N-soft sets: OWA aggregation operators and multi-agent decisions — Slides in 22nd IPMC 2022 (1/3)

Gustavo Santos-García

November 26, 2022

Abstract

The 22nd International Pure Mathematics Conference 2022 (22nd IPMC 2022) on Algebra, Analysis and Geometry, was held in Islamabad (Pakistan) from August 21–23, 2022. It provides a stimulating opportunity to interact with experts from various countries in a variety of branches of pure mathematics. The conference is organized in hybrid mode, with a first day face-to-face and the other two days online.

The emeritus professor Qaiser Mushtaq, Department of Mathematics, Quaid-i-Azam University, Islamabad and the Organizing Committee has been organizing the International Pure Mathematics Conference (IPMC) annually in Islamabad since 2000.

Here are the slides of the lecture given by the author.

N-soft sets: **OWA** aggregation operators and multi-agent decisions

Gustavo Santos-García

August 25, 2022 at Islamabad, Pakistan

Multidisciplinary Institute of Enterprise (IME) University of Salamanca, Spain santos@usal.es

Goals

▷ Understand the semantics of *N*-soft sets (Fatimah, Rosadi, Hakim and Alcantud, 2018).

This is necessary for example, for a correct evaluation of the alternatives, or for interpreting aggregation.

▷ Two different approaches to the aggregation of *N*-soft sets.

Aggregation is interesting, e.g., for multi-agent decision making.

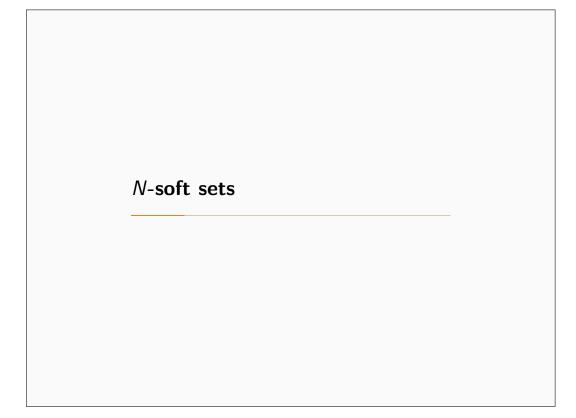
Why semantical analyses?

From Dubois and Prade "The three semantics of fuzzy sets", Fuzzy Sets and Systems (1997):

(...) there is no uniformity in the interpretation of what a membership grade means. (...) Most negative statements expressed in the literature turn around the question of interpreting and eliciting membership grades. Our claim in this position paper is that, far from being a weakness, the existence of several understandings of what a membership grade may mean proves the potential richness of the concept of fuzzy set (...)

Three main semantics for membership functions seem to exist in the literature: similarity, preference and uncertainty.

Recommended bibliography


 ▷ J.C.R. Alcantud: "The semantics of *N*-soft sets, their applications, and a coda about three-way decision", Information Sciences 606 (2022), 837–852. Open Access.

Largely based on J. Yang, Y. Yao: "Semantics of soft sets and three-way decision with soft sets", Knowledge-Based Systems **194** (2020), 105538.

▷ J.C.R. Alcantud, G. Santos-García, M. Akram: "OWA aggregation operators and multi-agent decisions with *N*-soft sets", Expert Systems with Applications **203** (2022), 117430. *Open Access.*

Table of contents

- 1. N-soft sets
- 2. Semantics of *N*-soft sets
- 3. Aggregation of N-soft sets
- 4. Conclusions

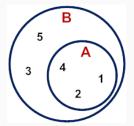
Soft sets and N-soft sets

Conceptual definition (finite setting). Consider $T = \{t_1, \ldots, t_q\}$, a set of 'attributes'.

An N-soft set on a set $O = \{o_1, \ldots, o_p\}$ is defined by Table 1.

Table 1: Representation of an *N*-soft set (Fatimah, Rosadi, Hakim, Alcantud,2018).

(F, T, N)	t_1	 tq
01	<i>r</i> ₁₁	 r_{1q}
:	÷	÷
<i>0p</i>	r_{p1}	 r _{pq}


Each r_{ij} (a 'grade') is in $G = \{0, 1, \dots, N-1\}$ \longleftarrow a convenient default

When N = 2 we have a soft set (Molodtsov, 1999).

6

Crisp sets vs. soft sets: An example Let $B = \{1, 2, 3, 4, 5\}.$

(a) $A = \{1, 2, 4\}$ is a crisp subset of B.

Identified by its characteristic function $\chi_{\mathsf{A}}\colon B\longrightarrow \{0,1\}$ with

$$\chi_A(1) = \chi_A(2) = \chi_A(4) = 1, \ \chi_A(3) = \chi_A(5) = 0.$$

Or a vector with 5 components and binary values: (1, 1, 0, 1, 0).

(b) A soft set over *B* is identified by several vectors with 5 components (one column vector for each relevant attribute) and binary values.

7

Crisp sets vs. N-soft sets: An example

(c) An *N*-soft set over *B* is identified by several vectors with 5 components (one column vector for each relevant attribute) and values from $G = \{0, 1, ..., N - 1\}$.

Example with 3 characterizing attributes:

t_1	t_2	t_3
1	1	2
3	2	0
0	1	2
2	3	2
1	0	3
	1 3 0 2	1 1 3 2 0 1 2 3

What can we capture with this table? semantics of attributes and values.

Important: Real-life examples are given in various references.

8

N-soft sets: **OWA** aggregation operators and multi-agent decisions

Gustavo Santos-García

August 25, 2022 at Islamabad, Pakistan

Multidisciplinary Institute of Enterprise (IME) University of Salamanca, Spain santos@usal.es

References

- Ghous Ali, Muhammad Akram, Ali N. A. Koam, and José Carlos R. Alcantud. Parameter reductions of bipolar fuzzy soft sets with their decisionmaking algorithms. *Symmetry*, 11(8), 2019.
- [2] Ghous Ali, Muhammad Akram, and José Carlos R. Alcantud. Attributes reductions of bipolar fuzzy relation decision systems. *Neural Computing* and Applications, 32(14):10051–10071, 2020.
- [3] José Carlos R. Alcantud and Carlos Rodriguez-Palmero. Characterization of the existence of semicontinuous weak utilities. *Journal of Mathematical Economics*, 32(4):503–509, 1999.
- [4] Muhammad Akram, Ghous Ali, and José Carlos R. Alcantud. New decision-making hybrid model: intuitionistic fuzzy N-soft rough sets. Soft Comput, 23(20):9853–9868, 2019.
- [5] Muhammad Akram, Arooj Adeel, and José Carlos R. Alcantud. Hesitant fuzzy N-soft sets: A new model with applications in decision-making. *Jour*nal of Intelligent & Fuzzy Systems, 36:6113–6127, 2019.
- [6] Muhammad Akram, Ghous Ali, and José Carlos R. Alcantud. Parameter reduction analysis under interval-valued m-polar fuzzy soft information. *Artificial Intelligence Review*, 54(7):5541–5582, 2021.
- [7] Muhammad Akram, Ghous Ali, and José Carlos R. Alcantud. Attributes reduction algorithms for *m*-polar fuzzy relation decision systems. *International Journal of Approximate Reasoning*, 140:232–254, 2022.
- [8] Muhammad Akram, Ghous Ali, José Carlos R. Alcantud, and Fatia Fatimah. Parameter reductions in N-soft sets and their applications in decision-making. *Expert Systems*, 38(1):e12601, 2021.
- [9] Muhammad Akram, Ghous Ali, José Carlos R. Alcantud, and Aneesa Riaz. Group decision-making with Fermatean fuzzy soft expert knowledge. Artificial Intelligence Review, 2022.
- [10] Muhammad Akram, Amna Habib, and José Carlos R. Alcantud. An optimization study based on Dijkstra algorithm for a network with trapezoidal picture fuzzy numbers. *Neural Computing and Applications*, 33(4):1329– 1342, 2021.
- [11] José Carlos R Alcantud. Characterization of the existence of maximal elements of acyclic relations. *Economic Theory*, 19(2):407–416, 2002.

- [12] A Luqman, M Akram, AN Al-Kenani, and JCR Alcantud. A study on hypergraph representations of complex fuzzy information. *Symmetry*, 11:1381, 2019.
- [13] Neha Waseem, Muhammad Akram, and José Carlos R Alcantud. Multiattribute decision-making based on m-polar fuzzy hamacher aggregation operators. *Symmetry*, 11(12):1498, 2019.
- [14] Xiaoyan Liu, Hee Sik Kim, Feng Feng, and José Carlos R Alcantud. Centroid transformations of intuitionistic fuzzy values based on aggregation operators. *Mathematics*, 6(11):215, 2018.
- [15] José Carlos R Alcantud. Revealed indifference and models of choice behavior. Journal of Mathematical Psychology, 46(4):418–430, 2002.
- [16] Fatia Fatimah and José Carlos R Alcantud. The multi-fuzzy n-soft set and its applications to decision-making. Neural Computing and Applications, 33(17):11437–11446, 2021.
- [17] Khizar Hayat, Muhammad Irfan Ali, José Carlos R Alcantud, Bing-Yuan Cao, and Kalim U Tariq. Best concept selection in design process: An application of generalized intuitionistic fuzzy soft sets. *Journal of Intelligent* & Fuzzy Systems, 35(5):5707–5720, 2018.
- [18] Muhammad Akram, Ghous Ali, José CR Alcantud, and Fatia Fatimah. Parameter reductions in n-soft sets and their applications in decision-making. *Expert Systems*, 38(1):e12601, 2021.
- [19] Ghous Ali, Muhammad Akram, and José Carlos R Alcantud. Attributes reductions of bipolar fuzzy relation decision systems. *Neural computing and applications*, 32(14):10051–10071, 2020.
- [20] Muhammad Akram, Arooj Adeel, Ahmad N Al-Kenani, and José Carlos R Alcantud. Hesitant fuzzy n-soft electre-ii model: a new framework for decision-making. *Neural Computing and Applications*, 33(13):7505–7520, 2021.
- [21] Muhammad Akram, Maria Shabir, Ahmad N Al-Kenani, and José Carlos R Alcantud. Hybrid decision-making frameworks under complex spherical fuzzy-soft sets. *Journal of Mathematics*, 2021, 2021.
- [22] Muhammad Akram, Kiran Zahid, and José Carlos R Alcantud. A new outranking method for multicriteria decision making with complex pythagorean fuzzy information. *Neural Computing and Applications*, 34(10):8069–8102, 2022.
- [23] Gustavo Santos-García and Miguel Palomino. Solving sudoku puzzles with rewriting rules. *Electronic Notes in Theoretical Computer Science*, 176(4):79–93, 2007.

- [24] Emiliano Hernández Galilea, Gustavo Santos-García, and Inés Franco Suárez-Bárcena. Identification of glaucoma stages with artificial neural networks using retinal nerve fibre layer analysis and visual field parameters. In *Innovations in hybrid intelligent systems*, pages 418–424. Springer, Berlin, Heidelberg, 2007.
- [25] José Carlos R Alcantud, Gustavo Santos-García, and Emiliano Hernández-Galilea. Glaucoma diagnosis: A soft set based decision making procedure. In *Conference of the Spanish Association for Artificial Intelligence*, pages 49–60. Springer, Cham, 2015.
- [26] José Carlos R. Alcantud and Gustavo Santos-García. A new criterion for soft set based decision making problems under incomplete information. *International Journal of Computational Intelligence Systems*, 10:394–404, 2017.
- [27] Gustavo Santos-García, Las Rivas, Javier De, and Carolyn Talcott. A logic computational framework to query dynamics on complex biological pathways. In 8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014), pages 207–214. Springer, Cham, 2014.
- [28] José Carlos R Alcantud and Gustavo Santos-García. Incomplete soft sets: New solutions for decision making problems. In Decision Economics, In Commemoration of the Birth Centennial of Herbert A. Simon 1916-2016 (Nobel Prize in Economics 1978), pages 9–17. Springer, Cham, 2016.
- [29] Gustavo Santos-Garcia, Gonzalo Varela, Nuria Novoa, and Marcelo F Jiménez. Prediction of postoperative morbidity after lung resection using an artificial neural network ensemble. *Artificial intelligence in medicine*, 30(1):61–69, 2004.
- [30] Adrián Riesco, Beatriz Santos-Buitrago, Javier De Las Rivas, Merrill Knapp, Gustavo Santos-García, and Carolyn Talcott. Epidermal growth factor signaling towards proliferation: modeling and logic inference using forward and backward search. *BioMed research international*, 2017, 2017.
- [31] José Carlos R Alcantud and Gustavo Santos-García. Expanded hesitant fuzzy sets and group decision making. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6. IEEE, 2017.
- [32] José Carlos R Alcantud, Gonzalo Varela, Beatriz Santos-Buitrago, Gustavo Santos-García, and Marcelo F Jiménez. Analysis of survival for lung cancer resections cases with fuzzy and soft set theory in surgical decision making. *Plos one*, 14(6):e0218283, 2019.
- [33] Beatriz Santos-Buitrago, Adrián Riesco, Merrill Knapp, José Carlos R Alcantud, Gustavo Santos-García, and Carolyn Talcott. Soft set theory for decision making in computational biology under incomplete information. *IEEE Access*, 7:18183–18193, 2019.

- [34] José Carlos R Alcantud, Gustavo Santos-García, Xindong Peng, and Jianming Zhan. Dual extended hesitant fuzzy sets. Symmetry, 11(5):714, 2019.
- [35] Gonzalo Varela, Nuria Novoa, Marcelo F Jiménez, and G Santos. Applicability of logistic regression (lr) risk modelling to decision making in lung cancer resection. *Interactive cardiovascular and thoracic surgery*, 2(1):12– 15, 2003.
- [36] Adrián Riesco, Beatriz Santos-Buitrago, Merrill Knapp, Gustavo Santos-García, Emiliano Hernández Galilea, and Carolyn Talcott. Fuzzy matching for cellular signaling networks in a choroidal melanoma model. In International Conference on Practical Applications of Computational Biology & Bioinformatics, pages 80–90. Springer, Cham, 2020.
- [37] B Santos-Buitrago, G Santos-García, and E Hernández-Galilea. Artificial intelligence for modeling uveal melanoma. Artif Intell, 1(4):51–65, 2020.
- [38] Aiyared Iampan, Gustavo Santos García, Muhammad Riaz, Hafiz Muhammad Athar Farid, and Ronnason Chinram. Linear diophantine fuzzy einstein aggregation operators for multi-criteria decision-making problems. *Journal of Mathematics*, 2021, 2021.
- [39] Zeeshan Ali, Tahir Mahmood, and Gustavo Santos-García. Heronian mean operators based on novel complex linear diophantine uncertain linguistic variables and their applications in multi-attribute decision making. *Mathematics*, 9(21):2730, 2021.
- [40] Tahir Mahmood, Ubaid ur Rehman, Jabbar Ahmmad, and Gustavo Santos-García. Bipolar complex fuzzy hamacher aggregation operators and their applications in multi-attribute decision making. *Mathematics*, 10(1):23, 2021.
- [41] Muhammad Akram, Umaira Amjad, José Carlos R. Alcantud, and Gustavo Santos-García. Complex fermatean fuzzy N-soft sets: A new hybrid model with applications. *Journal of Ambient Intelligence and Humanized Computing*, pages 1–34, 2022.
- [42] Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanță, Gustavo Santos-García, Jorge E Macías-Díaz, and Mohamed S Soliman. Fractional calculus for convex functions in interval-valued settings and inequalities. Symmetry, 14(2):341, 2022.
- [43] Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, and Mohamed S Soliman. Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional calculus. *Mathematics*, 10(4):534, 2022.
- [44] Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Pshtiwan Othman Mohammed, and Mohamed S Soliman. Riemann-liouville

fractional integral inequalities for generalized harmonically convex fuzzyinterval-valued functions. *International Journal of Computational Intelli*gence Systems, 15(1):1–14, 2022.

- [45] José Carlos R Alcantud, Gustavo Santos-García, and Muhammad Akram. Owa aggregation operators and multi-agent decisions with n-soft sets. *Expert Systems with Applications*, 203:117430, 2022.
- [46] Muhammad Akram, G Muhiuddin, and Gustavo Santos-Garcia. An enhanced vikor method for multi-criteria group decision-making with complex fermatean fuzzy sets. *Mathematical Biosciences and Engineering*, 19(7):7201–7231, 2022.
- [47] Hafiz Muhammad Athar Farid, Harish Garg, Muhammad Riaz, and Gustavo Santos-García. Multi-criteria group decision-making algorithm based on single-valued neutrosophic einstein prioritized aggregation operators and its applications. *Management Decision*, (ahead-of-print), 2022.
- [48] Gustavo Santos-García, Muhammad Bilal Khan, Hleil Alrweili, Ahmad Aziz Alahmadi, and Sherif SM Ghoneim. Hermite-hadamard and pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. *Mathematics*, 10(15):2756, 2022.
- [49] Muhammad Bilal Khan, Muhammad Aslam Noor, Hatim Ghazi Zaini, Gustavo Santos-García, and Mohamed S Soliman. The new versions of hermite-hadamard inequalities for pre-invex fuzzy-interval-valued mappings via fuzzy riemann integrals. *International Journal of Computational Intelligence Systems*, 15(1):1–13, 2022.
- [50] Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S Soliman. New hermite–hadamard inequalities for convex fuzzy-number-valued mappings via fuzzy riemann integrals. *Mathematics*, 10(18):3251, 2022.
- [51] Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S Soliman. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. *Chaos, Solitons & Fractals*, 164:112692, 2022.
- [52] Shazia Kanwal, Akbar Azam, Muhammad Gulzar, and Gustavo Santos-García. A fixed point approach to lattice fuzzy set via f-contraction. *Mathematics*, 10(19):3673, 2022.
- [53] Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S Soliman. New class of preinvex fuzzy mappings and related inequalities. *Mathematics*, 10(20):3753, 2022.

- [54] Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanță, and Mohamed S Soliman. New class up and down pre-invex fuzzy number valued mappings and related inequalities via fuzzy riemann integrals. *Symmetry*, 14(11):2322, 2022.
- [55] Muhammad Akram, Anam Luqman, and José Carlos R. Alcantud. An integrated ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy information. *Expert Systems with Applications*, page 116945, 2022.
- [56] Gustavo Santos-García, Abbas Ali, and Noor Rehman. Soft ordered double quantitative approximations based three-way decisions and their applications. *Scientific Reports*, 12(1):1–28, 2022.
- [57] Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S Soliman. New class up and down λ -convex fuzzy-number valued mappings and related fuzzy fractional inequalities. *Fractal and Fractional*, 6(11):679, 2022.