defensive technologies

only [105, 106, 107]. The benefit of offensive deception is that it allows us to monitor the attack-

ers’ activity beyond the target system. Conceptually, one could attach a tracker to the attacker

and monitor where else it shows up. Monitored credentials have been used as such trackers and

a manual deployment has shown that phishers commonly try to test their harvest after 1-3 days -

giving investigators limited time to hunt them. Automated decoy credentials have been introduced

by Humboldt 1.0 who proposed a distributed system to stuff phishing sites with fake credentials

and monitor their usage. Humboldt 1.0 suffered from IP address blocklisting by the attacker [108],

so its successor, Humboldt 2.0, leverages human participants to overcome this issue [109]. At a

similar time, BogusBiter was published, a Browser Extension that dilutes any password submis-

sion with 4-12 additional credentials, such that a phisher cannot know which credential is the real

one[110]. As a critical remark, none of these publications perform a real-world evaluation, which

was only done recently in 2018 by Akiyama et al. [111]. We further notice the lack of technical

sophistication, as in the assumption of non-encrypted communication and the use of plaintext pass-

words, as well as with regards to IP address rotation and handling cloaked sites. More importantly,

these solutions focus on credential stuffing only and do not implement a solution to automatically

submit any other information - but which would be crucial for stuffing PII Phishing sites. Lastly,
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Figure 4.1: Timeline of related work in deception technologies.

phishers have matured and modern campaigns can be expected to verify their catch before retailing

it. Therefore, any sort of infiltration has to happen in a believable manner.

4.2 On the Believability of Data

In everyday conversation, we refer to something as ”believable” when its essential features

conform to our expectations, another word for it could be ”authentic”. For the sake of this work

though, we use the term ”believable”, because the terminology around ”authenticity” and ”au-

thentication” may create confusion for the reader as they refer to a distinct concept in cryptogra-

phy. With this separation in mind, believability and authenticity conceptually describe the same

idea: The information we generate should not tip off its reviewers as potentially fake or computer-
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generated information. Believable information looks normal. The term ”normal” properly suggests

the use of normal distributions of information, namely the frequency of an information instance

occurring in the wild. Accordingly, we would gain maximum benefit by systematically enumerat-

ing a phisher’s verification vectors and then deceiving each verifier with a set of information that

follows the expected distribution. The following sections describe in detail how we generate be-

lievable information that comes from believable sources and can trick human reviewers (phishers)

into false-positive verification. An attacker can easily evaluate the source of her catch based on

meta-information that was generated as an artifact of the communication with the victim. Specif-

ically, the Internet is implemented as a standardized network stack, described by the OSI model.

Accordingly, a modern website is accessed by exchanging information on seven layers of commu-

nication: Application (HTTP), Presentation (TLS), Session (Port), Transport (TCP), Network (IP

address), Data Link (MAC address), and Physical layer (fiber cable). While most of these layers

are fixed and do not change for each communication partner, any communication partner can try

to obtain and evaluate her peers’ origin by looking at her IP address and application data. On the

application layer, a web application can gather information about its visitor, specifically about the

visitor’s browser. Today, JavaScript implements the interface between a website and its environ-

ment and it may call a number of browser APIs, e.g., to access a list of cookies, the user’s browsing

history, open tabs, and the presently installed plugins. Snyder et al. enumerate modern JavaScript

features and point at their surprisingly rare usage in the wild [112]. To the best of our knowledge,

the two verification vectors - network and application layer - provide the phisher’s only ways to

assess the origin of an input. In the following subsections, we will systematically mitigate these

verification vectors.

4.2.1 Network Layer

Phishing campaigns are deployed at different scales and different scopes, e.g. they can be

configured to render differently in different regions of the world or not render in some areas at

all. Phishers can filter IP address ranges to restrict the scope and to limit the access of (known)
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web crawlers and threat analysts because they can expect their victims to access the phishing site

from an ISP gateway. For example, it is highly unlikely that a victim is surfing the phishing site

from cloud instances - unless the victim is routinely using a VPN. The phisher can easily recognize

access from a cloud instance or commercial VPN since such IP address ranges are publicly known.

4.2.2 Network Layer Deception

To overcome IP address filtering, we rotate our source IP address, without using the cloud.

Instead, we leverage collaboration with a medium-sized Internet Service Provider - Columbia Uni-

versity (AS14) - managing multiple Class C and Class B networks. Within these networks, we can

switch our public IP addresses on demand, such that the phisher can hardly recognize us as the

same visitor. We evaluate the access from three different networks: 1. Internet Service Provider

AS14 2. Private Internet Gateway 3. Commercial VPN

4.2.3 Application Layer

Like any other website, phishing sites can see the victim’s User-Agent as part of the HTTP

request header. Modern browsers use this field to identify themselves, such that web applications

can present the response according to the needs of the specific browser. However, it is only a

convention to use the actual browsers-identifier as User-Agent and the text field is easy to spoof.

In addition to the User-Agent, modern web applications evaluate and cross-correlate all sorts of

information using JavaScript and browser APIs. While this level of user fingerprinting is a research

field in and of itself, we identified that a handful of characteristics suffice to tell a real visitor from a

crawler. Namely, a web application can evaluate the four browser components history, bookmarks,

extensions, and cookies to evaluate if a visit is coming from an automated headless browser.

4.2.4 Application Layer Deception

To model a believable user environment we use Selenium WebDriver, a project originally meant

to automate web application unit testing. Selenium WebDriver allows us to build a powerful bot
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that dynamically interacts with any given website. We can indistinguishably model a browser en-

vironment by rotating the contents of four browser components (History, Bookmarks, Extensions,

Cookies) and the User-Agent property, and then we can craft and submit the decoy information

at a pace that is consistent with human behavior. From this fake browser, we then call the target

site and provide it with the desired information. We use the selenium’s sendKeys() API to enter

the information, instead of directly pasting it. Each API keystroke’s delay can be refined with a

stronger model, like that of an empirical typing pace study [113, 114], but which we leave to future

work.

4.2.5 Data Layer

A victim’s personally identifiable information (PII) can be abused to emulate the victim and to

commit a multitude of real-world crimes in his or her name. For instance, credit card information

can be used in drug deals, Social Security Numbers and health ID’s can be used in insurance fraud,

and passport data can be used for human trafficking or terrorism. Even information that is thought

of as ”publicly available”, such as a combination of name, birthday, and phone number, may be

sufficient to register services and open new accounts under the victim’s identity (unauthorized

account creation). Accordingly, modern phishing campaigns have outlived the goal of account

take-over and it is excelling towards more sophisticated, more dangerous targets. Our system

handles all phishing; both credentials stealing and identity theft.

4.2.6 Data Layer Deception

We developed a fake information generator capable of producing sets of information that sat-

isfy the majority (if not all) of information that modern phishers hunt for. We aim to draw all

possible PII in a conclusive, believable manner. Namely, we approximate real-world probability

distributions for that information to exist. For example, the prevalence of a specific ethnicity may

vary based on a particular region of the world (see Network Layer Scope) and a name may be

associated with ethnicity. Conversely, that name may indicate the birth year that it was most pop-
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ular in and a person’s birth year is ultimately reflected in his or her social security number. This

example demonstrates how even seemingly independent information like ethnicity and SSN can be

connected if additional information is used to link it. To avoid this, we create a stepwise process

that derives one information from the other.

4.2.7 Testing / Verification Layer

In the common case of credential phishing, the acquired credentials may be tested. A phisher

may perform a test login to a web account, or a network intruder may confirm that the credentials

provide access to a machine. Either way, the manual verification process passes four checkpoints:

1. The account exists

2. The credentials grant access)

3. The look and feel of the account is legitimate

4. The account seems to have value

4.2.8 Verification Layer Deception

The first check will only be passed if the institution whose name was abused to run the cam-

paign can host decoy accounts for this purpose. We declare arbitrary online accounts out of scope

and focus on the stuffing of email addresses that point to a domain under our control - Columbia

University’s email server - and we host fake email accounts on it. As this mail server is a honeypot

in and of itself, any external login attempt reveals the IP address of a phisher. Once login to our

mail server succeeds we want to present a highly believable email inbox and outbox, with realistic

conversations and meaningful email attachments. This will check the third box of information ver-

ifiability. This is necessary because empty or otherwise suspicious-looking mailboxes may alert

the phisher as the sheer idea of honey accounts is not a novel one [115, 116, 117]. Additionally,

the email account is seemingly functional, as it permits outgoing traffic, but the traffic is relayed

and the relay is blocked by a firewall. We implement the indirection to avoid suspicion. As an
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Figure 4.2: Installation of decoy sensors across the Internet.

alternative to this setup, which can be easily replicated with a self-hosted email server, we propose

to use public email accounts and enable MFA to receive notifications for login attempts. Another

alternative is the collaboration with a target brand, who may host fake accounts and monitor ac-

count activity. Such collaboration is particularly promising since it can now provide phishers with

credentials to the exact service they are looking for. We explore this route in the next section.

4.3 Tracing Information Abuse

Interacting with cybercriminals is a promising undertaking, allowing us to improve our under-

standing of a threat and even attempt threat actor attribution. We propose to provide phishing sites

with believable decoy information and to trick phishers - who were trying to trick us first - into

using these decoys. To monitor the phisher’s usage of our decoy on the Internet we set up a number

of sensors that we can monitor to trace the phisher’s activities.

We establish the following sensors for our experiments:
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• Email Server Login

• (MitM Email Outbox)

• Target Brand Login

• Target Brand (unauthorized) Account Creation

• Third Party Black Market Monitoring

• Burner Phones (VOIP)

• Deactivated Credit Cards

This variety of sensors enables us to investigate if a phisher tests to login to the domain of an

email credential, if she tests that the account exists on the victim brands site, if the phisher tries

to create an account, if she directly monetizes the credit card, or if there’s any other, potentially

untested retail activity on the black market. Our collaborating third-party black market scanner

is capable of scanning over one billion credentials a month, to the best of our knowledge one of

the best of its kind. In addition to the black market scanner, we also establish phone numbers,

and credit card numbers that the fraudster cannot use without us getting notified (more details in

Chapter 8). Apart from the monitoring setup, we overcome the limitations of Humboldt 1.0 by

deploying tracers from rotating IP addresses - and without relying on mechanical-turks. Further,

we run dedicated counter-attacks instead of diluting an active password submission like BogusBiter

did [110]. We are the first to submit PII, instead of only account credentials, which allows us to

investigate the emerging threat of unauthorized account creation and to better understand why

phishers increasingly target PII.

4.4 Denial-of-Phishing Engine

The ultimate goal is to implement a Denial-of-Phishing Engine (DOPE) that takes a phishing

site as its input and automatically attacks it with automatically generated believable decoy PII that
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it submits in a believable manner and from indistinguishable sources. We build such a system and

keep it configurable to the insights of our comparative field study in Chapter 10. In addition, we

develop a research frontend in the form of a browser extension, that can be used as an interface to

the backend to easily fetch decoy PII and stuff a phishing site from a ISP gateway. The browser

extension serves as a source IP diversifier and simultaneously allows DOPE to improve by col-

lecting usage statistics. Leveraging the community we can ultimately collect more features and

learn about what other information other phishing sites target. We discuss the details in the two

upcoming sections.

4.4.1 Implementation

DOPE Engine The main backend component of the Denial-of-Phishing Engine (DOPE), the

assembler 1 , takes as an input a phishing URL 2 from one of many possible sources, e.g. a

proprietary scanner, public phishing feeds, or manually supplied through the frontend web appli-

cation. The assembler then visits the target phishing site to learn its PII requests and it fetches the

respective response from an extendable NoSQL database of pre-generated PII. In the backend, a

generator 3 ensures that the database is provisioned with sufficient PII. We do not generate the

decoy ad hoc, because we need to ensure that our black market monitoring has sufficient time to

learn which tracers to look out for. Once the decoy PII set is assembled, it gets forwarded to one of

three attack relays 4 . We implement the attack relays as a docker container and deploy it across

multiple systems in different networks, such that we can shoot tracers from our private internet

gateway, from within the ASN we control, and from public cloud providers. To evaluate the case

with no ASN access we also experiment with the use of foreign VPN services. DOPE Browser

Extension Preliminary experiments suggest that spoofing believable IP addresses may become a

bottleneck for this offensive deception approach, while the other information is straightforward to

spoof, as we discussed. Subsequently, we learn from related work and propose to ”leverage the

crowds” by deploying a browser extension that works on top of DOPE, but enables contributors

to participate from their local internet gateway. The DOPE Browser Extension also provides feed-
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Figure 4.3: Overview of the Denial-of-Phishing Engine (DOPE).

back about sites that were attempted to attack and what PII these sites requested. It’s written in

JavaScript REACT and available open-source via GitHub.

4.5 Decoy Injection Parameter Comparison

This section provides a comparative analysis of different decoy provisioning methods, which

can help us understand if and how phishers verify the authenticity of stolen data. We hypothesize

that phishers verify their catches, which is motivated by two simple observations: first, verification

can avoid detection by threat analysts, and second, verification can avoid polluting the catch with

invalid information. Since DOPE embodies a system to pollute a phisher’s catch with invalid infor-

mation, it is paramount to our design that we understand and overcome the phisher’s verification

vectors. We discussed verification vectors in Section 4.2 and we will now provide an overview of

the experimental setup that we use to A/B Test different data injection methods.
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Provider IP address Environment
Logged in AutoFill Website LinkedIn Facebook Paypal

Network UNI local TRUE FALSE TRUE TRUE TRUE TRUE
UNI foreign TRUE FALSE TRUE TRUE TRUE TRUE
UNI campus TRUE FALSE TRUE TRUE TRUE TRUE

Verification GMAIL local TRUE FALSE TRUE TRUE TRUE TRUE
GMAIL local TRUE FALSE FALSE FALSE FALSE TRUE
GMAIL local TRUE FALSE TRUE TRUE TRUE FALSE
GMAIL local TRUE FALSE FALSE FALSE FALSE FALSE

Autofill GMAIL local TRUE TRUE TRUE TRUE TRUE TRUE
GMAIL local TRUE TRUE FALSE FALSE FALSE FALSE

Auto Engine FALSE local FALSE TRUE TRUE TRUE TRUE TRUE
FALSE local FALSE TRUE FALSE FALSE FALSE FALSE

Table 4.1: Eleven configurations to investigate different outcomes in network- , verification- , and
application layer (autofill) parameterization. The Auto Engine stuffs random decoy as a baseline.

4.5.1 Experimental Setup

We use a fixed set of ten pre-generated decoys, stuffing each of them with different parame-

ters, enabling us to accept or reject four hypotheses about data-authenticity verification methods

a phisher may use. We pick up the four layers of believability introduced in Section 4.2 and we

compare different outcomes for each of them. Namely, we use different IP addresses to learn if

the phishers test on the network layer, we create accounts with and without social media presence,

as well as with and without an account at the targeted brand, to learn if the phisher tests on the

data and verification layer. When filling in the information, we do and do not log in to the browser

environment as well as we do and do not enable auto-filling, which we believe the phishers use

to distinguish a victim from a web crawler on the application layer. Table 4.5.1 illustrates these

configurations as a truth table. Therefore, each row in Table 4.5.1 represents one pre-generated

set of believable fake information listed in Appendix E. At the abstract level, each set of this fake

information constitutes an identity - an instance of PII - we use these fake identities to investi-

gate same-day clones of paypal.com, sourced from the Anti-Phishing Working Group’s eCrime

eXchange (APWG eCX). Appendix E shows a full list of the URLs we reviewed. While most of

the URLs on the phishing feed were already taken down by the hosting service or DNS registrar,

we found between one and three active phishing instances of paypal.com every day; also marked

in Appendix E. This distinction between active and non-active sites was made separately, before
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starting the controlled experiment and from a different machine, such that we do not accidentally

enable the phisher to recognize or track us, and such that we do not distort results with our pre-

liminary analysis. We surfed the URL from the browser we work with on a daily basis using our

private internet gateway, which is an IP address located in the Verizon Network in New York City.

If a site was not available, we double-checked it using a mobile User-Agent - our personal iPhone

11 using its Verizon data plan. In both cases the actual IP address changes throughout the exper-

iments, but which should not make a difference for these singular test accesses. We then conduct

the data injection as a controlled experiment rotating between Windescripe Premium VPNs and

the Columbia Network to appear as independent visitors and recording HTTP Archives (HAR) of

the network communication with the target phishing site to enable post-mortem analyses of the

sessions. During decoy injection, we monitor credit card transactions, and phone notifications in

real-time, to detect whether phishers test the injected data. Unfortunately, we had to learn that the

delay of credit card decline notifications is subject to the card issuer’s load and may not be reflected

on the UI in real-time. However, we believe that the slow pace of our manual interaction with the

site still allows for an accurate mapping between the data injection and the phisher’s misuse. We

discuss this in the evaluation.

Next, we describe how we generated believable decoy data in practice for the following data

classes:

• Personally Identifiable Information (PII)

• Social Security Number (SSN)

• Government ID

• Phone Number

• Account Credentials

• Mailing Address

• Credit Card

69



• Bank Account

• 3-D Secure Account

• Browser Profile

• Autofill

• HTTP Request Headers

• IP Address

Personally Identifiable Information (PII) We freely invent names and birhtdays covering a

variety of suggested nationalities ethnicities and ages.

Social Security Number American social security numbers are most conveniently applied for at

birth, and prior to 1972 the first three digits comprised the Area Number which revealed the issuing

state, which was likely to be the location of birth. Then, between 1972 and 2011, SSN’s first three

digits were associated with the ZIP code of the application. The middle two numbers comprise the

Group Number following a sequential pattern, so could be validated against the birth date. Since

2011 SSNs have been randomized. For this experiment, we leverage an online SSN generator that

provides a fake SSN based on a given birth date and state (ssn-verify.com). With the different SSN

algorithms in mind, we will use birthdates before and after 1972 and 2011 for this analysis (note

that anyone born in 2011 considered of legal age today).

Government ID Similar to the SSN we do not bother generating these numbers ourselves and

employ free online services instead (see https://www.ssn-verify.com/generate and

https://www.elfqrin.com/usssndriverlicenseidgen.php?ckpassport=1). If

phishing sites ask for passport photos we upload two different photos of the outside of a passport,

hoping to pass the file-upload test and not to tip off the phisher with identical uploads. An overview

of how many sites asked for this is in Table X.

Phone Number We employ real phone numbers using free VOIP number providers https:

//www.textnow.com/ and https://abine.com/. However, we notice that benign ser-
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ID First Name Last Name Email Birthday Billing Address Phone No. SSN Mother’s
Maiden Name

1 Wei Zhuang
wz2567
@columbia.edu 04/12/1988

552 Mudd
500 W 120th St,
New York NY 10027

(857)
5763-578 115-92-8858 Zhuang

2 Mark Ferrante
mf3412
@columbia.edu 07/20/1982

547 Mudd,
500 W 120th St,
New York NY 10027

(631)
980-1913 075-35-3432 Ferrante

3 Zeynep Aksoy
za2297
@columbia.edu 05/03/1977

518 Mudd
500 W 120th St
New York NY 10027

(914)
296-0337 523-25-7855 Aksoy

4 Pete Klevenstein
pete.klevenstein
@gmail.com 05/03/1991

1029 Sip Ave
Medford, 11763 n/a 1992-08-14 Kleven-stein

5 Clara Rubens
clararubens98
@gmail.com 11/28/1998

120 West 50th Street
Apartment 7H

(312)
300-9984 090-62-5568 Rubens

6 Maria Anna
mail.maria.anna
@gmail.com 07/21/1981

342 Broadway
Apartment 423
10011, NY

(631)
318-6054 130-76-9215 Anna

7 Joseph Dilama
dilamajoseph60
@gmail.com 09/23/1960

123 Greene St
New York NY 10245 n/a 054-68-5640 Dilama

8 Juri Wizlaw
juri.wizlaw
@gmail.com 04/02/1965

333 East 65th Street
Apt 10
New York NY 10065

(631)
1315-2430 065-56-1245 WIzlaw

9 Destiny Campos
hardcoredestiny69
@gmail.com 05/18/1992

88 W 14th St,
New York, NY 10011

(914)
486-5440 076-72-2137 Campos

Table 4.2: Overview of the PII we use to organize the decoys as "identities".

vices like email providers or PayPal itself recognize such numbers as VOIP numbers and reject

them. We suspect that phishers have the same capabilities since we didn’t receive any calls or text

messages on our 18 VOIP phone numbers. We focus on this disappointment and register three real

mobile phone numbers in the T-Mobile network. The three numbers should be indistinguishable

from real phone numbers with the only limitations that all three use the area code +1 (646) for

Manhattan.

Account Credentials We generate real email accounts at popular providers such as Microsoft

Outlook, Yahoo! and Gmail. The password to these email accounts is secret and is not shared

during any of our experiments, but we enable two-factor authentication so that login attempts send

a notification to our smartphone. We then use these email accounts to create real PayPal accounts

with different passwords. Those are the passwords we will ultimately share with the phishers.

Before we share the credentials, PayPal flags the account as compromised and enables internal

monitoring for us. We do not link a credit card, bank account SSN, passport number or any other

additional information to the accounts and we do not enroll in any of PayPal’s additional services

such as “Pay in 4” and alike. A phone number is registered for account recovery, but two-factor
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authentication is disabled (as it is by default).

Mailing Address For each identity, we choose random existing addresses in geographical prox-

imity to one of our VPN provider’s servers so the shared ZIP code and IP location are consistent.

Mismatched geolocation is an easy test used by some phishers to validate a victim’s identity is

suspicious or not authentic.

Credit Cards Debit or credit cards embed a physical chip and/or magnet stripe to pay in so-

called Card Present transactions (CP). However, the 16-digit number, expiration date, and CVV2

code suffice to place an order remotely, called a Card Not Present transaction (CNP). Subsequently,

the triplets have the value of the card’s available credit limit and thus they make an obvious target

for criminals. To generate fake instances, we can use a random CVV2 number, an arbitrary expi-

ration date less than four years into the future, and a card number that passes the standard credit

card verification algorithm, the Luhn checksum. However, real credit cards also incorporate the

issuing bank’s Bank Identification Number (BIN) within the first 4–6 digits of the card number and

so the Luhn conform number may not pass payment authorization in practice and it may end up

being an early show stopper for us. Therefore, we leverage the virtual credit card services provided

by Privacy.com where we create a virtual credit card for each fake identity in our experiment. We

load the credit card from a bank account with the minimum required amount of 1 USD and we then

pause the card, such that any transaction attempt will be declined. This further enables the detec-

tion of transaction attempts in our virtual credit cards’ payment log. An additional benefit of these

cards is that they allow the user to arbitrariliy choose a different name and billing address for each

transaction, which gives us the flexibility to choose mailing addresses based on VPN locations as

described earlier. As a side effect of using Privacy.com, every card is has the same identical BIN

453641 and expiration date 04/2028, which enables a quick search for black market leaks of the

stolen credit card.

Bank AccountsTo pass any correlation with the credit card number’s BIN, we enter all bank

information as if it would belong to Card Services for Credit Unions, using their actual routing

number 321177735. We then add an account number using Python package Faker and add a
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ID First Name Last Name Email Credit Card No. Exp. Date CVV
1 Wei Zhuang wz2567@columbia.edu 4536410089866111 04/28 236
2 Mark Ferrante mf3412@columbia.edu 4536410131666188 04/28 534
3 Zeynep Aksoy za2297@columbia.edu 4536410037509631 04/28 931
4 Pete Klevenstein pete.klevenstein@gmail.com 4536410043508023 04/28 343
5 Clara Rubens clararubens98@gmail.com 4536410185578214 04/28 857
6 Maria Anna mail.maria.anna@gmail.com 4536410066473998 04/28 285
7 Joseph Dilama dilamajoseph60@gmail.com 4536410073833887 04/28 920
8 Juri Wizlaw juri.wizlaw@gmail.com 4536410121472043 04/28 176
9 Destiny Campos hardcoredestiny69@gmail.com 4536410024932077 04/28 908

Table 4.3: Overview of the individual decoy identity’s credit card information.

random four-digit number as ATM PINs. We note that correlations with real bank accounts are

possible but unlikely given the length of the account number plus its use in combination with a

customer name.

3-D Secure Strong customer authentication methods like Verified by Visa, MasterCard Secure

Code, and American Express SafeKey are commonly implemented by retailers to comply with

regulations defined in the EU’s Revised Directive on Payment Services (PSD2), and to reduce

credit card fraud. We note that phishers have picked up on the trend and in many cases ask for

3-D Secure passwords in combination with the credit card triplet. In this case, we supply the same

passwords we used for the respective PayPal accounts, which is believable because real people

tend to reuse passwords.

Browser Profile In addition to the rather obvious mapping of a visitor to an IP address, the

visitor of a website can be fingerprinted by browser characteristics. Browser fingerprinting goes

beyond the User-Agent used in the HTTP request header that we discuss later. Instead, it also

commonly leverages the site’s access to open tabs, installed extensions, bookmarks, browsing

ID First Name Last Name Email Bank Name Account Number Routing Number ATM PIN
1 Wei Zhuang wz2567@columbia.edu Chase 1234567890 987654321 8765
2 Mark Ferrante mf3412@columbia.edu Wells Fargo 70744737 165653787 6578
3 Zeynep Aksoy za2297@columbia.edu Credit Union 85190836 321177735 9898123
4 Pete Kleven-stein pete.klevenstein@gmail.com Wells Fargo 76848309 179377635 0111
5 Clara Rubens clararubens98@gmail.com Credit Union 26088541 321177735 3257
6 Maria Anna mail.maria.anna@gmail.com Credit Union 799719505 321177735 4654
7 Joseph Dilama dilamajoseph60@gmail.com Credit Union 87299269 321177735 2901
8 Juri Wizlaw juri.wizlaw@gmail.com Credit Union 31127896 321177735 5656
9 Destiny Campos hardcoredestiny69@gmail.com Credit Union 23292509 321177735 6162

Table 4.4: Overview of the individual decoy identity’s banking information.
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history, cookies, and more. A phishing site may use browser fingerprinting to test the authenticity

of a victim, so we try to provide a believable browser profile that the phisher may accept to be a real

victim. We use a default Google Chrome, the Internet browser with the highest market share today

and we do not add any bookmarks or extensions to it, which we reason to be realistic enough. We

create a short browser history of social media sites and search engine queries and persist the cookies

they set, but we remove any additional cookies after each experiment, to ensure the phishing site

does not persist a session cookie, meaning it could readout that session cookie and recognize us

across experiments. In addition, we open four to six tabs during each experiment. These are

the email provider, paypal.com, textnow.com, google.com, and if the decoy set is configured to

“have social media accounts” we also open twitter.com, facebook.com, and linkedin.com where

the browser is logged in into all of them. In case the phisher tests for active logins, we pass this

test.

Autofill There are several ways to provide input to a website. Users may type inputs using the

keyboard, use the browser’s auto-fill function, use a dedicated password manager, or copy paste

the information from elsewhere. A careful phisher may try to evade web crawlers or threat analysts

by verifying input methods are from human users rather than programs. We implement a simple

test to learn if phishers in the real world test how data is provided: For some accounts, we enable

the browser’s auto-fill feature and use it to submit name, email, password, address, and payment

information, because to the website it looks the same as pasting it from somewhere. Although this

is an incomplete test, it covers the main case we are interested in with respect to the automation of

DOPE.

HTTP Request Headers Per the default of Chrome Version 101.0.4951.54 (Official Build)

(x86_64) on MacOS BigSur Version 11.6.1 the User-Agent is “Mozilla/5.0 (Linux; Android 6.0;

Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54

Mobile Safari/537.36”. We decide to leave it untouched to appear as an authentic MacOS user.

However, we note that some phishing sites immediately redirect our requests to benign sites, so we

go over them a second time switching our User-Agent to the chrome browser’s default User-Agent
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ID Name Description IP Range (example)
1 Wei Verizon Internet Gateway 24.90.102.. . .

2 Marc Frankfurt, Germany
Windscribe VPN 87.249.132.. . .

3 Zeynep Columbia University
CRF VPN (ASN14) 128.59.13.. . .

4 Pete New York City, NY
Windscribe VPN 217.138.255.. . .

5 Clara New York City, NY
Windscribe VPN 217.138.255.. . .

6 Maria New York City, NY
Windscribe VPN 217.138.255.. . .

7 Joseph New York City, NY
Windscribe VPN 217.138.255.. . .

8 Juri New York City, NY
Windscribe VPN 217.138.255.. . .

9 Destiny New York City, NY
Windscribe VPN 217.138.255.. . .

Table 4.5: Overview of the individual decoy identity’s IP addresses.

for mobile debugging: “Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36”. In both cases the accepted-language

header is “en-US,en;q=0.9,de;q=0.8”, meaning that US English and German are accepted lan-

guages and preferred with a respective weight of 0.9 and 0.8.1

IP Address We use three distinct IP addresses to stuff the PII from. First, we use a Verizon

gateway with the IP address 24.90.102.. . . , second, Windscribe Premium VPN’s "Empire State" lo-

cation in downtown Manhattan, assigns us with rotating IP addresses in the 217.138.255.. . . range,

and we also use a Germany based address (87.249.132.. . . ) to test for geolocation filters. Lastly

Columbia University’s network allows us to rotate IP addresses without relying on a well-known

commercial solution, and we hope that with 128.59.13.. . . , we fly under the radar for longer.

4.5.2 Real World Findings

Now that we have described the decoy data generation and choices made to produce believable

and authentic appearing data, we next describe the formal evaluation of the efficacy of this decoy

data in passing phishing website filters.

We manually reviewed a total of 28 phishing sites impersonating paypal.com and infiltrated

them with decoy PII crafted according to the above explanations. Although almost none of the
1German as a second language was not a conscious choice and may be used against us by the phisher
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clones looked identical we note similarities between the landing pages and user journeys they

implement. The landing pages asked for either email and password simultaneously or led from

email to password using a JavaScript effect. We consider this difference to be only visual since the

use of JavaScript and our network trace review suggest no data submission to the server. Only one

site mimicked the real PayPal landing page and expected the user to click the login button to get to

the login form. For the rest of the victim’s journey through the phishing application, we observed

a pattern of information requests in a specific order. Most phishing sites start by lulling the victim

with a page that promotes the detection of “suspicious behavior” and the necessity to confirm

one’s identity. The malicious site then proposes to do so by requesting credit card information, a

billing address, 3-D Secure credentials, bank account information, and finally uploading a photo

of the victim’s government ID or passport, in this particular order. Respectively, our findings result

from the victim’s separate steps through the phishing application, and from our various sensors

described earlier in Section 4.3.

Findings from the Phishing Landing Page

At this initial step of the user journey, the login page, we observe that almost all phishing sites

yield an error message if we use a username that is not registered on paypal.com, or if we use a

wrong password. Only credentials that belong to actually registered PayPal users get past the login

form, where the phishers then ask for additional information on top of username and password. We

conjecture that phishing sites test credentials in real-time, which is confirmed by the text message

notifications sent out to us by the victim brand, PayPal, who instantaneously detects suspicious

behavior and alerts the victim user. PayPal’s log files confirm these accesses and indicate that those

accesses are simply login attempts to test the credentials. Only in one instance did the phishers try

to enroll the stolen account to PayPal’s loan-based “Buy Now Pay Later” program Pay In 4, but

which was correctly rejected by the platform. Generally, though, the fraudsters do not inspect the

account any further or make changes to it. We found this particularly interesting because many

phishers ask for the mailing address, phone number, SSN, and passport number, redacted versions
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of some of which are visible under PayPal’s account settings tab, but which the phishers do not

seem to confirm this way. Since we cannot know the true reason why a phisher would miss this

opportunity we simply reason that either credential verification is sufficient, or the possibility had

not occurred to the phisher, or that this way of verifying data is not valued in the underground.

Findings from the Phishing Application

The last step of the user journey, the file upload for a government ID and passport deserves

special attention. It is an obvious way for the phisher to catch an additional piece of information,

that is valuable in and of itself, and can also be used to verify the rest of the information. Although

file upload can be implemented easily, it is an additional obstacle for web crawlers, like DOPE

and adding this capability will be a crucial design consideration. We respect the importance of this

feature and study the logic of phishing sites under four cases of human user behavior:

Does the phisher process the stolen information differently if the victim opts out after the

initial login, at file upload,or if the victim uploads two arbitrary, non-government ID files, like

nature photos, or if the victim uploads two identical files? Unfortunately, all every case we tried

was handled identical and we could not find any differences, yet.

Findings from Credit Card Sensors

On top of the victim brand’s access logs and text message notifications, we also review the

billing statements of the deactivated credit cards that we stuffed into the phishing sites. While

all transactions were declined, the billing statements still show the timestamp, dollar amount, and

merchant. The next section describes two representative sets of credit card transactions that the

phishers initiated on our cards and discusses the respective insights.

One phishing site tried using credit card numbers within minutes after the submission to the

site, making the six payments at three merchants listed in Table X. Every account that we stuffed

and that actually exists on paypal.com was hit by this attack, except for one. We later find in the

logs that we had a typo in the missing decoy victim’s email address, which explains the discrep-
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ancy.

We research the merchant names and we learn that two of the three merchants are popular and

well-established computer hardware stores in Germany which matches the language used by the

phishing site - German. The third merchant “Otpmobl*sziget.hu” is associated with a Hungarian

music festival. We contacted the three merchants on the same day of the transactions, asking

them for any insight they can share about the purchase. The sites do not share a contact for fraud

reporting, so we sent emails to the general customer service address asking about the name and

address used for the purchase. The two German contacts responded immediately, confirming that

the charges were made on their sites, but unable to provide further insight due to data protection

laws. The Hungarian music festival however does not respond to our email or follow-up email. We

note that the dollar amount of the transactions was identical for each payment at a given merchant

and it is a considerably high value that would likely catch the card owner’s attention, but still low

enough not to be considered a high-risk transaction by PSD2, which sets a threshold of $1,200 to

enforce strong customer authentication (3-D Secure). When looking for a pattern in the phishers’

use of merchants, the timestamps almost suggest that the criminals move from one merchant to the

other over time, but credit card A (see Table 4.6) is tested at two merchants and in an unexpected

order that violates this pattern. Instead, it seems more likely that the phishers try purchasing at the

merchants in round-robin order, or even at random.

A second phishing site also tried using credit card numbers within minutes after we shared

them, but this time using a different approach, illustrated in Table 4.7. This time, only two accounts

were hit, not all. The commonality between the decoy identities whose credit cards were picked

ID Merchant on credit card statement Value Timestamp
1 COMPUTERUNIVERSE.NET $391.46 10:35 am Card A (Wei Zhuang)

2 Otpmobl*sziget.hu $586.13
10:33 am Card A (Wei Zhuang)
2:18 pm Card B (Clara Rubens)
2:37 pm Card C (Juri Wizlaw)

3 Media Markt $623.16
3:56 pm Card D (Zeynep Aksoy)
3:58 pm Card E (Maria Anna)

Table 4.6: List of transactions made by a real phisher using real credit cards a real merchants. The
phisher attempted multiple transactions of over $500 each
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up by the phisher was their IP address location. Both cards were stuffed from a local New York

City-based IP address, one provided by Verizon, and one from the Columbia University campus

network. The other decoy’s identities, that the phishers did not use, were partially stuffed from IP

addresses across the United States, and also New York City, but using a VPN provider, which we

purposefully did to see if the PII gets treated differently by the phisher depending on its source

IP address. In particular, we used the Windescribe VPN service, which is a known service and

may have been recognized by the phisher. In addition, this phisher is more careful when testing

the cards. The phisher leverages New York City-based merchants that roughly correspond with the

source IP we stuffed from or the ZIP code we provided with the cards. In our personal opinion

these three merchants are quite unusual. One is a food market on John Street, which uses mercato

for delivery but does not seem to have a way of setting up accounts. And next level martial arts

does not have any apparent web commerce. So how were these charges effected? Although neither

the card issuer nor the merchant can give us the answer, we know that the payments happened fast,

so we can outrule that someone printed physical cards from the data. An more realistic scenario

may be that the phishers use malware to remote control compromised payment terminals. We have

contacted the merchants via email.

On top of that, the zero-dollar charges we see on these statements indicate that the cards were

added to the respective merchant website as new payment methods. When adding a card for later

use, merchants commonly authorize the cards via a zero-dollar charge. These charges are com-

monly not listed on a credit card statement, and this way of testing may go undetected by the card

owner - if the card is active. Note that this is different from the benign method that some platforms

use to authenticate the customer when they send a small amount of money and ask to confirm the

amount before reversing the transaction.

Linking phishing sites to attempted credit card transactions revealed two credit card verifica-

tion and direct monetization patterns - valuable insight in the fight against fraud. We also draw

conclusions about the phisher’s modus operandi. The A/B Testing of different source IP addresses

shows that phishers block VPNs and do filter the geographic location of an IP address.
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ID (cont’d) Merchant on credit card statement Value Timestamp

4 Jubilee Market on J $0.00
9:53am Card E (Mark Ferrante)
9:53am Card D (Zeynep Aksoy)

5 APPLE SLICES $0.00 9:53am Card E (Mark Ferrante)
6 NEXT LEVEL MARTIAL ARTS $0.00 9:53am Card D (Zeynep Aksoy)

Table 4.7: List of transactions made by a real phisher using real credit cards a real merchants. The
phisher attempted multiple transactions of over $0 each

Toward of Social Media Presence

In the last section, we discussed that randomly generated data will not pass most phishing

sites’ login form, because phishers instantaneously verify the login credentials at the target site,

here PayPal. We conclude that decoy instances must have legitimate credentials for the victim

platform. However, we also tested for differences caused by the victim user’s presence on social

media and we could not measure any indication that these phishers authenticate a real human user

by testing their profile at other sites. We conclude that these phishers do not manually review the

decoy PII’s authenticity, because the phisher’s login attempts at the victim brand are instantaneous,

and the credit card transactions we monitored were timely, too. We did not observe a measurable

delay that would have allowed them to e.g. search the victim’s name on Google Search. After

three weeks, we still did not register any action. Apart from manual review, there are ways to

test whether or not a victim is currently logged in to social media sites when visiting the phishing

site. Although this approach is hacky, it is broadly used for online marketing: A site can query

another site’s favicon without violating the same-origin policy. In the case of social media sites the

availability of the favicon reveals the user’s login status. To the best of our knowledge, this is the

only way to operate such a lookup and we did not find any evidence for this technique in any of

our experiments.

Autofill

The manual review of phishing sites taught us that some fraudsters disable the auto-fill fea-

ture, and pasting to the input fields. This seems particularly common to prohibit the user from

pasting into the credit card number field. Henceforth, DOPE must implement data deployment via
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JavaScript sendKey() API to handle these sites, which could handle all sites. On sites without this

restriction, we did not measure a different outcome for decoy info provided via auto-fill versus

such decoy info manually typed into the keyboard - they were processed equally by the phishers.

Through the controlled use of differnet parameters it was possible for us to better understand

technical challenges for the automation of DOPE and we learned how some phishers orchestrate

their credit card theft operations. This field study confirms that PII based sting operations are

possible, and will provide valuable insights, up to an evidence of a crime, if used correctly.

4.5.3 Conclusion

In the previous section, we presented the hypothesis that phishers verify the authenticity of a

victim and we described the design of comparative experiments to empirically test instances of the

hypothesis. The experiment’s evaluation shows several findings that this section will summarize

and use to deduct guidance for the design of our Denial-of-Phishing Engine. We then conclude

with additional recommendations for future fraud prevention.

It is important to understand that we do not hope to mitigate the entirety of a phisher’s possi-

bilities, instead, we use this study to learn which technologies are evident and we propose to scale

DOPE to those. Sophisticated phishers may use additional verification vectors that we did not dis-

cuss or did not investigate as part of our experiments, but handling corner cases is not the ambition

of DOPE, similar to how we do not consider spear and whale phishing but focus on spray’n’pray

strategies only. It is said that the true threat of phishing is its low entrance barrier and this is where

we aim to tackle, we lift the bar for script-kiddies, lower the financial incentive and increase the

risk of legal persecution. Although the sample size of our field study is rather small, we empha-

size that Chapter 4 showed how many phishing instances can be mapped to the same few phishing

kits. Hence, we expect that few observations scale to many instances of phishing that use the same

technology stack. Given the framework that this work provides, one can always add to it by inves-

tigating additional sites from additional phishing feeds. Similarly, we did not find any of our PII

retailed on the black market, which may be due to the quality of our scanner, or because our PII
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was dropped at a later stage, e.g. after the credit cards were declined. Regardless, our insights can

provide valuable insights to threat hunters and automation of stuffing and credit card monitoring

will be even more valuable. An instance of DOPE that is run by a payment network provider could

deploy decoy PII and monitor usage ad hoc, then track and prosecute the threat actors. Similarly,

the correlation of fraudulent payments can be used to inform merchants about their role in the

system. Merchants lose transaction fees, time, and reputation when cybercriminals abuse them

for credit card verification. Certainly knowing that a purchase was initiated with a stolen credit

card provides legal evidence against the fraudulent customer, and the respective prosecution cam-

paign may reveal additional intelligence about the fraud. For example, only the merchant can trace

if the purchase stemmed from a registered account, if that account may have a shipping address

associated with it, and if that address is associated with other accounts, too, or reoccurs in other

fraudulent transactions. It may as well be that hackers deployed an Advanced Persistent Threat

(APT) in the merchants’ IT infrastructure and a digital forensics campaign may reveal such threat

and prevent further harm. The possibilities are endless, the merchant may be in on it, and the

phisher may use trojans to remote control end-users’ computers to make the purchases.

The most critical design consideration of DOPE is not yet related to its data provisioning model.

Most importantly we need the stuffed user credentials for any site to be valid for that site. This has

been common among all phishing sites we got feedback from and at the same time, we consider this

the most challenging and limiting aspect to overcome in practice because it inherently requires the

a priori knowledge of the victim brand and a collaboration with that brand. Another consideration

for the generated PII is for the ZIP code used for the decoy’s address to match the source IP’s

geolocation.

To handle most phishing sites it is helpful to support a mobile User-Agent. In most cases, it is

sufficient to spoof the User-Agent, but we suggest also to resize the window to a contemporary’s

smartphone screen’s resolution. Similarly, DOPE shall spoof the HTTP header field for the referrer

to it an email provider, such that the phishing site can see that “we clicked on a link”. When

navigating through the phishing app it is paramount to support cookies. In addition, it is desirable

82



to enter the decoy information via sendKey() API and to dacilitate file uploads. The credentials

presence on social media platforms is secondary.
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Conclusion

In this dissertation, we investigate the rising threat of PII Phishing. First, we consider the

Detection, Triage, and Attribution of the threat. Then, we go one step further and we implement a

system to automatically flood PII Phishing sites with fake information. We show that the fake

data gets picked up by the phisher and it can be used to facilitate sting operations against the

criminals behind the threat. At the baseline of this work, we observe that recent work on phishing

detection is skewed towards developing new machine learning models. We also consider training

a machine learning model to detect the threat, but in contrast to most publications, we do not

focus on the architecture of the machine learning model. Instead, we explore the use of new

features. New features provide a great value to the community since any future model can easily

adopt them as part of their own feature set. We note that the community shares several numeric

datasets, but feature engineering would not have been possible without a dataset of phishing page

source, so we invite the community to follow in our footsteps by using our publicly available

dataset of raw phishing page sources. In Chapter 2.4.5 we show the two new features yield

promising insights. First, we consider training a machine learning model to detect phishing.

Comparing the feature importances shows that our two new features can help to push the accuracy

from 68% to 92%. Second, the features can be used to map a phishing site to a threat class, using

a list of 356 PII indicators that we associated with one of 36 information categories. These

information categories can further be used as a PII reference list to meet government regulations

for data protection. Third, we propose to interpret the new features as phishing site fingerprints

that leak the relationship between multiple phishing sites. A sample use case is the organization
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of threat intelligence into a social network of phishers.

In Chapter 2.4.5 we present a framework for the automated interaction with PII Phishing sites.

Our system is the first to automatically inject automatically generated PII into a phishing website

and it is the first to consider the provisioning from believable sources such that an informed

phisher will have a hard time distinguishing the decoy from a real victim. We show that the

system can work in practice and we report the results from our fourteen-day interaction with

twenty-eight phishing sites. The results show that some of our believability concerns are more

justified than others and as a consequence , the system has great potential to be used at scale.
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Appendix A: PII Reference List

PII Category Indicator Google Cloud DLP

USRNAME Username/ -

USRNAME UserID/ -

USRNAME Signon/ -

USRNAME Login/ -

USRNAME AppleID/ -

USRNAME AdobeID/ -

USRNAME AOLuser/ -

USRNAME Yahoouser/ -

USRNAME Hotmailuser/ -

USRNAME Gmailuser/ -

PSWD Password/ PASSWORD

PSWD Passcode PASSWORD

PSWD Security Question/Mother’s maiden name PASSWORD

PSWD Security Question PASSWORD

PSWD Shared Secret PASSWORD

PSWD Recover PASSWORD

PSWD PASSWORD

AIRACCT Airline Miles Number/ -

AIRACCT AA Advantage Number/ -

AIRACCT Mileage Plus/ -

AIRACCT True Blue/ -

AIRACCT Sky Miles -

EDUCATION School identification/ -

EDUCATION Highest Degree Earned -

ORIGIN Alienage-Citizenship -

AUTOVIN License Plate Numbers/ VEHICLE_ID

AUTOVIN Tag number VEHICLE_ID

TOLL EZpass number -

AUTOVIN Auto VIN number VEHICLE_ID

INSURANCE Insurance Policy Number ICD9_CODE

INSURANCE Medical Insurance Number ICD9_CODE

INSURANCE Group No. ICD10_CODE

INSURANCE Medicaid Number ICD10_CODE

INSURANCE Medicare Number ICD10_CODE

MEDICAL Caregiver Status MEDICAL_TERM

BIOMETRIC Color -

CREDIT Credit History -

ORIGIN Creed -

MEDICAL Disability -

FAMSTAT Familial Status -

GENDER Gender GENDER

GENDER Gender Identity GENDER

MEDICAL Lactation accommodation

FAMSTAT Marital status -
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ORIGIN National Origin -

MEDICAL Pregnancy MEDICAL_TERM

ORIGIN Race ETHNIC_GROUP

ORIGIN Religion -

EMPLOYMENT Employer information/ -

EMPLOYMENT Salary History -

GENDER Sex GENDER

MEDICAL Sexual health MEDICAL_TERM

PREFERENCE Sexual orientation -

EMPLOYMENT Unemployment status -

EMPLOYMENT Veteran or active military status -

NAME Name/ FEMALE_NAME

NAME First/ FIRST_NAME

NAME Middle/ MALE_NAME

NAME Middle Initial/ MALE_NAME

NAME Last LAST_NAME

AGE Age/Birthdate/ AGE

AGE Birth month/Birth Day/Birth Year DATE

ADDRESS Address/ EMAIL_ADDRESS

ADDRESS House Address/ LOCATION

ADDRESS Country/ LOCATION

ADDRESS State/ LOCATION

ADDRESS Postal Code/ZIP Code LOCATION

ADDRESS Street/Apartment STREET_ADDRESS

EMAIL Email/ EMAIL_ADDRESS

EMAIL Contact email EMAIL_ADDRESS

PHONE Phone/ Fon PHONE_NUMBER

PHONE Mobile PHONE_NUMBER

FINANCIAL Bank Account Number/ by country

CREDIT Credit Card/ CREDIT_CARD_NUMBER

CREDIT cc CREDIT_CARD_TRACK_NUMBER

CREDIT Debit Card/ -

CREDIT CVV/ -

CREDIT Expiration Date/ -

FINANCIAL Checking Account/ by country

FINANCIAL Routing Number/ US_BANK_ROUTING_MICR

BROKERAGE Bitcoin Account -

BROKERAGE Wallet -

BROKERAGE Brokerage Account/ -

PASSWORD PIN PASSWORD

SOCIALSEC Social security number/ US_SOCIAL_SECURITY_NUMBER

SOCIALSEC Last four digits US_SOCIAL_SECURITY_NUMBER

TRAVEL Global Entry number/ -

TRAVEL Redress Number -

PASSPORT Passport Number PASSPORT

DRIVE Drivers License/ DRIVERS_LICENSE

DRIVE Issuing State DRIVERS_LICENSE

LEGAL Arrest/ DOCUMENT_TYPE/LEGAL/*

LEGAL Conviction Record DOCUMENT_TYPE/LEGAL/*

GENETIC Genetic predisposition – or carrier status -

BIOMETRIC Biometric information -

LEGAL Victim (violence, stalking, ...) DOCUMENT_TYPE/LEGAL/*

FINANCIAL TAN -

FINANCIAL SWIFT SWIFT_CODE
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FINANCIAL BIC SWIFT_CODE

FINANCIAL IBAN IBAN_CODE

FINANCIAL Transaction Number IBAN_CODE

FINANCIAL Transaction ID IBAN_CODE

Table A.1: A comparison of our newly proposed reference list to Google Cloud DLP. We show 36
categories, indicated by 356 identifiers, whereas Google Cloud DLP has only 28 categories.
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Appendix B: PII Category Distribution

Relative proportions of PII categories per year.

2016 2017 2018 2019
email 16.57% 14.14% 13.42% 9.45%
contact 13.00% 11.57% 11.63% 9.97%
location 3.64% 3.98% 4.14% 4.26%
name 10.33% 14.75% 10.01% 13.27%
age 1.88% 1.47% 2.13% 2.32%
education 1.30% 1.59% 1.45% 2.80%
birthday 0.00% 0.06% 0.11% 0.04%
work 1.04% 0.55% 0.84% 1.50%
subscription 0.06% 0.92% 0.00% 0.24%
username 22.42% 15.85% 20.25% 19.09%
password 13.91% 11.69% 11.19% 9.47%
insurance 0.52% 0.43% 0.22% 0.66%
auto 0.00% 0.06% 0.00% 0.11%
citizenship 0.32% 0.31% 0.06% 0.26%
unemployment 0.00% 0.00% 0.00% 0.00%
orientation 0.13% 0.00% 0.22% 0.12%
military 0.00% 0.00% 0.06% 0.01%
religion 0.00% 0.00% 0.00% 0.00%
physical 0.26% 0.43% 0.06% 0.40%
airline 1.43% 0.55% 1.06% 1.13%
medical 0.26% 0.12% 0.11% 0.31%
toll 0.00% 0.00% 0.06% 0.07%
questions 0.26% 0.18% 0.34% 0.38%
financial 5.33% 9.12% 10.85% 10.83%
travel 0.06% 0.06% 0.34% 0.18%
tax 4.81% 8.63% 8.05% 10.36%
driving 1.23% 2.39% 1.34% 1.30%
legal 0.45% 0.61% 0.56% 0.43%
biometric 0.45% 0.12% 0.56% 0.31%
wire 0.32% 0.43% 0.95% 0.73%
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Appendix C: Natural Language Distribution

Relative increase or decrease per language when comparing phishing to the the languages count

in the benign part of the internet according to [72].
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2016 2017 2018 2019
English 0.1009 0.09 0.1263 -5.02%
German -0.07% -1.08% 0.0036 -0.71%
French 0.0192 -1.33% 0.0101 0.0191
Portuguese -0.79% 0.0258 -0.37% 0.0193
Spanish -3.75% -2.49% -4.04% -1.20%
Italian 0.0048 -0.65% -1.12% 0.0003
Russian -4.86% -5.93% -5.52% -2.79%
Dutch 0.0003 -0.22% -0.34% 0.004
Catalan 0.0047 0.0265 0.0043 0.0117
Romanian 0.0065 0.0141 0.0034 0.0106
Indonesian 0.0103 0.0021 0.0109 0.0039
Afrikaans - - - -
Danish 0.0056 0.0103 0.0066 0.0076
Norwegian 0.0076 0.0178 0.0043 0.0064
Welsh - - - -
Swedish 0.0026 0.0068 0.0003 -0.03%
Polish -1.52% -1.23% -0.96% -0.49%
Vietnamese 0.0007 0.0003 -0.39% 0.0017
Korean -0.32% -0.59% -0.57% 0.0021
Bulgarian -0.01% -0.20% 0.0065 0.0087
Japanese -4.33% -5.70% -5.50% -2.04%
Estonian 0.0009 0.0021 0.0043 0.0063
Turkish -1.31% -1.52% -0.87% -0.44%
Slovenian 0.00% 0.0068 0.0011 0.0042
Swahili - - - -
Macedonian - - - -
Slovak 0.0008 -0.14% 0.0013 -0.02%
Arabic -0.80% -0.41% -0.38% 0.0001
Croatian 0.0019 0.0021 0.0022 0.0013
Ukrainian -0.10% -0.10% 0.0044 0.0029
Albanian - - - -
Finnish -0.01% 0.0001 -0.09% 0.0002
Hungarian -0.21% 0.0007 -0.50% -0.31%
Kannada - - - -
Czech -0.80% -0.49% -0.58% -0.80%
Latvian 0.0009 0.0021 0.0001 -0.02%
Lithuanian 0.0009 0.0014 -0.20% 0.0004
Greek - - - -
Hebrew -0.20% -0.20% 0.0012 –0.0%
Thai -0.30% -0.30% -0.09% –0.0%
Persian -1.10% -1.42% -1.70% -1.68%
Hindi - -0.10% -0.10% -0.06%
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Appendix D: Sample PII Phishing Sites

(a) A phishing site of extreme dan-
ger to PII. It seems very authentic
and believable when compared to
many other phishing attempts.

(b) A phishing site of extreme dan-
ger to PII. It seems very authentic
and believable when compared to
many other phishing attempts.
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(c) A phishing site of extreme
danger to PII. It seems very
authentic and believable when
compared to many other phish-
ing attempts.

(d) A phishing site of extreme
danger to PII. It seems very
authentic and believable when
compared to many other phish-
ing attempts.

(e) A phishing site of extreme
danger to PII. It seems very
authentic and believable when
compared to many other phish-
ing attempts.

(f) A phishing site of extreme
danger to PII. It seems very
authentic and believable when
compared to many other phish-
ing attempts.
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(g) A phishing site of extreme danger to PII. It
seems very authentic and believable when com-
pared to many other phishing attempts.

(h) A phishing site of extreme danger to PII. It
seems very authentic and believable when com-
pared to many other phishing attempts.

Figure D.1: A benign site and its malicious clone, utilizing identical variable names - an indicator
that can be used to link a site to its clonee
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Appendix E: URLs

ID Brand Autfill
Email &

Passwd

Credit

Card

Bank

Account
Address

Phone

Number
SSN 3D-Secure

File

Upload

97651403 ERR_ADDRESS_UNREACHABLE

97651402 DNS_PROBE_FINISHED_NXDOMAIN

97650291 REDIRECT

97649635 The QR Code has been paused.

97646231
NET::ERR_CERT_COMMON_NAME_INVALID

404

97646149 DNS_PROBE_FINISHED_NXDOMAIN

97645729 404

97635036 DNS_PROBE_FINISHED_NXDOMAIN

97634911 DNS_PROBE_FINISHED_NXDOMAIN

97634910 DNS_PROBE_FINISHED_NXDOMAIN

97652961 PayPal x x x

97627949 PayPal

97627948 PayPal

artifact of an

anti-phishing

workshop

97624840
ERR_BLOCKED_BY_CLIENT

REDIRECT TO BENIGN (cloaked?)

97624837 ERR_BLOCKED_BY_CLIENT

97624179 ERR_BLOCKED_BY_CLIENT

97624177 ERR_BLOCKED_BY_CLIENT

97653094 404

97653093 404

97653087 ERR_CONNECTION_TIMED_OUT

97653071 PayPal x x

97653070 ERR_CONNECTION_TIMED_OUT

97653068 ERR_CONNECTION_TIMED_OUT

97653064 PayPal
fraudulent

money request

97655960 ERR_CONNECTION_TIMED_OUT

97655730 PayPal x x

97655729 PayPal Spanish x

97667703 403 Forbidden

97667691 PayPal x x

97667687 403 Forbidden

97667401 File Not Found

97667034 File Not Found

97666966 French x x

97666963 File Not Found

97666954 French x

97666858 REDIRECT

97665891 ERR_CONNECTION_REFUSED

97666309 DNS_PROBE_FINISHED_NXDOMAIN

97665191 Blank page
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ID Brand Autfill
Email &

Passwd

Credit

Card

Bank

Account
Address

Phone

Number
SSN 3D-Secure

File

Upload

97671610 CLOAKED x x x x x

97670264 Hoster takedown

97669569 DNS_PROBE_FINISHED_NXDOMAIN

97669558 404

97669383 Hoster takedown

97669373 Hoster takedown

97669268 ERR_CONNECTION_TIMED_OUT

97668872 403

97668424 PayPal x x x x x

97668329 503

97668331 503

97668328 503

97667862 Blank page

97667861 Not Found

97687022 DNS_PROBE_FINISHED_NXDOMAIN

97687021 DNS_PROBE_FINISHED_NXDOMAIN

97686431 DUPLICATE

97686430 PayPal (mobile agent) x

97686372 404

97686361 File not found.

97684512 PayPal

97704766 PayPal log in button dead?

97704530 PayPal does not allow . in email

97692475 PayPal x x

97691363 302

97691360 302

97691362 302

97691361 302

97691359 302

97691349 302

97691350 302

97691348 302

97691351 302

97691179 302

97691178 302

97701751 PayPal
disabled pasting credit card

credit card exp. date max. 2026

97710858 Forbidden

97690566 404

97690122 Internal Server Error

97754193 REDIRECT

97753391 hoster take down

97749501 PayPal login just fails, backend dead? x

97746649 PayPal mobile only, fake customer chat

97746171 ERR_BLOCKED_BY_CLIENT

97746163 PayPal
just asking MFA code

w/o asking phone first

97741308 paypal x x x x x x

97725530 paypal x x x x

97725477 paypal
stalls during sms retrieval

doesnt verify password at all

97743898 ERR_CONNECTION_REFUSED

Table E.1
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