
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-12-2022

Towards Robust and Interpretable Deep Learning Towards Robust and Interpretable Deep Learning

Xiang Li
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Li, Xiang, "Towards Robust and Interpretable Deep Learning." Dissertation, Georgia State University, 2022.
https://scholarworks.gsu.edu/cs_diss/194

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss/194?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Towards Robust and Interpretable Deep Learning

by

Xiang Li

Under the Direction of Shihao Ji, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2022

ABSTRACT

Recent progress in deep learning has enabled applications in many areas, such as business,

security, and science, that could impact our lives. Despite recent advances in these domains,

deep neural network models have been shown to be vulnerable to adversarial attacks and

lack of interpretability of their predictions. Therefore, it is crucial to investigate robust and

interpretable deep learning models and algorithms to solve the above issues.

In this dissertation, we proposed a series of algorithms for delivering robust and in-

terpretable deep learning methods. To begin with, we study the problem of how to defend

against adversarial attacks with a purification-based algorithm called defense-VAE. Secondly,

we proposed GDPA, a patch attack algorithm that can be readily used in adversarial train-

ing. With this algorithm, we can train deep learning models that are robust to patch attacks.

Thirdly, we proposed an interpretation algorithm NICE, which learns sparse masks on input

images. We also showed how to use this interpretation algorithm for semantic compression on

images. Fourthly, we applied NICE on brain MRI data for the schizophrenia discrimination

task, in which we detected the important regions of the brain for schizophrenia discrimina-

tion. Lastly, we proposed the PSP algorithm, which applied parameter-wise smooth policy

in the PPO algorithm to improve the performance and robustness of reinforcement learning

(RL) agents.

INDEX WORDS: Deep learning, Reinforcement learning, Robustness, Inter-
pretability, Brain MRI image, Adversarial defense

Copyright by
Xiang Li
2022

Towards Robust and Interpretable Deep Learning

by

Xiang Li

Committee Chair:

Committee:

Shihao Ji

Rajshekhar Sunderraman

Jingyu Liu

Xiaojing Ye

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2022

CHAPTER 0

ACKNOWLEDGMENTS

My enjoyable and rewarding Ph.D. journey has come to an end. I owe great gratitude to the

many incredible individuals I met along this journey.

First, I sincerely appreciate my Ph.D. advisor, Professor Shihao Ji, for supporting and

advising me throughout these five years. I want to thank him for his tremendous support and

guidance during these years. His words of guidance and research insights have been crucial

in keeping me focused on and achieving my research goals. His intellect and dedication to

research have always been inspirational to me and will keep inspiring me in the future.

I’d also like to thank my thesis committee members: Dr. Rajshekhar Sunderraman, Dr.

Jingyu Liu, and Dr. Xiaojing Ye, for their valuable advice. They have been leaders in their

respective research areas, and their advice has influenced many aspects of this thesis.

I thank my colleagues in our lab: Xiulong Yang, Yang Li, Yang Ye, Qing Su, Hui Ye,

Songyang Li, and Krishanu Sarker. I will always miss the time I spent with you, having

lunch or discussing our research.

I also thank my colleagues and friends outside our lab: Dr. Jiayu Chen, Dr. Yingshu Li,

Ms. Tammie Dudley, Ms. Tyra Robinson, Mr. Paul Bryan, Xucan Chen, Fengpan Zhao,

Xueli Xiao, Xueting Liao, Jun Yi, Mu Ge, Dhara P Shah, William Ashbee, etc.

Finally, I dedicate this thesis to my family. I want to thank my wife, Yihan Wang, for

giving me love at difficult times. I want to thank my father for teaching me how to be a

responsible man and my mother for teaching me how to love people unconditionally.

CHAPTER 0

TABLE OF CONTENTS

ACKNOWLEDGMENTS .

LIST OF TABLES .

LIST OF FIGURES .

1 Introduction . 1

1.1 Robust Deep Learning . 1

1.2 Interpretable Deep Learning . 2

1.3 Relationship between Robustness and Interpretability 3

1.4 Parameter-wise Robustness of Deep neural network 3

1.5 Robust Reinforcement Learning . 4

1.6 Dissertation Organization . 5

1.7 List of Publications . 7

1.7.1 Refereed Publications . 7

1.7.2 Under Review . 8

2 Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks 9

2.1 Introduction . 9

2.2 Defense-VAE: The Proposed Algorithm 12

2.2.1 Variational Auto-Encoder . 12

2.2.2 Defense-VAE . 13

2.3 Related Work . 16

2.4 Experiments . 19

2.4.1 Results on White-box Attacks 22

2.4.2 Robustness under Untrained Attacks 25

2.4.3 Results on Black-box Attacks . 27

2.5 Experiments on MNIST, CelebA and CIFAR-10 28

2.5.1 Why is Defense-VAE so effective? 30

2.5.2 Defense Speed . 32

2.5.3 Adversarial Detection . 32

2.6 Conclusion . 34

3 Generative Dynamic Patch Attack . 36

3.1 Introduction . 36

3.2 Related Works . 39

3.3 The GDPA Framework . 42

3.3.1 Problem Formulation . 42

3.3.2 Localized Pattern Generation . 43

3.3.3 Weighted Adversarial Patch Injection 44

3.3.4 Differentiable Affine Transformation 45

3.3.5 Generative Dynamic Patch Attack 46

3.3.6 Adversarial Training with GDPA 49

3.4 Experimental Results . 50

3.4.1 Dynamic Patch Attack . 56

3.4.2 Dynamic Patch Adversarial Training 61

3.4.3 Ablation Study . 63

3.4.4 Generating Static Patch Attack with GDPA 67

3.4.5 Generating Adversarial Attack with GDPA 69

3.4.6 Cross Attacks and Defenses . 70

3.4.7 Additional Results on Targeted Attack 71

3.4.8 Inference Speed . 71

3.5 Conclusion . 72

4 Neural Image Compression and Explanation 74

4.1 Introduction . 74

4.2 Related Work . 77

4.2.1 Neural Explanation . 77

4.2.2 Semantic Image Compression 79

4.3 The NICE Framework . 80

4.3.1 Sparse Neural Explanation . 82

4.3.2 Semantic Image Compression 88

4.3.3 Sparse Mask Generator . 89

4.4 Experiments . 90

4.4.1 Implementation Details . 90

4.4.2 Explaining CNN’s Predictions 92

4.4.3 Semantic Image compression 100

4.4.4 Inference Time Comparison . 104

4.5 Conclusion . 105

5 Sparse Deep Neural Networks on Imaging Genetics for Schizophrenia
Discrimination (Joint work with TReNDS Center) 107

5.1 Introduction . 107

5.2 Materials and Methods . 111

5.2.1 Participants . 111

5.2.2 Structural MRI data . 111

5.2.3 SNP data . 112

5.2.4 Sparse DNN . 113

5.2.5 ICA+linear SVM . 119

5.3 Results . 120

5.4 Discussion . 122

6 Proximal Policy Optimization with Parameter-wise Smooth Policy . . . 130

6.1 Introduction . 130

6.2 Background and Related Work . 133

6.2.1 Reinforcement Learning Framework 133

6.2.2 Proximal Policy Optimization (PPO) 135

6.2.3 Related Works . 137

6.3 Method . 138

6.3.1 Motivation . 139

6.3.2 Parameter-Wise Smooth Policy Regularization 140

6.3.3 Parameter-wise Smooth Policy Regularization in Output Space140

6.3.4 Parameter-wise Smooth Policy Regularization in Loss Space 143

6.4 Experiments . 144

6.4.1 Results on the Atari Games . 147

6.4.2 Results in Continuous Domain: OpenAI Gym Control Tasks 147

6.4.3 Parameter-wise Policy Robustness 148

6.4.4 Entropy of Policy Outputs . 149

6.4.5 Parameter-wise Loss Landscape Visualization 150

6.5 Conclusion . 151

7 Future Works . 153

7.1 Observation-wise and Parameter-wise Smooth (Robust) Policy . . . 153

7.2 Combining the Output Space and Loss Space Parameter-wise Smooth-
ness (Robustness) . 153

7.3 Parameter-wise Smoothness (Robustness) Training in Output Space 153

8 Conclusion . 154

REFERENCES . 156

CHAPTER 0

LIST OF TABLES

Table 2.1 The architectures of the classifiers and the substitute models used in
the white-box and black-box attacks. 20

Table 2.2 The encoder and decoder of Defense-VAE used in the experiments on
MNIST and Fashion-MNIST. 21

Table 2.3 Classification accuracies of different defense methods under FGSM,
RAND-FGSM and CW white-box attacks on the F-MNIST image classifi-
cation benchmarks. The defense accuracies of Defense-GAN, MagNet, and
Adversarial Training are imported from the Defense-GAN paper Samangouei
et al. (2018). Results on MNIST, CelebA and CIFAR-10 have the same pat-
tern as above. Details can be found in section 2.5. 22

Table 2.4 Defense accuracy of Defense-VAE when it’s trained on two attacks but is
used to defend another attack. The results in parentheses are the accuracies
after incorporating DeepFool Moosavi-Dezfooli et al. (2016a) as additional
adversarial training examples for Defense-VAE. 26

Table 2.5 Defense accuracy of Defense-VAE with Model A under the FGSM attack
with various noise level ϵ when VAE is trained only on ϵ = 0.3. 26

Table 2.6 Classification accuracies of different defense methods under FGSM black-
box attacks on different image classification benchmarks: (top) F-MNIST,
and (bottom) MNIST. The defense accuracies of Defense-GAN, MagNet, and
Adversarial Training are imported from the Defense-GAN paper Samangouei
et al. (2018). 27

Table 2.7 Classification accuracies of different defense methods under FGSM,
RAND-FGSM and CW white-box attacks on MNIST. 29

Table 2.8 Classification accuracies of different defense methods under FGSM,
RAND-FGSM and CW white-box attacks on CelebA. 30

Table 2.9 Classification accuracies of different defense methods under FGSM,
RAND-FGSM and CW white-box attacks on CIFAR-10. Since the Defense-
GAN paper didn’t provide the white-box attack results on CIFAR-10, we run
their original code and provide the results in the table. 30

Table 2.10 Classification accuracies of different defense methods under FGSM black-
box attacks on CIFAR-10. Since the Defense-GAN paper didn’t provide the
black-box attack results on CIFAR-10, we run their original code and provide
the results in the table. 32

Table 2.11 Run-time comparison between Defense-VAE and Defense-GAN, where
∗ denotes Defense-GAN recommended configuration. 33

Table 3.1 The ASRs of different patch attack algorithms on datasets Traffic Sign,
VGGFace and ImageNet. Both non-targeted attack and targeted attack are
considered. The performances are evaluated with patches of different sizes. . 57

Table 3.2 The accuracies of different robust models under eyeglasses attack, and
sticker attack. 62

Table 3.3 The accuracies of different robust models on VGGFace, and Traffic Sign
when under the PGD attack. 65

Table 3.4 ASRs of GDPA when generating pattern vs. p. 65

Table 3.5 ASRs of GDPA with different values of β. We use 5% of pixels as the
patch size. 67

Table 3.6 ASRs of the adversarial attacks generated by PGD and GDPA-ADV. . 69

Table 3.7 Accuracies of adversarially trained models under PGD, ROA and GDPA
attacks. 71

Table 3.8 Inference-time comparison of different attack algorithms on the VG-
GFace test dataset (470 images). 73

Table 4.1 Network architectures of the generators and discriminators used in the
experiments. Layer abbreviations used in the table: [C: Convolution; R: Relu;
M: MaxPooling; Up: UpSample]. 91

Table 4.2 Inference time comparison between NICE and the baseline algorithms.
The results are averaged over 100 runs. 104

Table 5.1 Summary of classification error rates. 122

Table 5.2 Summary of the 5 important brain regions identified by DNN. 122

Table 5.3 Summary of the 13 important brain regions identified by DNN. 123

Table 6.1 Maximum cumulative reward score of Atari games. The last row reports
the number of games each algorithm achieves the highest score. 145

CHAPTER 0

LIST OF FIGURES

Figure 2.1 Defense-VAE purges adversarial perturbations from contaminated im-
ages. Example images are from (left top) MNIST, (right top) Fashion MNIST,
(left bottom) CIFAR-10, and (right bottom) CelebA. FGSM Goodfellow et al.
(2014b) with ϵ = 0.05 and ϵ = 0.1 are used to generate the adversarial attacks. 10

Figure 2.2 Training pipeline of Defense-VAE. Defense-VAE (left) and Classifier-
REC (right) can be trained separately, or jointly end-to-end (from scratch or
by fine-tuning). See text for more details. 14

Figure 2.3 Test pipeline of Defense-VAE. 14

Figure 2.4 The end-to-end finetuning can boost the defense accuracy even further,
and yields a stronger defense model. 24

Figure 2.5 The example reconstructions by Defense-VAE and Defense-GAN from
the black-box FGSM attacks on Fashion-MNIST: (first column) original im-
ages; (second column) adversarial images; (third column) reconstruction by
Defense-GAN; (fourth column) reconstruction by Defense-VAE. 31

Figure 2.6 The ROC curves when using Defense-VAE to detect the adversarial
attacks generated by FGSM with different ϵ. 34

Figure 3.1 Different types of patch attacks: (a) Eyeglasses Attack Sharif et al.
(2016), (b) Sticker Attack Evtimov et al. (2017), (c) Adversarial Patch Brown
et al. (2017), and (d) GDPA (ours). 37

Figure 3.2 The GDPA generation pipeline. Given an image x, GDPA generates a
patch pattern and a patch location for weighted adversarial patch injection.
α ∈ [0, 1] controls the visibility of the patch attack. The pipeline is fully
differentiable. 42

Figure 3.3 The GDPA-AT pipeline. Given an image, GDPA generates an adver-
sarial patch to maximize the loss of classifier T , while classifier T learns from
the patch attack to minimize its loss. 46

Figure 3.4 Non-targeted Attack: Perturbed images of VGGFace and ImageNet
generated by GDPA with different patch sizes. The last column of targeted
attack are example images of target classes. 58

Figure 3.5 Targeted Attack:Perturbed images of VGGFace and ImageNet gener-
ated by GDPA with different patch sizes. The last column of targeted attack
are example images of target classes. 58

Figure 3.6 The impact of α to the ASR of GDPA on VGGFace. 60

Figure 3.7 Perturbed images generated by eyeglasses attack on standard CE-
trained model . 63

Figure 3.8 Perturbed images generated by eyeglasses attack on GDPA-AT trained
model. 64

Figure 3.9 Perturbed images generated by GDPA with different α’s and patch
sizes (1%, 2%, 5% or 10% pixels). 66

Figure 3.10 Perturbed images by GDPA with different values of β. The patch size
is 5% of pixels. 67

Figure 3.11 ASRs of static patch attack on different locations. We use different
colors to denote ASRs in different ranges. Red: above 70%; Green: 10% - 70%;
brown: below 10%. Dynamic GDPA achieves 76.4% ASR in this experiment. 68

Figure 3.12 Adversarial examples generated by GDPA-ADV with different ϵ’s.
Left: original images; Middle: adversarial noise scaled to [0, 1] for visual-
ization; Right: adversarial examples. 70

Figure 3.13 Perturbed images generated by GDPA with targeted attack on VG-
GFace. Each column corresponds to one targeted attack with a different target
subject. 72

Figure 4.1 Overall architecture of NICE. 82

Figure 4.2 The sparse masks generated by NICE, Saliency Map Simonyan et al.
(2013) and RTIS Dabkowski & Gal (2017) on the MNIST dataset. The dark
red color represents high values (close to 1), indicating strong influence to the
final decisions. By adjusting λ1 of NICE, we can control the sparsity of the
explanations. 93

Figure 4.3 Comparison of explanations generated by Saliency Map Simonyan et al.
(2013), RTIS Dabkowski & Gal (2017) and NICE on some CIFAR10 images.
The RTIS results are from the RTIS paper. Compared to Saliency Map and
RTIS, the explanations generated by NICE are more concise and the bound-
aries of salient regions are much sharper. 94

Figure 4.4 The sparse masks generated by NICE on Caltech256 images. The
predictions are correct to (a,b,c,d) and incorrect to (e). Even though the
prediction is incorrect, the sparse mask (e) provides an intuitive explanation
why the discriminator predicts an image of “humming bird” as “bread maker”. 95

Figure 4.5 The sparse masks generated by NICE, Saliency Map Simonyan et al.
(2013), RTIS Dabkowski & Gal (2017) and CAM Zhou et al. (2016) on the
Caltech256 dataset. NICE highlights the whole body of object as the expla-
nation instead of edges or scattered pixels as identified by Saliency Map, or
overly-smooth regions as identified by RTIS and CAM. 97

Figure 4.6 The evolution of classification accuracies on the Caltech256 test dataset
when different percentages of pixels are filled with random values. 98

Figure 4.7 Sample ImageNet images and their sparse masks generated by the
generator trained on Caltech256. While the ground truth labels of (a, b,
c) are included in Caltech256, the ground truth labels of (d, e) are not in
Caltech256. NICE is able to generate accurate sparse masks for images in
(a, b, c). But when the classes are not in Caltach256 the masks are not very
accurate as shown in (d, e). 99

Figure 4.8 The mixed-resolution images generated by NICE, Saliency Map, RTIS
and CAM with different block size bs. 101

Figure 4.9 The evolution of (a) average file size of the PNG compressed image and
(b) classification accuracy as a function of block size b of NICE-fixed, NICE-
finetuned, Saliency Map, RTIS, CAM (paper Prakash et al. (2017)) and down
sampling. 102

Figure 5.1 Overall architecture of our method. 113

Figure 5.2 Spatial maps of the five schizophrenia-discriminating regions identified
by sparse DNN. 128

Figure 5.3 Spatial maps of the 13 schizophrenia-discriminating regions identified
by sparse DNN. 129

Figure 6.1 Our proposed method learns a parameter-wise smooth policy, which
can improve the stability of and promote sample efficiency of the PPO algo-
rithm. Specifically, the policy trained with our proposed PSP-O or PSP-L
method gives a more robust decision output when the policy parameters are
perturbed by random or adversarial noise. As we can see from the figure,
the policy decision a′ (loss value Loss′) from PSP-O (PSP-L) trained policy
under perturbation is close to the a (Loss) from the original policy, while
a′′ (loss value Loss′′) from Non-PSP trained policy under perturbation is far
away from a (Loss). PSP has two variants: PSP-O puts the regularization
on policy decision space, and PSP-L regularizes the loss space. 131

Figure 6.2 The overall pipeline of the proposed PSP-O algorithm. There are two
stages of the algorithm: the maximization stage and the minimization stage.
During the maximization state, the algorithm searches for a ϵ to maximize the
distance between the current and adversarial policies. In the minimization
stage, the algorithm minimizes the original PPO loss and the PSP-O loss to
update the policy parameters. 134

Figure 6.3 Training curves of PPO, PSP-O and PSP-L on 49 Atari games. . . . 146

Figure 6.4 Training curves of PPO, PSP-O, and PSP-L. PSP-O and PSP-L learn
better policies than PPO with significant improvements in terms of accumu-
lated rewards. 148

Figure 6.5 Comparison of the cumulative rewards of PPO, PSP-O, and PSP-L
under random (left) and adversarial (right) parameter corruption attack in
Walker2d environment. The result shows that policies trained with PSP-
O and PSP-L are more robust than policies trained with PPO under both
parameter corruption attacks. 149

Figure 6.6 Entropy value of output distribution from the policies trained by PPO,
PSP-O, and PSP-L. We show the results of two Atari games (Alien and As-
terix) along the training process. It can be observed that PSP-O and PSP-L
can train policies with higher entropy, even though PSP-O and PSP-L do not
use the entropy loss during training. 150

Figure 6.7 Visualizing the loss landscapes Li et al. (2018a) of different policy
networks trained by PPO (left) and PSP-L(right). Note the significant scale
differences of the y-axis, indicating PSP-L learns a policy that is parameter-
wise smoother in the loss space. 151

1

CHAPTER 1

Introduction

Deep neural networks (DNNs) have demonstrated remarkable success in solving complex

prediction tasks. However, recent studies show that they are particularly vulnerable to

adversarial attacks Biggio et al. (2013); Papernot et al. (2016a); Szegedy et al. (2013) in the

form of small perturbations to inputs that lead DNNs to predict incorrect outputs. While

various defense algorithms Papernot et al. (2016c); Moosavi-Dezfooli et al. (2016b) have been

developed, they are later defeated by stronger attack methods Biggio et al. (2013); Papernot

et al. (2016a); Szegedy et al. (2013). Such unexpected behavior of deep neural network

models and potential security issue highlights the need to interpret the models themselves.

A new line of research in interpretable deep learning emerged and aimed to interpret the

behavior of such black-box models. This chapter presents a general introduction to robust

and interpretable deep learning areas.

1.1 Robust Deep Learning

Security and integrity of the applications posed great concern recently as the deep neural

networks make their way from research to the real world. For example, adversaries transform

input features craftily to make the transformed images imperceptible to humans but can fool

a trained deep neural network model into outputting incorrect predictions.

Since Szegedy et al. (2013) first discover that neural networks are vulnerable to adversarial

attack, the area of adversarial learning on deep neural networks has become a hotspot. The

adversarial attack methods can be divided into three categories according to different stages

of the target model: training stage attack, testing stage attack, and deployment stage attack.

We only describe the attack during the training stage and testing stage in this paper because

the testing stage attack and deployment stage attack are very similar.

The training stage attack, also called poison attack, refers to carrying out attacks by

modifying the training dataset, including input features and labels, during the training

process of the target model.

The testing stage attack refers to constructing adversarial examples by utilizing the

knowledge of parameters, structures, and algorithms of the target model. If adversaries

possess this knowledge when conducting the attack, it is called a white-box attack. On the

other hand, if the adversaries cannot obtain the target model’s information, they can train

a substitute model by querying the target model, which is called a black-box attack.

1.2 Interpretable Deep Learning

Due to that deep learning algorithms with the black-box property start to substitute the

previously entrusted decision-making process by humans, it is necessary for these deep learn-

ing models to interpret the decision by themselves. The mistrust between human and deep

learning models exists despite the success in a broad range of tasks: including computer vi-

sion, natural language processing, graph data analysis, etc. Moreover, deep neural networks

are found to be unreliable, biased, and not robust. This unexpected behavior highlights the

need to explain and interpret deep learning algorithms.

The purpose of the interpretability of deep learning models is to describe the internal

process of a model such that humans can understand the decision-making process. In other

words, we want to produce descriptions from the mechanism of the deep learning model that

is understandable by a human.

1.3 Relationship between Robustness and Interpretability

The robustness and interpretability have close connections in several aspects. Firstly, in-

terpreting a deep learning model helps improve the model’s robustness. On the one hand,

if adversaries understand how the target model works, they can use it to discover model

weaknesses and conduct attacks accordingly. On the other hand, if model developers under-

stand how the model operates, they may identify the vulnerability and find remediation in

advance. Some recent work involves interpretability in the analysis of adversarial robustness.

Secondly, many existing adversary learning works can be analyzed from another angle as the

extension of model interpretation. The methods of robust deep learning and interpretable

deep learning are overlapped significantly Liu et al. (2021).

1.4 Parameter-wise Robustness of Deep neural network

Most study on deep neural network robustness is about the vulnerability of DNNs against

input data corruption. However, the vulnerability of DNNs does not only exhibit in input

data. As functions of input data and model parameters, the parameters of neural networks

are a source of vulnerability. For neural networks deployed on electronic computers, pa-

rameter attacks can be conducted as training data poisoning, bit flipping, compression, or

quantization. Suppose the neural network is deployed in physical devices. In this case, ad-

vances in hardware neural networks also call for a study on parameter robustness because

of hardware damage and environmental noise, which is parameter corruption. Furthermore,

a study on parameter robustness can improve our understanding of different mechanisms in

neural networks, inspiring innovation in architecture design and the training process.

1.5 Robust Reinforcement Learning

Combining the power of classic reinforcement learning algorithms and modern deep neural

network techniques, deep reinforcement learning (DRL) is capable of training agents for

complex tasks with inputs of high dimensional observations, such as pixels Mnih et al.

(2013). It has proven that DRL is successful across a wide range of problems, including

game playing Mnih et al. (2013); Silver et al. (2016, 2017); Vinyals et al. (2019), robot

control Tai et al. (2018, 2017); Zhelo et al. (2018); Hwangbo et al. (2019), natural language

processing Hudson & Manning (2018); Wang et al. (2018); Wu et al. (2018), autonomous

driving Talpaert et al. (2019); Milz et al. (2018); Li et al. (2020), and recommendation

systems Zheng et al. (2018); Chen et al. (2019c), etc.

Despite achieving excellent performance with DRL on various tasks, the presence of

adversarial examples in DNNs and many successful attacks on DRL encourages us to study

robust DRL algorithms. When an RL agent obtains its current observations, it may contain

uncertainty that originates naturally from unavoidable sensor errors or equipment inaccuracy.

A policy not robust to such uncertainty can lead to destructive failures. For this reason,

training a robust policy is crucial to the RL algorithms.

1.6 Dissertation Organization

The overall structure of this dissertation is organized as below. To begin with, we briefly

introduce robust deep learning and interpretable deep learning in Chapter 1. From Chapter 2

to Chapter 6, we present five algorithms on robust and interpretable deep learning.

Chapter 2 proposes a simple yet effective defense algorithm Defense-VAE that uses vari-

ational autoencoder (VAE) to purge adversarial perturbations from contaminated images.

The proposed method is generic and can defend white-box and black-box attacks without

retraining the original CNN classifiers. It can further strengthen the defense by retraining

CNN or end-to-end finetuning the whole pipeline. In addition, the proposed method is very

efficient compared to the optimization-based alternatives, such as Defense-GAN, since no

iterative optimization is needed for online prediction.

Chapter 3 proposes an end-to-end patch attack algorithm, Generative Dynamic Patch

Attack (GDPA), which generates both patch pattern and patch location adversarially for each

input image. First, we show that GDPA is a generic attack framework that can produce

dynamic/static and visible/invisible patches with a few configuration changes. Secondly,

GDPA can be readily integrated into adversarial training to improve model robustness to

various adversarial attacks.

Chapter 4 proposes a novel end-to-end Neural Image Compression and Explanation

(NICE) framework that learns to (1) explain the predictions of convolutional neural networks

(CNNs) and (2) subsequently compress the input images for efficient storage or transmission.

Specifically, NICE generates a sparse mask over an input image by attaching a stochastic

binary gate to each pixel of the image, whose parameters are learned through the interaction

with the CNN classifier to be explained. The generated mask is able to capture the saliency

of each pixel measured by its influence on the final prediction of CNN; it can also be used

to produce a mixed-resolution image, where important pixels maintain their original high

resolution and insignificant background pixels are subsampled to a low resolution.

Chapter 5 introduces a sparse deep neural network (DNN) approach to identify sparse

and interpretable features for schizophrenia (SZ) discrimination. An L0 regularization is

implemented on the network’s input layer for sparse feature selection, which can later be

interpreted based on importance weights. We applied the proposed approach on a large

multi-study cohort (N = 1,684) with gray matter volume (GMV) and single nucleotide

polymorphism (SNP) data for SZ discrimination.

Chapter 6 proposes to train a parameter-wise smooth policy network in PPO to tackle

these challenges. Specifically, we introduce a Parameter-wise Smooth Policy (PSP) regular-

ization to enforce the outputs of a policy or loss values not to change much when injecting

small perturbations to the parameters of policy networks. With the PSP regularization,

we improve the stability of PPO and promote sample efficiency by learning policies with

high entropy outputs for exploration, thus improving the cumulative rewards. Furthermore,

models trained with our PSP regularization are more robust against random and adversarial

parameter corruption.

1.7 List of Publications

1.7.1 Refereed Publications

[*denotes equal contribution]

1. Xiang Li, Shihao Ji, “Generative Dynamic Patch Attack”, BMVC, 2021.[link]

2. J. Chen*, Xiang Li*, V. D. Calhoun, J. A. Turner, T. G. M. van Erp, L. Wang, O.

A. Andreassen, I. Agartz, L. T. Westlye, E. Jonsson, J. M. Ford, D. H. Mathalon, F.

Macciardi, D. S. O’Leary, J. Liu, Shihao Ji, “Sparse Deep Neural Networks on Imaging

Genetics for Schizophrenia Case-Control Classification,” Human Brain Mapping (IF:

4.55), March 2021. [Link]

3. Xiang Li, Shihao Ji, “Neural Image Compression and Explanation,” IEEE Access (IF:

3.75), Vol. 8, Nov. 30, 2020. [link]

4. Xiang Li, Shihao Ji, “Defense-VAE: A Fast and Accurate Defense against Adver-

sarial Attacks,” Machine Learning for Cybersecurity (ECML workshop on MLCS),

Würzburg, Germany, Sept. 2019. [link]

5. Yinying Wang, Sing Hui Lee, Briana Keith, Yasmine Bey, Xiulong Yang, Xiang Li,

Shihao Ji, “A Convenient Rhetoric or Substantial Change of Teacher Diversity? A Text

Mining Approach and Systemic Review.” 2021 AERA Annual Meeting, Nov, 2020.

6. J. Chen*, Xiang Li*, V. Calhoun, J. Turner, T.G.M. Erp, L. Wang, O. Andreassen,

I. Agartz, L. Westlye, J. Liu, and Shihao Ji, “Sparse Deep Neural Networks on Imag-

https://arxiv.org/abs/2111.04266
https://onlinelibrary.wiley.com/doi/10.1002/hbm.25387
https://ieeexplore.ieee.org/abstract/document/9273007
https://link.springer.com/chapter/10.1007/978-3-030-43887-6_15

ing Genetics for Schizophrenia Discrimination,” The Organization for Human Brain

Mapping (OHBM), Montreal, June 2020. [link]

7. Xiulong Yang, Hui Ye, Yang Ye, Xiang Li, Shihao Ji, “Generative Max-Mahalanobis

Classifiers for Image Classification, Generation and More”, ECML, 2021. [link]

8. Yinying Wang, Sing Hui Lee, Briana Keith, Yasmine Bey, Xiulong Yang, Xiang Li,

Shihao Ji, “A Convenient Rhetoric or Substantial Change of Teacher Racial Diversity?

A Text Mining Analysis of Federal, State, and District Documents”, Education Policy

Analysis Archives. 30, (Jun. 2022), (78). [link]

1.7.2 Under Review

1. Xiang Li, Shihao Ji, “Proximal Policy Optimization with Parameter-wise Smooth

Policy”, Under review.

https://www.humanbrainmapping.org/files/2020/OHBM_2020_Virtual_Abstracts_2.pdf
https://arxiv.org/abs/2101.00122
https://doi.org/10.14507/epaa.30.6677

9

CHAPTER 2

Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks

2.1 Introduction

Deep neural networks (DNNs) have demonstrated remarkable success in solving complex

prediction tasks. However, recent studies show that they are particularly vulnerable to

adversarial attacks Biggio et al. (2013); Papernot et al. (2016a); Szegedy et al. (2013) in

the form of small perturbations to inputs that lead DNNs to predict incorrect outputs. For

images, such perturbations are often almost imperceptible to human vision system, while

being very effective at fooling DNN-based systems. Both white-box attacks Papernot et al.

(2016b) and black-box attacks Papernot et al. (2017) have been proposed to attack DNNs,

and they can often fool the network with high probabilities. These attacks pose a serious

threat to the applications of DNNs in security-sensitive systems, e.g., identity authentication

surveillance, self-driving cars, malware detection, and voice command recognition. As a

result, it is critical to develop effective and efficient defense mechanisms to counter adversarial

attacks.

In this paper, we propose a simple yet effective defense algorithm called Defense-VAE

which uses Variational AutoEncoder (VAE) Kingma & Welling (2013); Rezende et al. (2014)

to purge the adversarial perturbations from contaminated images before feeding the images

to the downstream CNN classifiers. To illustrate the idea, we generate some adversarial

images based on the FGSM attack Goodfellow et al. (2014b) with ϵ = 0.05 and ϵ = 0.1

on four popular image classification benchmarks: MNIST Lecun et al. (1998), Fashion-

Original

Original

𝝐 = 𝟎. 𝟏

Reconstruction Reconstruction

Reconstruction Reconstruction

Adversarial Adversarial

AdversarialAdversarial

𝝐 = 𝟎. 𝟎𝟓

𝝐 = 𝟎. 𝟏

𝝐 = 𝟎. 𝟎𝟓

Figure 2.1 Defense-VAE purges adversarial perturbations from contaminated images. Exam-
ple images are from (left top) MNIST, (right top) Fashion MNIST, (left bottom) CIFAR-10,
and (right bottom) CelebA. FGSM Goodfellow et al. (2014b) with ϵ = 0.05 and ϵ = 0.1 are
used to generate the adversarial attacks.

MNIST Xiao et al. (2017), CIFAR-10 Krizhevsky (2009) and CelebA Liu et al. (2015). These

adversarial images are then fed into Defense-VAE for reconstruction. Figure 2.1 illustrates

some of the typical examples from Defense-VAE. As we can see, the Defense-VAE generated

images are the faithful reconstructions from the underlying clean images, with the majority of

adversarial perturbations removed. As we will demonstrate later, such reconstructed images

can recover almost all the accuracy losses due to adversarial attacks, without introducing

much computation overhead compared to Defense-GAN Samangouei et al. (2018), a closely

related state-of-the-art defense algorithm that is based on Generative Adversarial Networks

(GAN) Goodfellow et al. (2014a).

Compared with the state-of-the-art defense algorithms, our method has the following

properties:

• Defense-VAE is very generic and can defend both white-box attacks and black-box

attacks without the need of retraining the original CNN classifiers, and can further

strengthen the defense by retraining or end-to-end finetuning;

• Defense-VAE achieves much higher accuracy than the state-of-the-art defense algo-

rithms on white-box and black-box attacks. Especially, it outperforms Defense-GAN

by about 30% in defending black-box attacks on Fashion-MNIST;

• Defense-VAE is very efficient compared to the optimization-based alternatives, such as

Defense-GAN, as no iterative optimization is needed for online prediction. From our

experiments, it shows that Defense-VAE is about 50x faster than Defense-GAN. This

makes our method widely deployable in real-time security-sensitive applications.

A preliminary ECML workshop version of this work was presented earlier Li & Ji (2019).

The present work adds to the initial version in significant ways. First, we give an in-depth

introduction to Defense-VAE to set up the context to readers. Second, we extend Defense-

VAE for adversarial image detection, which allows a flexible integration of Defense-VAE with

other defense algorithms to form a defense pipeline, where Defense-VAE can be a component

for adversarial detection or adversarial defense or both. Third, we examine the robustness

of our model under all sorts of untrained attacks, demonstrating the robustness of Defense-

VAE can be solidified by incorporating more adversarial examples from diverse attacking

algorithms. Experimentally, we provide more results on black-box defense, adversarial de-

tection and robustness validation. We also provide more details on network architectures

and experimental configurations for reproducible research.

2.2 Defense-VAE: The Proposed Algorithm

At a high level, Defense-VAE is a defense algorithm that is based on deep generative models

for image reconstruction. That is, given an adversarial image as input, the generative model

attempts to produce a denoised image that is closely related to the underlying clean image,

with the adversarial perturbations removed. As the name suggested, Defense-VAE is built

upon Variational AutoEncoder (VAE) Kingma & Welling (2013); Rezende et al. (2014).

Therefore, we first give a brief introduction to VAE.

2.2.1 Variational Auto-Encoder

Variational Autoencoder (VAE) Kingma &Welling (2013); Rezende et al. (2014) is one of the

most powerful deep generative models that is based on latent variable models. It consists of

an encoder network to encode an input image to the latent variable z and a decoder network

to decode the latent variable z back to the image domain:

z ∼ Enc(x) = q(z|x), x ∼ Dec(z) = p(x|z). (2.1)

Since the maximum likelihood (ML) estimate of this latent variable model is intractable, a

variational lower bound (ELBO) is optimized instead:

LVAE = −Eq(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
(2.2)

= −Eq(z|x)[log p(x|z)] +DKL(q(z|x)∥p(z))

where the first term is the reconstruction error and the second term is a regularization

that prefers the posterior to be close to the prior. Typically, a simple unit Gaussian prior is

assumed in VAE. To facilitate efficient computation, a diagonal covariance Gaussian posterior

is further assumed, which enables the use of the reparameterization trick to reduce the

variance of Monte-Carlo sampling Kingma & Welling (2013).

As a generative model, VAE can generate high quality images that follow the similar

distribution of the training images.

2.2.2 Defense-VAE

VAE is typically trained to reproduce the same image from an input image. As for adversarial

defense, reproducing the same adversarial images is an undesirable task as the adversarial

perturbations may be preserved during the image reconstruction. Instead, in Defense-VAE,

Clean
Images

Adversarial
images

Config 1

…

Config K

Config 1

…

Config K

Config 1

…

Config K

…

…

Attack Method 1

Attack Method N

Reconstr.
Images

Cross-Entropy Loss

Labels

Train
Defense-VAE

Train
Classifier-REC

VAE

Defense-VAE
Loss (Eq. 4)

Figure 2.2 Training pipeline of Defense-VAE. Defense-VAE (left) and Classifier-REC (right)
can be trained separately, or jointly end-to-end (from scratch or by fine-tuning). See text
for more details.

Test
Images

Adversarial
ImagesAttack

Method

Trained
VAE

Reconstructed
Images

Original
Classifier

Retrained
Classifier-REC

Classification
Result

Classification
Result

Figure 2.3 Test pipeline of Defense-VAE.

we modify the encoder and the decoder of the latent variable model as follows:

z ∼ Enc(x̂) = q(z|x̂), x ∼ Dec(z) = p(x|z), (2.3)

where x̂ = x + δ is an adversarial image with the perturbation δ added on top of a clean

image x. This adversarial image is encoded to a latent variable z, which is decoded to

the underlying clean image x. Accordingly, the training loss of Defense-VAE is updated as

follows:

LDefense−VAE = −Eq(z|x̂)

[
log

p(x|z)p(z)
q(z|x̂)

]
(2.4)

= −Eq(z|x̂)[log p(x|z)] +DKL(q(z|x̂)∥p(z)),

where the input to Defense-VAE is an adversarial image x̂ = x + δ, and the expected

output is the underlying clean image x. The compatibility between input and output pair

is measured by the loss function 2.4.

To train the Defense-VAE model, we can generate adversarial images given any clean

image from a training set. Since there are many different adversarial attack algorithms and

for each attack algorithm we can generate multiple adversarial images with different configu-

rations, we can in principle generate an unlimited amount of training pairs for Defense-VAE,

i.e., multiple adversarial images can be mapped to one clean image. The detailed training

pipeline is demonstrated in Figure 2.2 (left). Being an effective approach of generating suffi-

cient training pairs for Defense-VAE, using multiple attack algorithms to produce adversarial

training examples will also boost the capability of Defense-VAE to counter an ensemble of

adversarial attacks and make Defense-VAE a generic defense algorithm that is robust to

a wide range of attacks. As we will discuss later, this ensemble training strategy entails

Defense-VAE superior defense capability over Defense-GAN.

Once the Defense-VAE model is trained, we can also use the reconstructed images from

Defense-VAE to retrain the downstream CNN classifiers Figure 2.2 (right). As we will see

later, the retrained CNN classifier can further boost the defense accuracy over the original

CNN classifier.

We can also train the whole pipeline end to end from scratch or finetuning from pre-

trained VAE and CNN classifier by optimizing the joint loss function:

LEnd−to−End = LDefense−VAE + λLCross−Entropy. (2.5)

As we will see from the experiments, this end-to-end training can boost the defense accuracy

even further.

After training the Defense-VAE model and potentially retraining CNN classifiers or end-

to-end finetuning the whole pipeline, we can use the trained Defense-VAE to purge the

adversarial perturbations from any contaminated images, and the reconstructed images are

then fed to the original CNN classifier or retrained CNN classifier for the final image classi-

fication. This test pipeline is shown in Figure 2.3.

2.3 Related Work

Adversarial attacks and defenses is one of the active research areas in deep learning, with

tens of different attack and defense algorithms developed in the past few years. For a general

introduction to this exciting research area and the related terminologies, we refer the readers

to Vorobeychik & Kantarcioglu (2018); Yuan et al. (2017); Samangouei et al. (2018) for

more details. Here we will focus on the defense algorithms that are most closely related to

Defense-VAE.

Defending against adversarial attacks is a challenging task. Different types of defense

algorithms Papernot et al. (2016c); Moosavi-Dezfooli et al. (2016b) have been proposed in the

past few years. The first type of defense algorithms Dziugaite et al. (2016); Guo et al. (2017a);

Luo et al. (2015a) augments the training data to make the DNNmodel resillient to the trained

adversarial attacks. The second type of defense algorithms Gu & Rigazio (2014a); Ross &

Doshi-Velez (2017); Lyu et al. (2015a); Nguyen et al. (2017); Nayebi & Ganguli (2017); Gao

et al. (2017) modifies the training process by introducing regularization to the objective

functions. The third type of defense algorithms Akhtar et al. (2017); Xu et al. (2018); Guo

et al. (2017b) attempts to remove the adversarial perturbations via input transformations

before feeding the image to the classifier. According to this categorization, our Defense-

VAE belongs to the input transformation based defense approach. In the following, we will

therefore review the defense algorithms that are closely related to our work.

Adversarial training Goodfellow et al. (2014b); Kurakin et al. (2016) is a popular and

well investigated defense approach against adversarial attacks. It attempts to use adversarial

images as data augmentation to train a robust classifier. It shows that this method can im-

prove the defense accuracy effectively and sometimes it can even improve the accuracy upon

the model trained only on the original clean training set. However, this defense mechanism

is more effective in white-box attacks than in black-box attacks due to the gradient masking

problem. In Defense-VAE, we also use adversarial examples to improve the robustness of

the defense model. However, instead of improving the targeted CNN classifiers directly, ad-

versarial training is used to train a Defense-VAE model to purge adversarial perturbations

for the downstream CNN classifiers.

Magnet propsed by Meng and Chen Meng & Chen (2017) is another effective strategy

to defend adversarial attacks. Magnet has two phases for defense: detector network and

reformer network. Detector network learns the manifold of the normal clean images so that

it can detect if an input image is an adversarial. If an image is detected as an adversarial,

it will be forwarded to the reformer network, which will modify the adversarial image to the

manifold of normal images. In Magnet, the reformer network is trained only on clean images

with the goal of reconstructing the same clean input images, while Defense-VAE is trained

on adversarial and clean image pairs with the goal of removing the adversarial perturbations

from the contaminated images.

Another closely related work is Defense-GAN that is proposed by Samangouei et. al.

in Samangouei et al. (2018), where a Generative Adversarial Network (GAN) Goodfellow

et al. (2014a) is used to reconstruct a clean image from an adversarial image. Defense-GAN

firstly trains a GAN model purely on a training set of clean images, and as such it learns

the distribution of the normal images. Then given an adversarial image, multiple iterations

of back-propagations are used to identify a proper z from the clean image latent space,

such that after decoded through the GAN generator, the reconstructed image is expected to

be as close as possible to the adversarial image. Given the non-convex loss function of the

GAN generator model, multiple random z’s are used to initialize the back-propagation image

search. Typically, given an adversarial image, Defense-GAN needs to perform L iterations

of back-propagation for each of R random initializations, with the typical values of L = 200

and R = 10. As a comparison, to reconstruction a clean image, Defense-VAE can directly

identify a proper z by forward-propagating an adversarial image through the VAE encoder

network, and the z is subsequently used to reconstruct a clean image through the VAE-

decoder network. No expensive iterative online optimization is needed in Defense-VAE. As

we will discuss later, such reconstructed images are not only more accurate, but the whole

process is much faster than Defense-GAN.

2.4 Experiments

The details of network architectures used in our experiments are described below. Table 2.1

shows the architectures of the CNN classifiers and their substitute models, which are identical

to those used in the Defense-GAN paper Samangouei et al. (2018). This is for the purpose of

fair comparison since we compare our method mainly with Defense-GAN Samangouei et al.

(2018). The meanings of the notations used in the tables are described below:

- Conv(C1, C2, K, S, P) refers to a convolutional layer with input channel C1, output

channel C2, filter size K, stride S and padding P . If C1 is *, it equals to 1 for gray

images and 3 for RGB images.

- ConvT(C1, C2, K, S, P) refers to a transposed convolutional layer with input channel

C1, output channel C2, filter size K, stride S and padding P .

- FC(M,N) refers to a fully-connected layer with M inputs and N outputs.

- Dropout(P) refers to a dropout layer with dropout probability P .

- ReLU refers to the Rectified Linear Unit activation.

- BN refers to a Batch Normalization layer.

Table 2.2 shows the architecture of the Defense-VAE model used in the experiments on

MNIST and Fashon-MNIST. The Defense-VAE architecture used for CIFAR-10 Krizhevsky

(2009) is largely the same except that it has one additional convolutional layer of Conv(64, 64,

4, 2, 1) in the encoder and one additional transposed convolutional layer of ConvT(64, 64, 4,

2, 1) in the decoder due to the different size of input images compared with MNIST. Similarly,

the VAE architecture used for CelebA Liu et al. (2015) has two additional convolutional layers

of Conv(64, 64, 4, 2, 1) in the encoder and two additional transposed convolutional layers

of ConvT(64, 64, 4, 2, 1) in the decoder. Additionally, we don’t use Batch Normalization in

the experiments on CIFAR-10 and CelebA.

A B C D E
Conv(*, 64, 5, 1, 2) Dropout(0.2) Conv(*, 128, 3, 1, 1) FC(200) FC(200)
ReLU Conv(*, 64, 8, 2, 5) ReLU ReLU ReLU
Conv(64, 64, 5, 2, 0) ReLU Conv(128, 64, 5, 2, 0) Dropout(0.5) FC(200)
ReLU Conv(64, 128, 6, 2, 0) ReLU FC(200) ReLU
Dropout(0.25) ReLU Dropout(0.25) ReLU FC(10) + Softmax
FC(128) Conv(128, 128, 5, 1, 0) FC(128) Dropout(0.25)
ReLU ReLU ReLU FC(10) + Softmax
Dropout(0.5) Dropout(0.5) Dropout(0.5)
FC(10) + Softmax FC(10) + Softmax FC(10) + Softmax

Table 2.1 The architectures of the classifiers and the substitute models used in the white-box
and black-box attacks.

We validate our algorithm on four popular image classification benchmarks: MNIST Le-

cun et al. (1998), Fashion-MNIST Xiao et al. (2017), CelebA Liu et al. (2015) and CIFAR-

10 Krizhevsky (2009). MNIST and Fashion-MNIST are two gray-level image datasets, each

containing 60,000 training images and 10,000 test images with the size of 28 × 28. While

Encoder Decoder
Conv(*, 64, 5, 1, 2) + BN + ReLU FC(128, 4096) + ReLU
Conv(64, 64, 4, 2, 3) + BN + ReLU ConvT(256, 128, 4, 2, 1) + BN + ReLU
Conv(64, 128, 4, 2, 1) + BN + ReLU ConvT(128, 64, 4, 2, 1) + BN + ReLU
Conv(128, 256, 4, 2, 1) + BN + ReLU ConvT(64, 64, 4, 2, 3) + BN + ReLU
FC1(4096, 128), FC2(4096, 128) ConvT(64, 64, 5, 1, 2) + BN + ReLU

Table 2.2 The encoder and decoder of Defense-VAE used in the experiments on MNIST and
Fashion-MNIST.

MNIST consists of 10 hand-written digits, Fashion-MNIST contains 10 different articles, e.g.,

shoes, shirts, etc. CelebA contains 202,599 RGB images of human faces, split into training

and test sets. We use this dataset for binary classification to distinguish if a face image is

from a male or a female. CIFAR-10 contains 10 classes of RGB images of the size of 32×32,

in which 50,000 images are for training and 10,000 images are for test.

We consider both the white-box attacks and the black-box attacks to test the defense

performance of our algorithm. For the white-box attacks, FGSM Goodfellow et al. (2014b),

Randomized FGSM Kurakin et al. (2016), and CW Carlini & Wagner (2017) attacks are

used. For the black-box attacks, we train a substitute model to generate adversarial images

to attack the targeted CNN classifiers. For a fair comparison, our experimental setups closely

follow those of Defense-GAN 1.

To demonstrate the generalization of our algorithm, we test our algorithms with the

targeted CNN classifiers of different architectures: different number of convoluational or

full-connected layers, different convolution parameters, and with/without dropout or batch

normalization. For the black-box attacks, different architectures are also considered for the

substitute models. When we present results, we denote the targeted model as A, B, C, D

1https://github.com/kabkabm/defensegan

and the substitute model as B, E.

For the defense algorithms, we compare our algorithm with Adversarial Training Good-

fellow et al. (2014b); Kurakin et al. (2016), MagNet Meng & Chen (2017) and Defense-

GAN Samangouei et al. (2018). All of our experiments are performed on NVIDIA Titan-Xp

GPUs.

2.4.1 Results on White-box Attacks

Attack Classifier
Model

No
Attack

No
Defense

Defense
VAE

Defense
VAE-REC

Defense
VAE-E2E

Defense
GAN MagNet Adv. Tr.

ϵ = 0.3

FGSM
ϵ = 0.3

A 90.85 9.18 86.9 89.03 91.02 87.9 8.9 79.7
B 71.62 15.89 70.88 74.41 77.86 62.9 16.8 13.6
C 90.78 8.68 85.8 89.72 90.85 89.6 11.0 80.4
D 86.94 8.51 85.36 87.09 89.26 87.5 9.9 69.8

RAND
FGSM
ϵ = 0.3
α = 0.05

A 90.85 7.91 86.42 88.91 90.57 88.8 9.6 44.7
B 71.62 13.14 71.12 73.91 77.09 66.1 16.1 11.9
C 90.78 5.48 86.42 89.38 90.28 89.3 11.2 69.9
D 86.94 7.79 85.77 87.18 88.97 86.2 10.4 62.6

CW
l2 norm

A 90.85 11.67 81.81 86.99 88.54 89.6 6.0 15.7
B 71.62 18.74 67.43 73.69 74.72 65.6 13.1 11.8
C 90.78 7.70 78.64 87.47 88.69 89.6 8.4 10.7
D 86.94 9.35 64.38 86.21 87.83 87.5 6.9 14.9

Average 84.05 10.34 79.24 84.50 86.31 82.55 10.69 40.48

Table 2.3 Classification accuracies of different defense methods under FGSM, RAND-FGSM
and CW white-box attacks on the F-MNIST image classification benchmarks. The de-
fense accuracies of Defense-GAN, MagNet, and Adversarial Training are imported from the
Defense-GAN paper Samangouei et al. (2018). Results on MNIST, CelebA and CIFAR-10
have the same pattern as above. Details can be found in section 2.5.

First, we test our algorithm on three types of white-box attacks: FGSM, RAND-FGSM

and CW attacks. The targeted CNN models are trained on the original training dataset for

10 epochs until convergence. Then for each clean training image we generate 12 different

adversarial images by using 3 different white-box attack algorithms, each with 4 different

configurations. For FGSM and RAND-FGSM, 4 different ϵ = 0.25, 0.3, 0.35 and 0.4 are used.

For the CW attack, 4 different learning rates lr = 6, 8, 10 and 12 are used. We combine these

adversarial images and the original clean images to form the input and output pairs to train

the Defense-VAE model. We initialize the weights of VAE with the normal distribution of

N(0, 0.02) for the convolutional layers and N(1, 0.02) for the batch normalization layers. We

note that usually 5 epochs are required for the Defense-VAE model to converge.

Additionally, we use the reconstructed images of Defense-VAE to retrain the CNN clas-

sifier to improve the classification accuracy. Although the original CNN classifiers have

already yielded very competitive performance compared with Defense-GAN, we note that

retraining CNN classifiers for Defense-VAE can further strengthen the defense accuracy no-

tably. Interestingly, the authors of Defense-GAN reported that for Defense-GAN retraining

of CNN classifiers has negligible impact to the defense accuracy, while this is not true for

Defense-VAE.

As discussed in Sec. 2.2.2, we can also train the whole pipeline end to end by optimizing

the joint loss function 2.5 directly. This can be done through two approaches: (1) randomly

initialize the VAE and CNN classifier model parameters and train the whole pipeline from

scratch, and (2) pretrain VAE and CNN classifier separately and finetune the whole pipeline.

Our experiments show that both approaches are almost equally effective, with the finetun-

ing yielding slightly better results. We therefore only report the finetuning results in the

following.

To demonstrate the effectiveness of this end-to-end finetuning approach, we provide one

typical learning curve of the finetuning process in Figure 2.4, where the adversarial attacks

are generated by FGSM with ϵ = 0.3. Starting from separately pretrained VAE model and

CNN classifier (a.k.a., Defense-VAE-REC), we finetune the whole pipeline by optimizing the

joint loss function 2.5. As we can see, the end-to-end finetuning boosts the defense accuracy

by about 4% over the Defense-VAE model.

0 20 40 60 80 100 120
Number of finetuning epochs

87.5

88.0

88.5

89.0

89.5

90.0

90.5

91.0

De
fe

ns
e

ac
cu

ra
cy

Figure 2.4 The end-to-end finetuning can boost the defense accuracy even further, and yields
a stronger defense model.

Table 2.3 reports the defense accuracies of Defense-VAE on three different white-box

attacks: FGSM, RAND-FGSM and CW attacks. As a comparison, we also include the

results of Defense-GAN, MagNet and Adversarial Training under the same experimental

setups; for those results, we import them directly from the Defense-GAN paper Saman-

gouei et al. (2018). As we can see, Defense-VAE and Defense-GAN are very competitive

to each other, and outperform all the other defense algorithms by significant margins on

all four benchmarks. Defense-VAE achieves superior performance over Defense-GAN, and

can recover almost all the accuracy losses due to the adversarial attacks. We also note

that retraining CNN classifiers (Defense-VAE-REC) and finetuning (Defense-VAE-E2E) can

further improve the defense accuracies beyond the original CNN classifiers (Defense-VAE)

by a notable margin, with the finetuning yielding the strongest defense against adversarial

attacks.

2.4.2 Robustness under Untrained Attacks

In principle we can train Defense-VAE on all known adversarial attacks to best counter

possible attacks in test. However, in reality new attacks are constantly invented; it’s almost

certain that after the deployment of Defense-VAE, some new adversarial attacks will emerge

and Defense-VAE has never been trained on those attacks. To investigate the robustness

of Defense-VAE in this circumstance, in this part of the experiments we train Defense-VAE

on two attacks and test its defense capability against the third untrained attack. Again,

three adversarial attacks are considered: FGSM, RAND-FGSM and CW, which gives three

possible combinations that are shown in Table 2.4. As we can see, Defense-VAE is very

robust for the first two attacks: FGSM and RAND-FGSM as the defense accuracies largely

remain the same as it’s trained on all three attacks. But for the CW attack, Defense-VAE

is less robust, manifested by the significant accuracy loss compared to the Defense-VAE

trained on all three attacks. Indeed, the CW attack is considered a much stronger attack

and could have a very distinct attack pattern to that of FGSM and RAND-FGSM. We

therefore incorporate Deepfool Moosavi-Dezfooli et al. (2016a) to the training of Defense-

VAE to counter the untrained CW attack since DeepFool and CW have very similar attack

patterns. The results in parentheses show that this is indeed the case and Defense-VAE

again can recover the most accuracy losses under untrained CW attack.

Attack Classifier Trained on other 2 Trained on 3

FGSM
A 87.34 89.03
B 73.38 74.41
C 88.03 89.72
D 86.49 87.09

RAND
FGSM

A 87.30 88.91
B 73.59 73.91
C 88.19 89.38
D 86.73 87.18

CW
A 43.48 (85.06) 86.99
B 34.52 (71.64) 73.69
C 44.45 (85.22) 87.47
D 30.77 (84.69) 86.21

Table 2.4 Defense accuracy of Defense-VAE when it’s trained on two attacks but is used
to defend another attack. The results in parentheses are the accuracies after incorporating
DeepFool Moosavi-Dezfooli et al. (2016a) as additional adversarial training examples for
Defense-VAE.

ϵ MNIST F-MNIST
0.10 98.95 86.04
0.15 98.67 86.32
0.20 98.58 86.39
0.25 98.44 86.51
0.30 98.29 86.36

Table 2.5 Defense accuracy of Defense-VAE with Model A under the FGSM attack with
various noise level ϵ when VAE is trained only on ϵ = 0.3.

Another interesting defense scenario is: what if Defense-VAE were tested on the same

type of attacks but with different attack configurations? To investigate this, we train Defense-

VAE on the FGSM attack with ϵ = 0.3 and test its defense accuracies with different ϵ. We

validate this on MNIST and Fashion-MNIST, with the results shown in Table 2.5. It shows

that that Defense-VAE is very robust to the untrained FGSM configurations as the defense

accuracies largely remain the same under the trained attacks, e.g., with ϵ = 0.3.

2.4.3 Results on Black-box Attacks

Classifier/
Substitute

No
Attack

No
Defense

Defense-
VAE

Defense-
VAE-REC

Defense-
VAE-E2E

Defense-
GAN MagNet Adv. Tr.

ϵ = 0.3
A/B 90.85 37.92 83.69 86.64 86.39 58.60 54.04 73.93
A/E 90.85 24.94 76.97 83.02 83.61 47.90 33.11 69.45
B/B 71.62 17.61 73.66 72.42 75.22 49.40 38.12 31.77
B/E 71.62 13.44 69.29 69.36 71.78 37.20 31.19 26.17
C/B 90.78 39.14 83.64 86.88 87.67 52.89 46.64 77.91
C/E 90.78 22.89 76.27 80.16 80.32 48.71 30.16 75.04
D/B 86.94 32.87 80.31 85.80 84.78 57.79 54.78 61.72
D/E 86.94 23.51 70.66 79.48 77.53 40.07 33.96 50.93
Average 85.05 26.54 76.81 80.47 80.91 49.07 40.25 58.37

Classifier/
Substitute

No
Attack

No
Defense

Defense-
VAE

Defense-
VAE-REC

Defense-
VAE-E2E

Defense-
GAN MagNet Adv. Tr.

ϵ = 0.3
A/B 99.15 65.89 98.68 98.71 99.16 93.12 69.37 96.54
A/E 99.15 76.32 98.64 98.92 99.19 91.39 67.10 96.68
B/B 96.10 14.40 95.89 95.95 96.71 90.57 56.87 20.92
B/E 96.10 26.48 96.26 95.81 97.09 88.41 46.27 11.20
C/B 99.08 60.74 97.91 98.02 99.15 93.57 75.71 98.34
C/E 99.08 72.73 98.30 98.59 99.28 92.23 67.60 98.43
D/B 97.87 33.36 97.68 98.22 97.85 92.72 68.17 76.67
D/E 97.87 39.95 97.72 98.22 97.69 91.64 60.73 76.76
Average 98.05 48.73 97.63 97.81 98.27 91.71 63.98 71.92

Table 2.6 Classification accuracies of different defense methods under FGSM black-box at-
tacks on different image classification benchmarks: (top) F-MNIST, and (bottom) MNIST.
The defense accuracies of Defense-GAN, MagNet, and Adversarial Training are imported
from the Defense-GAN paper Samangouei et al. (2018).

Next, we test the defense capability of Defense-VAE under black-box attacks on the

MNIST and Fashion-MNIST datasets. We train the targeted CNN model on the training

set for 10 epochs with the batch size of 100 and the learning rate of 10−3 until convergence.

Then the substitute model is trained with 150 images from the test set with the labels

predicted by the targeted CNN classifier.

In the black-box attacks, Defense-VAE, as a defender, has no prior knowledge of the

trained substitute model. Thus, we can only train Defense-VAE on the white-box attacks.

Therefore, the same Defense-VAE model trained from the experiments of white-box attacks

is used to defend the black-box attacks. 2 In this experiment, 4 targeted CNN classifiers: A,

B, C, and D, and 2 substitute models: B and E are considered, and this produces 8 possible

Classifier/Substitute combinations. Given a large number of experiments, in this part of

experiments, only the black-box FGSM attack is considered, with the results on MNIST

and Fashion-MNIST reported in Table 2.6. As a comparison, we also include the results of

Defense-GAN, MagNet and Adverarial Training under the same experimental setups; again,

for this set of results, we import them directly from the Defense-GAN paper Samangouei

et al. (2018). As we can see, on both datasets Defense-VAE outperforms Defense-GAN

and all other defense algorithms by significant margins. In particular, on Fashion-MNIST,

Defense-VAE improves the accuracy over Defense-GAN by about 30%. Also, as in the

white-box attack experiments, retrained CNN classifiers (Defense-VAE-REC) and finetuning

(Defense-VAE-E2E) can further boost the defense accuracies over the original CNN classifiers

(Defense-VAE) by a notable margin, with the end-to-end finetuning yielding the best defense

accuracies among all the methods.

2.5 Experiments on MNIST, CelebA and CIFAR-10

We perform the white-box and black-box attacks on MNIST Lecun et al. (1998), CelebA Liu

et al. (2015) and CIFAR-10 Krizhevsky (2009) datasets, with the results provided in Ta-

bles 2.8, 2.5 and 2.10, respectively. Again, we compare our method mainly with Defense-

GAN Samangouei et al. (2018). Since Defense-GAN didn’t provide results on CIFAR-10, we

2In other words, we just need to train one Defense-VAE to defend both white-box and black-box attacks.

run their code on CIFAR-10 and make sure the experimental settings for both algorithms

are the same. We didn’t provide the results related to the classifier model B due to its

unreasonable performance on CIFAR-10 probably due to the improper parameter configu-

ration of model B for CIFAR-10, e.g., model B has much more parameters due to the large

convolutional kernel size (e.g., 8×8) and 3 input channels.

Similar to the results on F-MNIST provided in the main text, Defense-VAE outperforms

Defense-GAN consistently, and retraining CNN classifiers on the reconstructions of Defense-

VAE boosts the accuracy significantly. We also notice that the defense accuracies on CIFAR-

10 are not as good as on CelebA. This is because CIFAR-10 is a much more challenging task

than CelebA: the former is a 10-way classification task, while the latter is only a binary

classification on human faces.

Attack Classifier
Model

No
Attack

No
Defense

Defense
VAE

Defense
VAE-REC

Defense
VAE-E2E

Defense
GAN MagNet Adv. Tr.

ϵ = 0.3

FGSM
ϵ = 0.3

A 99.15 14.65 98.29 98.98 99.28 98.8 19.1 65.1
B 96.10 1.81 95.92 95.97 96.91 95.6 8.2 6.0
C 99.08 29.53 98.41 98.91 99.24 98.9 16.3 78.6
D 97.87 4.33 97.56 98.16 98.05 98.0 9.4 73.2

RAND
FGSM
ϵ = 0.3
α = 0.05

A 99.15 8.65 98.40 99.08 99.34 98.8 17.1 77.4
B 96.10 1.65 95.83 96.04 96.87 94.4 9.1 13.8
C 99.08 5.99 98.33 98.87 99.35 98.5 15.1 90.7
D 97.87 3.25 97.81 98.3 98.05 98.0 11.5 53.9

CW
l2 norm

A 99.15 8.45 92.69 95.12 96.95 98.9 3.8 7.7
B 96.10 3.00 87.66 88.56 95.08 91.6 3.4 28.0
C 99.08 5.53 94.46 96.05 96.44 98.9 2.5 3.1
D 97.87 3.92 83.42 89.46 95.71 98.3 2.1 1.0

Average 98.05 7.56 94.90 96.13 97.61 97.39 9.80 27.38

Table 2.7 Classification accuracies of different defense methods under FGSM, RAND-FGSM
and CW white-box attacks on MNIST.

Attack Classifier
Model

No
Attack

No
Defense

Defense
VAE

Defense
VAE-REC

Defense
VAE-E2E

Defense
GAN MagNet Adv. Tr.

ϵ = 0.3

FGSM
ϵ = 0.3

A 96.55 3.94 92.40 94.89 95.10 92.55 9.85 12.25
B 93.69 5.20 90.05 92.45 92.85 91.40 9.20 23.45
C 95.62 4.45 92.47 94.46 95.25 92.55 10.85 11.30
D 94.89 5.92 90.05 93.66 93.91 92.05 9.75 77.55

RAND
FGSM
ϵ = 0.3
α = 0.05

A 96.55 4.04 92.11 94.56 95.34 92.80 11.05 7.00
B 93.69 4.76 90.55 92.57 93.07 90.30 10.15 45.15
C 95.62 5.12 91.70 93.76 94.15 92.00 10.45 10.55
D 94.89 6.15 91.42 93.53 93.87 91.65 11.05 6.96

CW
l2 norm

A 96.55 4.94 93.70 95.07 95.90 82.10 9.85 56.90
B 93.69 4.90 90.65 92.40 93.55 74.65 9.55 7.25
C 95.62 8.00 93.28 94.57 95.92 79.85 9.85 26.35
D 94.89 6.47 91.15 93.12 93.39 77.40 10.40 50.10

Average 95.19 5.32 91.63 93.75 94.36 87.44 10.17 27.90

Table 2.8 Classification accuracies of different defense methods under FGSM, RAND-FGSM
and CW white-box attacks on CelebA.

Attack Classifier
Model

No
Attack

No
Defense

Defense
VAE

Defense
VAE-REC

Defense
VAE-E2E

Defense
GAN

FGSM
ϵ = 0.3

A 86.52 2.44 44.86 48.52 50.72 51.92
C 87.62 5.05 43.92 47.29 47.39 47.84
D 61.76 8.24 47.75 50.69 53.36 33.80

RAND
FGSM
ϵ = 0.3

A 86.52 3.71 39.84 47.80 50.51 50.36
C 87.62 3.87 41.28 46.16 47.91 48.52
D 61.76 7.94 47.88 50.67 51.18 26.78

CW
l2 norm

A 86.52 2.34 38.41 45.91 49.44 45.62
C 87.62 7.13 41.21 46.26 46.19 43.87
D 61.76 7.78 53.32 55.81 57.21 20.35

Average 78.63 5.39 44.27 48.79 50.43 41.01

Table 2.9 Classification accuracies of different defense methods under FGSM, RAND-FGSM
and CW white-box attacks on CIFAR-10. Since the Defense-GAN paper didn’t provide the
white-box attack results on CIFAR-10, we run their original code and provide the results in
the table.

2.5.1 Why is Defense-VAE so effective?

The results above demonstrated superior performance of Defense-VAE over Defense-GAN.

For the black-box FGSM attack, the former even outperforms the latter by about 30%. To

understand why Defense-VAE can have such a large leap, we investigate the reconstructed

images by Defense-VAE and Defense-GAN in this experimental setup, i.e., the black-box

FGSM attack on Fashion-MNIST. Figure 2.5 shows some typical examples from this experi-

ment. As can be seen, the reconstructed images from Defense-VAE often preserve the correct

class information of their underlying clean images, while Defense-GAN has a harder time to

identify a correct reconstruction even though it searches for the right z from R random ini-

tializations and optimizes in L back-propagations, with typical R = 10 and L = 200. As we

discussed in Sec. 2.3, Defense-VAE identifies a proper z directly by forward-propagating the

input adversarial image through the VAE-encoder, and reconstructs a high quality denoised

image through the VAE-decoder, and no online iterative optimization is involved.

Original Image Adversarial Image Reconstrution by GAN Reconstrution by VAE

Figure 2.5 The example reconstructions by Defense-VAE and Defense-GAN from the black-
box FGSM attacks on Fashion-MNIST: (first column) original images; (second column)
adversarial images; (third column) reconstruction by Defense-GAN; (fourth column) recon-
struction by Defense-VAE.

Classifier/
Substitute

No
Attack

No
Defense

Defense-
VAE

Defense-
VAE-REC

Defense-
VAE-E2E

Defense-
GAN

C/E 87.62 14.13 37.22 42.68 45.72 20.24
D/E 61.76 10.39 32.60 38.10 37.18 11.68
Average 74.69 12.16 34.91 40.39 41.45 16.32

Table 2.10 Classification accuracies of different defense methods under FGSM black-box
attacks on CIFAR-10. Since the Defense-GAN paper didn’t provide the black-box attack
results on CIFAR-10, we run their original code and provide the results in the table.

2.5.2 Defense Speed

Besides the superior defense accuracy of Defense-VAE, another advantage of Defense-VAE

is its superior defense speed over Defense-GAN. As discussed above, to identify a high qual-

ity reconstruction, Defense-VAE doesn’t need expensive online iterative optimizations, while

Defense-GAN requires L iterative back-propagations with R random restarts. To have a

quantitative speed comparison between Defense-VAE and Defense-GAN, we calculate their

reconstruction times on 1000 adversarial images from Fashion-MNIST, with the results re-

ported in Table 2.11, where different R and L configurations are considered.

As we can see, compared to the default Defense-GAN configuration, i.e., L = 200 and

R = 10, Defense-VAE is about 50x faster than Defense-GAN. Moreover, as L and R increase,

Defense-GAN generally has a slightly better defense accuracy, but the run time also increases

linearly as O(L × R). The constant run-time complexity of Defense-VAE makes it widely

deployable in real-time security-sensitive systems.

2.5.3 Adversarial Detection

The reconstruction property of Defense-VAE also entails a simple detection mechanism for

the model to detect if an input image contains adversarial perturbations or not. Such a

Defense Method Run Time on
1000 Images (s)

Defense-VAE 9.03

Defense-GAN
L∗ = 200, R∗ = 10 441.81
L = 400, R = 10 875.48
L = 200, R = 20 876.10
L = 400, R = 20 1720.13

Table 2.11 Run-time comparison between Defense-VAE and Defense-GAN, where ∗ denotes
Defense-GAN recommended configuration.

functionality allows a flexibility of integrating Defense-VAE with other defense algorithms

to form a defense pipeline, where Defense-VAE can be a component for adversarial detection

or adversarial defense or both.

Since Defense-VAE is trained on the pair of (x̂,x), where x̂ = x + δ. If the input x̂

contains adversarial perturbations δ, the reconstructed output will be close to a clean image

x. Therefore, the MSE between input and output of Defense-VAE will be relatively large.

On the other hand, if the input x̂ contains no adversarial perturbations, then the MSE

will be very small and potentially close to zero. Thus, we can use the MSE as a signal to

determine if an input image contains adversarial perturbations or not by simply thresholding

the MSE.

To verify this idea, we generate a set of white-box FGSM attacks on Fashion-MNIST

with different ϵ. We then use the Defense-VAE model trained from the white-box attack

experiment for adversarial detection. For each FGSM attack with a different ϵ, we compute

the MSE between the input and output images of Defense-VAE. By sweeping the threshold

on the MSE values, we can produce a Receiver Operating Characteristic (ROC) curve for

each ϵ. The ROC curves for 5 different ϵ are reported in Figure 2.6. To measure the detection

performance, the Area Under Curve (AUC) for each ϵ is also included. As we can see, for

large magnitude FGSM attack, e.g., ϵ = 0.3 or 0.25, the AUC is almost 100%. When

the attack magnitude ϵ becomes smaller, the adversarial images become harder to detect.

However, Defense-VAE still achieves 97% AUC when ϵ = 0.15 and an AUC of 87% when

ϵ = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

ε = 0.1 (AUC = 0.87)
ε = 0.15 (AUC = 0.97)
ε = 0.2 (AUC = 0.99)
ε = 0.25 (AUC = 1.00)
ε = 0.3 (AUC = 1.00)

Figure 2.6 The ROC curves when using Defense-VAE to detect the adversarial attacks gen-
erated by FGSM with different ϵ.

2.6 Conclusion

In this paper, we propose Defense-VAE, a fast and accurate defense algorithm against ad-

versarial attacks. The algorithm is generic and can defense both white-box and black-box

attacks without the need of retraining the original CNN classifier, and can further boost the

defense strength by retraining or end-to-end finetuning. Compared with the state-of-the-

art algorithms, in particular, Defense-GAN, our algorithm outperforms them in almost all

white-box and black-box defense benchmarks. In addition, Defense-VAE is very efficient as

compared to the optimization-based defense alternatives, such as Defense-GAN, as no ex-

pensive iterative online optimization is needed. Speed test shows that Defense-VAE is about

50x faster than Defense-VAE. Given the superior defense accuracy and speed, we believe

Defense-VAE is widely deployable in real-time security-sensitive systems.

36

CHAPTER 3

Generative Dynamic Patch Attack

3.1 Introduction

Deep neural networks (DNNs) have demonstrated remarkable success in solving complex

prediction tasks in a variety of fields: computer vision Deng et al. (2009), natural language

processing Sutskever et al. (2014) and speech recognition Senior et al. (2012). However,

recent studies show that they are particularly vulnerable to adversarial examples Goodfellow

et al. (2015) in the form of small perturbations to inputs that lead DNNs to predict incorrect

outputs.

Recent works Brown et al. (2017); Karmon et al. (2018); Evtimov et al. (2017); Sharif

et al. (2016); Yang et al. (2020, 2019), show that perturbing part of an image with perceiv-

able noise is another effective method to attack neural network models. Typically, attackers

can craft perceivable patches to replace part of images for adversarial attack. The advantage

of this perceivable patch attack is that it is more practical than the imperceptible adversar-

ial attacks in the real world: adversaries can paste a sticker on a traffic sign to attack the

autopilot system of autonomous vehicles. There are several situations where patch attack is

significant concerning due to its security threats: 1) an attacker uses adversarially designed

eyeglass frames Sharif et al. (2016) to fool face recognition (Fig. 3.1a), 2) an attacker pastes

adversarially crafted stickers Evtimov et al. (2017) on stop signs to fool traffic sign classifi-

cation (Fig. 3.1b), and 3) a universal adversarial patch Brown et al. (2017) causes targeted

misclassification of any object (Fig. 3.1c).

Figure 3.1 Different types of patch attacks: (a) Eyeglasses Attack Sharif et al. (2016), (b)
Sticker Attack Evtimov et al. (2017), (c) Adversarial Patch Brown et al. (2017), and (d)
GDPA (ours).

However, it is a significant limitation that most patch attack algorithms do not consider

the problem of finding the best location in an image to inject the patch. Existing patch attack

algorithms either use a fixed position as patch location Sharif et al. (2016); Evtimov et al.

(2017); Yang et al. (2019) or learn patches that are universal across different locations Brown

et al. (2017); Karmon et al. (2018); Yang et al. (2020). The fixed location methods show high

attack success rates but are poorly performed at other locations, while the random location

patches do not have competitive attack success rates compared to the fixed location methods.

To address this issue, in this paper we propose a Generative Dynamic Patch Attack (GDPA),

which learns image-dependent patch pattern and patch location altogether. GDPA is inspired

by the idea that different images have different sets of weak pixels since DNN classifiers

typically focus on different image regions when queried by different images Simonyan et al.

(2013). Therefore, an image-dependent dynamic patch attack would be more effective than

a fixed location or random location patch attack.

On the other hand, due to the security threats of adversarial attacks, a variety of adver-

sarial defense algorithms have been developed recently Goodfellow et al. (2015); Lyu et al.

(2015b); Shaham et al. (2018), among which adversarial training (AT) Goodfellow et al.

(2015) has been proved the most effective one for hardening neural networks against adver-

sarial attacks. Although AT with the PGD attack Madry et al. (2018) is the most scalable

and effective method for learning robust models, a recent work of Wu et al. Wu et al. (2019)

shows that AT exhibits limited effectiveness against three high-profile physically realizable

patch attacks: eyeglasses attack Sharif et al. (2016), sticker attack Evtimov et al. (2017)

and adversarial patch Brown et al. (2017). To overcome this limitation, Wu et al. Wu et al.

(2019) propose a Rectangular Occlusion Attack (ROA) for adversarial training, which yields

models highly robust to patch attacks. ROA is a two-stage patch attack algorithm, which

first uses a gray pattern to find the location in image that maximizes the cross-entropy loss

via grid search, and then optimizes the patch pattern at the identified position. However,

this two-stage patch attack method is suboptimal and has quite a few limitations (see a

discussion in Sec. 3.2), which motivates us to propose GDPA that learns patch pattern and

patch location simultaneously. Moreover, to improve the inference efficiency, GDPA employs

a generator to generate patch pattern and location with one forward propagation, without

expensive iterative optimizations that are usually employed by other attack algorithms, such

as PGD Madry et al. (2018) and ROA Wu et al. (2019). Concretely, we make the following

contributions:

• We introduce a generic patch attack method GDPA that can generate dynamic/static

and visible/invisible patch attacks with a few configuration changes.

• GDPA employs a generator to generate patch pattern and patch location altogether

per image, and reduces the inference time substantially (e.g., 40-50x faster).

• GDPA is end-to-end differentiable and can be readily integrated for adversarial training

to defend high-profile patch attacks.

• Experiments show that GDPA has superior attack success rates over strong patch

attack baselines, and the adversarially trained model with GDPA is more robust to

various adversarial attacks than state-of-the-art methods.

3.2 Related Works

Adversarial Attack

Most adversarial attack methods focus on adding imperceptible perturbation covering the

entire image Goodfellow et al. (2015); Szegedy et al. (2013). Recently, researchers have

shown that perturbing a part of image with perceptible noise is another practical method

to attack DNN models Brown et al. (2017); Karmon et al. (2018); Wu et al. (2019); Sharif

et al. (2016); Evtimov et al. (2017); Yang et al. (2020); Liu et al. (2020); Yang et al. (2019).

Sharif et al. Sharif et al. (2016) propose to add eyeglasses with a specially constructed frame

texture to attack face recognition. Eykholt et al. Evtimov et al. (2017) show that adding

specific rectangular solid-colored patches on traffic signs can fool traffic sign classification.

LAVAN Karmon et al. (2018) learns visible and localized patches that are transferable across

images and locations by training the pattern at a random location with a randomly picked

image in each iteration. Recently, Wu et al. Wu et al. (2019) propose a Rectangle Occlu-

sion Attack (ROA) to generate adversarial patches for adversarial training. ROA uses an

exhaustive search (ROA-Exh) or a gradient guided search (ROA-Grad) to find the location

that maximizes the cross-entropy (CE) loss and optimizes the patch pattern afterwards.

Specifically, ROA-Exh exhaustively searches on images with a stride, and ROA-Grad uses

the magnitude of gradient of the CE loss as the sensitivity of regions to identify the top

candidate regions to accelerate the location search. However, ROA has some considerable

limitations. Firstly, it employs a two-stage attack generation, which separates the process of

finding the patch location and patch pattern into two steps: it first finds the position using

a gray pattern and then optimizes the patch pattern at that position. Hence, the location

identified by a gray pattern may not be the best patch location for the optimized pattern.

Secondly, the two-stage optimization of ROA is computationally expensive and slows down

the patch generation process during inference. Different from these algorithms, our GDPA

trains a generator to generate the patch pattern and location altogether for each input im-

age. Moreover, GDPA is end to end differentiable, which entails an efficient optimization

and easy integration for adversarial training.

Before GDPA, several works Poursaeed et al. (2018); Baluja & Fischer (2017); Reddy Mop-

uri et al. (2018); Xiao et al. (2018) have proposed to train generators to generate pertur-

bation to improve the fooling rate and inference speed. Poursaeed et al. Poursaeed et al.

(2018) present a trainable network to transform input images to adversarial perturbations.

Baluja and Fischer Baluja & Fischer (2017) train feed-forward neural networks in a self-

supervised manner to generate adversarial examples against a target network. Different to

these generator-based attack methods, our GDPA generates both patch pattern and patch

location altogether, and employ an affine transform to synthesize adversarial patch examples.

Adversarial Defense

Defending against adversarial attacks is a challenging task. Different types of defense algo-

rithms have been proposed in the past few years Dziugaite et al. (2016); Guo et al. (2017a);

Luo et al. (2015b); Gao et al. (2017); Gu & Rigazio (2014b); Lyu et al. (2015b); Akhtar

et al. (2018); Guo et al. (2017a); Xu et al. (2018); Wu et al. (2019); Naseer et al. (2019);

Chiang et al. (2020); Hayes (2018), among which adversarial training (AT) Madry et al.

(2018) has been proved the most effective one against adversarial attacks. AT employs ad-

versarial examples as data augmentation to train a robust model. It has been shown that

this method can improve the defense accuracy effectively and sometimes can even improve

the accuracy upon the model trained only on the original clean dataset Wang et al. (2020).

However, a recent work of Wu et al. Wu et al. (2019) shows that robust models trained

by AT exhibit limited effectiveness against high-profile patch attacks Sharif et al. (2016);

Evtimov et al. (2017); Brown et al. (2017). As the first work attempting to defend patch

attacks, Wu et al. Wu et al. (2019) propose DOA, which performs a standard adversarial

training with Rectangle Occlusion Attack (ROA). As we discussed earlier in this section,

ROA has some considerable limitations, which limit its performance on adversarial defense.

Our GDPA does not suffer from those limitations of ROA, and is end-to-end differentiable

and more amenable for adversarial training.

(1 −𝑚𝑚)⨀𝑥𝑥
+ 𝑚𝑚⨀𝑝𝑝E

𝐺𝐺𝐿𝐿
Generator

𝑚𝑚

𝑥𝑥

(𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦)

𝐺𝐺𝑃𝑃
Affine

Transform

𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Affine
Transform

𝛼𝛼

⨀

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Figure 3.2 The GDPA generation pipeline. Given an image x, GDPA generates a patch
pattern and a patch location for weighted adversarial patch injection. α ∈ [0, 1] controls the
visibility of the patch attack. The pipeline is fully differentiable.

3.3 The GDPA Framework

GDPA is a framework that aims to conduct dynamic patch attack by generating adversarial

patch pattern and patch location altogether for each input image. It has a generic formula-

tion that can generate dynamic/static and visible/invisible patch attacks. As an overview,

Figure 3.2 illustrates the GDPA generation pipeline, while Figure 3.3 demonstrates how

GDPA can be utilized to train an adversarially robust model.

3.3.1 Problem Formulation

We start with the definition of dynamic patch attack. Let D = {X,Y} denote a training

dataset, where X is a set of images of size w × h, and Y are their corresponding labels. Let

T : X → Y denote a target model that we attempt to attack. Given an image x ∈ X and

a target model T , our dynamic patch attack aims to find a pattern of size w′ × h′ and a

position in image that once placed on image x it can mislead the target model.

3.3.2 Localized Pattern Generation

One crucial component of GDPA is the generator that generates patch pattern and patch

location for a given image. Since patch pattern and patch location are coupled to a given

image, we design a generator G with two heads that share the same latent features extracted

by an encoder. Specifically, our generator includes an encoder GE to extract the feature

representation of image x, followed by a location decoder GL and a pattern decoder GP to

generate location and pattern of the adversarial patch:

lx, ly = tanh (GL(GE(x))/β), (3.1)

pattern = 0.5× tanh(GP (GE(x))) + 0.5, (3.2)

where lx and ly are the location (2D coordinates) of a patch in image x with the origin at

the center of image, and pattern is the patch pattern of size w′ × h′. To keep the patch

location lx and ly within the boundary of image, we use a tanh function to constrain lx and

ly in the range of [−1, 1], where β is a hyperparameter that controls the slope of tanh. All

experiments in this paper use β = 3000, which we found to work well across a variety of

architectures and datasets. Similarly, we use another tanh to impose the pattern values in

the range of [0, 1]1.

Specially, we use a convolutional neural network as our encoder network GE, with an

architecture adapted from the work of image-to-image translation Zhu et al. (2017). On top

of GE, we use two fully-connected networks as our decoders GP and GL, respectively. Due

1As a preprocessing step, all images are normalized to have pixel values in the range of [0, 1].

to page limit, details of the network architectures are provided in the Appendix.

3.3.3 Weighted Adversarial Patch Injection

With the generated patch location and patch pattern, we then define a function to inject the

patch into image x. Standard adversarial attacks Madry et al. (2018) employ an additive

function to inject noise: x′ = x + p, where p is an imperceptible adversarial perturbation.

Recently, other forms of perturbations, such as multiplicative ones x′ = x ⊙ m Yang &

Ji (2020), have been explored to inject perturbations. In addition, LAVAN Karmon et al.

(2018) employs (1−m)⊙ x +m⊙ p with a binary mask m ∈ {0, 1}w′×h′
to generate patch

attack adversarial examples. Inspired by LAVAN, we extend this function by relaxing the

binary mask to a continuous mask m ∈ [0, 1]w
′×h′

for adversarial patch injection. Specifically,

we employ the following weighted adversarial patch injection

xadv = (1−m)⊙ x+m⊙ p, (3.3)

with m ∈ [0, 1]w
′×h′

which is a convex combination of original image x and patch pattern p with the weight

defined by m. We find this relaxed version is more flexible and easier to optimize than the

one LAVAN explored. Next, we discuss how to use the generated (lx, ly) and pattern to

inject an adversarial patch to image x.

3.3.4 Differentiable Affine Transformation

We employ an affine transformation in GDPA to inject adversarial patches into images. To

make the whole pipeline differentiable w.r.t. lx and ly, a bilinear interpolation is used to

estimate the pixel values that are not on the pixel grids after transformation. By doing this,

the whole pipeline is fully differentiable and the gradient can be back-propagated end-to-end

to update parameters of generator G. Specifically, we adopt the affine transformation and

image sampling method of Spatial Transformer Networks Jaderberg et al. (2015) to define a

differentiable translate operator, which can translate a source image to a target image by a

displacement of (lx, ly).

We first use an affine transform to compute the pixel index relationship between source

image and target image:

 xs
i

ysi

 =

 θ11 θ12 θ13

θ21 θ22 θ23

xt
i

yti

1

, (3.4)

where (xt
i, y

t
i) is the pixel index of target image, and (xs

i , y
s
i) is the corresponding pixel index

in source image. We set θ11 = 1, θ21 = 0, θ12 = 0, θ22 = 1, θ13 = w′/2 · lx and θ23 = h′/2 · ly

for translation purpose2. Thus, we have xs
i = xt

i + w′/2 · lx and ysi = yti + h′/2 · ly, where
2Note that we can also learn θ11, θ12, θ21, θ22 to rotate, dilate or shear an adversarial patch to further

improve GDPA’s performance. For simplicity and also because we can already achieve state-of-the-art attack
success rate (ASR) with translation, in this paper we only consider translation and will leave advanced affine
transform to future work.

lx, ly ∈ [−1, 1]. Since (xs
i , y

s
i) are continuous variables, we can use a bilinear interpolation to

sample the pixel values from source image:

vi=
w−1∑
j=0

h−1∑
k=0

ujk max(0,1−|xs
i−j|)max(0,1−|ysi−k|), (3.5)

where ujk is the pixel value at index (j, k) of the source image, and vi is the output value

of pixel i at index (xt
i, y

t
i) of the translated image. With the affine transform and bilinear

sampler described above, we have a differentiable translate operator, which we denote as

Translate() in the rest part of the paper.

Label

LossGDPA Patch
Injection

Classifier
T

Maximize

Minimize

Generator
G

Figure 3.3 The GDPA-AT pipeline. Given an image, GDPA generates an adversarial patch to
maximize the loss of classifier T , while classifier T learns from the patch attack to minimize
its loss.

3.3.5 Generative Dynamic Patch Attack

Figure 3.2 illustrates the GDPA generation pipeline, which includes the three components

we described above: patch pattern and location generator, differentiable affine transform,

and the weighted adversarial patch injection to produce an image-dependent dynamic patch

attack.

As shown in Figure 3.2, we introduce an initial mask mcenter of the same size of input

image, and the center part of the mask has value 1 and rest of 0. Then we use the affine

transform Translate() to translate mcenter by a displacement of (lx, ly):

m = α · Translate(mcenter, lx, ly), (3.6)

where α ∈ [0, 1] is a hyperparameter that controls the visibility of adversarial patches. When

α = 1, the patch would be completely visible and replace the original image pixel values;

otherwise, the visibility of the adversarial patch will be lower. In practice, we can use a small

value of α to generate human imperceptible adversarial patches.

Similarly, we can generate a translated patch pattern. As shown in Figure 3.2, once

pattern is generated, we zero pad it to create a pattern pcenter of the same size of input image

with pattern at the center. We then translate pcenter by (lx, ly) via the affine transform:

p = Translate(pcenter, lx, ly). (3.7)

Finally, we can generate a GDPA adversarial example for image x by

xadv = (1−m)⊙ x+m⊙ p. (3.8)

As we can see, all the components in Figure 3.2 are differentiable. Therefore, the whole

GPDA generation pipeline is fully differentiable and can be optimized efficiently with gradient-

based methods.

To train the generator for non-targeted patch attack, we can optimize G to maximize the

cross-entropy loss of target model T with class labels

argmin
G

−LCE(T, x
adv, y). (3.9)

We can also launch a targeted patch attack to fool the target model T to misclassify an

input x as target class ytarget by

argmin
G

LCE(T, x
adv, ytarget) (3.10)

Details of the GDPA training algorithm are summarized in Algorithm 1.

Algorithm 1: GDPA generator training

Input: training set D; target model T ; visibility α
Output: generator G
initialize generator G;
for number of training epochs do

for each (x, y) ∈ D do
lx, ly = GL((GE(x));
pattern = GP (GE(x));
m = α · Translate(mcenter, lx, ly);
p = Translate(pcenter, lx, ly);
xadv = (1−m)⊙ x+m⊙ p;
if targeted attack then

loss = LCE(T, x
adv, ytarget);

else
loss = −LCE(T, x

adv, y);
end
θG = θG − lr ∗ ∂loss/∂θG

end

end

3.3.6 Adversarial Training with GDPA

Adversarial training with the PGD attack exhibits limited effectiveness against high-profile

patch attacks Wu et al. (2019). In this section, we discuss how to utilize GDPA for adversarial

training to improve model robustness against high-profile patch attacks.

Figure 3.3 illustrates the GDPA adversarial training (GDPA-AT) pipeline to train a

robust model against patch attacks. Similar to Generative Adversarial Networks Goodfellow

et al. (2014a), GDPA-AT trains generator G and target classifier T iteratively to optimize

the following minimax objective:

min
T

max
G

E(x,y)∼D[LCE(T, x
adv, y)], (3.11)

where the inner maximization step optimizes generator G to maximize the classification loss

of T , while the outer minimization step optimizes target classifier T to minimize the classifi-

cation loss. Unlike the traditional adversarial training, in which the inner maximization step

usually optimizes an adversarial example xadv directly, our GDPA-AT optimizes a generator

G to generate patch attack with one forward propagation. As the iterative training proceeds,

the generator G searches for the weakest image region to attack classifier T at each iteration,

while T learns from the current patch attacks and becomes more resilient to these attacks

over time. Details of our GDPA-AT algorithm are described in Algorithm 2.

Algorithm 2: GDPA-AT

Input: training set D
Output: target classifier T ; generator G
initialize classifier T and generator G;
for number of training epochs do

for each (x, y) ∈ D do
xadv = GDPA(G, x) ;
loss = −LCE(T, x

adv, y) ;
θG = θG − lrG ∗ ∂loss/∂θG ;
xadv = GDPA(G, x) ;
loss = LCE(T, x

adv, y) ;
θT = θT − lrT ∗ ∂loss/∂θT

end

end

3.4 Experimental Results

We now validate GDPA on benchmark datasets for adversarial patch attack and adversarial

defense. Specifically, we evaluate the performance of GDPA on patch attack in Section 3.4.1

and GDPA-AT on improving model robustness in Section 3.4.2. To evaluate the inference

efficiency, we also compare the run-times of GPDA and state-of-the-art attack algorithms in

Section 3.4.8. All our experiments are performed with PyTorch on Nvidia RTX GPUs. Our

source code is provided as a part of supplementary materials.

Experimental Setup

We evaluate GDPA and GDPA-AT on three benchmark datasets: VGGFace Sharif et al.

(2016), Traffic Sign Evtimov et al. (2017) and ImageNet Deng et al. (2009). To evaluate

GDPA’s attack performance, we compare GDPA with LAVAN Karmon et al. (2018) and

ROA Wu et al. (2019), two state-of-the-art patch attack algorithms that generate patches

based on iterative optimizations. Following their experimental settings, we run LAVAN

and ROA for 50 optimization iterations with a learning rate of 4. For adversarial defense

experiments, we compare GDPA-AT with DOA Wu et al. (2019) and PGD-AT Madry et al.

(2018). The former is a state-of-the-art defense algorithm for patch attacks, while the latter

is a well-established defense algorithm for adversarial attacks. We evaluate the robustness of

the models under eyeglasses attack Sharif et al. (2016), sticker attack Evtimov et al. (2017)

and standard PGD attack Madry et al. (2018). Following the settings in DOA Wu et al.

(2019), we use 70 × 70 patches with stride 5 for VGGFace and 7 × 7 patches with stride

2 for Traffic Sign to generate ROA attacks. We set ϵ = 16 for PGD-AT since this yields

the best results of PGD-AT. We use attack success rate (ASR) Dong et al. (2020) as the

metric to evaluate the effectiveness of an attack, and use classification accuracy to evaluate

the robustness of a model when under adversarial attacks. Details of benchmark datasets,

high-profile patch attacks, network architectures and training procedures can be found in

the Appendix.

3.4.0.1 Experimental Details

We first describe the three benchmark datasets and target models used in our experiments.

These datasets are used to train our GDPA generator, robust models with adversarial train-

ing, and evaluate the performance of patch attacks.

3.4.0.2 VGGFace

Dataset

The VGGFace dataset Parkhi et al. (2015) is a benchmark for face recognition, containing

2,622 subjects and 2.6 million images in total. Same with DOA Wu et al. (2019), we choose

10 subjects and sample face images only containing those individuals. We process the data

to the size of 224 × 224 by standard crop-and-resize, and perform class-balanced split to

generate training, validation, and test datasets with ratio 7:2:1. As a result, we obtain 3178,

922 and 470 images for training, validation and test, respectively. The training set is used

to train the target model, the GDPA generator and robust models with adversarial training.

Likewise, the test set is used to evaluate the target model, the performance of patch attack

and adversarial defense.

Target Model

We use the VGGFace CNN model Parkhi et al. (2015) as the target classifier in our experi-

ments. We use standard transfer learning on our processed dataset, keeping the convolutional

layers in the VGGFace CNN model, but adjusting the number of output neurons of the last

fully connected layer to 10. In order to use the pre-trained weights from the convolutional

layers of VGGFace CNN model, we convert the images from RGB to BGR and subtract the

mean value [129.2, 104.8, 93.6]. We set the batch size to 64 and use the Adam Optimizer

with an initial learning rate of 10−4. We drop the learning rate by 0.1 every 10 epochs.

For hyperparameter tuning and model selection, we track the accuracy on validation set to

avoid overfitting. We train the model on training set for 30 epochs and obtain an accuracy

of 98.94% on test data.

3.4.0.3 Traffic Sign

Dataset

To have a fair comparison with DOA Wu et al. (2019), we pick the same 16 traffic signs from

the dataset LISA Mogelmose et al. (2012) with 3,509 training and 1,148 validation images.

Following the prior works Evtimov et al. (2017); Wu et al. (2019), we further sample 40

stop signs from the validation set as the test data to evaluate performance of the stop sign

classification. Similarly, all the data are processed by standard crop-and-resize to 32 × 32

pixels. Same with VGGFace, we use the training set to train the target model, the GDPA

generator and robust models with adversarial training. We use the test set to evaluate the

performance of the target model, patch attack and adversarial defense.

Target Model

We use the LISA-CNN Evtimov et al. (2017) as the target model, which contains three

convolutional layers and one fully-connected layer. We use the Adam Optimizer with initial

learning rate 0.1 and drop the learning rate by 0.1 every 10 epochs. We set the batch size

to 128. After 30 epochs, we achieve an accuracy of 98.69% on the validation set, and 100%

accuracy on the test data.

3.4.0.4 ImageNet

Dataset

ImageNet Deng et al. (2009) is a well-known large scale object recognition benchmark. To

develop the training and validation sets to train and evaluate the GDPA generator and robust

models with adversarial training, we follow Moosavi-Dezfooli et al. Moosavi-Dezfooli et al.

(2017) to select a subset of 10, 000 images from ImageNet training set (randomly choose ten

images for each class) as our training set, and use the whole ImageNet validation set (50, 000

images) as our validation set.

Target Model

Following Poursaeed at el. Poursaeed et al. (2018), we use a pre-trained VGG19 model Si-

monyan & Zisserman (2014) from PyTorch library as the target model. This model achieves

an accuracy of 72.4% on the validation set.

3.4.0.5 Patch Attacks

Eyeglasses Attack

This is an effective physically realizable patch attack developed by Sharif et al. Sharif et al.

(2016). It first initializes the eyeglass frames with 5 different colors, and chooses the color

with the highest cross-entropy loss as starting color. For each update step, it divides the

gradient value by its maximum and multiplies the results with the learning rate. Then it

only keeps the gradient value in the eyeglass frame area. Finally, it clips and rounds the

pixel values to keep them in the valid range. We evaluate the eyeglasses attack on the test

set of VGGFace.

Sticker Attack

Proposed by Evtimov et al. Evtimov et al. (2017), this is another physically realizable patch

attack. It initializes the stickers on the stop signs with random noise at fixed locations.

For each update step, it uses the Adam optimizer with the learning rate 0.1 (and default

parameters) to maximize the classification loss of the target model. Just as the other patch

attacks, adversarial perturbations are restricted to the mask area; in our experiments, we

use the same collection of small rectangles as in Evtimov et al. (2017). We evaluate the

sticker attack on the test set of Traffic Sign.

3.4.0.6 GDPA Network Architecture and Training Details

Network Architecture

For VGGFace and ImageNet, both having images of size 224 × 224, we adopt the encoder

network structure GE from the work of image-to-image translation Zhu et al. (2017). For the

Traffic Sign dataset, which has images of size 32 × 32, we adopt a CNN of 3 convolutional

layers with kernel size 4 and stride 2 as the encoder network GE. We then use a neural

network of one fully-connected layer with output size 3×w′×h′ as the pattern decoder GP ,

and a neural network of one fully-connected layer with output size 2 as the location decoder

GL.

GDPA Training Details

Following Algorithm 1 in the main text, we train the GDPA generator G by using the

Adam optimizer with an initial learning rate of 0.1 for VGGFace and ImageNet, and 0.01

for Traffic Sign. We drop the learning rate by 0.2 every 10 epochs and train the generator

for 30 epochs. We set the batch size to 32 and β to 3000, which we find works well across

various architectures and datasets in our experiments.

GDPA-AT Training Details

Following Algorithm 2 in the main text, we train the GDPA generator G and target model

T iteratively. We initialize the generator with a pre-trained GDPA generator and the target

model with a cross-entropy trained model. We set the w′ and h′ to 70 for VGGFace and

7 for Traffic Sign during the adversarial training. We use the Adam optimizer to train the

generator and the target model, with a learning rate of 0.0001 for both VGGFace and Traffic

Sign, and drop the learning rate by 0.2 every 50 epochs. We use batch size 32 and train for

1000 epochs for VGGFace and 5000 epochs for Traffic Sign.

3.4.1 Dynamic Patch Attack

We first evaluate the performance of GDPA on non-targeted and targeted patch attacks and

compare it with the state-of-the-arts: LAVAN Karmon et al. (2018) and ROA Wu et al.

(2019). We provide results of two versions of ROA: ROA-Exh and ROA-Grad, where the

former exhaustively searches for a patch location in images with a fixed stride, and the

latter uses the magnitude of gradient as the sensitivity of regions to identify top regions to

Percentage of Attacked Pixels

Dataset Algorithm Non-Targeted Attack Targeted Attack

1% 2% 5% 10% 1% 2% 5% 10%

Traffic Sign
LAVAN Karmon et al. (2018) 33.4 58.7 85.1 93.9 32.2 48.1 80.9 89.9
ROA-Grad Wu et al. (2019) 36.2 61.8 87.3 93.6 29.8 44.6 74.5 90.5
ROA-Exh Wu et al. (2019) 37.1 63.0 89.4 93.8 31.3 45.9 76.2 91.7
GDPA 39.6 64.1 91.3 94.3 33.9 50.4 77.5 92.8

VGGFace
LAVAN Karmon et al. (2018) 31.9 42.7 56.3 92.0 37.8 57.9 67.2 94.6
ROA-Grad Wu et al. (2019) 37.5 62.3 84.2 99.6 46.3 75.6 89.0 99.2
ROA-Exh Wu et al. (2019) 38.3 64.5 86.0 99.6 48.2 76.7 91.1 99.3
GDPA 46.3 76.4 88.4 99.5 50.5 83.4 95.5 99.8

ImageNet
LAVAN Karmon et al. (2018) 89.2 92.8 97.8 99.9 86.3 93.8 99.7 99.8
ROA-Grad Wu et al. (2019) 93.5 94.6 98.7 99.7 79.6 88.3 97.5 99.8
ROA-Exh Wu et al. (2019) 94.8 95.3 99.2 99.7 81.1 89.6 98.4 99.8
GDPA 96.3 96.9 99.7 99.8 89.3 94.4 99.6 99.9

Table 3.1 The ASRs of different patch attack algorithms on datasets Traffic Sign, VGGFace
and ImageNet. Both non-targeted attack and targeted attack are considered. The perfor-
mances are evaluated with patches of different sizes.

accelerate the location search. We evaluate the effectiveness of the attack algorithms when

perturbing different percentages of pixels. To interpret the results, we also visualize the

perturbed images generated by GDPA.

Non-targeted Patch Attack

Table 3.1 (left part) reports the ASRs of GDPA and the other competing algorithms for

non-targeted patch attacks. The ASRs of an attack algorithm are evaluated on a model

trained with cross-entropy (CE) loss when attacked with patches of different sizes (1%, 2%,

5% or 10% of pixels). Specifically, We use square patches of width 3, 5, 7, 10 for Traffic Sign

and 23, 32, 50, 71 for VGGFace and ImageNet. As expected, the larger patch size is, the

higher ASR is achieved for all patch attack algorithms. In most of the cases, GDPA achieves

higher ASRs than the competing algorithms.

Figure 3.4 visualizes the perturbed images of different patch sizes generated by GDPA for

Figure 3.4 Non-targeted Attack: Perturbed images of VGGFace and ImageNet generated by
GDPA with different patch sizes. The last column of targeted attack are example images of
target classes.

Figure 3.5 Targeted Attack:Perturbed images of VGGFace and ImageNet generated by
GDPA with different patch sizes. The last column of targeted attack are example images of
target classes.

non-targeted attack on VGGFace and ImageNet. As we can see, the patches generated on

VGGFace (top row) demonstrates clear semantic meanings, resembling human eyes, nose or

mouth. Moreover, the positions chosen by GDPA on face images are in a close proximity of

the original face features. On the other hand, the patches generated on ImageNet (bottom

row) do not demonstrate a strong semantic meaning that is comprehensible by human.

These patch patterns look similar to the adversarial patches found by Brown et al. (2017).

We conjecture that this may be because ImageNet is a much more complex dataset than

VGGFace with 1,000 object categories; to attack an ImageNet model, more complex patterns

(e.g., superimposition of multiple object categories) might be required, and thus are harder

for human to comprehend. However, this hypothesis may be worthy of further investigation,

which we will leave to our future work.

Targeted Patch Attack

Table 3.1 (right part) reports the ASRs of different algorithms for targeted patch attack with

different patch sizes. For each of the three datasets, we choose the first class as the target

class, i.e., “AddedLine”, “Aamir Khan” and “tench, Tinca tinca”, respectively. Similar to

the results of untargeted attack, patches of larger sizes have higher ASRs than smaller ones.

GDPA achieves higher ASRs than other competing methods in most of cases.

Figure 3.5 visualizes the perturbed images of different patch sizes generated by GDPA for

targeted attack on VGGFace and ImageNet. It can be observed that the patches generated

for both datasets have clear semantic meanings. For example, the patches generated on a

VGGFace image look like eyes, mouth or beard of the target identity, while the patches

generated for an ImageNet image look like a fish, which is the similar to the target label

“tench”.

AS
R(

%
)

𝜶𝜶

Figure 3.6 The impact of α to the ASR of GDPA on VGGFace.

Visibility α vs. ASR

We further investigate the impact of visibility parameter α of Eq. 3.6 to GDPA’s ASR.

The results on VGGFace are shown in Figure 3.6, where we consider different patch sizes.

As expected, when α increases, the attack strength of GDPA gets stronger for all different

patch sizes. Notably, when the patch size is 5% or 10% of pixels, GDPA can reach almost the

highest ASRs when α ≥ 0.6, indicating that when patches are sufficiently large, the attack

can be more invisible to attack a model successfully. Example perturbed images generated

by GDPA with different α are provided.

3.4.2 Dynamic Patch Adversarial Training

Next we validate the robustness of models trained by GDPA-AT against various adversarial

attacks. Specifically, we report the results of GDPA-AT trained models against patch at-

tacks and conventional adversarial attacks, and compare them with state-of-the-art defense

methods.

GDPA-AT against Patch Attacks

Table 3.2 reports the accuracies of robust models trained by different defense algorithms

against two types of patch attacks: 1) eyeglasses attack on VGGFace, and 2) sticker attack

on Traffic Sign. As can be seen, PGD-AT, a well-established defense method for conventional

adversarial attacks, is not robust to either eyeglasses attack or traffic sign attack, which is

consistent with the results reported in Wu et al. (2019). While both DOA and GDPA-AT

improve the robustness over PGD-AT significantly, GDPA-AT achieves substantially higher

accuracies than the two variants of DOA.

Figure 3.7 and Figure 3.8 shows example results when using eyeglasses attack to evade

a standard CE-trained model (3.7) and the GDPA-AT trained model (3.8). As we can see,

the eyeglasses attack fails to attack the GDPA-AT trained model because it is not able to

generate effective adversarial patterns on the eyeglass frames in 5 out of 6 cases, while being

very successful on standard CE-trained model.

Attack Iterations

0 100 200 300

CE Training 98.9 0.2 0.1 0.0
PGD-AT Madry et al. (2018) 97.3 37.7 36.9 36.6

DOA-Grad Wu et al. (2019) 99.2 85.3 83.7 81.9
DOA-Exh Wu et al. (2019) 99.0 89.8 87.8 85.9
GDPA-AT 99.6 96.5 94.7 94.9

0 10 100 1000

CE Training 98.7 42.9 32.5 24.3
PGD-AT Madry et al. (2018) 97.5 57.6 45.1 42.5

DOA-Grad Wu et al. (2019) 95.6 85.2 84.8 82.8
DOA-Exh Wu et al. (2019) 92.9 92.2 91.8 90.8
GDPA-AT 98.5 96.2 95.8 94.6

Table 3.2 The accuracies of different robust models under eyeglasses attack, and sticker
attack.

GDPA-AT against Adversarial Attack

Alternatively, we also evaluate the robustness of models under conventional adversarial at-

tacks, such as the PGD attack Madry et al. (2018). The results are reported in Table 3.3,

where different PGD attack strengths ϵ have been considered. It can be observed that

GDPA-AT achieves significantly higher robustness than DOA against the PGD attack. More

interestingly, the accuacies that GDPA-AT achieve are almost on par with PGD-AT even

though GDPA is a patch attack algorithm. We believe this is because during the adversarial

training process, GPDA generates the adversarial patches to attack the classifier iteratively;

even though each patch attack is localized, the combination of all patch attacks generated

during the iterative process resembles a whole image attack that PGD usually produces. For

this reason, the model trained by GDPA-AT can defend conventional adversarial attacks.

These results demonstrate that GDPA-AT is a generic defense algorithm that can defend

Figure 3.7 Perturbed images generated by eyeglasses attack on standard CE-trained model

both patch attacks and conventional adversarial attacks, while PGD-AT and DOA fail on

one of them.

3.4.3 Ablation Study

3.4.3.1 Generate pattern vs p

Instead of generating pattern from the GDPA generator, we can generate p directly by

adjusting the output size of pattern decoder GP to 3 × w × h. Directly generating p can

simplify the pipeline of GDPA as we do not need to translate pattern to generate p in two

Figure 3.8 Perturbed images generated by eyeglasses attack on GDPA-AT trained model.

steps. Thus, it’s worth investigating which design choice works better. Table 3.4 shows

the results comparing these two design choices. As we can see, generating pattern achieves

significantly higher ASRs than generating p directly. We conjecture that this is because p

has a larger space to optimize than pattern, and thus is more difficult to optimize. Hence,

in our GDPA pipeline we generate pattern first and then translate pattern to generate p.

3.4.3.2 Visibility α vs. ASR

In Section 4.1, we investigate the impact of visibility parameter α of Eq. 6 on GDPA’s ASR.

Figure 3.9 visualizes some example perturbed images generated by GDPA with different α’s

Attack Strength (ϵ)

0 2 4 8 16

CE training 98.9 44.4 1.7 0 0
PGD-AT Madry et al. (2018) 97.3 96.9 96.6 96.1 95.8

DOA-Grad Wu et al. (2019) 97.5 33.4 0.4 0 0
DOA-Exh Wu et al. (2019) 98.5 35.7 0.4 0 0
GDPA-AT 98.9 95.1 94.9 94.6 94.5

0 2 4 8 16

CE training 98.7 89.5 61.6 24.6 5.1
PGD-AT Madry et al. (2018) 97.5 95.8 94.6 92.9 91.0

DOA-Grad Wu et al. (2019) 95.6 91.2 79.5 46.9 6.7
DOA-Exh Wu et al. (2019) 92.9 89.5 77.1 42.8 5.8
GDPA-AT 98.5 94.7 93.5 92.2 90.3

Table 3.3 The accuracies of different robust models on VGGFace, and Traffic Sign when
under the PGD attack.

Generate pattern Generate p

Traffic Sign 87.9% 69.7%
VGGFace 46.3% 24.9%
ImageNet 96.3% 63.8%

Table 3.4 ASRs of GDPA when generating pattern vs. p.

and patch sizes. As we can see, by using different α’s, we can control the visibility of GDPA

attack.

3.4.3.3 Effect of β

The β in Eq. 1 controls the slope of tanh that constrains lx and ly in the range of [−1, 1]. It

is critical to find an appropriate value of β to train the GDPA generator. Intuitively, a too

large or too small β value can cause different training difficulties. If β’s value is too small,

the tanh activation function saturates quickly and pushes lx and ly to the saturated value

of -1 or 1, which corresponds to corners of an image. On the other hand, if β is too large,

𝜶 = 𝟎. 𝟒

𝜶 = 𝟎.2

𝜶 = 𝟎. 𝟏

1% 2% 5% 10%

Figure 3.9 Perturbed images generated by GDPA with different α’s and patch sizes (1%, 2%,
5% or 10% pixels).

the tanh activation function has a slow transition from -1 to 1, which may not be able to

push lx and ly away from the origin [0, 0] of an image, and likely causes ineffective training

as well. Therefore, we treat β as a hyperparameter and tune it on the validation set. The

results with different values of β on VGGFace are shown in Table 3.5 and Figure 3.10. It

can be observed that we get the highest ASR with β = 3000. With small βs like 100 or 500,

the patch location saturates at the corners of images; With large βs such as 5000 or 7000,

the learned patch locations are close to the origin for most of the images. We find β = 3000

works well across a variety of architectures and datasets, and thus set it as the default value.

β 100 500 1000 3000 5000 7000

ASR 15.6 20.8 88.2 88.4 88.1 87.9

Table 3.5 ASRs of GDPA with different values of β. We use 5% of pixels as the patch size.

𝛽𝛽 = 100 𝛽𝛽 = 500 𝛽𝛽 = 1000

𝛽𝛽 = 7000𝛽𝛽 = 5000𝛽𝛽 = 3000

Figure 3.10 Perturbed images by GDPA with different values of β. The patch size is 5% of
pixels.

3.4.4 Generating Static Patch Attack with GDPA

Contrary to dynamic patch attack, static patch attack uses a fixed patch location for all

the images. To conduct static patch attack with GDPA, we set lx and ly to fix values

instead of generating them from GL. To compare the performance between dynamic and

static patch attacks, we conduct static patch attacks on VGGFace at 25 fixed locations

(lx, ly ∈ [−0.8,−0.4, 0, 0.4, 0.8]). We use patch size 32× 32 (2% of pixels) in the experiment.

10.5

3.8

5.6

9.8

3.3

3.6

1.6

10.5

17.4

2.9

25.9

1.3

50.2

70.5

9.8

23.9

1.3

33.9

73.9

4.5

20.3

2.2

21.2

46.9

5.1

0.8 0.4 0 −0.4 −0.8

0.8

0.4

0

−0.4

−0.8

𝒍𝒍𝒙𝒙

𝒍𝒍𝒚𝒚

Figure 3.11 ASRs of static patch attack on different locations. We use different colors to
denote ASRs in different ranges. Red: above 70%; Green: 10% - 70%; brown: below 10%.
Dynamic GDPA achieves 76.4% ASR in this experiment.

Figure 3.11 shows the ASRs of static patch attacks at the 25 locations. As we can see,

patch location is an important factor in the performance of static patch attack. Notably,

patch locations around the area of eyes have the best ASRs. The highest ASR we obtain

from static patch attack is 73.9%, while dynamic GDPA achieves 76.4%, demonstrating the

effectiveness of dynamic GDPA.

ϵ = 6 ϵ = 8 ϵ = 10

VGGFace PGD 81.5 90.7 97.8
GDPA-ADV 82.6 91.9 98.2

ImageNet PGD 58.3 65.2 71.3
GDPA-ADV 60.5 68.6 87.8

Table 3.6 ASRs of the adversarial attacks generated by PGD and GDPA-ADV.

3.4.5 Generating Adversarial Attack with GDPA

Thanks to its generic formulation, we can also generate conventional adversarial attacks with

GDPA by adjusting its pipeline slightly. To do this, we use a fixed mask of value 0.5 for all

image pixels, and update the generator to produce p of the same size of image directly. To

make sure the adversarial noise is within a small L∞-norm bound, we multiple p by ϵ/255

such that the adversarial noise is bounded by ϵ/255. Finally, we scale the perturbed image

by 2 and clip its pixel values to [0, 1] to create an adversarial example. We call this GDPA

version of adversarial examples as GDPA-ADV.

We then compare the attack performances of GDPA-ADV and PGD on VGGFace and

ImageNet. The results with different ϵ’s are provided in Table 3.6, where the PGD attack

is generated with learning rate 10 for 20 iterations. It can be observed that GDPA-ADV

achieves slightly higher ASRs than PGD in all the cases considered. Some adversarial exam-

ples generated by GDPA-ADV on VGGFace are visualized in Figure 3.12. These adversarial

examples look very similar to the conventional adversarial examples.

𝜖𝜖 = 6

𝜖𝜖 = 10

𝜖𝜖 = 8

Figure 3.12 Adversarial examples generated by GDPA-ADV with different ϵ’s. Left: orig-
inal images; Middle: adversarial noise scaled to [0, 1] for visualization; Right: adversarial
examples.

3.4.6 Cross Attacks and Defenses

In this section, we compare the defense performances of PGD-AT, DOA and GDPA-AT

when they are attacked by their corresponding attack algorithms. In this experiment, the

PGD attack uses ϵ = 8, and ROA and GDPA use 10% pixels as patch size. The results on

VGGFace are shown in Table 3.7. As we can see, PGD-AT achieves the highest robustness

under the PGD attack, but is not very robust under the ROA and GDPA attacks. On the

other hand, DOA achieves decent robustness under the ROA and GDPA attacks, but fails

completely under the PGD attack. Notably, GDPA-AT is the only defense algorithm that

achieves almost the highest robustness under all three attacks. It’s expected that GPDA-

AT would be robust under the ROA and GDPA attacks since both are patch attacks. An

explanation of the robustness of GDPA-AT under the PGD attack is provided in Section 4.2.

AT
Attack PGD ROA GDPA

PGD-AT 96.1 32.8 30.5
DOA 0 88.1 86.9
GDPA-AT 94.6 90.4 88.2

Table 3.7 Accuracies of adversarially trained models under PGD, ROA and GDPA attacks.

3.4.7 Additional Results on Targeted Attack

Figure 3.13 provides additional perturbed images generated by targeted GDPA attack on

VGGFace. The top row shows the target subjects, while the bottom two rows show the

perturbed images with different patch sizes. As we can see, the patches generated by GDPA

attempt to replace the corresponding face features with the ones from the target subjects.

3.4.8 Inference Speed

Besides the improved attack and defense performance of GDPA, another advantage of GDPA

is its superior inference speed to generate attacks over the optimization-based methods, such

as PGD Madry et al. (2018) and ROAWu et al. (2019). To have a quantitative comparison in

terms of inference time, we evaluate the run-time of GDPA, PGD and ROA on the VGGFace

Target
Subject

2%
pixels

5%
pixels

Figure 3.13 Perturbed images generated by GDPA with targeted attack on VGGFace. Each
column corresponds to one targeted attack with a different target subject.

test dataset (470 images). GDPA needs one forward propagation to generate a patch attack,

while we follow the settings of ROA and PGD and run 50 iterative optimizations to generate

their attacks. As shown in Table 3.8, GDPA is about 40x faster than PGD and 47x faster

than ROA.

3.5 Conclusion

This paper introduces GDPA, a novel dynamic patch attack algorithm, that generates patch

pattern and patch location altogether for each input image. Due to its generic formulation,

Inference-time (s)

PGD Madry et al. (2018) 108.31
ROA-Grad Wu et al. (2019) 129.42
ROA-Ex Wu et al. (2019) 248.82
GDPA 2.76

Table 3.8 Inference-time comparison of different attack algorithms on the VGGFace test
dataset (470 images).

GDPA can generate dynamic/static and visible/invisible patch attacks. GDPA is end-to-

end differentiable, which entails an efficient optimization and easy integration for adversarial

training. We validated our method on multiple benchmarks with different model architec-

tures. GDPA demonstrates superior ASR over strong patch attack methods, and the adver-

sarially trained model with GDPA is more robust to both patch attacks and conventional

adversarial attacks. Moreover, GDPA is 40-50x faster than competing attack algorithms,

making it a highly effective attack and defense algorithm.

74

CHAPTER 4

Neural Image Compression and Explanation

4.1 Introduction

Deep neural networks (DNNs) have become the de-facto performing technique in the field

of computer vision He et al. (2016), natural language processing Devlin et al. (2018), and

speech recognition Battenberg et al. (2017). Given sufficient data and computation, they

require only limited domain knowledge to reach state-of-the-art performance. However, the

current DNNs are largely black-boxes with many layers of convolution, non-linearities, and

gates, optimized solely for competitive performance, and our understanding of the reasoning

of DNNs is rather limited. DNNs’ predictions may be backed up by a claimed high accuracy

on benchmarks. However, it is human’s nature not to trust them unless human experts are

able to verify, interpret, and understand the reasoning of the system. Therefore, the usage

of DNNs in real world decision-critical applications, such as surveillance cameras, drones,

autonomous driving, medicine and legal, still must overcome a trust barrier. To address this

problem, researchers have developed many different approaches to explain the reasonings

of DNNs Simonyan et al. (2013); Zeiler & Fergus (2014); Bach et al. (2015); Gan et al.

(2015); Ribeiro et al. (2016); Dabkowski & Gal (2017); Fong & Vedaldi (2017); Li et al.

(2016); Lundberg & Lee (2017); Shrikumar et al. (2017); Yang et al. (2018); Ish-Horowicz

et al. (2019). Intuitively, interpretable explanations should be concise and coherent such

that they are easier for human to comprehend. However, most existing approaches do not

take these requirements into account as manifested by the opaqueness and redundancies in

their explanations Simonyan et al. (2013); Bach et al. (2015); Dabkowski & Gal (2017); Fong

& Vedaldi (2017).

On the other hand, over 70% of internet traffic today is the streaming of digital media,

and this percentage keeps rising over years some string reflecting how you wish the entry

alphabetized (2019). It has been challenging for classic compression algorithms, such as

JPEG and PNG, to adapt to the growing demand. Recently, there is an increasing interest

of using machine learning (ML) based approaches to improve the compression of images and

videos Ballé et al. (2017); Prakash et al. (2017); Johnston et al. (2018); Nakanishi et al.

(2018). Rather than using manually engineered basis functions for compression, these ML-

based techniques learn semantic structures and basis functions directly from training images

and achieve impressive performance compared to the classic compression algorithms.

Usually, neural explanation and semantic image compression are addressed independently

by two different groups of researchers. In light of the similarity between sparse explanation

to image classification and sparse representation for image compression, in this paper we

propose a deep learning based framework that integrates neural explanation and semantic

image compression into an end-to-end training pipeline. With this framework, we can train

a sparse mask generator to generate a concise and coherent mask to explain the prediction

of CNN; subsequently, this sparse mask can be used to generate a mixed-resolution image

with a very high compression rate, superior to the existing semantic compression algorithms.

This Neural Image Compression and Explanation (NICE) framework is critical to many real

world decision-critical systems, such as surveillance cameras, drones and self-driving cars,

that heavily rely on the deep learning techniques today. For these applications, the outputs

of NICE: prediction, sparse mask / explanation, and the compressed mixed-resolution image

can be stored or transmitted efficiently for decision making, decision interpretation and

system diagnosis.

The main contributions of the paper are:

• We propose a deep learning based framework that unifies neural explanation and se-

mantic image compression into an end-to-end trainable pipeline, which produces pre-

diction, sparse explanation and compressed images at the same time;

• The proposed L0-regularized sparse mask generator is trained in a weakly supervised

manner without resorting to expensive dense pixel-wise annotations, and outperforms

many existing explanation algorithms that heavily rely on backpropagation;

• The proposed mixed-resolution image compression achieves a higher compression rate

compared to the existing semantic compression algorithms, while retaining a similar

classification accuracy with the original images.

• The proposed method is very efficient compared to the backpropagation-based alter-

natives, such as Saliency Map Simonyan et al. (2013) and CAM Zhou et al. (2016),

as our method only requires forward propagation of the generator network. Experi-

ments show that NICE is about 23x faster than Saliency Map, 16.5x faster than CAM

and 2.8x faster than RTIS Dabkowski & Gal (2017). This makes our method widely

deployable in real-time applications.

4.2 Related Work

Our work is related to two active research areas of deep learning: neural explanation and

semantic image compression. We therefore review them next.

4.2.1 Neural Explanation

In order to interpret DNN’s prediction and gain insights of their operations, a variety of

neural explanation methods have been proposed in recent years Simonyan et al. (2013);

Zeiler & Fergus (2014); Bach et al. (2015); Gan et al. (2015); Ribeiro et al. (2016); Zhou

et al. (2016); Dabkowski & Gal (2017); Fong & Vedaldi (2017); Li et al. (2016); Lundberg &

Lee (2017); Selvaraju et al. (2017); Shrikumar et al. (2017); Yang et al. (2018); Ish-Horowicz

et al. (2019); Chen et al. (2018a); Bang et al. (2019). These methods can be categorized

based on whether it is designed to explain the entire model behavior (global interpretability)

or a single prediction (local interpretability) Carvalho et al. (2019). The goal of global

interpretability is to identify predictor variables that best explain the overall performance

of a trained model. This class of methods are crucial to inform population level decision for

rule extraction or knowledge discovery Yang et al. (2018); Ish-Horowicz et al. (2019). Local

interpretability aims to produce interpretable explanations for each individual prediction

and the interpretability occurs locally. Local interpretability is by far the most explored

area of explainable AI Simonyan et al. (2013); Ribeiro et al. (2016); Zhou et al. (2016);

Lundberg & Lee (2017); Chen et al. (2018a); Bang et al. (2019). The primary idea is to

measure a change of the final prediction with respect to changes of input or getting feature

attribution for the final prediction. Different local explanation methods implement this

idea in different ways. For example, occlusion-based explanation methods remove or alter a

fraction of input data and evaluate its impact to the final prediction Dabkowski & Gal (2017);

Fong & Vedaldi (2017); Li et al. (2016); Zeiler & Fergus (2014). Gradient-based methods

compute the gradient of an output with respect to an input sample by using backpropagation

to locate salient features that are responsible to the prediction Bach et al. (2015); Gan et al.

(2015); Selvaraju et al. (2017); Shrikumar et al. (2017). Other local interpretability methods

explain data instances by approximating the decision boundary of a DNN with an inherently

interpretable model around the predictions. For example, LIME Ribeiro et al. (2016) and

SHAP Lundberg & Lee (2017) sample perturbed instances around a single data sample and

fit a linear model to perform local explanations. RTIS Dabkowski & Gal (2017) extracts

features from a DNN classifier and feeds extracted features and target label to an U-Net

like generator to generate saliency maps for local explanations. L2X Chen et al. (2018a)

learns a stochastic map based on mutual information that selects instance-wise informative

features. Built on top of L2X, VIBI Bang et al. (2019) selects instance-wise key features

that are maximally compressed about an input and informative about a decision based on

an information-bottleneck principle.

NICE falls in the category of local interpretability and aims to produce concise and co-

herent local explanations similar to Saliency Map Simonyan et al. (2013), RTIS Dabkowski

& Gal (2017) and VIBI Bang et al. (2019). But our method achieves briefness and com-

prehensiveness explicitly through an L0-norm regularization and a smoothness constraint,

optimized via stochastic binary optimization.

The sparse mask generator of NICE is also related to a large body of research on se-

mantic segmentation Long et al. (2015); He et al. (2017); Chen et al. (2018b); Papandreou

et al. (2015); Pinheiro & Collobert (2015); Bearman et al. (2016); Chen et al. (2019b). In

particular, our sparse mask generator is trained to maximize the final classification accuracy

of the mixed-resolution images without resorting to expensive dense pixel-wise annotations.

Therefore, it can be considered as a weakly supervised binary segmenation algorithm that

detects salient regions of an image. This is different to the existing semantic segmentation

algorithms that employ different levels of supervision, such as full pixel-wise annotation Long

et al. (2015); He et al. (2017), image-level labels Papandreou et al. (2015), bounding boxes Dai

et al. (2015), scribbles Lin et al. (2016), points Bearman et al. (2016), or adversarial loss Chen

et al. (2019b). Since the main goal of NICE is to provide a competitive or improved neural

explanation, in our experiments we mainly compare NICE with deep explanation methods

instead of segmentation algorithms.

4.2.2 Semantic Image Compression

Classic image compression algorithms, such as JPEG Wallace (1992) and PNG Sayood

(2002), have hard-coded procedures / components to compress images. For example, the

JPEG compression first employs a discrete cosine transform (DCT) over each 8 × 8 im-

age block, followed by quantization to represent the frequency coefficients as a sequence

of binaries. The DCT can be seen as a generic feature extractor with a fixed set of basis

functions that are irrespective of the distribution of the input images. Compared to stan-

dard image compression algorithms, the ML-based approaches Ballé et al. (2016); Toderici

et al. (2016, 2017); Theis et al. (2017); Ballé et al. (2017); Johnston et al. (2018); Li et al.

(2018b); Nakanishi et al. (2018) can automatically discover semantic structures and learn

basis functions from training images to achieve even higher compression rate. All of these

ML-based approaches follow a similar structure of autoencoder, where an encoder is used

to extract feature representation from images and a decoder is responsible to reconstruct

images from the quantized representations. The main differences among these ML-based

approaches are the architectures of encoder and decoder. While the majority of these al-

gorithms Ballé et al. (2016); Theis et al. (2017); Ballé et al. (2017); Johnston et al. (2018);

Li et al. (2018b); Nakanishi et al. (2018) employ CNNs as the encoder and decoder, some

others explore recurrent networks such as LSTM and GRU Toderici et al. (2016, 2017).

To the best of our knowledge, all of these methods are not sufficiently content-aware,

except the work Prakash et al. (2017) from Prakash et al. which is probably the most relevant

work to ours. While Prakash et al. adopt CAM Zhou et al. (2016) as the semantic region

detector, we develop a principled L0-regularized sparse mask generator to detect the semantic

regions and further compress images with mixed resolutions. We will compare NICE with

Prakash et al. (2017) when we present results of semantic image compression.

4.3 The NICE Framework

Given a training set D = {(xi, yi), i = 1, 2, · · · , N}, where xi denotes the i-th input image

and yi denotes the corresponding target, a neural network is a function h(x;θ) parameterized

by θ that fits to the training data D with the goal of achieving good generalization to

unseen test data. To optimize θ, typically the following empirical risk minimization (ERM)

is adopted:

R(θ) =
1

N

N∑
i=1

L (h (xi;θ) , yi) , (4.1)

where L(·) denotes the loss over training data D, such as the cross-entropy loss for classifica-

tion or the mean squared error (MSE) for regression. The goal of this paper is to develop an

approach that can explain the prediction of a neural network h(x; θ) in response to an input

image x; meanwhile, to reduce storage or network transmission cost of the image, we’d like

to compress the image x based on the above derived explanation such that the compressed

image x̃ has the minimal file size while retaining a similar classification accuracy as the

original image x.

To meet these interdependent goals, we develop a Neural Image Compression and Expla-

nation (NICE) framework that integrates explanation and compression into an end-to-end

trainable pipeline as illustrated in Fig. 4.1. In this framework, given an input image, a mask

generator under the L0-norm and smoothness constraints generates a sparse mask that indi-

cates salient regions of the image. The generated mask is then used to transform the original

input image to a mixed-resolution image that has a high resolution in the salient regions

and a low resolution in the background. To evaluate the quality of sparse mask generator

and the compressed image, at the end of the pipeline a discriminator network (e.g., CNN)

classifies the generated image for prediction. Finally, the prediction, sparse mask and com-

pressed image can be stored or transmitted efficiently for decision making, interpretation and

system diagnosis. The whole pipeline is fully differentiable and can be trained end-to-end

by backpropagation. We will introduce each of these components next.

Input
Image

Mask
Generator

Sparse
Mask

DiscriminatorMixed-resolution Image

JPEG / PNG
Compression

L0 + Smoothness
Constraints

Prediction

Mix
resolution

Figure 4.1 Overall architecture of NICE.

4.3.1 Sparse Neural Explanation

To correctly classify an image, a state-of-the-art CNN classifier does not need to analyze all

the pixels in an image. Partially, this is because not all the pixels in an image are equally

important for image recognition. For example, although the background pixels may provide

some useful clues to recognize an object, it is the pixels on the object that play a decisive role

for recognition. Based on this understanding, we’d like to learn a set of random variables (one

for each pixel of an image) such that the variables on object pixels receive high values while

the variables on background pixels receive low values. In other words, we want to learn

a binary segmentation model that can partition pixels into object pixels and background

pixels. To make our segmentation discriminative, we require the output of our model to be

sparse/concise such that only the most important or influential pixels receive high values,

and the remaining pixels receive low values. Furthermore, we expect the segmentation to

be smooth/coherent within a small continuous region since most of natural objects usually

have smooth appearances. We therefore request our neural explanation model to produce

explanations that are concise and coherent. We will materialize these two requirements

mathematically.

We model our neural explanation by attaching a binary random variable z ∈ {0, 1} to

each pixel of an image:

x̃i = xi ⊙ zi, zi ∈ {0, 1}P , (4.2)

where zi denotes a binary mask for image xi, and⊙ is an element-wise product. Furthermore,

we define zji the binary variable for pixel j of image xi. We assume both image xi and its

mask zi have the same spatial dimension of m × n or P pixels. After training, we wish zji

takes value 1 if pixel j is on object and 0 otherwise.

We regard zi as our explanation to the prediction of h(xi;θ) and learn zi by minimizing

the following L0-norm regularized loss function:

R(θ, z)=
1

N

N∑
i=1

(
L (h (xi ⊙ zi;θ) , yi)+λ||zi||0

)
(4.3)

=
1

N

N∑
i=1

(
L (h (xi ⊙ zi;θ) , yi)+λ

P∑
j=1

1[zji ̸=0]

)
,

where 1[c] is an indicator function that is 1 if the condition c is satisfied, and 0 otherwise.

Here, we insert (4.2) into (4.1) and add an L0-norm on the elements of zi, which explicitly

measures number of non-zeros in zi or the sparsity of zi. By doing so, we’d like the masked

image achieves the similar classification accuracy as the original image, while using as fewer

pixels as possible. In other words, the sparse mask zi can produce a concise explanation to

the prediction of the classifier (i.e., the first requirement). To optimize (4.3), however, we

note that both the first term and the second term of (4.3) are not differentiable w.r.t. z.

Therefore, further approximations need to be considered.

We can approximate this optimization problem via an inequality from stochastic vari-

ational optimization Bird et al. (2018a). Specifically, given any function F(z) and any

distribution q(z), the following inequality holds

min
z

F(z) ≤ Ez∼q(z)[F(z)], (4.4)

i.e., the minimum of a function is upper bounded by the expectation of the function. With

this result, we can derive an upper bound of (4.3) as follows.

Since zji ,∀j ∈ {1, · · · , P} is a binary random variable, we assume zji is subject to a

Bernoulli distribution with parameter πj
i ∈ [0, 1], i.e. zji ∼ Ber(z; πj

i). Thus, we can upper

bound minz R(θ, z) by the expectation

R̃(θ,π)=
1

N

N∑
i=1

(
Eq(zi|πi)

[
L (h (xi ⊙ zi;θ) , yi)

]
+ λ

P∑
j=1

πj
i

)
. (4.5)

Now the second term of (4.5) is differentiable w.r.t. the new model parameters π. However,

the first term is still problematic since the expectation over a large number of binary random

variables zi ∈ {0, 1}P is intractable, so is its gradient.

4.3.1.1 The Hard Concrete Gradient Estimator

Fortunately, this kind of binary latent variable models has been investigated extensively in

the literature. There exist a numerous of gradient estimators to this problem, including

REINFORCE Williams (1992), Gumble-Softmax Jang et al. (2017); Maddison et al. (2017),

REBAR Tucker et al. (2017), RELAX Grathwohl et al. (2018) and the hard concrete estima-

tor Louizos et al. (2018), among which the hard concrete estimator is the one that is easy to

implement and demonstrates superior performance in our experiments. We therefore resort

to this gradient estimator to optimize (4.5). Specifically, the hard concrete gradient esti-

mator employs a reparameterization trick to approximate the original optimization problem

of (4.5) by a close surrogate loss function

R̂(θ,logα)=
1

N

N∑
i=1

(
Eui∼U(0,1)

[
L(h(xi⊙g(f(logαi,ui));θ),yi)

]
+ λ

P∑
j=1

σ

(
logαj

i − β log
−γ

ζ

))

= LD(θ, logα) + λLC(logα), (4.6)

with

f(logαi,ui) = σ ((logui − log(1− ui)

+ logαi)/β) (ζ − γ) + γ, (4.7)

and

g(·) = min(1,max(0, ·)), (4.8)

where σ(t) = 1/(1 + exp(−t)) is the sigmoid function, LD measures how well the classifier

fits to training data D, LC measures the expected number of non-zeros in z, and β = 2/3,

γ = −0.1 and ζ = 1.1 are the typical parameters of the hard concrete distribution. Function

g(·) is a hard-sigmoid function that bounds the stretched concrete distribution between 0 and

1. For more details on the hard concrete gradient estimator, we refer the readers to Louizos

et al. (2018). With this reparameterization, the surrogate loss function (4.6) is differentiable

w.r.t. its parameters.

4.3.1.2 Smoothness Regularization

The L0-regularized objective function developed above enforces the sparsity/conciseness of

an explanation. To improve the coherence of an explanation, we introduce an additional

smoothness constraint on the mask:

LS(logα) =
1

N

N∑
i=1

Eq(zi| logαi)

[w,h∑
m,n=1

(∣∣zm,n
i − zm−1,n

i

∣∣
+
∣∣zm,n

i −zm,n−1
i

∣∣+∣∣zm,n
i −zm−1,n−1

i

∣∣+∣∣zm,n
i − zm−1,n+1

i

∣∣)]
≈ 1

N

N∑
i=1

w,h∑
m,n=1

(∣∣ym,n
i − ym−1,n

i

∣∣+∣∣ym,n
i − ym,n−1

i

∣∣
+
∣∣ym,n

i − ym−1,n−1
i

∣∣+∣∣ym,n
i − ym−1,n+1

i

∣∣) , (4.9)

where ym,n
i is the expectation of random variable zm,n

i under the hard concrete distribution

q(zi| logαi), which can be calculated as:

y = Eq(z| logα)[z] = σ

(
logα− β log

−γ

ζ

)
. (4.10)

Note that this smoothness constraint penalizes the discrepancy of z among its four neigh-

borhoods, and thus a coherence explanation is preferred (i.e., the second requirement). To

avoid notational clutter, in (4.9) some of the boundary conditions are not rigorously checked,

but we hope they will be apparent given the context. With this additional regularization,

our final objective is then a composition of three terms

L(θd, logα) = LD + λ1LC + λ2LS, (4.11)

where λ1 and λ2 are the regularization hyperparameters that balance the data loss LD, the

capacity loss LC and the smoothness loss LS. It is worthy noting that from now on we

denote the parameters of classifier (discriminator) θd to distinguish it from the parameters

of generator θg that will be introduced next.

After training, we get logα for each input image x. At testing time, we employ the

following estimator to generate a sparse mask:

ẑ = min(1,max(0, σ ((logα)/β) (ζ − γ) + γ)), (4.12)

which is the sample mean of z under the hard concrete distribution q(z| logα).

4.3.2 Semantic Image Compression

Upon receiving the sparse mask ẑ from above, we can use it to generate a mixed-resolution

image for semantic image compression, as shown in Fig. 4.1. Suppose that we have an input

image x and a sparse mask ẑ ∈ [0, 1]P , a mixed-resolution image can be generated by

x̃ = M(x, ẑ) = x⊙ ẑ + xb ⊙ (1− ẑ), (4.13)

where xb is a low resolution image that can be generated by subsampling original image x

with a block size of b × b, which can be efficiently implemented by average pooling with a

b × b filter and a stride of b. Here b is a tunable hyperparameter that trades off between

the image compression rate and the classification accuracy of the classifier. In other words,

the larger b is, the lower resolution images will be generated and thus a lower classification

accuracy, and vice-versa. As we can see, when b = 1 the mixed-resolution image x̃ is equal

to the original image x; when we use the image size as b, the mixed-resolution image x̃

becomes a masked image with a constant value as background. When b is a value between

these two extremes, we can generate mixed-resolution images of different levels of quality.

4.3.3 Sparse Mask Generator

The learning of sparse mask z discussed above is transductive, by which we can learn a mask

for each image in training set D. However, this approach cannot generate masks for new

images that are not in the training set D. A more desirable approach is inductive, which can

be implemented through a generator G(x;θg) such that it can produce a sparse mask given

any image x as input. We model this generator as a neural network parameterized by θg.

To integrate this generator into an end-to-end training pipeline, we model this generator

to output logα given an input image x; we can then sample a sparse mask z from the hard

concrete distribution q(z| logα), i.e., x
G(·;θg)−−−−→ logα

sample−−−−→ z. With this reparameterization,

the overall loss function (4.11) becomes L(θd,θg), which can be minimized by optimizing

the generator network θg and the discriminator network θd jointly with backpropagation.

In the experiments, we employ a CNN as our sparse mask generator as CNN is the de-facto

technique today for image related analysis.

4.4 Experiments

To evaluate the performance of NICE, we conduct extensive experiments on three image

classification benchmarks: MNIST LeCun et al. (1998), CIFAR10 Krizhevsky (2009) and

Caltech256 Griffin et al. (2007) 1. Since NICE is a neural explanation and semantic com-

pression algorithm, we compare NICE with the state-of-the-art algorithms in neural expla-

nation and semantic compression. For neural explanation, we compare NICE with Saliency

Map Simonyan et al. (2013), RTIS Dabkowski & Gal (2017) and CAM Zhou et al. (2016) via

visualization and the post-hoc classification. For semantic image compression, we compare

NICE with the CAM-based method proposed in Prakash et al. (2017), a state-of-the-art

semantic compression algorithm that is the most relevant to ours.

4.4.1 Implementation Details

4.4.1.1 Image Classification Benchmarks

MNIST LeCun et al. (1998) is a gray-level image dataset containing 60,000 training im-

ages and 10,000 test images of the size 28 × 28 for handwritten digits classification. CI-

FAR10 Krizhevsky (2009) contains 10 classes of RGB images of the size 32 × 32, in which

50,000 images are for training and 10,000 images are for test. Caltech256 Griffin et al.

(2007) is a high-resolution RGB image dataset containing 22,100 images from 256 classes of

man-made and natural objects, such as plants, animals and buildings, etc. Since MNIST

and CIFAR10 are low-resolution images, we use them mainly to demonstrate NICE’s perfor-

1http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

s[th!]

Table 4.1 Network architectures of the generators and discriminators used in the experi-
ments. Layer abbreviations used in the table: [C: Convolution; R: Relu; M: MaxPooling;
Up: UpSample].

Dataset Generator Discriminator
MNIST C(1,1,3,1,1) LeNet5-Caffe
CIFAR10 C(1,1,5,1,0) + M(2) + Up(2) VGG11 + FC(512, 10)
Caltech256 C(3,1,3,1,1) + R + M(2) ResNet18

C(1,1,3,1,1) + R + M(2) FC(512, 256)
C(1,1,3,1,1) + M(2) + Up(8)

mance on neural explanation. For the high-resolution images of Caltech256, we demonstrate

NICE’s performance on neural explanation and semantic image compression.

4.4.1.2 Network Architectures and Training Details

The network architectures of the sparse mask generators and CNN classifiers (discriminators)

used in the MNIST, CIFAR10 and Caltech256 experiments are provided in Table 4.1.

We pretrain three CNN classifiers (discriminators) on the three image classification bench-

marks: MNIST, CIFAR10 and Caltech256 and achieve the classification accuracies of 99%,

90.8% and 78.3%, respectively. These classifiers are the target CNNs we aim to explain. The

architectures of the generators are tuned by us through extensive architecture search. The

hyperparameters λ1 and λ2 in the overall loss (4.11) are tuned on validation set to balance

the classification accuracy and sparsity/smoothness of the masks.

In the MNIST experiments, different λ1s are used to generate sparse masks with different

percentages of non-zeros (sparse explanations). λ2 is set to 0 for all the MNIST experiments

as the algorithm can generate coherent explanations without the smoothness constraint. The

block size of the low resolution image xb is set to 28, which means a constant background

is used to generate the mixed-resolution images. We use the Adam optimizer Kingma & Ba

(2015) with a learning rate of 0.001 and a decay rate of 0.1 at every 5 epochs.

In the CIFAR10 experiments, the block size of the low resolution image xb is set to 32,

thus a constant background image is used to generate the mixed-resolution images. We set

λ1 = 3 and λ2 = 0.01 and train the pipeline by using the Adam optimizer with a learning

rate of 0.001 and a decay rate 0.1 at every 5 epochs.

In the Caltech256 experiments, we split the dataset into a training set of 16,980 images

and a test set of 5,120 images2, where 5,120 images in training set is first used as validation

set for architecture search and hyperparameter tuning and later the full 16,980 training

images are used to train the final pipeline. The images are resized to 256 × 256 as inputs.

We set b = 256 to generate the lowest resolution images xb, and set λ1 = 5 and λ2 = 0.01

and train the pipeline by using the SGD optimizer with a learning rate of 0.001 and a cosine

decay function.

On different datasets, we experiment with different optimizers. The best performing one

is selected based on its performance on validation set. It turns out that SGD works better

on Caltech256, while Adam works better on MNIST and CIFAR10.

4.4.2 Explaining CNN’s Predictions

We first demonstrate NICE on explaining the predictions of the target CNNs we pretrained

above. To do so, we incorporate the target CNN as discriminator into the pipeline (Fig. 4.1),

and freeze its parameters θd and only update the parameters of generator θg by optimizing

220 images per class are included in the test set.

Original
Image

NICE
(λ1 = 1)

NICE
(λ1 = 10)

Saliency Map RTIS
NICE

(λ1 = 30)

Figure 4.2 The sparse masks generated by NICE, Saliency Map Simonyan et al. (2013) and
RTIS Dabkowski & Gal (2017) on the MNIST dataset. The dark red color represents high
values (close to 1), indicating strong influence to the final decisions. By adjusting λ1 of
NICE, we can control the sparsity of the explanations.

the overall loss (4.11). The sparse mask z generated by the generator serves as the explana-

tion to CNN’s prediction since the mask indicates the salient region that has strong influence

to the final prediction.

4.4.2.1 MNIST

We train the NICE pipeline on the MINST dataset to explain the prediction of the target

LeNet5 classifier we pretrained above. Fig. 4.2 illustrates example sparse explanations gen-

erated by NICE with different λ1s (when λ2 = 0). As we can see, when λ1 increases, the

amount of non-zeros in the mask z decreases and NICE can produce sparser explanations to

the final predictions. When λ1 = 1, the explanations are almost identical to the input im-

ages, and when λ1 = 30, the masks identify sparser but more influential regions for the final

predictions. As a comparison, we also include the explanation results produced by Saliency

Map Simonyan et al. (2013) and RTIS Dabkowski & Gal (2017) 3. While NICE highlights

coherent regions over digits as explanations, Saliency Map, a backpropagation-based ap-

proach, identifies discontinued regions as explanations, which are quite blurry and difficult

to understand. RTIS can yield coherent regions as explanations but the regions identified are

overly smooth. Apparently, the explanations produced by NICE are more concise, coherent

and match well with how humans explain their own predictions.

4.4.2.2 CIFAR10

NICE

RTIS

Original
Image

Saliency
Map

Figure 4.3 Comparison of explanations generated by Saliency Map Simonyan et al. (2013),
RTIS Dabkowski & Gal (2017) and NICE on some CIFAR10 images. The RTIS results are
from the RTIS paper. Compared to Saliency Map and RTIS, the explanations generated by
NICE are more concise and the boundaries of salient regions are much sharper.

We also train the NICE pipeline on the CIFAR10 dataset to explain the target VGG11

classifier we pretrained above. Fig. 4.3 compares the explanations produced by Saliency

Map Simonyan et al. (2013), RTIS Dabkowski & Gal (2017) and NICE on some CIFAR10

3CAM Zhou et al. (2016) does not perform well on small images, and we observe no published work
provides CAM’s results on MNIST and CIFAR10. We therefore ignore its results here as well.

images. The RTIS results are directly cited from the RTIS paper, and we apply Saliency

Map and NICE on the same set of CIFAR10 images selected by the RTIS paper. Due to the

low resolution of the images, it’s very challenging to generate reliable explanations. As we

can see, the explanations generated by NICE are more concise and the boundaries of salient

regions are much sharper than those of Saliency Map and RTIS. The superior performance of

NICE is most likely due to the L0-norm regularization that explicitly promotes the sparsity

of an explanation.

4.4.2.3 Caltech256

(a) (b) (e)(d)(c)

Figure 4.4 The sparse masks generated by NICE on Caltech256 images. The predictions
are correct to (a,b,c,d) and incorrect to (e). Even though the prediction is incorrect, the
sparse mask (e) provides an intuitive explanation why the discriminator predicts an image
of “humming bird” as “bread maker”.

Similarly, we train the NICE pipeline on the Caltech256 dataset to explain the predic-

tions of the ResNet18 classifier we pretrained above. Fig. 4.4 demonstrates the sparse masks

produced by NICE for different images in Caltech256. As we can see, the generated ex-

planations are very concise and coherent, i.e., the sparse masks are mainly concentrated on

the object regions, which align very well with our reasoning on these images. Additionally,

the generated sparse masks also provide intuitive explanations when the classifier makes

mistakes. For example, as shown in Fig. 4.4(e), the classifier incorrectly predicts an image

of “humming bird” as “bread maker”. The corresponding sparse explanation highlights the

influential regions contributing the most to the classifier’s prediction. Clearly, the classifier

utilizes both the regions of the humming bird and the bird-feeder for the prediction, and the

combination of the two regions confuses the classifier and leads to the incorrect classification.

Such an explanation is very useful for system diagnosis: it uncovers the vulnerabilities and

flaws of the classifier, and can help to improve the performance of the system.

Fig. 4.5 illustrates the comparison of NICE with Saliency Map Simonyan et al. (2013),

RTIS Dabkowski & Gal (2017) and CAM Zhou et al. (2016) on the Caltech256 images.

As we can see, our algorithm highlights the whole body of object as the explanation while

Saliency Map typically identify edges or scattered pixels as the explanation. RTIS and CAM

can identify coherent salient regions of an image, however, those regions are overly smooth

and cover large background regions. Moreover, the saliency maps generated by RTIS usually

have some black grids in the highlighted parts, which are caused by the upsampling step in

the mask generator. Apparently, our explanations are more concise and coherent than those

of the competing methods, and can preserve semantic contents of the images with a high

accuracy. The superior performance of NICE on identifying semantic regions plays a critical

role in semantic image compression as we will demonstrate later.

Original Image NICE RTISSaliency Map CAM

Figure 4.5 The sparse masks generated by NICE, Saliency Map Simonyan et al. (2013),
RTIS Dabkowski & Gal (2017) and CAM Zhou et al. (2016) on the Caltech256 dataset.
NICE highlights the whole body of object as the explanation instead of edges or scattered
pixels as identified by Saliency Map, or overly-smooth regions as identified by RTIS and
CAM.

To evaluate NICE’s performance of identifying important pixels from an image, Fig. 4.6

demonstrates the evolution of classification accuracies on the Caltech256 test dataset when

different percentages of pixels are filled with random values sampled uniformly from [0, 255]

(a.k.a. post-hoc classification evaluation). We compare three different strategies of selecting

pixels for random value imputation: (1) Top-K% pixels sorted descending by logαj,∀j ∈

{1, 2, · · · , P}, (2) Bottom-K% pixels sorted descending by logαj, and (3) uniformly random

K% pixels. Similarly, the same post-hoc classification evaluation is performed with Saliency

Map, RTIS and CAM. As we can see from Fig. 4.6, NICE identifies important pixels from

images as randomizing their Top-K% values incurs a dramatic accuracy loss compared to

random pixel selection or Bottom-K% pixel selection. The results of Saliency Map, RTIS and

CAM show insignificant accuracy loss when randomizing their Top-K% pixels, demonstrating

the superior performance of NICE on identifying salient regions.

A
cc

u
ra

cy

Percentage of Pixels Removed

NICE

Saliency Map RTIS

A
cc

u
ra

cy

Percentage of Pixels Removed

A
cc

u
ra

cy

Percentage of Pixels Removed

A
cc

u
ra

cy

Percentage of Pixels Removed

CAM

Figure 4.6 The evolution of classification accuracies on the Caltech256 test dataset when
different percentages of pixels are filled with random values.

(a) (b) (e)(d)(c)

Figure 4.7 Sample ImageNet images and their sparse masks generated by the generator
trained on Caltech256. While the ground truth labels of (a, b, c) are included in Caltech256,
the ground truth labels of (d, e) are not in Caltech256. NICE is able to generate accurate
sparse masks for images in (a, b, c). But when the classes are not in Caltach256 the masks
are not very accurate as shown in (d, e).

4.4.2.4 Transferability of Sparse Mask Generator

The experiments above demonstrate the superiority of the sparse mask generator in gen-

erating concise and coherent explanations to target classifier’s predictions. This has been

verified in the case when the generator is applied to the test images from the same dataset.

Since our generator is inductive, it would be interesting to test if a generator trained from

one dataset could be applied to images from other datasets, which have similar statistics but

yet have some mismatch, i.e., the transferability of generator.

To measure the transferability of generator, we apply the generator trained on Caltech256

to the ImageNet images Deng et al. (2009). Although both Caltech256 and ImageNet contain

high-resolution RGB images, ImageNet contains 1000 classes which is 4 times of Caltech256’s

and the ImageNet images tend to be more complex than those in Caltech256. To feed the

ImageNet images to the generator trained on Caltech256, we resize the ImageNet images

to 256 × 256. Fig. 4.7 illustrates some sample ImageNet images and their sparse masks.

Images (a, b, c) are from the classes that included in Caltech256, while images (d, e) are

from the classes that are not in Caltech256. It shows that for the classes that overlap with

Caltech256, the generator can generate sparse masks that align well with the object in the

images, while for the images that are from non-overlapping classes the masks are not very

accurate, indicating the transferability of generator is class dependent.

4.4.3 Semantic Image compression

Finally, we evaluate the semantic image compression performance of NICE on the Caltech256

images. As a comparison, we also use the salient regions generated by Saliency Map, RTIS

and CAM for semantic image compression. In this task, two approaches can be used to

train the NICE pipeline: (1) Discriminator-fixed: given a pretrained discriminator, we

freeze its parameters θd in the pipeline and only update the parameters of generator θg by

optimizing the overall loss (4.11). In this case, the mask generator is trained to generate

sparse explanation to the original discriminator. (2) Discriminator-finetuned: similar

to discriminator-fixed except that the top few layers of the discriminator θd are finetuned.

In this case, the discriminator can adjust its parameters to improve its predictions on the

mixed-resolution images, and thus higher accuracy and compression rate are expected. Note

that due to their specific training methodologies, Saliency Map, RTIS and CAM do not

have the flexibility of finetuning their discriminators, limiting their applications to semantic

Input Image Block Size = 8 Block Size = 32Block Size = 16

NICE

Saliency
Map

RTIS

CAM

Figure 4.8 The mixed-resolution images generated by NICE, Saliency Map, RTIS and CAM
with different block size bs.

compression tasks.

As a start, we use the sparse masks generated by NICE, Saliency Map, RTIS and CAM

to produce a set of mixed-resolution images via (4.13) for visualization. Fig. 4.8 illustrates

some example mixed-resolution images generated with different algorithms and block size

(a) Block Size

Fi
le

 S
iz

e(
K

B
)

(b) Block Size

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
Figure 4.9 The evolution of (a) average file size of the PNG compressed image and (b)
classification accuracy as a function of block size b of NICE-fixed, NICE-finetuned, Saliency
Map, RTIS, CAM (paper Prakash et al. (2017)) and down sampling.

bs. As we can see, NICE generated mixed-resolution images are clearly better than those

from other algorithms. Thanks to the high accuracy of NICE on identifying salient regions,

even when the background regions are subsampled with a block size of 32, the discriminator

can still successfully classify these images. As a result, high compression rate and high

classification accuracy can be achieved simultaneously.

To quantitatively evaluate the trade-off between semantic compression rate and classifica-

tion accuracy, we train the NICE pipeline with Discriminator-fixed and Discriminator-

finetuned 4 with b = 16 to generate sparse masks for each Caltech256 test image. After

training, we generate mixed-resolution images with a different b in {1, 2, 4, 8, 16, 32, 64}. We

then use PNG Sayood (2002), a standard image compression algorithm, to store the gener-

4For discriminator-finetuned, we set the parameters of Conv-4, Conv-5 and the FC layers of ResNet18 to
be trainable and freeze all the other layers.

ated mixed-resolution images and report the file sizes 5. We also classify the mixed-resolution

images with the discriminators to report classification accuracies. As a comparison, the same

procedure is applied to Saliency Map, RTIS and CAM (paper Prakash et al. (2017)) for se-

mantic image compression. We also include a baseline that uses down sampling in our

compression pipeline to demonstrate the importance of salient region detection for semantic

compression. Specifically, we use down sampling to generate low resolution images regardless

of salient regions of the images. When testing the accuracy on the down sampled images,

we upsample them to original resolution by bilinear interpolation.

Fig. 4.9 shows the average file size of compressed images and the corresponding classifi-

cation accuracy as a function of block size b. As we can see, when the block size increases,

the file size of the compressed images decreases (higher compression rate) and the classifica-

tion accuracy also decreases (lower classification accuracy), and vis-versa. The classification

accuracies of NICE-finetuned are significantly higher than the other four baseline methods,

meanwhile it achieves the best compression rate. When the block-size is 8, NICE-finetuned

achieves a 1.6x compression rate (87KB vs. 54KB) with a small (3.35%) accuracy drop

(78.30% vs. 74.95%), demonstrating the superior performance of NICE on semantic image

compression.

Comparing NICE-finetuned with down sampling, the results show that down sampling

hurts classification accuracy significantly because it uniformly drops pixels regardless of

5The reason that we choose PNG Sayood (2002) instead of JPEG Wallace (1992) for compression is
because PNG is a lossless compression. Thus, the file size reduction of the mixed-resolution images can
be 100% attributed to NICE, and the possible artifacts introduced by JPEG, a lossy compression, can be
avoided.

Explanation
Algorithm Saliency Map Simonyan et al. (2013) CAM Zhou et al. (2016) RTIS Dabkowski & Gal (2017) NICE

Run Time (sec)
on 1000 Images

mean(std)
13.94(0.55) 9.87(0.48) 1.73(0.02) 0.59(0.01)

Table 4.2 Inference time comparison between NICE and the baseline algorithms. The results
are averaged over 100 runs.

their saliency. For example, when we down sample images with a factor of 8, it reduces the

average file size significantly (slightly better than NICE), but the corresponding classification

accuracy is only 30.83%, while NICE still achieves an accuracy of 74.95%. Therefore, the

mixed-resolution images produced by NICE can achieve a much better balance between

compression rates and final classification accuracies than down sampling.

Note that semantic image compression rate depends on the size of salient regions of an im-

age. Given the large objects in Caltech256, the 1.6x compression rate means NICE uses 60%

pixels to achieve a similar classification accuracy. To achieve even higher compression rates,

other image compression algorithms Rippel & Bourdev (2017); Nakanishi et al. (2018) can

be used to compress NICE generated images further since our algorithm is complementary

to these compression techniques.

4.4.4 Inference Time Comparison

Besides the improved explanation performance of NICE, another advantage of NICE is its

superior inference speed over the competing methods. As discussed above, to generate

the sparse mask to explain the decision of a target CNN, NICE only needs one forward

propagation of the generator network, while backpropagation-based algorithms, like Saliency

Map and CAM, requires heavy computation of backpropagation to generate the salient

regions. Similar to NICE, RTIS does not need backpropagation at inference time, but it

requires to compute the feature maps of intermediate layers of the target CNN as the input

of the generator, which is also time consuming. To have a quantitative speed comparison,

we calculate the inference times of different explanation algorithms on 1000 images from

Caltech256. We run each experiment 100 times on a NVIDIA Tesla V100 GPU and report

the average run-times in Table 4.2. As we can see, NICE is about 23x times faster than

Saliency Map and 16.5x faster than CAM, while being 2.8x faster than non-backpropagation

based RTIS.

4.5 Conclusion

We propose NICE, a unified end-to-end trainable framework, for neural explanation and

semantic image compression. Compared to many existing explanation algorithms that heav-

ily rely on backpropagation, the sparse masks generated by NICE are much more concise

and coherent and align well with human intuitions. With the sparse masks, the proposed

mixed-resolution image compression further achieves higher compression rates compared to

the existing semantic compression algorithms, while retaining similar classification accuracies

with the original images. We conduct a series of experiments on multiple image classifica-

tion benchmarks with multiple CNN architectures and demonstrate its improved explanation

quality and semantic image compression rate.

As for future work, we plan to extend the technique developed here to other domains, such

as text and bioinformatics for neural explanation and summarization, where interpretable

decisions are also critical for the deployment of DNNs.

107

CHAPTER 5

Sparse Deep Neural Networks on Imaging Genetics for Schizophrenia
Discrimination (Joint work with TReNDS Center)

5.1 Introduction

Schizophrenia (SZ), as one of the most disabling psychiatric disorders with a lifetime preva-

lence 0.5%, casts a serious socioeconomic burden worldwide J. McGrath (2008). More

than a century after Kraepelin’s dichotomy was formulated, precise treatment is still not

available for SZ T. Insel (2010); Insel (2014). Current diagnostic and treatment practice

are largely based on symptoms whose relationships to underlying biological processes await

delineation T. Insel (2010); Cuthbert & Insel (2013). This gap underlies many issues faced

by the psychiatric community, including vague boundaries between defined clinical entities,

and heterogeneity within individual clinical entities. As a result, symptom presentations

often do not neatly fit the categorical diagnostic system, and one diagnostic label covers

biologically diverse conditions. These issues challenge treatment planning, which turns out

to be largely empirical Insel & Cuthbert (2015); Chen et al. (2019a). It has now been widely

acknowledged that objective biological markers are needed to quantify abnormalities under-

lying phenotypic manifestation, which allows characterizing disorders based on a multitude

of dimensions and along a spectrum of functioning, so as to improve patient stratification

and inform treatment planning B. J. Casey (2013); Cuthbert (2014).

Hopes have been invested in machine learning approaches as a solution to this chal-

lenge, given the complexity of SZ that has been well established in previous studies. Pa-

tients with SZ present widespread structural and functional abnormalities across the brain,

including gray matter loss in the frontal, temporal and parietal cortices and subcortical

structures E. I. Ivleva (2013), reduced fractional anisotropy in 20 major white matter fasci-

culi S. Kelly (2018), as well as abnormal resting state functional connectivity in default mode,

executive control and attention networks A. G. Garrity (2007); Woodward et al. (2011). In

parallel, genome wide association studies (GWASs) of SZ lend support for a polygenic archi-

tecture, where the disease risk is attributable to many genetic variants with modest effect

sizes S. Ripke (2014). These findings have boosted the efforts to model SZ in a multivari-

ate framework, which is expected to not only delineate the relationships between individual

biomarkers and disease, but also to provide a generalizable mathematical model that can be

used to predict risk.

One straightforward approach is to feed voxelwise neurobiological features (e.g. gray

matter density) into support vector machine (SVM). With this strategy, Nieuwenhuis et al.

obtained a classification accuracy of 70% which was confirmed in independent data with a

sample size of a few hundred M. Nieuwenhuis (2012). It has also been explored whether more

sophisticated feature selection can be combined with classifiers to yield improved discrimi-

nation. For instance, resting state connectivity between networks extracted by independent

component analysis (ICA), followed by K nearest neighbors, yielded an accuracy of 96% in a

data set consisting of 28 controls and 28 patients, which were randomly partitioned to serve

as training and testing samples M. R. Arbabshirani (2013). In addition, fusion of multiple

modalities that may carry complementary information of the brain holds promise for further

improvement. In a work by Liang et al., combining gray and white matter features resulted

in an average classification accuracy of 76% in 48 controls and 54 patients with first episode

SZ, in a 10-fold cross validation set up S. G. Liang (2019). In contrast to neurobiological

features, genetic variables, such as single nucleotide polymorphisms (SNPs), in general suffer

modest effect sizes S. Ripke (2014) and could hardly be directly trained for classification. A

more commonly used feature for risk discrimination is polygenic risk score (PGRS), which

reflects the cumulative risk of multiple variants, and proves to be a generalizable and promis-

ing biomarker for disease discrimination and patient stratification J. Frank (2015); E. Vassos

(2017).

More recently, the advancement of deep learning methods has opened a new perspective

on elucidating biological underpinnings of SZ. Deep Neural Networks (DNNs) are known

to excel in handling high-dimensional data and automatically identifying high-level latent

features, which promotes them as promising tools for better understanding of complex traits

such as SZ. In one pioneer work, Plis et al. demonstrated the application of restricted

Boltzmann machine-based deep belief network to sMRI data. An classification accuracy

90% was obtained with a 10-fold cross validation in 181 controls and 198 patients with

SZ S. M. Plis (2014a). Deep discriminant autoencoder network has been proposed and

applied to functional connectivity features, and yielded a leave-site-out classification accuracy

of 81% in 377 controls and 357 patients of SZ L. L. Zeng (2018). A comparable leave-site-

out accuracy of 80% was observed in 542 controls and 558 patients with SZ, when a multi-

scale recurrent neural network was applied to time courses of fMRI data W. Z. Yan (2019).

However, these approaches do not provide importance weights of original biological features

regarding their contribution to classification, making interpretation less straightforward.

As commonly implemented, DNNs are black-boxes with hundreds of layers of convolution,

non-linearities, and gates, optimized solely for competitive performance. While the value of

DNN may be backed up with a claimed high accuracy on benchmarks, it would be desired to

be able to verify, interpret, and understand the reasoning of the system. This is particularly

essential for the psychiatric community, for the purpose of deconstructing complex disorders

and facilitating improved treatment. In this work we introduce a sparse DNN model which

allows identifying sparse and interpretable features for SZ discrimination. The sparsity

is achieved with an L0-norm regularization on the input layer of the network for feature

selection. Under the L0-norm sparsity constraint, the model is trained to select the most

important features while retaining the high SZ classification accuracy. We applied the sparse

DNN approach on a large multi-site gray matter volume (GMV) and SNP data set for SZ

discrimination. In brief, a total of 634 individuals (346 controls and 288 patients with SZ)

served as the training set, which was internally partitioned for hyperparameter tuning. The

resulting classification model was then evaluated for generalizability on three independent

data sets (n = 635, 255 and 160, respectively). We examined the classification power of

pure GMV features, as well as whether combining GMV with SNP features would benefit

classification. And the performance of the proposed approach was compared with that

yielded by ICA+linear SVM. Empirical experiments demonstrate that the selected voxel

regions from sparse DNNs are interpretable and echo many previous neuroscience studies.

5.2 Materials and Methods

5.2.1 Participants

A total of 1,684 individuals aggregated from multiple studies, including MCIC, COBRE,

FBIRN, NU, BSNIP, TOP and HUBIN, were employed for the current study. The institu-

tional review board at each site approved the study and all participants provided written

informed consents. Each data set was shared by the individual research group according

to their protocol. Diagnosis of SZ was confirmed using the Structured Clinical Interview

for Diagnosis for DSM-IV or DSM-IV-TR. Table 5.1 provides the primary demographic in-

formation of individual study. The training sample consisted of 288 cases and 346 controls

from MCIC, COBRE, FBIRN and NU. Meanwhile, three independent data sets, BSNIP (n

= 635), TOP (n = 255) and HUBIN (n = 160) were used for validation.

5.2.2 Structural MRI data

Whole-brain T1-weighted images were collected with 1.5T and 3T scanners of various models,

as summarized in Table 5.1. The images of the training set were preprocessed using a stan-

dard Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm) voxel

based morphometry pipeline Ashburner & Friston (2005); J. M. Segall (2009); C. N. Gupta

(2015); D. Lin (2017), a unified model where image registration, bias correction and tissue

classification are integrated. The resulting modulated images were resliced to 1.5mm×1.5mm×1.5mm

and smoothed by 6mm full width at half-maximum Gaussian kernel. A mask (average GMV

0.2) was applied to include 429,655 voxels. We further investigated correlations between

individual images and the average GMV image across all the subjects. Subjects with cor-

relations < 3 were considered as outliers and excluded from subsequent analyses J. Chen

(2017). Finally, voxelwise regression was conducted to eliminate the effects from age, sex,

and dummy-coded site covariates C. N. Gupta (2015). While all the scanning parameters

would yield 93 dummy variables in the training data, we chose to correct scanning effects by

‘site’ before association analysis to avoid eliminating too much information due to unknown

collinearity. The validation images were preprocessed separately, using the same pipeline.

5.2.3 SNP data

The SNP data were collected and processed as described in our previous work J. Chen

(2017). DNA samples drawn from blood or saliva were genotyped with different platforms.

No significant difference was observed in genotyping call rates between blood and saliva sam-

ples. A standard pre-imputation quality control (QC) J. Chen (2013) was performed using

PLINK S. Purcell (2007). In the imputation, SHAPEIT was used for pre-phasin Delaneau

et al. (2012), IMPUTE2 for imputation Marchini & Howie (2010), and the 1000 Genomes

data as the reference panel D. M. Altshuler (2012). Only markers with INFO score ¿ 0.3

were retained. Polygenic risk scores (PGRS) for SZ were then computed using PRSice, which

was a sum of genetic profiles weighted by the odds ratios reported in the PGC SZ GWAS,

reflecting the cumulative risk for SZ of a set of SNPs. Specifically, the genotype data were

pruned at r2 ¡ 0.1 J. Chen (2017). Then a full model PGRS was computed on 61,253 SNPs

retained after pruning.

5.2.4 Sparse DNN

Figure 5.1 shows the overall architecture of our method, which contains three stages. First,

the GMV voxels are partitioned into a set of groups (or brain regions) with a pre-defined

radius. Then a sparse DNN model is deployed for feature (brain region) selection, followed by

augmenting the selected sparse regions of GMV with the SNP data for classifier retraining.

In the sequel, we will introduce each of these steps in more details.

Figure 5.1 Overall architecture of our method.

Given a GMV dataset D = {(xi, yi), i = 1, 2, · · · , N}, where xi denotes the i-th subject’s

GMV image and yi denotes the corresponding label: case or control, we train a neural

network h (x; θ), parameterized by θ, to fit to the dataset D with the goal of achieving good

generalization to unseen test data. For a GMV image x ∈ RM×1, we use xj to represent the

j-th voxel of image x, where j = 1, 2, · · · ,M and M = 429,655 in our study.

As the number of voxelsM is much larger than the number of functional regions of human

brain (e.g., typically around 100 as defined by various brain atlases), we first partition the

brain voxels into a set of small regions, each of which is represented by a ball of a pre-defined

radius R. We enumerate all M voxels one by one: if a voxel hasn’t been assigned to any

region, we assign that voxel as a root to start a new region. After selecting a root voxel, we

compute the Euclidean distance between the root voxel and all the unassigned voxels. All

the unassigned voxels with distance smaller than R are then assigned into this region. We

then iterate this process over the remaining voxels to form next region until all the voxels are

assigned to one of the regions. We denote the k-th region Gk. After this preprocessing step,

we identify K regions, from which we aim to identify important regions for SZ discrimination.

Stage 1 of our algorithm is to prune insignificant regions from K pre-defined regions. We

formulate our region selection algorithm by considering a regularized empirical risk mini-

mization procedure with an L0-norm regularization. Specifically, we attach a binary random

variable zk ∈ {0, 1} to all the voxels in region Gk:

x̃ = x⊙Az, z ∈ {0, 1}K , (5.1)

where z ∈ RK×1 denotes a binary mask for brain image x ∈ RM×1, ⊙ is an element-wise

product, and A ∈ RM×K is an affiliation matrix we construct from the preprocessing step

above, with element Aj,k = 1 if voxel xj is in region Gk, and 0 otherwise. For all the voxels in

a region Gk, they share the same binary mask zk, and k ∈ {1, 2, · · · , K}. This means if zk is

0, all the voxels in region Gk will have a value of 0, otherwise the value of xj is retained. In

the sequel, we will discuss our method that can learn z from training set D, and we wish zk

takes value of 1 if Gk is an important region and 0 otherwise. In other words, z is a measure

of feature (region) importance that we wish to learn from data.

We regard z as the feature importance weight for the prediction of DNN model h(xi; θ)

and learn z by minimizing the following L0-norm regularized loss function:

R (θ, z)=
1

N

N∑
i=1

L (h (xi⊙Az;θ) , yi)+λ∥z∥0

=
1

N

N∑
i=1

L(h(xi⊙Az;θ),yi)+λ
K∑
k=1

1[zk ̸=0], (5.2)

where L(•) denotes the data loss over training data D, such as the cross-entropy loss for

classification, ∥z∥0 is the L0-norm that measures number of nonzero elements in z, λ is a

regularization hyperparameter that balances between data loss and feature sparsity, and 1[c]is

an indicator function that is 1 if the condition c is satisfied, and 0 otherwise. To optimize

Eq. 5.2, however, we note that both the first term and the second term of Eq. 5.2 are not

differentiable w.r.t. z. Therefore, further approximations need to be considered.

We can approximate this optimization problem via an inequality from stochastic vari-

ational optimization Bird et al. (2018b). Specifically, given any function F (z) and any

distribution q (z), the following inequality holds

min
z

F (z)≤Ez∼q(z) [F (z)] , (5.3)

i.e., the minimum of a function is upper bounded by the expectation of the function.

With this result, we can derive an upper bound of Eq. 5.2 as follows.

Since zk,∀k∈{1,· · ·,K} is a binary random variable, we assume zk is subject to a Bernoulli

distribution with parameter πk∈ [0, 1] , i.e. zk∼Ber(z;πk). Thus, we can upper bound

minz R(θ, z) by the expectation

R̃ (θ, π)=
1

N

N∑
i=1

Eq(z|π)[L(h(xi⊙Az;θ),yi)]+λ
K∑
k=1

πk. (5.4)

Now the second term of the Eq. 5.4 is differentiable w.r.t. the new model parameters π.

However, the first term is still problematic since the expectation over a large number of bi-

nary random variables z∈{0, 1}K is intractable, so is its gradient. To solve this problem, we

adopt the hard-concrete estimator Louizos et al. (2017). Specifically, the hard-concrete gra-

dient estimator employs a reparameterization trick to approximate the original optimization

problem of Eq. 5.4 by a close surrogate loss function

R̂ (θ, logα)=
1

N

N∑
i=1

Eu∼U(0,1) [L (h (xi⊙g (Af (logα ,u)) ;θ) , yi)] +λ
K∑
k=1

σ

(
logαk −βlog

−γ

ζ

)

=LD (θ, logα)+λLC (logα) ,

(5.5)

with

f (logαk , uk)=σ

(
loguk −log (1−uk) +logαk

β

)
(ζ−γ)+γ, (5.6)

and

g(·) =min(1,max(0, ·)) (5.7)

where σ(t) = 1/(1 + exp(−t)) is the sigmoid function, LD measures how well the classifier

fits to training data D, LC measures the expected number of non-zeros in z, and β=2
3

, γ= −0.1 and ζ= 1.1 are the typical parameters of the hard-concrete distribution. Function

g(·) is a hard-sigmoid function that bounds the stretched concrete distribution between 0

and 1. With this reparameterization, the surrogate loss function Eq. 5.5 is differentiable

w.r.t. its parameters.

After training, we learn logα from the dataset D. At test time, we employ the following

estimator to generate a sparse mask or feature importance weight:

ẑ = min

(
1,max

(
0, σ

(
logα

β

)
(ζ − γ) + γ

))
, (5.8)

which is the sample mean of z under the hard-concrete distribution q(z|logα).

After we train the sparse DNN with the L0-norm regularization, we get the trained neural

network parameters θ and sparse mask ẑ ∈ [0, 1]K over all K regions, with element ẑk a

continuous variable that represents the importance of region Gk. Because of the sparsity

inducing property of the L0-norm, many elements of learned ẑ are pushed to zero, which are

considered as unimportant regions and thus pruned from the model. The level of sparsity

can be modulated by hyperparameter λ: the larger λ is, the sparser regions is identified, and

vis-a-versa.

In Stage 2 of our algorithm, we can further improve the accuracy of the classifier by

finetuning the DNN with the selected L regions from Stage 1 but without the L0-norm regu-

larization. To examine whether incorporating genetic features can improve the classification

accuracy, we also concatenate the PGRS feature to the selected voxels as the input of the

DNN classifier to finetune the classifier.

In our study, the training data consists of 634 individuals (346 controls and 288 cases),

which were equally partitioned into three subsets (each containing 33% of the samples). A

nested 3-fold cross validation was then implemented to identify the discriminating genetic

and neurobiological features and construct a classification model for SZ. The region radius R

we used was 12mm and each brain image was partitioned into 1111 regions as we described

above. In Stage 1 group selection and Stage 2 retraining, we used a DNN classifier with

2 fully connected layers of 200 and 16 neurons, respectively, and the Rectified Linear Unit

(ReLU) activation function. We performed grid search to find the best hyperparameters

for our sparse DNN model. In Stage 1 group selection, we used the SGD optimizer with

learning rates of 0.005 and 1 for model parameter θand logα, respectively. In Stage 2

retraining classifier, we used the Adam optimizer with learning rate of 0.005 for θ and a

weight decay of 1e-5. After the sparse DNN was trained on the GMV features, the regions

with nonzero ẑs were considered as important regions for the SZ classification. The selected

regions across 3-fold cross validation were highlighted for model interpretation. In particular,

we tuned hyperparameter λ to compare the classification performances with different levels

of sparsity, i.e. with 5 or 20 regions as predictors. In Stage 2 retraining, the selected voxel

regions were fed into the classifier and may concatenate the PGRS feature to improve the

classification accuracy. The model established in the training data was further evaluated on

three external data sets: BSNIP, TOP and HUBIN.

5.2.5 ICA+linear SVM

To compare with sparse DNN, we also conducted classification using linear SVM with com-

ponents extracted by ICA as input. ICA decomposes data into a linear combination of

underlying components among which independence is maximized Bell & Sejnowski (1995);

Amari (1998). When applied to sMRI data, ICA essentially identifies voxels with covarying

gray matter patterns across samples, and cluster these voxels into one component L. Xu

(2008). It has been well established that ICA is a trustable model in the neuroimaging field,

yielding meaningful and generalizable brain networks which may not be captured by anatom-

ical atlas V. D. Calhoun (2001); C. F. Beckman (2005); C. N. Gupta (2015). In the current

work, following the training and testing of the sparse DNN, we applied ICA on the GMV data

of 67% of the training samples. The resulting components were then fed into linear SVM

to obtain a classification model. This model was then assessed on the remaining 33% of the

training samples for accuracy. While the number of ICA components was a hyperparameter

to be tuned, we repeated the above process with different component numbers. The opti-

mal model was then determined to be the one yielding the highest accuracy, which awaited

further validation in the three independent data sets. Echoing the sparse DNN experiments,

we also investigated whether having more GMV components as predictors would affect the

performance of classification. When genetic feature was further incorporated, PGRS was

treated as an additional predictor, which was sent into linear SVM along with the GMV

components. Note that genetic data were available only for TOP and HUBIN, such that

only these two data sets were examined for imaging genetic based classification.

5.3 Results

The performance was summarized in Table 5.2. When only GMV features were used for

classification, the ICA+SVM approach achieved the highest accuracy with 20 components

in the training samples. In parallel, the performance of DNN also started to saturate around

a sparsity level of 20 regions. It can be seen that for both ICA and DNN approaches, lower

error rates were achieved when 20 rather than only 5 brain regions/components served as

predictors. When less brain regions were used to train the model, the mean error rate across

three independent data sets was 35% for both ICA and DNN, though in specific data sets

discrepancies could be noted. When the classification model was allowed to incorporate more

brain regions/components, the mean error rate across three data sets decreased to 31.03%

for DNN models and 31.86% for ICA models. Specifically, the error rates were comparable

between ICA and DNN in HUBIN and BSNIP, while the error rate improved by 3.66% in

TOP when DNN was used. When PGRS was further incorporated for classification, the DNN

approach yielded consistent improvement in accuracy across all the data sets, either with 5

or 20 regions as predictors, where the decrease in error rate ranged from 1.41% to 3.94%. In

contrast, with ICA components were combined with PGRS for classification, the error rate

did not always decrease. The lowest error rate (27.75%) was observed in HUBIN, when the

DNN classification model used 20 brain regions plus the PGRS. The brain regions identified

by DNN are summarized in Tables 5.2 (5 regions) and 5.3(20 regions), and Figures 5.2 and 5.3

show the spatial maps of individual regions. Note that only the regions identified in all three

folds are listed. When 5 regions were to be selected as predictors, the three folds consistently

identified the same 5 regions, spanning inferior, middle and superior frontal gyrus, superior

temporal gyrus, as well as cerebellum. When 20 regions were to be selected, variations were

noted across folds, such that 13 brain regions were consistently identified. Compared to

those covered by 5 regions, cuneus, precuneus, medial frontal gyrus, and paracentral lobule

were also determined to be informative and included for classification. The importance

weights yielded by the interpretable DNN model were overall highly consistent with those

inferred from the original features, such that a positive/negative DNN weight indicated that

the region showed higher/lower values in controls compared to patients with SZ. The only

exception was region 27 which was identified in the 20-region model.

sMRI sMRI + PGRS

TOP (225) HUBIN (160) BSNIP (635) TOP (255) HUBIN (160)

DNN (5 regions)
EER1 35.69 33.08 34.49 32.94 28.13
EER2 34.90 36.25 33.60 33.33 33.13
EER3 34.90 36.25 36.80 32.55 32.50

EER mean 35.16 35.19 34.96 32.94 31.25
ICA + SVM (5 ICs)

EER1 36.85 31.88 37.17 30.20 35.00
EER2 37.25 34.38 37.32 30.59 35.63
EER3 34.90 32.50 36.85 29.80 35.63

EER mean 36.34 32.92 37.11 30.20 35.42

DNN (20 regions)
EER1 30.59 28.13 31.16 30.65 26.27
EER2 30.98 32.50 32.91 27.75 27.25
EER3 33.33 28.75 31.02 32.26 28.24

EER mean 31.63 27.79 31.69 30.22 27.75
ICA + SVM (20 ICs)

EER1 33.33 27.50 30.87 32.94 29.38
EER2 39.22 31.25 31.02 35.29 33.75
EER3 33.33 28.75 31.50 3.98 30.00

EER mean 35.29 29.17 31.13 33.07 31.04

Table 5.1 Summary of classification error rates.

Region Area Brodmann Area Volume (cc) MNI (x,y,z)

DL87 Uvula * 0.7/0.0 (-18, -81, -33)/(0, 0, 0)
DL382 Inferior Frontal Gyrus 47 1.9/0.0 (-54, 30, 0)/(0, 0, 0)
DL493 Superior Frontal Gyrus 10 0.0/1/2 (0, 0, 0)/(27, 60, 9)

Middle Frontal Gyrus 10 0.0/0.9 (0, 0, 0)/(34.5, 57, 9)
DL555 Superior Temporal Gyrus 13, 22, 41 1.0/0.0 (-45, -30, 15)/(0, 0, 0,)
DL775 Inferior Frontal Gyrus 9 0.0/1.0 (0, 0, 0)/(57, 12, 36)

Table 5.2 Summary of the 5 important brain regions identified by DNN.

5.4 Discussion

An interpretable sparse DNN approach was proposed for application to medical data analysis

and its capability was examined on a large and heterogeneous SZ data set. The results con-

firmed that the proposed approach yielded reasonable classification accuracies, could identify

meaningful brain regions, and the interpretation of these brain regions was consistent with

that directly inferred from original features. Particularly, the proposed model appeared to

Region Area Brodmann Area Volume (cc) MNI (x,y,z)

DL2 Inferior Semi-Lunar Lobule * 0.1/0.0 (-7.5, -60, -54)/(0, 0, 0)
DL27 Cerebellar Tonsil * 1.4/0.0 (-15, -55.5, -43.5)/(0, 0, 0)
DL45 Cerebellar Tonsil * 0.7/0.0 (-12, -55.5, -40.5)/(0, 0, 0)
DL172 Superior Temporal Gyrus 38 0.0/1.0 (0, 0, 0)/(48, 22.5, -19.5)
DL260 Middle Frontal Gyrus 11 0.9/0.0 (-37.5, 40.5, -10.5)/(0, 0, 0)
DL509 Inferior Frontal Gyrus 13, 47 1.3/0.0 (-42, 25.5, 10.5)/(0, 0, 0)
DL599 Cuneus 18, 19 0.0/1.0 (0, 0, 0)/(18, -88.5, 19.5)
DL691 Middle Frontal Gyrus 10, 46 1.2/0.0 (-34.5, 46.5, 27)/(0, 0, 0)
DL805 Middle Frontal Gyrus 9 2.0/0.0 (-45, 28.5, 39)/(0, 0, 0)
DL846 Precuneus 7, 19 0.0/1.0 (0, 0, 0)/(30, -66, 42)
DL1008 Medial Frontal Gyrus 6 0.0/1.3 (0, 0, 0)/(7.5, -4.5, 63)
DL1017 Paracentral Lobule 4, 5, 6 0.2/1.7 (-1.5, -40.5, 61.5)/(4.5, -37.5, 64.5)
DL1039 Middle Frontal Gyrus 6 1.3/0.0 (-21, 9, 67.5)/(0, 0, 0)

Table 5.3 Summary of the 13 important brain regions identified by DNN.

more effectively fuse imaging and genetic features for classification compared to ICA+SVM,

holding potential for data fusion.

The DNN models reliably generalized to data collected at different sites, with reason-

able classification accuracies compared to ICA+SVM. The generalizability indicates that

the classification models are not vulnerable to scanning protocol, recruiting criteria, ethnic-

ity influence, medication history, etc. Regarding performance, both DNN and ICA+SVM

approaches presented higher accuracies when more brain regions/components served as pre-

dictors, with error rates being 31.03% and 31.86%, respectively. The ICA+SVM performance

was comparable to those reported by Cai et al., where the authors conducted a comprehen-

sive study on generalizability of machine learning for SZ classification using ICA-extracted

resting-state fMRI features, and achieved an external accuracy of 70% with transfer learning

procedures X. L. Cai (2020). Notably, Cai et al. emphasized the importance of assessing

models across sites and studies, while results based on a single study need to be interpreted

cautiously. This might explain why our classification accuracy based on a large and multi-

study cohort is lower than some previous studies with smaller sample sizes or single-study

cohort S. M. Plis (2014b), indicating complex heterogeneity of patients with SZ. Increasing

sample size of the training data and incorporating other data modalities promise further

improvement.

The proposed approach highlights a sparsity constraint, which allows trade-off between

explained variance and interpretability of identified features. In general, a low level of sparsity

allows more features to be admitted into the classification model, which however results in

more variance across samples. As shown in the current work, when a higher level of sparsity

was enforced, the same 5 regions were identified across 3 folds. In contrast, with a lower

sparsity, 13 out of 20 regions were consistently identified, although the latter explained more

variance and yielded higher classification accuracies. It should be pointed out that, increasing

the predictors from 5 to 20 regions resulted in a decrease of 4% in error rate, which was

indeed not profound. In other words, although GMV abnormalities are widely present in

SZ, the identified five regions comprise primary and unique SZ-related disruptions in brain

structure. The samples missed in the classification, or missing variance, likely call for a larger

training data set to allow better capturing heterogeneity, as well as for information from other

data modalities, rather than simply adding more features from the sMRI modality.

SZ is a complex disorder, where genetic and environmental factors interact with each other

to affect brain structure and function which ultimately manifest into clinical symptoms.

With so many factors involved in the pathology of SZ, it is expected that multiple data

modalities need to be integrated to fully characterize the disorder. This also applies to

classification, which should capitalize on data fusion to extract complementary information

from different modalities. The proposed model holds promise for this purpose. In all the

tested scenarios, the DNN approach effectively fused GMV and PGRS features to yield

improved classification accuracies, indicating that the model reliably extracted SZ-related

variance in PGRS that was not captured by GMV. In contrast, no consistent improvement

was noted for ICA+SVM, where PGRS and brain components were directly fed into linear

SVM for classification training. The results appeared to lend support that nonlinear models

excel in delineating the relationships across different modalities in hidden layers and robustly

capturing complementary variance that is related to the trait of interest.

The brain regions identified by DNN are overall well documented in SZ studies. With

high sparsity, 5 brain regions were consistently identified across 3 folds, as listed in Table 5.2,

highlighting frontal gyrus, superior temporal gyrus, and cerebellum. All the five regions pre-

sented positive weights, indicating higher GMV in controls compared to patients, which was

consistent with the results of two-sample t-tests on original GMV features. SZ-related gray

matter reduction has been widely observed in temporal and frontal regions. A longitudinal

study by Thompson et al. revealed accelerated gray matter loss in early-onset SZ, with earli-

est deficits found in parietal regions and progressing anteriorly into temporal and prefrontal

regions over 5 years, the latter related to frontal executive impairments P. M. Thompson

(2001). The identified frontal and temporal brain regions have also been identified for SZ-

related reduction in a comprehensive study on gray matter volume in psychosis using the

BSNIP cohort E. I. Ivleva (2013). The role of cerebellum in SZ has been revised in recent

years, where accumulating evidence suggests that cerebellum is also involved in higher cogni-

tive functions and cerebellar abnormalities are noted in SZ Andreasen & Pierson (2008). Gray

matter loss around the identified cerebellar region has also been reported previously T. F.

D. Farrow (2005).

With low sparsity, 13 brain regions were consistently identified by DNN across 3 folds, as

listed in Table 5.3. In addition to frontal, temporal and cerebellar regions discussed above,

parietal regions including cuneus, precuneus and paracentral lobule were highlighted. As

implicated in Thompson et al, while temporal and prefrontal gray matter loss were charac-

teristic of adult SZ, parietal regions were noted for earliest gray matter loss which was faster

in younger patients with SZ P. M. Thompson (2001). The identified parietal regions also

echoed the BSNIP findings to show higher GMV in controls compared to patients E. I. Ivleva

(2013). Overall, it is reasonable that DNN prioritized to select temporal and frontal regions

for classification when high sparsity was enforced, which aligns with the notion that gray

matter loss in these regions characterizes adult SZ. In the meantime, when a lower sparsity

was enforced, parietal abnormalities were the first priority to be added as additional predic-

tors which offered complementary variance. Among the 13 regions, region 27 was the only

feature whose DNN weights did not coincide with the inference drawn from original GMV

features. It was noted that the voxels in region 27 showed modest case-control differences

compared to voxels in other identified brain regions. We suspect the selection of region 27

by DNN might be driven by some hidden properties rather than group differences, which

explains the inconsistency in interpretation between DNN and two-sample t-tests. One limi-

tation of our algorithm is that we assume the brain regions to be spherical, which we obtained

by measuring the Euclidean distance. This may not align with the optimal partition. And

we did not extensively investigate how the radius of brain regions would affect the perfor-

mance. In the future, we plan to test whether defining regions based on a brain atlas (such

as Yeo atlas B. T. T. Yeo (2011)) would benefit the model training. Besides, likely due to the

limited sample size, the DNN performance saturated at 2 hidden layers. It remains a ques-

tion how the performance would scale with increasing sample size. This awaits investigation

when more data become available. Furthermore, while the DNN approach holds promise for

data fusion, its capability of integrating multiple high-dimensional imaging modalities was

not examined in the current work, given that incorporating another modality would further

reduce the sample size. This will also be part of our future work. In summary, to the best

of our knowledge, this is the first study of DNN application to sMRI and genetic features

for SZ discrimination with generalizability assessed in a large and multi-study cohort. An

interpretable sparse DNN approach was first proposed to allow identifying, refining and in-

terpreting features used in classification. The results indicate that the new approach yielded

reasonable classification performances, highly interpretable classification features, as well as

potential for data fusion. Collectively, the current work validates the application of the pro-

posed approach to SZ classification, and promises extended utility on other data modalities

(e.g. functional and diffusion images) and traits (e.g. continuous scores).

Figure 5.2 Spatial maps of the five schizophrenia-discriminating regions identified by sparse
DNN.

Figure 5.3 Spatial maps of the 13 schizophrenia-discriminating regions identified by sparse
DNN.

130

CHAPTER 6

Proximal Policy Optimization with Parameter-wise Smooth Policy

6.1 Introduction

Combining the power of classic reinforcement learning algorithms and modern deep neural

network techniques, deep reinforcement learning (DRL) is capable of training agents for

complex tasks with inputs of high dimensional observations, such as pixels Mnih et al.

(2013). It has proven that DRL is successful across a wide range of problems, including

game playing Mnih et al. (2013); Silver et al. (2016, 2017); Vinyals et al. (2019), robot

control Tai et al. (2018, 2017); Zhelo et al. (2018); Hwangbo et al. (2019), natural language

processing Hudson & Manning (2018); Wang et al. (2018); Wu et al. (2018), autonomous

driving Talpaert et al. (2019); Milz et al. (2018); Li et al. (2020), and recommendation

systems Zheng et al. (2018); Chen et al. (2019c), etc.

In recent years, there has been a considerable advance in the development of DRL,

which is verified in multiple simulation environments Bellemare et al. (2013); Todorov et al.

(2012). However, a large gap still exists for DRL to succeed in the real world because

of several drawbacks of DRL algorithms. For example, deep neural networks often suffer

from overfitting due to the large parameter space fitted with a small number of sampled

observations and actions; training algorithms are often unstable with unpredictable behaviors

by the learning policy due to lack of robustness and smoothness.

Among DRL algorithms, policy gradient (PG) Mnih et al. (2016) is a popular and effective

model-free on-policy algorithm. However, the first-order optimizer used by PG tends to be

𝜋!

𝜋!"#

𝑎(𝐿𝑜𝑠𝑠)

𝑎′(𝐿𝑜𝑠𝑠′)

𝑎′′(𝐿𝑜𝑠𝑠$$)

PSP (Ours)

Non PSP

Observation s

Figure 6.1 Our proposed method learns a parameter-wise smooth policy, which can improve
the stability of and promote sample efficiency of the PPO algorithm. Specifically, the policy
trained with our proposed PSP-O or PSP-L method gives a more robust decision output
when the policy parameters are perturbed by random or adversarial noise. As we can see
from the figure, the policy decision a′ (loss value Loss′) from PSP-O (PSP-L) trained policy
under perturbation is close to the a (Loss) from the original policy, while a′′ (loss value
Loss′′) from Non-PSP trained policy under perturbation is far away from a (Loss). PSP has
two variants: PSP-O puts the regularization on policy decision space, and PSP-L regularizes
the loss space.

overfitting and makes terrible updates to the model during training. As a result, it is difficult

for PG to estimate the correct step size to update the policy and balance the trade-off between

learning stability and learning speed. To mitigate this issue, TRPO Schulman et al. (2015)

and PPO Schulman et al. (2017) placed a constraint on the distance between the new and old

policies. Specifically, PPO applies a surrogate objective to regularize large policy updates,

such that in each iteration, the new policy is limited to a close neighborhood around the old

policy.

Instead of imposing a constraint on the distance between old and new policies during op-

timization like PPO, can we regularize the policy smoothness (distance between the current

policy and its neighbors) to improve the optimization? Recently, researchers have worked

on improving the smoothness of deep neural networks to solve the above issues of RL al-

gorithms Raffin et al. (2022); Shen et al. (2020). However, existing works Raffin et al.

(2022); Shen et al. (2020) applying smoothness constraints to RL algorithms mainly focus

on observation-wise policy smoothness, which encourages the output of the policy to be

close when perturbing the observations. Notably, recent researches Foret et al. (2020); Chen

et al. (2021); Bahri et al. (2021) show that improving parameter-wise smoothness of neural

networks can improve the performance of deep learning models for CV Foret et al. (2020);

Chen et al. (2021) and NLP Bahri et al. (2021) tasks. Therefore, it is a significant limitation

that no current works apply the parameter-wise smooth policies to RL tasks.

To address the above issues, we propose parameter-wise smooth policy regularization in

this paper to constrain the distance between the current policy and its neighbors. With

this regularization during training, the distance between the new policy in the worst case

and the old policy is small in each iteration. For this reason, the proposed regularization

can improve the training stability of the PPO algorithm. Concretely, we make the following

contributions:

• We propose to improve the PPO algorithm by improving the policy smoothness (parameter-

wise robustness). This is the first time parameter-wise smooth policies are applied to

RL tasks.

• We introduce two variants of the parameter-wise smooth policy (PSP) algorithm: PSP-

O and PSP-L. PSP-O places constrain on the policy output, and PSP-L imposes reg-

ularization on the loss value. Both methods encourage the policy to not change much

when injecting small perturbations into the parameters.

• We apply the proposed algorithms to RL tasks with discrete (Atari games) and continu-

ous action space (OpenAI control). Extensive results show that the proposed algorithm

can significantly improve the cumulative reward result on these benchmarks.

• As additional benefits of the PSP algorithm, we also show that the PSP method im-

proves the exploration by increasing the entropy value of output distribution. At the

same time, PSP improves the parameter-wise robustness against random or adversarial

parameter corruption.

6.2 Background and Related Work

6.2.1 Reinforcement Learning Framework

Markov decision framework (MDP) is a classic framework to solve decision making problem.

MDP is based on two assumptions: 1, the environment is Markovian; and 2, the environment

is fully observable. Formally, MDP can be formulated as an agent interacting with an

environment in discrete time sequences in a quintuple (S,A,P, r, p0, γ), in which S ⊆ RS is a

set of all observable states, A ⊆ RA is a set of actions, P : S×A → S is the state transition

𝜋!!

𝜋!!"# 𝑃𝑆𝑃 𝐿𝑜𝑠𝑠

𝑃𝑃𝑂 𝑙𝑜𝑠𝑠

Total 𝐿𝑜𝑠𝑠𝑉$"𝐴

Maximization Stage Minimization Stage

Figure 6.2 The overall pipeline of the proposed PSP-O algorithm. There are two stages of the
algorithm: the maximization stage and the minimization stage. During the maximization
state, the algorithm searches for a ϵ to maximize the distance between the current and
adversarial policies. In the minimization stage, the algorithm minimizes the original PPO
loss and the PSP-O loss to update the policy parameters.

function, r : S × A → R is the reward function, p0 is the initial distribution and γ is a

discount factor to reduce the impact of future reward.

The goal of a RL algorithm under MDP framework is to train an agent that can pro-

duce the trajectories that maximize the cumulative reward, which can be expressed as the

summation of expected discounted rewards:

max
π

V (π) = Es0,a0,...

[∑
t≥0

γtr(st, at)

]
, (6.1)

where s0 ∼ p0, at ∼ π(st), st+1 ∼ P(st+1|st, at).

6.2.2 Proximal Policy Optimization (PPO)

The PPO algorithm Schulman et al. (2017) is a on-policy RL algorithm that is based on

PG Mnih et al. (2016) method. The PPO algorithm is designed based on TRPO algorithm

by replacing the trust region method with the surrogate objective regularization. We briefly

introduce the TRPO algorithm before describing the PPO algorithm. The objective function

of TRPO algorithm shows below:

θk+1 = argmax
θ

E
s∼ρ

πθk ,
a∼πθk

[
πθ(a|s)
πθk(a|s)

Aπθk (s, a)

]
,

subject to Es∼ρ
πθk

[
DKL(πθk(·|s)∥πθ(·|s)

]
≤ δ, (6.2)

where Aπ(s, a) is the advantage function and ρπ(s) is the state visitation distribution. They

are defined as:

Aπ(s, a) = Qπ(s, a)− V π(s),

ρπ(s) =
∑
i≥0

γiP(si = s), (6.3)

where Qπ(s, a) is the the state-action value function and V π(s) is the value function. They

can be expressed as:

V π(s) = Es0=s,a0,...

[∑
t≥0

γtr(st, at)

]
,

Qπ(s, a)=Es1,a1,...

[∑
t≥0

γtr(st, at)|s0=s, a0=a

]
. (6.4)

PPO simplifies TRPO using a truncated objective function to reduce the complexity and

allow it to use a first-order optimizer. The objective function to maximize in PPO is defined

as:

LPPO = LCLIP − λvLV F + λentLENT . (6.5)

The objective contains three parts: the surrogate loss LCLIP , value function loss LV F , and

the entropy loss LENT . The LV F and LENT is defined same with in the policy gradient

algorithm. The LCLIP is defined as:

LCLIP = E
s∼ρ

πθk ,
a∼πθk

[min(r(θ)Aπθk (s, a),

clip(r(θ), 1− ϵclip, 1 + ϵclip)A
πθk (s, a))], (6.6)

where clip() clips the value if it is out of the bounds provided. By applying this function, it

removes the incentive for moving outside of the interval. The LV F is defined as:

LV F = E
s∼ρ

πθt

(
Vϕ(s)− r(s, a)

)2
(6.7)

6.2.3 Related Works

Parameter-wise smooth neural network is closely related to the concept of sharpness and

weight space robustness of neural networks. The earliest research works on weight-space

robustness is back to 1990s Murray & Edwards (1992); Hochreiter & Schmidhuber (1994).

Adding random perturbations on the neural network parameter is proved to be an effective

method to improve the training Jim et al. (1996); Graves et al. (2013); Srivastava et al.

(2014). More recently, researchers observed that the sharpness has strong correlation with

the generalization error on a large set of models Jiang et al. (2019). Followed the observation

of paper Jiang et al. (2019), Sharpness-aware Minimization (SAM) Foret et al. (2020) is

proposed to search flat local minima to improve the generalization performance. SAM uses

the gradient at a worse-case parameter point in the vicinity to update the neural network

at each iteration. In addition, SAM is essentially similar to the parameter-wise adversarial

training that can improve the robustness of neural network to parameter corruption Sun

et al. (2021). The difference between the PSP regularization proposed in this paper and the

above methods are: 1, We apply parameter-wise smooth network on RL tasks for the first

time; 2, We not only improve the smoothness in loss space, but also in output space for RL

tasks.

Even though there is no research on parameter-wise smoothness in RL field before our

work, smooth exploration and observation-wise smoothness has applied to RL in several

research works. Paper Raffin et al. (2022) adapts state-dependent exploration (SDE) to

Deep RL algorithms to imporve the smoothness of exploration. SR2L is closely related to

this work; SR2L Shen et al. (2020) applies a smoothness-inducing regularization to encourage

the output of the policy (decision) to not change much when injecting small perturbation to

the input of the policy (observed state). Results show that , our SR2L effectively reduces the

size of the search space when learning the policy network and achieves state-of-the-art sample

efficiency. Compared to SR2L, our work applies parameter-wise smooth policy, instead of

observation-wise, to RL algorithms.

6.3 Method

In this section, we describe two variants of parameter-wise smooth policy (PSP) algorithms

that improve the parameter-wise smoothness of the policy network in PPO algorithm. The

first algorithm, PSP-O, improves the parameter-wise smoothness with respect to the pol-

icy outputs (decision). On the other hand, the second algorithm, PSP-L, improves the

parameter-wise smoothness with respect to the loss value space.

6.3.1 Motivation

While it is appealing to perform multiple optimization steps on the policy gradient using

the same trajectory, empirically, it often leads to destructively large policy updates. To

mitigate this issue, TRPO proposed the trust region method, while PPO proposed the

CLIP Loss method. Essentially, TRPO and PPO are searching for a new policy that is

not destructively updated, or in other words, smoothly updated. Instead of constraining

each iteration’s optimization, can we regularize the smoothness of the policy network to

enforce the smoothness of policy updates?

With this idea, we introduce a novel regularization with two variants, PSP-O and PSP-L,

to improve the parameter-wise policy smoothness. The framework of algorithm PSP-O is

shown in Figure 6.2. As seen in the figure, we aim to train a parameter-wise smooth policy

in two stages in PSP-O: the maximization and the minimization stages. In the maximization

stage, it searches for an adversarial parameter corruption to disturb the current policy as

strongly as possible. In the minimization stage, it aims to update the current policy to

minimize the disturbance of the adversarial parameter noise. We propose to use two criteria

to measure the distance (disturbance) between the original and the adversarial policies in

this Min-Max process: distance in the output (decision) space and distance in the loss value

space. We call the methods with these two criteria as PSP-O and PSP-L accordingly.

6.3.2 Parameter-Wise Smooth Policy Regularization

Parameter-Wise Smooth Policy (PSP) regularization encourages the policy πθ and adver-

sarial policy πθ+ϵ to be close to each other, where ϵ is the gradient-based corruption on the

parameter θ that maximize the distance D between the policy and the adversarial policy. We

apply a metric function D to measure the distance between the outputs of the original policy

and the corrupted policy. The parameter-wise policy smoothness can be computed by search-

ing for the adversarial parameter noise to maximize the distance: maxϵ∈Bd(0,ϵ) D(πθ, πθ+ϵ).

By minimizing this PSP regularization, we can improve the smoothness of the trained policy.

With this definition, our parameter-wise smooth policy regularization is defined as:

Rπ(θ) = max
ϵ∈Bd(0,ϵ)

D(πθ, πθ+ϵ). (6.8)

In practice, D(πθ, πθ+ϵ) can be measured with different approximation methods. We consider

two variants in this paper: the first one is Jeffrey’s divergence of the output of the policy

network, and the second one is the difference between the loss values of the two policies.

These two variants will be described in Section 6.3.3 (policy output space) and Section 6.3.4

(loss value space).

6.3.3 Parameter-wise Smooth Policy Regularization in Output Space

The first method we propose to approximate D(πθ, πθ+ϵ) is to measure the distance between

the outputs (decision) of the original policy and adversarial policy. We call this method PSP-

O (PSP-Output). Specifically, we compute Jeffrey’s Divergence of original and adversarial

Algorithm 3: PPO with PSP-O

Input: initial policy parameters θ0, initial value function parameters ϕ0, coefficient
for value loss λV F , coefficient for parameter-wise smooth policy
regularization λPSP

for k = 0, 1, 2, ... do
Initialize ϵ
Collect set of trajectories s ∼ ρπθt by running policy π(θk) in the environment.
Compute D(πθk , πθk) ≈ Es∼ρ

πθt DJ(πθk(s), πθk+ϵ(s))

for j = 0, 1, 2, ... do
Update ϵ by: ϵj+1 = Bd(ϵj +▽ϵ(D(πθk , πθk)))

Compute LPSRO with Equation 6.10
Compute advantage estimates, Ât based on the current value function Vϕk

Compute the PPO-Clip loss with Equation 6.6
Compute the value function loss with Equation 6.7
Compute the gradient:

g = ▽(θ,ϕ)(Lppo − λV FLval − λPSPLPSP)

Update policy network and value function:

(θk+1, ϕk+1) = (θ, ϕ) + ηg

policies as the distance measurement criterion. The approximation is shown below:

D(πθ, πθ+ϵ) ≈ DJ(πθ(s), πθ+ϵ(s)). (6.9)

During training, we compute the state transition distribution ρπ by the policy πθ, and take

expectation with respect to it. Thus PSP-O regularization can be expressed as:

LPSP−O(θ) = E
s∼ρ

πθt

max
ϵ∈Bd(0,ϵ)

DJ(πθ(s), πθ+ϵ(s)), (6.10)

in which the Jeffrey’s divergence is shown as:

DJ(P ||Q) =
1

2
DKL(P ||Q) +

1

2
DKL(Q||P). (6.11)

PSP-O regularization encourages the output (decision) of πθ(s) to not change much to the

output of πθ+ϵ(s) when adding a small perturbation on the policy parameters. In other

words, it encourages πθ(s) to be smooth on all possible updating to πθ+ϵ(s) within the

neighborhoods. For this reason, PSP-O can effectively avoid destructive large policy updates

which hurt the training.

With the proposed PSP-O regularization, we can train smooth policy by incorporating it

into the PPO algorithm. To apply the PSP-O regularization to the PPO algorithm, we keep

the CLIP loss and the value function loss of PPO and discard the entropy loss. Formally,

the loss function of PSP-O is shown as follows:

LPPO = LCLIP − λV FLV F + λPSPLPSP−O, (6.12)

in which λPSP is the ratio of PSP-O regularization. Notably, with the PSP-O regularization,

we discard the entropy loss in the PPO algorithm. Algorithm details can be found in the

Algorithm 3.

6.3.4 Parameter-wise Smooth Policy Regularization in Loss Space

The second method we propose to approximate D(πθ, πθ+ϵ) is to measure the difference

between loss values of the original policy and adversarial policy, which is called PSP-L

(PSP-Loss). Policy output (decision) smoothness is directly related to the exploration of

PPO algorithms, while loss value closely reflects the advantage value and is optimized during

the agent training process. For this reason, the loss value difference is a meaningful criterion

to measure the policy distance. With this alternative definition, the PSP-L regularization

can be represented as the below form:

Rπ
s (θ) ≈ E

s∼ρ
πθt

[max
ϵ∈Bd(0,ϵ)

(L(θ + ϵ, s)− L(θ, s))]. (6.13)

With the above form of PSP regularization, we can derive the new loss function as follows:

LPSP−L = E
s∼ρ

πθt

L(θ, s) + Rπ
s (θ)

= E
s∼ρ

πθt

L(θ, s) + [max
ϵ∈Bd(0,ϵ)

L(θ + ϵ, s)− L(θ, s)]

= max
ϵ∈Bd(0,ϵ)

L(θ + ϵ, s). (6.14)

We can see that this new loss function is essentially similar to the SAM algorithm Bahri

et al. (2021). The current policy can be updated by the gradient of the adversarial policy

parameters in the vicinity at each iteration.

To apply the PSP-L loss in the PPO algorithm, we can use the gradient of the CLIP loss

Algorithm 4: PPO with PSP-L

Input: initial policy parameters θ0, initial value function parameters ϕ0, coefficient
for value loss λV F

for k = 0, 1, 2, ... do
Collect set of trajectories Dk = τi by running policy πk = π(θk) in the
environment.
Compute rewards-to-go R̂t

Compute advantage estimates, Ât based on the current value function Vϕk

Compute the PPO-Clip loss with Equation 6.6
Compute the value function loss with Equation 6.7
Compute the gradient of the current weight:

gcur = ▽(θ,ϕ)(LCLIP − λV FLV F)

Compute the gradient of the adversarial weight:

gadv = ▽(θ,ϕ)(LCLIP − λV FLV F) |(θ,ϕ)+gcur

Update policy network and value function:

(θk+1, ϕk+1) = (θ, ϕ) + ηgadv

with respect to the adversarial parameters to update the current parameter in every iteration.

Training Agent with this novel loss function LPSP−L can increase the smoothness of the policy

network in the loss value space. Algorithm details can be found in the Algorithm 4.

6.4 Experiments

We now validate PSP-O and PSP-L on benchmark datasets. Specifically, we evaluate the

performance of PSP-O and PSP-L on Atari 2600 games Bellemare et al. (2013) in Sec-

tion 6.4.1 and OpenAI gym control environments Todorov et al. (2012) in Section 6.4.2. We

also evaluate the parameter-wise robustness in Section 6.4.3 and conduct ablation studies in

other sections to show the insights and advantages of the proposed algorithms. Benchmark

datasets, network structures, and training procedure details can be found in the Appendix.

Our source code is provided as a part of supplementary materials.

PPO PSP-O PSP-L

Alien 1307 4697 4314
Amidar 1280 1297 1188
Assault 10596 11622 12832
Asterix 13203 29185 21827
Asteroids 2393 2412 2278
Atlantis 2866108 3238262 3571303
BankHeist 1285 1243 1248
BattleZone 29475 30376 38245
BeamRider 6235 8325 8214
Bowling 56 42 68
Boxing 96 98 98
Breakout 425 417 465
Centipede 3895 6372 5655
ChopperCommand 1047 1007 1111
CrazyClimber 121540 123490 129824
DemonAttack 89663 114291 184582
DoubleDunk -2 -1 -1
Endura 1163 1167 1259
FishingDerby 35 48 28
Freeway 32 33 33
Frostbite 319 9228 3968
Gopher 12050 12939 17550
Gravitar 1156 2259 1184
IceHockey -3 -4 -3
Jamesbond 1225 8925 4401
Kangaroo 13607 1797 14383
Krull 8610 8828 9236
KungFuMaster 33078 38326 53388
MontezumaRevenge 44 2 2
MsPacman 4235 6407 5348
NameThisGame 8800 6235 6094
Pitfall 0 -11 0
Pong 20 20 20
PrivateEye 108 109 99
Qbert 21697 26960 26725
Riverraid 12340 13252 13435
RoadRunner 55412 52219 36946
Robotank 21 26 0
Seaquest 1868 1916 1836
SpaceInvaders 2511 2824 2730
StarGunner 62789 84777 77881
Tennis -2 -3 -1
TimePilot 11650 13190 12916
Tutankham 198 177 167
UpNDown 532388 684425 399486
Venture 7 12 2
VideoPinball 186256 168582 177764
WizardOfWor 9710 10137 9612
Zaxxon 13953 19028 15691

Winning Games Number 8 25 20

Table 6.1 Maximum cumulative reward score of Atari games. The last row reports the
number of games each algorithm achieves the highest score.

0 1e7 2e7 3e7
0

2000

4000

Alien

0 1e7 2e7 3e7
0

500

1000

Amidar

0 1e7 2e7 3e7
0

5000

10000

Assault

0 1e7 2e7 3e7
0

10000

20000

30000
Asterix

0 1e7 2e7 3e7

1000

1500

2000

Asteroids

0 1e7 2e7 3e7
0

1

2

3

1e6 Atlantis

0 1e7 2e7 3e7
0

500

1000

BankHeist

0 1e7 2e7 3e7

10000

20000

30000

40000
BattleZone

0 1e7 2e7 3e7
0

2500

5000

7500

BeamRider

0 1e7 2e7 3e7

20

40

60

Bowling

0 1e7 2e7 3e7
0

50

100
Boxing

0 1e7 2e7 3e7
0

200

400

Breakout

0 1e7 2e7 3e7

2000

4000

6000

Centipede

0 1e7 2e7 3e7

500

750

1000

ChopperCommand

0 1e7 2e7 3e7

50000

100000

CrazyClimber

0 1e7 2e7 3e7
0

100000

DemonAttack

0 1e7 2e7 3e7
20

10

DoubleDunk

0 1e7 2e7 3e7
0

500

1000

Enduro

0 1e7 2e7 3e7
100

50

0

50
FishingDerby

0 1e7 2e7 3e7
0

10

20

30

Freeway

0 1e7 2e7 3e7
0

5000

Frostbite

0 1e7 2e7 3e7
0

5000

10000

15000

Gopher

0 1e7 2e7 3e7
0

1000

2000

Gravitar

0 1e7 2e7 3e7

10

8

6

4
IceHockey

0 1e7 2e7 3e7
0

2500

5000

7500

Jamesbond

0 1e7 2e7 3e7
0

5000

10000

15000
Kangaroo

0 1e7 2e7 3e7

4000

6000

8000

Krull

0 1e7 2e7 3e7
0

20000

40000

KungFuMaster

0 1e7 2e7 3e7
0

20

40

MontezumaRevenge

0 1e7 2e7 3e7
0

2000

4000

6000
MsPacman

0 1e7 2e7 3e7

2000

4000

6000

8000

NameThisGame

0 1e7 2e7 3e7

1000

500

0
Pitfall

0 1e7 2e7 3e7
20

0

20
Pong

0 1e7 2e7 3e7

200

0

PrivateEye

0 1e7 2e7 3e7
0

10000

20000

Qbert

0 1e7 2e7 3e7

5000

10000

Riverraid

0 1e7 2e7 3e7
0

20000

40000

RoadRunner

0 1e7 2e7 3e7

10

20

30
Robotank

0 1e7 2e7 3e7

500

1000

1500

2000
Seaquest

0 1e7 2e7 3e7

1000

2000

SpaceInvaders

0 1e7 2e7 3e7
0

25000

50000

75000

StarGunner

0 1e7 2e7 3e7

20

10

0
Tennis

0 1e7 2e7 3e7

5000

10000

TimePilot

0 1e7 2e7 3e7
0

100

200
Tutankham

0 1e7 2e7 3e7
0

200000

400000

600000

UpNDown

0 1e7 2e7 3e7
0

5

10

Venture

0 1e7 2e7 3e7

50000

100000

150000

VideoPinball

0 1e7 2e7 3e7

5000

10000
WizardOfWor

0 1e7 2e7 3e7
0

10000

Zaxxon

PPO
PSP-L
PSP-O

Figure 6.3 Training curves of PPO, PSP-O and PSP-L on 49 Atari games.

6.4.1 Results on the Atari Games

We first evaluate the performance of PSP on Atari games, which have pixels as high dimen-

sional observations. We train policies on each game with three different seeds and report the

average cumulative rewards in this section.

In Figure 6.3, we show the cumulative rewards during the training process with PPO,

PSP-O, and PSP-L. We report the maximum testing cumulative reward of the three algo-

rithms during the training process in Table 6.1. It can be observed that PSP-O and PSP-L

can achieve higher cumulative rewards than PPO in most Atari games. In total, there are

only 8 out of 49 games in which PPO gets the best results, while PSP-O “won” in 25 games

and PSP-L “won” in 20 games.

6.4.2 Results in Continuous Domain: OpenAI Gym Control Tasks

We further evaluate the performance of PSP-O and PSP-L on tasks in the continuous domain.

We choose four tasks from the OpenAI gym control environments with the MuJoCo physics

simulator. Same as in Atari experiments, we train policies with three different seeds and

report the average cumulative rewards. A detailed description of these four environments

can be found in the Appendix.

Figure 6.4 shows the cumulative reward curves during the training process of PPO, PSP-

O, and PSP-L in environments Ant-v3, Waker2d-v3, Halfcheetah-v3, and Swimmer-v3. As

we can see, PSP-O and PSP-L learn better policies with significantly higher cumulative re-

wards. Specifically, PSP-O or PSP-L achieves better maximum reward than PPO on all four

tasks. Furthermore, PSP-O and PSP-L have faster training speed and need fewer number of

iterations to achieve the maximum reward thanks to the improved sample efficiency enabled

by high entropy output exploration.

0 2.5e6 5e6 7.5e6 1e7 1.25e7 1.5e7

Iterations

0

1000

2000

3000

4000

Re
wa

rd

Ant-v3

0 2.5e6 5e6 7.5e6 1e7 1.25e7 1.5e7

Iterations

1000

2000

3000

4000

5000

Re
wa

rd

Walker-v3

0 2.5e6 5e6 7.5e6 1e7 1.25e7 1.5e7

Iterations

0

2000

4000

6000

8000

Re
wa

rd

HalfCheetah-v3

0 2.5e6 5e6 7.5e6 1e7 1.25e7 1.5e7

Iterations

100

200

300

Re
wa

rd

Swimmer-v3

PPO PSP-O PSP-L

Figure 6.4 Training curves of PPO, PSP-O, and PSP-L. PSP-O and PSP-L learn better
policies than PPO with significant improvements in terms of accumulated rewards.

6.4.3 Parameter-wise Policy Robustness

Parameter-wise smoothness is closely related to the model robustness against parameter

corruption Foret et al. (2020); Sun et al. (2021). Although PSP is motivated by improving

the parameter-wise smoothness of policies, we demonstrate that PSP also improves the

robustness of the policy against both random and adversarial parameter corruption attacks.

To evaluate the parameter-wise robustness of policies, we apply two types of policy param-

eter corruption: random attack and adversarial attack. For random parameter corruption,

we add noise uniformly sampled from Bd(0, ϵ) = {δ : ∥δ∥∞ ≤ ϵ} to the parameters; for

adversarial parameter corruption, we apply projected gradient descent on the original policy

on every iteration during the evaluation, by solving δ̃ = argmaxδ∈Bd(0,ϵ)
D(πθ(s), πθ+ϵ(s)).

Figure 6.5 shows the evaluation result. As we can see, the reward decreases as we increase

the attack strength for both random and adversarial attacks on PPO, PSP-O, and PSP-L.

However, the cumulative rewards of policies trained by PSP-O and PSP-L decrease much

slower than policies trained by PPO against both attacks. This observation demonstrates

the improved parameter-wise robustness of PSP-O and PSP-L.

0 0.01 0.02 0.05 0.1 0.5 1
0

1000

2000

3000

4000

Re
wa

rd

Randomly Disturbed Policy

0 0.01 0.02 0.05 0.1 0.5 1
0

1000

2000

3000

4000

Re
wa

rd

Adversarially Disturbed Policy

PPO PSP-O PSP-L

Figure 6.5 Comparison of the cumulative rewards of PPO, PSP-O, and PSP-L under random
(left) and adversarial (right) parameter corruption attack in Walker2d environment. The
result shows that policies trained with PSP-O and PSP-L are more robust than policies
trained with PPO under both parameter corruption attacks.

6.4.4 Entropy of Policy Outputs

In this section, we show that policy trained with PSP has higher output entropy than policy

trained with PPO, even though no policy output entropy loss is applied in PSP. In other

words, PSP regularization can promote higher entropy by improving the parameter-wise

policy smoothness. With high output entropy, PSP can enhance the exploration by avoiding

situations where the agents fall into local optimum Haarnoja et al. (2018).

In Figure 6.6, we show the comparison of the entropy values of policy output distribu-

tion between PPO and PSP on two Atari games (Alien and Asterix) during the training

process. As we can see, PSP-O and PSP-L learn policies with large output entropy, which is

significantly higher than that of the policies trained with PPO with an explicit entropy loss.

0 0.5e7 1e7 1.5e7 2e7

Iterations

3.0

2.5

2.0

1.5

1.0

0.5

En
tro

py

Alien

0 0.5e7 1e7 1.5e7 2e7

Iterations

2.0

1.5

1.0

0.5

En
tro

py
Asterix

PPO PSP-L PSP-O

Figure 6.6 Entropy value of output distribution from the policies trained by PPO, PSP-O,
and PSP-L. We show the results of two Atari games (Alien and Asterix) along the training
process. It can be observed that PSP-O and PSP-L can train policies with higher entropy,
even though PSP-O and PSP-L do not use the entropy loss during training.

6.4.5 Parameter-wise Loss Landscape Visualization

Following the paper Li et al. (2018a), we visualize the loss landscape of the learned agents

of PPO and PSP-L algorithms. Policy networks have a large number of parameters, and

thus the loss function is in a high-dimensional space. For visualization, we attempt to use

2D plots as the landscape of policy network loss.

Similar to paper Li et al. (2018a), to plot 2D visualization of loss landscape around the

current policy, we use the parameters of current policy network θ∗ as the center point, and

randomly choose two directions: δ and η; we then plot a function of the form: f(α, β) =

L(θ∗ + αδ + βη), where L denotes the loss function.

In Figure 6.7, we plot the landscape of models trained with PPO and PSP-L on Atari

game Asteroids. As we can see, the model trained with PPO has a sharper local mini-

mum than the model trained with PSP-L. In other words, PSP-L can train parameter-wise

smoother policy networks than PPO.

Loss Landscape of PPO Model Loss Landscape of PSP-L Model

Figure 6.7 Visualizing the loss landscapes Li et al. (2018a) of different policy networks trained
by PPO (left) and PSP-L(right). Note the significant scale differences of the y-axis, indicating
PSP-L learns a policy that is parameter-wise smoother in the loss space.

6.5 Conclusion

This paper introduces parameter-wise smooth policy (PSP) regularization for PPO to pro-

mote the training stability and sample efficiency (thanks to improved exploration). Two

types of parameter-wise policy smoothness are introduced. PSP-O encourages small changes

in the output decision space when inserting bounded perturbations to the parameters of pol-

icy networks. On the other hand, PSP-L encourages small changes in the loss values when

perturbing the policy parameters. To investigate the effectiveness of PSP-O and PSP-L,

we examine them on well-established RL benchmarks with discrete and continuous action

spaces. Empirical results show that PSP significantly improve the cumulative rewards and

parameter-wise robustness.

153

CHAPTER 7

Future Works

7.1 Observation-wise and Parameter-wise Smooth (Robust) Policy

In PSP, we proposed to use the parameter-wise smooth policy to improve the PPO algo-

rithms. On the other hand, recent researches show that observation-wise smooth policy can

also improve the performance of RL algorithms. A promising direction for the following

work to PSP is to incorporate observation-wise smoothness into the PSP framework. In

other words, we can apply policy networks that are smooth to both observation and param-

eter perturbation to RL algorithms. Ideally, this can produce an agent model that is robust

to both observation and parameter perturbation.

7.2 Combining the Output Space and Loss Space Parameter-wise Smoothness
(Robustness)

In the PSP paper, we proposed two effective parameter-wise smoothness algorithms, PSP-O

and PSP-L. PSP-O encourages small changes in the output decision space when inserting

bounded perturbations into the parameters of policy networks. On the other hand, PSP-L

encourages small changes in the loss values when perturbing the policy parameters. Can we

combine these two methods to make the policy to be smooth in both output and loss space?

This should be a promising direction to improve the current PSP algorithm.

7.3 Parameter-wise Smoothness (Robustness) Training in Output Space

y

154

CHAPTER 8

Conclusion

In this dissertation, we comprehensively study and propose a series of works on robust and

interpretable deep learning algorithms in both computer vision and reinforcement learning

areas.

The first algorithm proposed in this dissertation is a purification-based adversarial defense

algorithm: Defense-VAE. Defense-VAE is a simple yet effective defense algorithm that uses a

variational autoencoder (VAE) to purge adversarial perturbations from contaminated images.

The proposed method is generic and can defend white-box and black-box attacks without

retraining the original CNN classifiers. It can further strengthen the defense by retraining

CNN or end-to-end finetuning the whole pipeline.

The second algorithm proposed in this dissertation, GDPA, is a novel patch attack and

adversarial training algorithm. GDPA is an end-to-end patch attack algorithm, Generative

Dynamic Patch Attack (GDPA), which generates both patch pattern and patch location

adversarially for each input image. We show that GDPA is a generic attack framework that

can produce dynamic/static and visible/invisible patches with a few configuration changes.

The third algorithm, NICE, is a generative interpretation algorithm on deep neural net-

works. Compared to many existing explanation algorithms that heavily rely on backpropaga-

tion, the sparse masks generated by NICE are much more concise and coherent and align well

with human intuitions. With the sparse masks, the proposed mixed-resolution image com-

pression achieves higher compression rates compared to the existing semantic compression

algorithms while retaining similar classification accuracies.

The fourth work SDNN in this dissertation is an interpretable sparse DNN algorithm on

MRI and Gene data. SDNN is a sparse deep neural network approach to identify sparse

and interpretable features for schizophrenia (SZ) discrimination. An L0-norm regularization

is implemented on the network’s input layer for sparse feature selection, which can later

be interpreted based on importance weights. We applied the proposed approach on a large

multi-study cohort (N = 1,684) with gray matter volume (GMV) and single nucleotide

polymorphism (SNP) data for SZ discrimination.

The last work, PSP, proposed in this dissertation is parameter-wise adversarial training

in the reinforcement learning area. PSP trains a parameter-wise smooth policy network in

PPO to tackle these challenges. Specifically, we introduce a Parameter-wise Smooth Policy

(PSP) regularization to enforce the outputs of a policy or loss values not to change much

when injecting small perturbations to the parameters of policy networks. With the PSP

regularization, we improve the stability of PPO and promote sample efficiency by learning

policies with high entropy outputs for exploration, thus improving the cumulative rewards

and robustness against random and adversarial parameter corruption.

As for future works, I believe the following three directions are worthy of further investi-

gation: 1) How to apply policy networks that are smooth (robust) to both observation and

parameter perturbation to RL algorithms; 2) How to combine PSP-O and PSP-L to make

the policy to be smooth (robust) in both output and loss space; 3) How to extend output

space smoothness (robustness) to tasks other than RL areas.

156

CHAPTER 8

REFERENCES

A. G. Garrity, e. a. 2007, Am J Psychiat

Akhtar, N., Liu, J., & Mian, A. 2017, Defense against Universal Adversarial Perturbations

Akhtar, N., Liu, J., & Mian, A. 2018, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition

Amari, S. 1998, Neural Comput

Andreasen, N. C., & Pierson, R. 2008, Biol Psychiat

Ashburner, J., & Friston, K. J. 2005, Neuroimage

B. J. Casey, e. a. 2013, Nat Rev Neurosci

B. T. T. Yeo, e. a. 2011, J Neurophysiol

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. 2015, PloS

one, 10

Bahri, D., Mobahi, H., & Tay, Y. 2021, arXiv preprint arXiv:2110.08529

Ballé, J., Laparra, V., & Simoncelli, E. P. 2016, arXiv preprint arXiv:1611.01704

Ballé, J., Laparra, V., & Simoncelli, E. P. 2017, in ICLR

Baluja, S., & Fischer, I. 2017, arXiv preprint arXiv:1703.09387

Bang, S., Xie, P., Wu, W., & Xing, E. 2019, arXiv preprint arXiv:1902.06918

Battenberg, E. et al. 2017, arXiv preprint arXiv:1707.07413

Bearman, A., Russakovsky, O., Ferrari, V., & Fei-Fei, L. 2016, in European conference on

computer vision

Bell, A. J., & Sejnowski, T. J. 1995, Neural Comput

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. 2013, Journal of Artificial Intelli-

gence Research

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G., & Roli,

F. 2013, in Joint European conference on machine learning and knowledge discovery in

databases, Springer, 387–402

Bird, T., Kunze, J., & Barber, D. 2018a, arXiv preprint arXiv:1809.04855

——. 2018b, arXiv preprint

Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. 2017, arXiv preprint

arXiv:1712.09665

C. F. Beckman, e. a. 2005, Philos Trans R Soc Lond B Biol Sci

C. N. Gupta, e. a. 2015, Schizophr Bull

Carlini, N., & Wagner, D. 2017, in 2017 IEEE Symposium on Security and Privacy (SP),

39–57

Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. 2019, Electronics, 8

Chen, J., Liu, J., & Calhoun, V. D. 2019a, P Ieee

Chen, J., Song, L., Wainwright, M. J., & Jordan, M. I. 2018a, arXiv preprint

arXiv:1802.07814

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. 2018b, in Proceedings of the

European conference on computer vision (ECCV)

Chen, M., Artières, T., & Denoyer, L. 2019b, in Advances in Neural Information Processing

Systems (NIPS)

Chen, M., Beutel, A., Covington, P., Jain, S., Belletti, F., & Chi, E. H. 2019c, in Proceedings

of the Twelfth ACM International Conference on Web Search and Data Mining

Chen, X., Hsieh, C.-J., & Gong, B. 2021, arXiv preprint arXiv:2106.01548

Chiang, P.-y., Ni, R., Abdelkader, A., Zhu, C., Studer, C., & Goldstein, T. 2020, in ICLR

2020

Cuthbert, B. N. 2014, World Psychiatry

Cuthbert, B. N., & Insel, T. R. 2013, BMC medicine

D. Lin, e. a. 2017, Schizophr Bull

D. M. Altshuler, e. a. 2012, Nature

Dabkowski, P., & Gal, Y. 2017, in NIPS

Dai, J., He, K., & Sun, J. 2015, in Proceedings of the IEEE international conference on

computer vision

Delaneau, O., Marchini, J., & Zagury, J. F. 2012, Nat Methods

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. 2009, in IEEE conference on

computer vision and pattern recognition (CVPR), 248–255

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018, arXiv preprint arXiv:1810.04805

Dong, Y., Fu, Q.-A., Yang, X., Pang, T., Su, H., Xiao, Z., & Zhu, J. 2020, in Conference on

Computer Vision and Pattern Recognition

Dziugaite, G. K., Ghahramani, Z., & Roy, D. M. 2016, A study of the effect of JPG com-

pression on adversarial images

E. I. Ivleva, e. a. 2013, Am J Psychiatry

E. Vassos, e. a. 2017, Biol Psychiat

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A., &

Song, D. 2017, in CoRR

Fong, R. C., & Vedaldi, A. 2017, in IEEE International Conference on Computer Vision

(CVPR), 3429–3437

Foret, P., Kleiner, A., Mobahi, H., & Neyshabur, B. 2020, arXiv preprint arXiv:2010.01412

Gan, C., Wang, N., Yang, Y., Yeung, D.-Y., & Hauptmann, A. G. 2015, in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2568–2577

Gao, J., Wang, B., Lin, Z., Xu, W., & Qi, Y. 2017, DeepCloak: Masking Deep Neural

Network Models for Robustness Against Adversarial Samples

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., & Bengio, Y. 2014a, in NIPS

Goodfellow, I. J., Shlens, J., & Szegedy, C. 2014b, arXiv preprint arXiv:1412.6572

Goodfellow, I. J., Shlens, J., & Szegedy, C. 2015, in International Conference on Learning

Representations

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., & Duvenaud, D. 2018, in International

Conference on Learning Representations (ICLR)

Graves, A., Mohamed, A.-r., & Hinton, G. 2013, in 2013 IEEE international conference on

acoustics, speech and signal processing

Griffin, G., Holub, A., & Perona, P. 2007

Gu, S., & Rigazio, L. 2014a, Towards Deep Neural Network Architectures Robust to Adver-

sarial Examples

——. 2014b, arXiv preprint arXiv:1412.5068

Guo, C., Rana, M., Cisse, M., & van der Maaten, L. 2017a, Countering Adversarial Images

using Input Transformations

Guo, C., Rana, M., Cissé, M., & van der Maaten, L. 2017b, CoRR, abs/1711.00117

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. 2018, in International conference on machine

learning

Hayes, J. 2018, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops

He, K., Gkioxari, G., Dollár, P., & Girshick, R. 2017, in Proceedings of the IEEE interna-

tional conference on computer vision

He, K., Zhang, X., Ren, S., & Sun, J. 2016, in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 770–778

Hochreiter, S., & Schmidhuber, J. 1994, Advances in neural information processing systems

Hudson, D. A., & Manning, C. D. 2018, arXiv preprint arXiv:1803.03067

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M.

2019, Science Robotics

Insel, T. R. 2014, Am J Psychiat

Insel, T. R., & Cuthbert, B. N. 2015, Science

Ish-Horowicz, J., Udwin, D., Flaxman, S., Filippi, S., & Crawford, L. 2019, arXiv preprint

arXiv:1901.09839

J. Chen, e. a. 2013, Neuroimage

——. 2017, Biol Psychiat

J. Frank, e. a. 2015, Mol Psychiatr

J. M. Segall, e. a. 2009, Schizophrenia Bull

J. McGrath, e. a. 2008, Epidemiologic reviews

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. 2015, in International

Conference on Neural Information Processing Systems

Jang, E., Gu, S., & Poole, B. 2017, in International Conference on Learning Representations

(ICLR)

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., & Bengio, S. 2019, arXiv preprint

arXiv:1912.02178

Jim, K.-C., Giles, C. L., & Horne, B. G. 1996, IEEE Transactions on neural networks

Johnston, N. et al. 2018, in CVPR, 4385–4393

Karmon, D., Zoran, D., & Goldberg, Y. 2018, in International Conference on Machine

Learning

Kingma, D. P., & Ba, J. 2015, in International Conference on Learning Representations

(ICLR)

Kingma, D. P., & Welling, M. 2013, arXiv preprint arXiv:1312.6114

Krizhevsky, A. 2009, Learning multiple layers of features from tiny images, Tech. rep.

Kurakin, A., Goodfellow, I., & Bengio, S. 2016, arXiv preprint arXiv:1611.01236

L. L. Zeng, e. a. 2018, Ebiomedicine

L. Xu, e. a. 2008, International Conference on Acoustics, Speech, and Signal Processing

(ICASSP)

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, in Proceedings of the IEEE

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. 1998, Proceedings of the IEEE, 86,

2278

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. 2018a, Advances in neural information

processing systems

Li, J., Monroe, W., & Jurafsky, D. 2016, arXiv preprint arXiv:1612.08220

Li, J., Yao, L., Xu, X., Cheng, B., & Ren, J. 2020, Information Sciences, 532, 110

Li, M., Zuo, W., Gu, S., Zhao, D., & Zhang, D. 2018b, in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR)

Li, X., & Ji, S. 2019, in The ECML Workshop on Machine Learning for Cybersecurity

(MLCS)

Lin, D., Dai, J., Jia, J., He, K., & Sun, J. 2016, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition

Liu, A., Wang, J., Liu, X., Cao, B., Zhang, C., & Yu, H. 2020, in Proc. Eur. Conf. Comput.

Vis.

Liu, N., Du, M., Guo, R., Liu, H., & Hu, X. 2021, ACM SIGKDD Explorations Newsletter

Liu, Z., Luo, P., Wang, X., & Tang, X. 2015, in Proceedings of International Conference on

Computer Vision (ICCV)

Long, J., Shelhamer, E., & Darrell, T. 2015, in Proceedings of the IEEE conference on

computer vision and pattern recognition

Louizos, C., Welling, M., & Kingma, D. P. 2017, arXiv preprint

Louizos, C., Welling, M., & Kingma, D. P. 2018, in International Conference on Learning

Representations (ICLR)

Lundberg, S. M., & Lee, S.-I. 2017, in NIPS

Luo, Y., Boix, X., Roig, G., Poggio, T., & Zhao, Q. 2015a, Foveation-based Mechanisms

Alleviate Adversarial Examples

——. 2015b, arXiv preprint arXiv:1511.06292

Lyu, C., Huang, K., & Liang, H.-N. 2015a, 2015 IEEE International Conference on Data

Mining

Lyu, C., Huang, K., & Liang, H.-N. 2015b, in 2015 IEEE international conference on data

mining

M. Nieuwenhuis, e. a. 2012, Neuroimage

M. R. Arbabshirani, e. a. 2013, Front Neurosci-Switz

Maddison, C. J., Mnih, A., & Teh, Y. W. 2017, in International Conference on Learning

Representations (ICLR)

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. 2018, in International Con-

ference on Machine Learning

Marchini, J., & Howie, B. 2010, Nat Rev Genet

Meng, D., & Chen, H. 2017, Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security

Milz, S., Arbeiter, G., Witt, C., Abdallah, B., & Yogamani, S. 2018, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, 247–257

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., &

Kavukcuoglu, K. 2016, in International conference on machine learning

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Ried-

miller, M. 2013, arXiv preprint arXiv:1312.5602

Mogelmose, A., Trivedi, M. M., & Moeslund, T. B. 2012, IEEE Transactions on Intelligent

Transportation Systems

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., & Frossard, P. 2017, in Proceedings of the

IEEE conference on computer vision and pattern recognition

Moosavi-Dezfooli, S.-M., Fawzi, A., & Frossard, P. 2016a, in CVPR

Moosavi-Dezfooli, S.-M., Fawzi, A., & Frossard, P. 2016b, in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2574–2582

Murray, A., & Edwards, P. 1992, Advances in neural information processing systems

Nakanishi, K., ichi Maeda, S., Miyato, T., & Okanohara, D. 2018, in Asian Conference on

Computer Vision (ACCV)

Naseer, M., Khan, S., & Porikli, F. 2019, in 2019 IEEE Winter Conference on Applications

of Computer Vision (WACV)

Nayebi, A., & Ganguli, S. 2017, arXiv preprint arXiv:1703.09202

Nguyen, L., Wang, S., & Sinha, A. 2017, A Learning and Masking Approach to Secure

Learning

P. M. Thompson, e. a. 2001, P Natl Acad Sci USA

Papandreou, G., Chen, L.-C., Murphy, K. P., & Yuille, A. L. 2015, in Proceedings of the

IEEE international conference on computer vision

Papernot, N., McDaniel, P., & Goodfellow, I. 2016a, arXiv preprint arXiv:1605.07277

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., & Swami, A. 2017, Pro-

ceedings of the 2017 ACM on Asia Conference on Computer and Communications Security

- ASIA CCS ’17

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. 2016b, 2016

IEEE European Symposium on Security and Privacy (EuroSP)

Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. 2016c, in 2016 IEEE Symposium

on Security and Privacy (SP), IEEE, 582–597

Parkhi, O. M., Vedaldi, A., & Zisserman, A. 2015, BMVC

Pinheiro, P. O., & Collobert, R. 2015, in Proceedings of the IEEE conference on computer

vision and pattern recognition

Poursaeed, O., Katsman, I., Gao, B., & Belongie, S. 2018, in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Prakash, A., Moran, N., Garber, S., Dilillo, A., & Storer, J. 2017, 2017 Data Compression

Conference (DCC)

Raffin, A., Kober, J., & Stulp, F. 2022, in Conference on Robot Learning

Reddy Mopuri, K., Ojha, U., Garg, U., & Venkatesh Babu, R. 2018, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition

Rezende, D. J., Mohamed, S., & Wierstra, D. 2014, in ICML

Ribeiro, M. T., Singh, S., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, 1135–1144

Rippel, O., & Bourdev, L. 2017, in International Conference on Machine Learning (ICML)

Ross, A. S., & Doshi-Velez, F. 2017, Improving the Adversarial Robustness and Interpretabil-

ity of Deep Neural Networks by Regularizing their Input Gradients

S. G. Liang, e. a. 2019, Schizophrenia Bull

S. Kelly, e. a. 2018, Mol Psychiatr

S. M. Plis, e. a. 2014a, Front Neurosci-Switz

——. 2014b, Front Neurosci-Switz

S. Purcell, e. a. 2007, Am J Hum Genet

S. Ripke, e. a. 2014, Nature

Samangouei, P., Kabkab, M., & Chellappa, R. 2018, in ICLR

Sayood, K. 2002, Lossless compression handbook (Elsevier)

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. 2015, in International confer-

ence on machine learning

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. 2017, arXiv preprint

arXiv:1707.06347

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. 2017, in

IEEE International Conference on Computer Vision (CVPR), 618–626

Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., et al. 2012, IEEE Signal processing

magazine

Shaham, U., Yamada, Y., & Negahban, S. 2018, Neurocomputing

Sharif, M., Bhagavatula, S., Bauer, L., & Reiter, M. K. 2016, in Proceedings of the 2016

acm sigsac conference on computer and communications security

Shen, Q., Li, Y., Jiang, H., Wang, Z., & Zhao, T. 2020, in International Conference on

Machine Learning

Shrikumar, A., Greenside, P., & Kundaje, A. 2017, in ICML

Silver, D. et al. 2016, nature

——. 2017, nature

Simonyan, K., Vedaldi, A., & Zisserman, A. 2013, arXiv preprint arXiv:1312.6034

Simonyan, K., & Zisserman, A. 2014, arXiv preprint arXiv:1409.1556

some string reflecting how you wish the entry alphabetized. 2019, White Paper: Cisco Visual

Networking Index: Forecast and Trends, 2017–2022, Tech. rep.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, The

journal of machine learning research

Sun, X., Zhang, Z., Ren, X., Luo, R., & Li, L. 2021, in Proceedings of the AAAI Conference

on Artificial Intelligence

Sutskever, I., Vinyals, O., & Le, Q. V. 2014, in NIPS

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R.

2013, arXiv preprint arXiv:1312.6199

T. F. D. Farrow, e. a. 2005, Biol Psychiat

T. Insel, e. a. 2010, Am J Psychiat

Tai, L., Paolo, G., & Liu, M. 2017, in 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS)

Tai, L., Zhang, J., Liu, M., & Burgard, W. 2018, in 2018 IEEE International Conference on

Robotics and Automation (ICRA)

Talpaert, V., Sobh, I., Kiran, B. R., Mannion, P., Yogamani, S., El-Sallab, A., & Perez, P.

2019, arXiv preprint arXiv:1901.01536

Theis, L., Shi, W., Cunningham, A., & Huszár, F. 2017, arXiv preprint arXiv:1703.00395

Toderici, G., O’Malley, S. M., Hwang, S. J., Vincent, D., Minnen, D., Baluja, S., Covell, M.,

& Sukthankar, R. 2016, in International Conference on Learning Representations (ICLR)

Toderici, G., Vincent, D., Johnston, N., Jin Hwang, S., Minnen, D., Shor, J., & Covell,

M. 2017, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

5306–5314

Todorov, E., Erez, T., & Tassa, Y. 2012, in 2012 IEEE/RSJ international conference on

intelligent robots and systems

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., & Sohl-Dickstein, J. 2017, in NIPS

V. D. Calhoun, e. a. 2001, Hum Brain Mapp

Vinyals, O. et al. 2019, Nature

Vorobeychik, Y., & Kantarcioglu, M. 2018, Adversarial Machine Learning (Morgan & Clay-

pool)

W. Z. Yan, e. a. 2019, Ebiomedicine

Wallace, G. K. 1992, IEEE transactions on consumer electronics, 38

Wang, H., Chen, T., Gui, S., Hu, T.-K., Liu, J., & Wang, Z. 2020, Advances in neural

information processing systems

Wang, X., Chen, W., Wu, J., Wang, Y.-F., & Wang, W. Y. 2018, in Proceedings of the IEEE

conference on computer vision and pattern recognition

Williams, R. J. 1992, Machine Learning, 8, 229

Woodward, N. D., Rogers, B., & Heckers, S. 2011, Schizophr Res

Wu, L., Tian, F., Qin, T., Lai, J., & Liu, T.-Y. 2018, arXiv preprint arXiv:1808.08866

Wu, T., Tong, L., & Vorobeychik, Y. 2019, in International Conference on Learning Repre-

sentations

X. L. Cai, e. a. 2020, Hum Brain Mapp

Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., & Song, D. 2018, in IJCAI

Xiao, H., Rasul, K., & Vollgraf, R. 2017

Xu, W., Evans, D., & Qi, Y. 2018, Proceedings 2018 Network and Distributed System

Security Symposium

Yang, C., Kortylewski, A., Xie, C., Cao, Y., & Yuille, A. 2020, in European Conference on

Computer Vision, Springer, 681–698

Yang, C., Rangarajan, A., & Ranka, S. 2018, in IEEE International Conference on Data

Science and Systems (DSS)

Yang, X., & Ji, S. 2020, in International Conference on Pattern Recognition (ICPR)

Yang, X., Wei, F., & Zhang, H. 2019, ECCV

Yuan, X., He, P., Zhu, Q., & Li, X. 2017, arXiv preprint arXiv:1712.07107

Zeiler, M. D., & Fergus, R. 2014, in European conference on computer vision (ECCV)

Zhelo, O., Zhang, J., Tai, L., Liu, M., & Burgard, W. 2018, arXiv preprint arXiv:1804.00456

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., & Li, Z. 2018, in Proceedings

of the 2018 world wide web conference

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. 2016, in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR)

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. 2017, in Computer Vision (ICCV), 2017 IEEE

International Conference on

	Towards Robust and Interpretable Deep Learning
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Robust Deep Learning
	Interpretable Deep Learning
	Relationship between Robustness and Interpretability
	Parameter-wise Robustness of Deep neural network
	Robust Reinforcement Learning
	Dissertation Organization
	List of Publications
	Refereed Publications
	Under Review

	Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks
	Introduction
	Defense-VAE: The Proposed Algorithm
	Variational Auto-Encoder
	Defense-VAE

	Related Work
	Experiments
	Results on White-box Attacks
	Robustness under Untrained Attacks
	Results on Black-box Attacks

	Experiments on MNIST, CelebA and CIFAR-10
	Why is Defense-VAE so effective?
	Defense Speed
	Adversarial Detection

	Conclusion

	Generative Dynamic Patch Attack
	Introduction
	Related Works
	The GDPA Framework
	Problem Formulation
	Localized Pattern Generation
	Weighted Adversarial Patch Injection
	Differentiable Affine Transformation
	Generative Dynamic Patch Attack
	Adversarial Training with GDPA

	Experimental Results
	Dynamic Patch Attack
	Dynamic Patch Adversarial Training
	Ablation Study
	Generating Static Patch Attack with GDPA
	Generating Adversarial Attack with GDPA
	Cross Attacks and Defenses
	Additional Results on Targeted Attack
	Inference Speed

	Conclusion

	Neural Image Compression and Explanation
	Introduction
	Related Work
	Neural Explanation
	Semantic Image Compression

	The NICE Framework
	Sparse Neural Explanation
	Semantic Image Compression
	Sparse Mask Generator

	Experiments
	Implementation Details
	Explaining CNN's Predictions
	Semantic Image compression
	Inference Time Comparison

	Conclusion

	Sparse Deep Neural Networks on Imaging Genetics for Schizophrenia Discrimination (Joint work with TReNDS Center)
	Introduction
	Materials and Methods
	Participants
	Structural MRI data
	SNP data
	Sparse DNN
	ICA+linear SVM

	Results
	Discussion

	Proximal Policy Optimization with Parameter-wise Smooth Policy
	Introduction
	Background and Related Work
	Reinforcement Learning Framework
	Proximal Policy Optimization (PPO)
	Related Works

	Method
	Motivation
	Parameter-Wise Smooth Policy Regularization
	Parameter-wise Smooth Policy Regularization in Output Space
	Parameter-wise Smooth Policy Regularization in Loss Space

	Experiments
	Results on the Atari Games
	Results in Continuous Domain: OpenAI Gym Control Tasks
	Parameter-wise Policy Robustness
	Entropy of Policy Outputs
	Parameter-wise Loss Landscape Visualization

	Conclusion

	Future Works
	Observation-wise and Parameter-wise Smooth (Robust) Policy
	Combining the Output Space and Loss Space Parameter-wise Smoothness (Robustness)
	Parameter-wise Smoothness (Robustness) Training in Output Space

	Conclusion
	REFERENCES

