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ABSTRACT
Large-scale and complex mission environments require unmanned aerial vehicles
(UAVs) to deal with various types of missions while considering their operational
and dynamic constraints. This article proposes a deep learning-based heterogeneous
mission planning algorithm for a single UAV. We first formulate a heterogeneous
mission planning problem as a vehicle routing problem (VRP). Then, we solve this by
using an attention-based deep reinforcement learning approach. Attention-based
neural networks are utilized as they have powerful computational efficiency in
processing the sequence data for the VRP. For the input to the attention-based neural
networks, the unified feature representation on heterogeneous missions is
introduced, which encodes different types of missions into the same-sized vectors. In
addition, a masking strategy is introduced to be able to consider the resource
constraint (e.g., flight time) of the UAV. Simulation results show that the proposed
approach has significantly faster computation time than that of other baseline
algorithms while maintaining a relatively good performance.

Subjects Artificial Intelligence, Robotics, Neural Networks
Keywords Mission planning, Deep reinforcement learning, Vehicle routing problem, Attention
mechanism, Neural Networks

INTRODUCTION
Recently, mission environments such as disaster management or logistics services become
more complex and larger. The goal of these large-scale missions can be achieved safer and
faster using unmanned aerial vehicles (UAVs) (Shakhatreh et al., 2019; Grzybowski, Latos
& Czyba, 2020; Kim et al., 2021). Since the complexity of task allocation by scheduling a
large number of tasks in the mission to UAVs is high, it takes a long time for the human
operator to plan these tasks manually without ensuring the optimal performance. The
performance and computational time significantly impact the success rate of rescue in
disaster management or the benefits of companies in logistics services (Atyabi,
MahmoudZadeh & Nefti-Meziani, 2018). Therefore, autonomous mission planning
algorithms need to be developed to solve these problems rapidly and efficiently.

Mission planning problems of the UAV can be represented as one of vehicle routing
problems (VRPs). The VRP has various variations such as distance constraint (Karaoglan,
Atalay & Kucukkoc, 2020), multiple trip availability (Paradiso et al., 2020), and
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asymmetricity of costs (Ban & Nguyen, 2021) among many others. Thus, the VRP can
represent some of the mission planning problems for the UAV, which is the complex
combinatorial optimization problem. In addition, there are various studies to solve these
VRP variations in operation research or transportation research fields (Kumar &
Panneerselvam, 2012). Therefore, when representing and solving the mission planning
problem of the UAV as one of the VRPs while considering the characteristics of the UAV,
it is possible to develop more realistic mission planning algorithms with the help of VRP
studies.

The VRP is a combinatorial optimization problem expressed in a graph form and there
are (i) exact solvers, (ii) heuristic algorithms, and (iii) machine learning-based approaches
to solve the problem. The exact solver approach can obtain the optimal solution with the
branch and bound algorithm (Laporte & Nobert, 1983; Toth & Vigo, 2002; Larrain et al.,
2019) or dynamic programming (Secomandi, 1998; Mingozzi, Roberti & Toth, 2013).
Although the exact solver approach can achieve the optimal cost, the computation time
grows exponentially with the scale of the problem. The heuristic algorithm approach finds
a feasible solution much faster than the exact approach. There are various heuristic
algorithms to solve the VRP such as variable neighborhood search (Bräysy, 2003; Kytöjoki
et al., 2007; Hemmelmayr, Doerner & Hartl, 2009), tabu search (Gendreau, Hertz &
Laporte, 1994; Fu, Eglese & Li, 2005; Qiu et al., 2018), and genetic algorithm (Baker &
Ayechew, 2003, da Costa et al., 2018, Ruiz et al., 2019). Although the heuristic algorithms
provide reasonable performance, they need to be designed carefully for different problem
setting, which is often challenging and requires expert knowledge. The machine learning-
based approach utilizes data to train model parameters. If the model can approximate the
solver which maps input and output of the combinatorial optimization problem, it can be
trained flexibly with different setting of the problem given the sufficient amount of data
(Khalil et al., 2017). Besides, after training the model, fast computation time can be
achieved. Using the machine learning approach is a good option when data is available
thanks to its advantages of fast and flexible calculations; hence, this article adopts machine
learning approach for UAV mission planning problems.

Among the machine learning approaches, supervised learning and reinforcement
learning can be considered to tackle the VRP. Vinyals, Fortunato & Jaitly (2015) proposed
a neural network model, called the Pointer network, that approximates the solver of
combinatorial optimization. It uses the attention mechanism and the recurrent neural
network (RNN)-based encoder-decoder structure with supervised learning. However,
supervised learning needs a large amount of labeled data obtained from exact solvers that
require significant time for data generation. For this reason, the reinforcement learning
approach that generates data while interacting with the environment during the training
process is often preferred for the VRP (Bello et al., 2017; Kool, van Hoof & Welling, 2019;
Mazyavkina et al., 2021). Bello et al. (2017) proposed a reinforcement learning algorithm to
solve combinatorial optimization problems that uses the Pointer network structure from
(Vinyals, Fortunato & Jaitly, 2015), and then optimizes the model with the policy gradient

Jung and Oh (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1119 2/17

http://dx.doi.org/10.7717/peerj-cs.1119
https://peerj.com/computer-science/


algorithm. Kool, van Hoof &Welling (2019) utilized the Transformer (Vaswani et al., 2017)
style-neural network model that modifies the RNN structure of the Pointer network into
multi head attention (MHA) network. This model is proposed to solve various types of
routing problems with its flexibility, and the authors show that the model outperforms
some heuristic algorithms and Pointer network-based model in terms of the performance
and the computation time; hence, we build our approach based upon this MHA network.

The proposed approach in this study particularly considers the characteristics of the
UAV, which are the capability of handling heterogeneous missions and the flight time
constraint. As UAV technology development continues, several tasks can be carried out by
even a single UAV simultaneously or sequentially, such as delivering extra payloads,
visiting specific areas to take images of landmarks, or flying over large areas to obtain
information. Considering these heterogeneous tasks, the cost for completing each pair of
tasks becomes different depending on the order of task completion. For instance, different
path lengths for delivery or radius of the area for coverage make the cost matrix of the VRP
asymmetric. Another characteristic of a UAV is that they have limited flight time due to
fuel/battery capacity. This constraint makes a UAV refuels/recharges their fuel/battery at
the depot and resume their work. Therefore, the mission planning problem of a UAV in
this article is represented as the multi-trip asymmetric distance constrained VRP
(MTAD-VRP) which is one of the variations of the VRP. The heterogeneous mission
planning considering these characteristics further increases the complexity of the VRP.

It is worthwhile noting that there are a few studies on heterogeneous mission planning
problems for the UAV using heuristic optimization algorithms. Zhu et al. (2018)
formulated the heterogeneous mission planning problem for UAV reconnaissance as
multiple Dubins travelling salesman problem (MDTSP), which is one of VRPs and
proposes the genetic algorithm-based approach to solve the problem. Chen, Nan & Yang
(2019) considered an additional constraint which is time window and formulates the
heterogeneous mission planning problem as a multi-objective, multi-constraint nonlinear
optimization problem. Then, they utilize the search-based algorithm for optimization.
Gao, Wu & Ai (2021) proposes ant colony-based algorithm for minimizing the weighted
sum of the total UAV fuel consumption and the task execution time. The performance of
the proposed algorithm is compared with other ant colony-based algorithms through
numerical simulations. However, to our best knowledge, it is difficult to find the
heterogeneous mission planning based on reinforcement learning approaches. As
mentioned earlier, reinforcement learning-based approaches are expected to provide the
superior performance compared with heuristic algorithms in terms of computation time
and optimality. Besides, aforementioned works consider only single-trip problems which
significantly limit the capability of the UAV.

To this end, this study proposes an attention-based reinforcement learning algorithm
for the heterogeneous mission planning for a single UAV. We first formulate the
heterogeneous mission planning problem as the MTAD-VRP expressed in a graph form to
utilize the solvers for the VRP. Considering a realistic complex mission environment and
characteristics of the UAV, we use the reinforcement learning approach with an attention-
based neural network model to solve the problem with its fast computation time and
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flexibility. Although the existing learning-based algorithms can deal with various routing
problems, most of them only consider homogeneous inputs (Vinyals, Fortunato & Jaitly,
2015; Bello et al., 2017; Kool, van Hoof & Welling, 2019). Thus, we introduce the unified
mission representation for network inputs to contain the information of heterogeneous
missions. And then, we design the masking strategy to deal with the flight time constraint
to complete all tasks in a mission and help the training process of reinforcement learning.
The proposed algorithm uses the MHA-based model architecture for better computational
efficiency than that of the RNN-based model architecture while preventing the vanishing
gradient effect when dealing with long data sequences. Furthermore, the MHA-based
model has a permutation invariant property that makes the model to be able to learn the
robust strategy regardless of input permutation. The REINFORCE algorithm (Sutton et al.,
2000) with a baseline updates the model to converge stably by reducing the variance of the
parameters’ gradient. To validate the feasibility and the performance of the proposed
approach, we perform numerical simulations and compare the result with state-of-the-art
open-source heuristic algorithms.

PROBLEM DEFINITION
This study considers visiting, coverage, and delivery as heterogeneous missions. Here,
visiting is for capturing an image of the landmark building, coverage is for gathering
information of a large area with the spiral flight pattern, and delivery is for picking and
placing the package. Figure 1 illustrates heterogeneous missions. Note that, if needed, more
mission types could be readily incorporated into the problem thanks to the flexibility of the
learning approach.

Our purpose is to complete all the given heterogeneous mission while minimizing the
flight time of a single UAV dispatched from the depot. The flight time budget constraint
should be satisfied, and the UAV is allowed to return to the depot for recharging. Figure 2
shows a sample mission scenario in a 2-D view, where the black squares are the depot, blue
squares are visiting mission spots, circles are coverage mission areas, and a pair of magenta
diamonds with cyan arrows are the delivery mission with a specific direction.

To formulate the heterogeneous mission planning problem as the mathematical
formulation of the VRP, we abstract the problem into a graph instance. The mission graph
G ¼ ðV ;EÞ consists of k nodes ðv1; v2; � � � ; vkÞ 2 V and edges ðe12; e21; � � � ; ek1; e1kÞ 2 E.
Nodes represent the feature of each mission and the value of edges are constructed with the

Figure 1 Illustration of heterogeneous missions. Full-size DOI: 10.7717/peerj-cs.1119/fig-1
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travel time cost which depends on the type of mission. The solution of the problem is the
sequence of the index of nodes � ¼ ðn1; � � � ; ntÞ, where nt 2 N and 1 � nt � k. The total
travel time cost L, which is the objective of the problem is the sum of every value of edges
between the selected nodes and the cost of returning to the depot as:

L ¼
Xk�1
t¼1

entntþ1 þ enkn1 nt 2 �: (1)

Assuming that the UAV flies with a constant velocity, the travel time cost between
missions is calculated by the total distance that the UAV need to fly. We ignore the time of
recharging and loading packages for simplicity. The type of mission affects the cost
calculation as:

cxv ¼ d; (2)

cxc ¼ d þ S; (3)

cxd ¼ d þ l; (4)

where S ¼ pr2=w, cxv, cxc, and cxd are the travel cost to the visiting, coverage, and delivery
mission point, respectively, from the source mission point x. d is the distance between
missions, S is the length of the spiral path to cover the area, w is the sensing range of the
UAV, r is the radius of the coverage area, and l is the length of the delivery path. The cost
for returning to the depot is the same as cxv with the visiting mission point of the depot.
Figure 3 provides the conversion of the mission instance to the graph representation.

Additionally, we consider the limited flight time constraint of the UAV for safe mission
completion. Typically, the UAV can be recharged at the base station which is considered as

Figure 2 A sample mission scenario with five visiting, five coverage, and five delivery missions.
Full-size DOI: 10.7717/peerj-cs.1119/fig-2
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the depot in the VRP. Thus, we allow the UAV to be recharged by revisiting the depot.
Figure 4 illustrates the recharging event graphically.

ATTENTION BASED DEEP REINFORCEMENT LEARNING
In this section, we first propose a unified feature representation to deal with heterogeneous
missions. Then, we suggest a masking strategy to consider the flight time limitation
constraint. We introduce the neural network model and reinforcement learning algorithm
to solve the heterogeneous mission planning problem using these methods. The neural
network model architecture consists of an encoder and decoder network with the attention
mechanism for sequential data. The REINFORCE algorithm (Sutton et al., 2000), one of
the reinforcement learning algorithms, is used to optimize the neural network.

Unified feature representation
We propose the unified feature representation v ¼ ðx1; y1Þjjðx2; y2ÞjjAjjIType combining
the spatial information of heterogeneous missions and indicator of each mission type,
where ðx1; y1Þ is the critical position of the mission, ðx2; y2Þ is the end-position, A is the

Figure 3 Visualization of abstracting a mission instance as a graph instance.
Full-size DOI: 10.7717/peerj-cs.1119/fig-3

Figure 4 Illustration of recharging the UAV. Full-size DOI: 10.7717/peerj-cs.1119/fig-4
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area information, and IType is the one-hot encoding indicator of each type. The operator ||
means concatenation. The critical position represents the important position of each
mission such as the position of the visiting mission, center position of the area of the
coverage mission, and picking position of the delivery mission. The end position
represents the position when the UAV completes the current mission. The delivery
mission has a different end position while the others have the same end position as the
critical position. The area information represents the radius of an area for the coverage
mission, the length of the delivery mission, or zero for the visiting mission. The depot has
the same representation as the visiting mission except IType. IType represents the type
information of each mission, where ð0; 0; 0Þ; ð0; 0; 1Þ; ð0; 1; 0Þ and ð1; 0; 0Þ represent the
depot, the visiting mission, the coverage mission, and the delivery mission, respectively.

Masking strategy
The masking strategy generates the mask M to prevent selecting invalid actions in
reinforcement learning. The mask consists of the completion mask MC ¼ ðmc1 ;mc2 ;

� � � ;mckÞ for already completed missions and the time limitation mask MT ¼ ðmt1 ;mt2 ;

� � � ;mtkÞ. The time limitation mask MT masks the mission when the flight time of
returning to the depot after completing the mission exceeds the remained flight time of the
UAV, expressed as:

mtj ¼ 1 if Tj þ TReturn;j.TRemain

0 otherwise

�
; ðj ¼ 1; . . . ; kÞ (5)

where Tj is the time to complete the mission j from the current mission, TReturn;j is the flight
time of returning to the depot time after completing the current mission, and TRemain is the
remained flight time of the UAV. The masking strategy generates the mask M ¼ MCjMT ,
where the operator | means the element-wise logical ’or’ operation. Figure 5 shows an
example of the masking strategy. Each circle in the figure represents an arbitrary mission.
The completion mask MC and the time limitation mask MT are represented as red circles
and purple circles, respectively. The agent in the example only can select unmasked
missions to complete or the depot to return.

Figure 5 The example of the masking strategy. Full-size DOI: 10.7717/peerj-cs.1119/fig-5
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If every element ofMT is masked before finishing the whole mission, the UAV is forced
to return to the depot for refueling/recharging itself. When the UAV arrived at the depot,
the remained flight time of the UAV is initialized, and then every element of MT is
calculated by (5). After that, the UAV continues the subsequent tasks. Note that time for
recharging is not explicitly considered in the cost; we assumed that the recharging can be
done quickly by replacing the battery with a new one. However, if needed, we could easily
include the recharging cost in the optimization problem formulation.

Model architecture
The neural network model ph which approximates the VRP solver is parameterized with h.
The policy with the model can be represented as the probability pphð�jsÞ, where
s ¼ ðv1; v2; � � � ; vkÞ is the given mission nodes as the input of the model and
� ¼ ðn1; n2; � � � ; nkÞ is the output of the model, which is the permutation of the index of s.
With the chain rule, the probability can be factorized as:

pphð�jsÞ ¼
Yk
t¼1

pph �tjs;�1:t�1ð Þ; (6)

where �t is the output value at t 2 f1; � � � ; kg and �1:t�1 is the partial sequence of �.
We utilize the Transformer style model architecture of Kool, van Hoof &Welling (2019)

to approximate Eq. (6). The model takes the input which is a set of mission node data for
the encoder and outputs the solution sequence with the decoder while satisfying the
constraints. The encoder is implemented with multi-head attention (MHA) layers
(Vaswani et al., 2017), and it generates the embeddings of each input element
ðhe1; he2; � � � ; hekÞ where the embeddings represents the relationship among all of the other
elements in the input mission nodes. To generates the embeddings with the encoder, the
MHA layer utilizes queryQi ¼ wqvi, key Ki ¼ wjvi, and value Vi ¼ wmvi vectors, where wq,
wj, and wm are linear layers for projecting mission node features. The attention mechanism
inferences the relationship between query and key by calculating the attention score as:

uij ¼ QT
i � Kjffiffiffi
d
p ; ðj ¼ 1; � � � ; kÞ (7)

where uij is the attention score and d is the embedding size. The attention score represents
the similarity between Qi and Ki. Using the attention score, the embedding hei of vi and the
context vector hc are calculated as:

aij ¼ softmaxðuijÞ; (8)

hei ¼
Pk
j¼1

aijVj; (9)

hc ¼ 1
k

Xk
n¼1

hen: (10)
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Note that the calculation of the attention mechanism is parallelized by the heads which
are part of the MHA layer. In this study, the encoder consists of 3 MHA layers with eight
heads and 128 embedding sizes. Figure 6 shows the embedding process of the encoder.

At each decoding step t, the decoder embeds the outputs from the encoder into

ðh0e1; h0e2; � � � ; h0ekÞ with a MHA layer. Then, decoder selects the next node of the solution

with the attention mechanism as described in Vinyals, Fortunato & Jaitly (2015). In this
case, the query vector Q′ consists of the context vector hc, the partial solution information

�1:t which is abstracted as �0 ¼ ðhen1 ; hentÞ, where nt 2 �1:t , and the remained flight time
budget TRemain for considering the flight time budget constraint. Note that �0 is initialized
as ð0; 0Þ before selecting the first mission to complete and then updated as ðhen1 ; hentÞ,
where hen1 is the embedding of the first solution node and hent is the embedding of the
last solution node. This is because the agent of the VRP only needs to consider the
uncompleted missions with respect to the last completed mission regardless of completed
missions (Kool, van Hoof &Welling, 2019). Then, the probability of selecting each mission
node is obtained by the attention score between the embeddings ðh0e1; h0e2; � � � ; h0ekÞ, Q′, and
mask M from the masking strategy as:

u0i ¼
�1 if mi ¼ 1
QT � h0eiffiffiffiffi

d0
p otherwise

8<
: ; (11)

a0 ¼ softmaxðu0Þ; (12)

where u0i, d′ and a′ are the attention score, embedding size of the decoder, and the
probability of selecting each mission, respectively. The next solution nt is selected by
sampling from the probability distribution a′ and added to the last index of �1:t�1 to
construct �1:t . After selecting the next solution, TRemain is reduced by the completion time
of the selected mission and �0 is updated with �1:t . In this study, the decoder consists of 1
MHA layer with one head and 128 embedding size. Figure 7 shows the example of
decoding steps.

Figure 6 The encoder embeds the input mission nodes into embeddings with MHA.
Full-size DOI: 10.7717/peerj-cs.1119/fig-6

Jung and Oh (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1119 9/17

http://dx.doi.org/10.7717/peerj-cs.1119/fig-6
http://dx.doi.org/10.7717/peerj-cs.1119
https://peerj.com/computer-science/


REINFORCE with baseline
To update the neural network model, we use the REINFORCE algorithm (Sutton et al.,
2000). In the Markov decision process (MDP) tuple , s; a; r; s;p. for reinforcement
learning, the state s is the mission state, the action a is the selected mission from the agent
policy phðajsÞ which is the neural network model parameterized with h, the reward r is the
cost in Eq. (1), and the transition probability s ¼ pðs0js; aÞ is the next state after selecting a
given s. Note that s is deterministic in this work.

Since the REINFORCE algorithm produces the high variance gradient such that the
algorithmmight converge extremly slow during training, the baseline b is utilized to reduce
the variance. Paremeters h are updated with the policy gradient method as:

rhJðhÞ � 1
N

XN
i¼1

Xk
t¼1
rh log ph ai;tjsi;t

� � Xk
t0¼t

ri;t0 � bi

 !
; (13)

h hþ arhJðhÞ; (14)

where N is the number of batch size, k is the number of mission, a is the learning rate, and
b is the baseline. Note that the baseline b of this study is moving average of the cost during
training (Kool, van Hoof & Welling, 2019). The proposed algorithm is trained with
1,280,000 mission instances with 512 batch size, 100 epochs, 1e−4 learning rate with the
Adam optimizer (Kingma & Ba, 2015).

NUMERICAL SIMULATIONS
This section provides the comprehensive simulation results to show the performance of the
proposed approach. Every simulation is run on NVIDIA GeForce RTX 2080 GPU, Intel(R)
i9-9900KF CPU, and 64 GB RAM.

The neural netowork is trained with the different number of missions in the range of (3,
30). The position of every mission is generated randomly in (0, 1) scaled two-dimensional
(2-D) map with a uniform distribution. The coverage mission’s radius is generated
randomly in the range of (0.04, 0.08) with the uniform distribution. The place-position of

Figure 7 The example of decoding steps. Full-size DOI: 10.7717/peerj-cs.1119/fig-7
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the delivery mission is distant from the pick-position in the range of (−0.1, 0.1) with the
uniform distribution. The position of the depot is the origin without loss of generality. The
velocity of the UAV is 1 and the flight time budget is 6.

We compare our algorithm (termed as Transformer-RL) with the Google OR-Tools
(https://developers.google.com/optimization/routing/vrp) which is the state-of-the-art
solver for the combinatorial optimization problem. We modified the software into two

Figure 8 Sample solutions of the different algorithms on the mission environment for 12 missions.
(four visiting, four coverage and four delivery). Full-size DOI: 10.7717/peerj-cs.1119/fig-8
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types. The first baseline algorithm (OR-Type1) solves the given mission as a distance-
limited VRP with a single-vehicle. The OR-Type1 generates a single route per iteration
within the flight time budget. We give the penalty cost to the uncompleted missions to
prevent generating an empty route. The penalty makes the algorithm try to generate a
shorter route while satisfying the flight time limitation. Then, the OR-Type1 makes a plan
iteratively until every mission is completed. The second baseline algorithm (OR-Type2)
solves the mission instance as a distance-limited VRP setting, assuming that the number of
available vehicles and the number of missions to be performed are the same. The
assumption reduces the effort to solve the problem iteratively unlike the OR-Type1. Thus,
the OR-Type2 generates multiple routes at once that complete every mission while
deciding the desirable number of vehicles to utilize. We also compared ours with the
simple greedy algorithm and the Pointer network-based reinforcement learning algorithm
(PointerNet-RL) (Bello et al., 2017). The simple greedy algorithm selects the next mission
with the lowest cost from the current mission node while satisfying the flight time
limitation, and the PointerNet-RL uses RNN (Vinyals, Fortunato & Jaitly, 2015) for the
neural network structure instead of the attention mechanism used in this study. Figure 8
visualizes the sample solution and total cost of each algorithm. Note that the return path to
the depot of each route is represented with the black dashed line. In Fig. 8, the OR-Type2
generates the best solution which has the lowest cost, and reinforcement learning-based
algorithms show better performance than that of the OR-Type1 and the greedy algorithm.
The OR-Type1 generates each route while completing the most missions possible and the

Figure 9 Mean cost performance of each algorithm. Full-size DOI: 10.7717/peerj-cs.1119/fig-9
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Figure 10 Cost gap (%) of the algorithms with respect to the OR-Type2.
Full-size DOI: 10.7717/peerj-cs.1119/fig-10

Figure 11 Computation time. Full-size DOI: 10.7717/peerj-cs.1119/fig-11
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greedy algorithm makes the most number of routes, which is inefficient due to its myopic
strategy.

The total cost of the solution defined in Eq. (1) and the computation time is used to
measure the performance of the algorithms. We use 10,000 mission instance samples to
test the performance with the different number of missions in the range of (3, 30). Figure 9
provides the result of the performance analysis. The OR-Type2 shows the best
performance in terms of the total cost, while Transformer-RL has a similar performance
with the OR-Type2. Figure 10 shows Transformer-RL is better than the PointerNet-RL
more clearly by the cost gap analysis with respect to the OR-Type2. Figure 11 provides the
computation time for each algorithm. The computation time of the OR-Type2, which is
the best algorithm for the cost, grows exponentially along with the scale of the mission. On
the other hand, the Transformer-RL and the PointerNet-RL show significantly faster
computation time than that of the other algorithms. The greedy algorithm also shows fast
computation time, but it has the worst cost performance. Table 1 summarizes statistical
results for a certain number of missions with the cost performance, the performance gap,
and the computation time.

CONCLUSIONS AND FUTURE WORK
In this article, we proposed an algorithm for mission planning of heterogeneous missions
for a single UAV. We formulate the mission planning problem into a vehicle routing
problem that has various methods to solve. We used an attention-based deep
reinforcement learning approach, expecting fast computation time and sufficiently good
performance. The numerical experiments show that the proposed algorithm can be a good
selection with the reasonable trade-off between performance and computation time.
However, as the proposed algorithm considers a deterministic mission environment and
deals with a single UAV, our future work will consider the uncertainty of the mission
environment such as the effect of the weather conditions and the operation of multiple
UAVs with multi-agent reinforcement learning approaches.

Table 1 The performance of our proposed model compared with other algorithms. The cos gap (%) is
with respect to the OR-Type2.

Algorithm k = 9 k = 15 k = 21

Cost Gap (%) Time (s) Cost Gap (%) Time (s) Cost Gap (%) Time (s)

Transformer-RL 8.76 1.846 1.22 13.55 2.461 2.05 18.14 3.08 2.78

PointerNet-RL 8.82 2.525 2.26 13.55 2.453 3.64 18.26 3.78 5.18

Greedy 11.01 27.987 18.62 16.44 24.314 41.67 21.75 23.58 85.61

OR-Type1 8.98 4.381 85.23 14.29 8.012 173.73 19.48 10.71 315.71

OR-Type2 8.60 0.00 144.36 13.23 0.00 384.49 17.60 0.00 789.88
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