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ABSTRACT 

Neuroimage data collected from multiple research institutions may incur additional source 

dependency, affecting the overall statistical power and leading to erroneous conclusions. This 

problem can be mitigated with data harmonization approaches. While open neuroimaging datasets 

are becoming more common, a substantial amount of data can still not be shared for various 

reasons. In addition, current approaches require moving all the data to a central location, which 

requires additional resources and creates redundant copies of the same datasets. To address these 

issues, we propose a decentralized harmonization approach called "Decentralized ComBat" that 

performs remote operations on the datasets separately without sharing individual subject data, 

ensuring a certain level of privacy and reducing regulatory hurdles. The study was conducted on 

harmonizing functional connectivity. Results showed similar performance as the centralized 

ComBat algorithm in a decentralized environment. 
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1 INTRODUCTION 

1.1 Motivation 

The significance of neuroscience studies has reached a global scale with an increasing number of 

large-scale projects related to impactful topics such as brain disease, brain development, brain 

aging, and brain-computer interfacing [1,2,3]. The true potential of these large projects depends 

on the data at one's disposal, which urges global collaboration, knowledge, and data sharing. These 

collaborative approaches include aggregating data collection to a central repository or data sharing 

based on data usage agreements (DUA) [4,5]. Such an approach has several limitations to consider. 

The first concern is the policy and proprietary restrictions, or data de-identification issues may be 

raised. Such concerns are time-consuming and take months to resolve. 

Moreover, the processing of DUA may take months for approval. Although many open datasets 

may be quickly accessible without DUA, that brings us to our next concern. Another significant 

concern is the volume of the data collected from multiple sites. When we merge multiple large 

neuroimage datasets in a single location, it will consume much space. Additionally, computational 

resources become costly when the volume of data grows. Also, sharing the data only creates 

redundant copies around the world. Thus, it is not always an optimal approach considering the 

constraints on available resources. While open neuroimage datasets are becoming more common, 

some data cannot be transferred or shared directly due to confidentiality or regulatory constraints. 

These issues led to a paradigm shift towards decentralized data-sharing [6,7], particularly with 

widespread efforts in the neuroimaging community to maximize study power through multi-site 

investigation, data sharing, and team science. 

With the availability of neuroimage data at multiple sites worldwide, an important goal is to jointly 

analyze geographically dispersed data to increase statistical power and test against the common 
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biological hypothesis. There is an issue with combining the multi-site neuroimage data because 

each data at a different location introduces additional non-biological variability. These variabilities 

are closely related to image acquisition protocol and scanner parameters categorized as 'site effects' 

[8]. These site effects can reduce statistical power or lead to erroneous conclusions. Harmonization 

techniques aim to combine datasets generated from different sites, e.g., hospitals, research 

facilities, or laboratories, reducing the site effects in the combined dataset [9]. 

One popular harmonization technique is known as ComBat [10]. The ComBat technique was first 

introduced in genomics to reduce batch effects and non-biological variability due to pooling 

batches of sample genes from various laboratories. Later, it was applied to diffusion tensor imaging 

(DTI) [9], cortical thickness data [11], functional connectivity measures [12], and positron 

emission tomography (PET) imaging [13]. However, the current ComBat model does not address 

data access problems, including geographical and confidentiality issues, which motivated us to 

develop a decentralized model that works in a distributed environment. This manuscript presents 

a decentralized harmonization model called 'Decentralized ComBat (DC-ComBat).' 

Including decentralized regression [14], decentralized temporal independent component analysis 

[15], decentralized independent vector analysis [16], decentralized neural networks [17], 

decentralized data ICA [18], decentralized PCA [19] and many more. Some of these algorithms 

can be used jointly with our decentralized harmonization approach in the COINSTAC for creating 

different pipelines. Based on the benefits, we found this framework suitable for our decentralized 

approach. 
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1.2 Contributions 

Our team has been working on a web-based framework for several years to analyze data stored in 

multiple locations without pooling, named Collaborative Informatics and Neuroimaging Suite 

Toolkit for Anonymous Computation (COINSTAC) [14]. This framework also preserves the 

privacy of the data as there is no data pooling involved, and all the communication between the 

sites is encrypted. COINSTAC uses a message-passing infrastructure to implement decentralized 

algorithms to work with geographically scattered datasets. We can develop a decentralized 

algorithm with this framework that returns similar results on collected datasets. This framework 

preserves dataset privacy by not creating additional copies. Also, this framework can be scaled 

easily when the number of sites or datasets increases. There are several decentralized algorithms 

already implemented using COINSTAC. Some of the decentralized computations proposed earlier 
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2 METHODS 

2.1 ComBat 

ComBat can be described as follows if the data is collected from k different sites where each site 

has 𝒏𝒊 scans where і = 1, 2, …, k. Each harmonized feature 𝒚 indexed by v of scan  j at site i, the 

value 𝒚𝒊,𝒋,𝒗 can be defined as: 

𝒚𝒊,𝒋,𝒗 = 𝜶𝒗 + 𝑿𝒊,𝒋𝜷𝒗  + 𝜸𝒊,𝒗 + 𝜹𝒊,𝒗𝜺𝒊,𝒋,𝒗             (1) 

 

In the above equation 𝜶𝒗  represents the overall mean value at feature v. X represents the biological 

variants, 𝜷𝒗  represents the regression coefficient for X at feature v. The error term ε is assumed to 

follow a Gaussian distribution N(0,𝝈𝟐). In equation(1)  𝜹𝒊,𝒗 and  𝜸𝒊,𝒗 represents the multiplicative 

and additive parameters correcting for site effects at site i for feature v. The model aims to reduce 

the unwanted variance using the Empirical Bayes approach. The final distribution model can be 

achieved by: 

𝒚𝒊𝒋𝒗
𝒄𝒐𝒎𝑩𝒂𝒕 =

𝒚𝒊𝒋𝒗−�̂�𝒗−𝑿𝒊𝒋�̂�𝒗−�̂�𝒊𝒗

�̂�𝒊𝒗
 + �̂�𝒗 + 𝑿𝒊𝒋�̂�𝒗     (2)  

 

The model can be divided into three parts. The first part is the standardization of data. After 

standardization, every data will have similar overall mean and variance. The following equation 

calculates the standardization data:  

                               𝒁𝒊,𝒋,𝒗 =  
𝒚𝒊𝒋𝒗−�̂�𝒗−𝑿𝒊𝒋�̂�𝒗

�̂�𝒗
                                        (3) 

The second part is the estimation of batch effect using parametric empirical priors. The ComBat 

assumes that the standardized data  𝒁𝒊,𝒋,𝒗  follows the standard distribution form, 𝒁𝒊,𝒋,𝒗 ~ 

𝚴(𝜸𝒊,𝒗, 𝜹𝒊,𝒗
𝟐 ). It is also mentioned that parametric forms of the prior distributions on the batch effect 
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parameters,  𝜸𝒊,𝒗 , 𝜹𝒊,𝒗
𝟐   follows a normal distribution and Inverse gamma distribution, respectively. 

Defined by: 

                      𝜸𝒊,𝒗 ~ 𝚴(𝒀𝒊, 𝝉𝒊
𝟐)     and   𝜹𝒊,𝒗

𝟐  ~ 𝐈𝐧𝐯𝐞𝐫𝐬𝐞 𝐆𝐚𝐦𝐦𝐚(𝝀𝒊, 𝜽𝒊)             (4) 

The hyperparameters 𝜸𝒊, 𝝉𝒊
𝟐, 𝝀𝒊, 𝜽𝒊 are estimated empirically from the standardized data. Details of 

the derivation of the estimators are explained in the supplementary material of the original ComBat 

paper [8]. Based on the Empirical Bayes estimators 𝛾𝑖,𝑣, 𝛿𝑖,𝑣
2  can be defined by the posteriors means 

as followings:  

           𝜸𝒊,𝒗
∗  =  

𝒏𝒊𝝉𝒊
𝟐𝜸𝒊,�̂�+𝜹𝒊,𝒗

𝟐∗ 𝜸𝒊̅̅̅

𝒏𝒊𝝉𝒊
𝟐+𝜹𝒊,𝒗

𝟐∗          and         𝜹𝒊,𝒗
𝟐∗  =  

𝜽𝒊̅̅ ̅+ 
𝟏

𝟐
∑ (𝒁𝒊𝒋𝒗−𝜸𝒊,𝒗

∗  )
𝟐

𝒋

𝒏𝒊𝝉𝒊
𝟐+𝜹𝒊,𝒗

𝟐∗        (5) 

Finally, data is adjusted based on the estimated site parameters 𝜸𝒊,𝒗
∗  𝒂𝒏𝒅 𝜹𝒊,𝒗

𝟐∗ .  

The described ComBat model does not address working in a decentralized environment. We 

proposed a decentralized model that can operate on separate datasets and produce identical results 

to the original model. We implemented the decentralized ComBat (DC-ComBat) using a platform 

COINSTAC. The architecture of  DC-ComBat- is discussed in the following section. 

 

3 DECENTRALIZED COMBAT MODEL OVERVIEW: 

In our decentralized environment, we have two types of nodes: The first type is the aggregator 

node, also known as the remote node, which does not hold any data and acts as a storage of 

intermediate results and performs simple operations such as aggregation. The second node type is 

the local/regional node where datasets are located. These local nodes represent the participants 

who are willing to work collaboratively. With the help of COINSTAC, we created a network where 

the regional nodes can be connected to the remote node and perform different operations 

synchronously.  
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For harmonizing distributed datasets located at different locations, we first constructed a network 

prototype shown in Figure 1, where all the participating local nodes connect with the remote node. 

Then each participating local node shares the local number of samples with the remote node via 

the secured message-passing mechanism. All intermediate communication is encrypted and sent 

over TLS (Transport Layer Security) provided by COINSTAC [14]. Then the remote node 

calculates the total sample count across the participating nodes depicted in Figure 1(a). Then the 

remote node broadcasts the total sample count to all the participating local nodes Figure 1(b). After 

that, using the information about the total number of samples, we calculate the mean across the 

features at each site and the variance across the features at each site with respect to the total number 

of samples across the participating site nodes. Then each local node sends the calculated local 

mean and variance to the remote node. The remote node calculates the grand mean and grand 

variance by aggregating the regional nodes' values in Figure 1(c) and broadcasting the grand mean 

and grand variance to all local nodes in Figure 1(d). After receiving the grand mean and grand 

variance information from the remote node, each node performs data standardization on the dataset 

located at each node Figure 1(d). Following the data standardization, estimation of site effect using 

parametric empirical priors is done on each site. Moreover, each site can adjust and harmonize the 

local data concerning the other participating site nodes based on the estimated site parameters. The 

pseudo algorithm is given below: 

Algorithm: 

 Step 1: Initialize the central node and site nodes. 

Step 2: Collect the initial summary (number of samples) of the site nodes in the central 

node. 
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Step 3: Calculate the β coefficient for each site using the decentralized regression 

approach available in COINSTAC. 

Step 4: For site node, і = 1, 2, 3 …. N do  

1. calculate the local mean across the features using the local β coefficients  

2. calculate the local variance across the feature using the local β coefficients  

3. send the local mean and variance to the aggregator node. 

4. End for loop. 

Step 5:  compute grand mean and grand variance and update each site node. 

Step 6: For site node, і = 1, 2, 3 …. N, do 

1. standardize the data w.r.t the grand mean and grand variance.  

2. Estimate the site parameters 𝛾𝑖,𝑣
∗  𝑎𝑛𝑑 𝛿𝑖,𝑣

2∗. 

3. Adjust the data accordingly. 

4. Save the adjusted data. 

5. End for loop. 
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Figure 1 Gives the overall picture of the decentralized ComBat algorithm and intra-

communication between nodes. 

 

4 DATA COLLECTION AND PRE-PROCESSING 

We used two sets of data for experimenting with our decentralized ComBat model. The first set 

consists of static FNC (functional network connectivity) data collected from two studies on mild 

traumatic brain injuries (mTBI) [20]. We wanted to observe our model's performance when applied 

to FNC data as from the previous study presented in [10], which showed that the ComBat model 

performs well in removing site effects from FNC datasets. The second set consists of simulated 

data generated using a connectivity template. The second dataset was used to measure the 

performance and scalability of our model when the number of sources increased. We tried to 

simulate a real-world situation where datasets located at different locations worldwide can be 

harmonized simultaneously. The following sections will describe how these two sets of datasets 

were collected and pre-processed.  

4.1 Dataset 

This dataset consists of data collected from two cohorts. The first cohort was collected from New 

Mexico (NM). All participants provided informed consent according to the Declaration of Helsinki 

and the institutional review board guidelines at the University of New Mexico. The second cohort 
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was collected from the Netherlands Europe (EU). The local Medical Ethics Committee of the 

UMCG approved the data collection protocol, and every participant provided written informed 

consent. All procedures were conducted following the declaration of Helsinki. This data was also 

used in other studies related to dynamic functional connectivity [20] and brain modalities [21]. 

Data pre-processing and analysis were the same as described in the earlier research publication 

[22]; therefore, we present a brief outline of the whole process. 

4.1.1 New Mexico Cohort Imaging Protocol 

In the New Mexico cohort, the total number of participants was 96, among which 48 were mTBI 

patients and 48 were healthy control (HC). The subjects had a mean age of 27.3 ± 9.0 years. The 

scanner used in the New Mexico cohort was a 3 Tesla Siemens TIM Trio scanner. Every participant 

had gone through 5 min resting state-run. TR (Repetition Time) = 2000 ms; TE (Time of Echo) = 

29 ms; flip angle = 75⁰; FOV (Field of View) = 240 mm; matrix size = 64 x 64. After removing 

the first five images due to the T1 equilibrium effect, the final 145 images were selected next step 

analysis. 

4.1.2 Netherland (European) Cohort Imaging Protocol 

In the case of the European cohort total of 74 participants were studied. There were 54 patients 

with mTBI and 20 Healthy controls among the participants. The mean age was 37, ranging from 

19-64. The 3.0 T Philips Integra MRI scanner was used to collect the brain images for this group 

of participants. The duration was 10 min for the Netherlands cohort. TR (Repetition Time) = 

2000 ms; TE (Time of Echo) = 20 ms; flip angle = 8⁰; FOV (Field of View) = 224 × 224 × 136.5 

mm. 
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4.1.3 Data Pre-Processing 

First, the fMRI data underwent Statistical Parametric Mapping (SPM) [23] and was transformed 

into Montreal Neurological Institute standard space. AFNI v17.1.03 software was used for de-

spiking. The time courses were made orthogonal to 1) linear, quadratic, and cubic trends, 2) 6 

realignment parameters, and 3) derivatives of realignment parameters. Data collected from the NM 

participants were used in the group independent component analysis (ICA) [24] using the GIFT 

software [25] to gather a set of functionally independent components. For Netherland cohort data, 

the group information guided ICA [26] (GIGICA) algorithm was used to match the 48 selected 

components. Finally, discarding the artifactual components, only 48 noise-free components were 

chosen as resting-state networks (RSNs) for further study. 

4.2 Dataset 2 

For this set, we generated data using computer simulation. The primary purpose of using a 

simulated dataset was to observe the scalability and performance of our model. Additionally, we 

used simulated data because the original ComBat model assumes that two site parameters: 

multiplicative and additive parameters drawn from the dataset, will follow inverse-gamma and 

gaussian distribution. However, in practice, such an assumption may not always hold. That is why 

we created a simulation where datasets may follow some other distribution, e.g., sub-gaussian 

distribution, super-Gaussian distribution, or a skewed distribution for additive parameters and 

Poisson, Rayleigh, or Weibull distribution for multiplicative parameters. To generate the datasets, 

we used an FNC (functional network connectivity) template based on an FNC matrix from a 

previous study [27] as the ground truth. We created various datasets by randomly adding site 

variance complying with the assumed normal and inverse gamma distributions. We fixed the 

Gaussian distribution parameters with the mean at 0.05 and the standard deviation at 0.3. For the 
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inverse gamma distribution, we set the mean at 0.3 and the standard deviation at 0.5. We used this 

dataset to observe the performance of the DC-ComBat model. 

5 EXPERIMENTAL SETUP AND OBSERVATIONS 

We separated the experiments into three different parts. We used the actual datasets collected from 

two different sites in our first part. In the second experiment, we used simulated datasets. The first 

experiment aims to validate the results of our proposed decentralized ComBat method and the 

second experiment aims to measure the computational features of the decentralized ComBat 

method. The third experiment is to show how harmonization could improve the performance of 

machine algorithms. In the following three sections, we will describe each experiment and the 

observations separately.  

5.1  Experimental Setup 1 and Observations 

We keep two datasets collected from two research facilities into two local nodes for this 

experiment. We applied our model DC-ComBat to harmonize the datasets. We perform two 

assessments on the dataset to observe the harmonization performance. First, we compare the site 

differences before and after harmonization. So, we took the difference between the functional 

connectivity values of New Mexico(NM) and European(EU) sites, resulting in 1128 t-values. 

Instead of showing vectors, we converted them into a matrix where rows and columns represent 

each of the 48 ICA components, and the heatmap indicates the strength of the site difference. 

Figure 2 shows the site difference before and after harmonization. There were a high number of 

significant site differences before harmonization, observed in Figure 2(left). These indicate that 

site information added non-biological variance in the datasets, which is undesirable. After 

harmonization, we observed from Figure 2(right) that all the significant site differences were 

removed from the data. Removal of site differences indicates a high performance of DC-ComBat.  
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Figure 2 Heatmap of t-values site-difference (NM-EU) before (left) and after harmonization 

(right). 

 

Later, we calculate the group difference (mTBI vs. HC) for the second assessment before and after 

harmonization. We first combined the datasets and calculated the group difference between 

participant groups ( mTBI and Healthy Controls) before and after harmonization. Again, based on 

the t-values, we plot the heatmap shown in Figure 3. Before harmonization, there were 128 

significant t-values (p < 0.05) shown in Figure 3(left); however, the number increased to 159  

significant t-values when datasets were harmonized in Figure 3(right). After harmonization, higher 

connectivity was observed in the TBI group in general. We observed the increase in connectivity 

because, due to harmonization, site effects were posteriorly removed by DC-ComBat. 

Furthermore, by comparing the output of the proposed decentralized ComBat with centralized 

ComBat, it found that the maximum difference was 3.06699𝑒− 15. This slight difference in the 

output was within the order of magnitude of the machine precision error. We conclude that there 

was no practical difference between ComBat and DC-ComBat. 
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Figure 3 Heatmap of t-values group difference (NM-EU) before (left) and after harmonization 

(right). 

5.2 Experimental Setup 2 and Observations 

For the second experiment, we used simulation to generate data based on a functional connectivity 

template used as ground truth for further analysis [27]. We selected four probability distributions: 

Rayleigh, Weibull, Poisson, and inverse-gamma, to simulate the multiplicative parameter and 

added noise to the ground truth. Similarly, we selected Gaussian, Sub-gaussian, Right-skewed, and 

Left-skewed distributions for simulating additive site parameters and added noise to the ground 

truth. The selection of these probability distributions was random and without any prior 

knowledge. After adding the noise to the ground truth, we created several datasets. We created 250 

datasets, each with 100 participants, random patients, and healthy controls. In the next step, we 

used COINSTAC-simulator to set the environment where each local node will contain a single 

dataset. Finally, we run our DC-ComBat algorithm to harmonize the datasets. We repeated the 

experiment by incrementing the number of sites and calculating the percentage of site effects 

removed with respect to the ground truth. The whole process was repeated four times by generating 

data with different distributions. We finally generated four plots in Figure 4 and Figure 5. The 
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primary purpose of this experiment was to evaluate the consistency of our model when the number 

of sites increases and randomness is introduced. From Figure 4 and Figure 5, we observed that our 

model performance was not affected when the number of sites was more than 50. We did not 

observe any performance issues even when the number of sites increased, indicating that our 

proposed model is scalable and robust. The second purpose of using simulated data was to observe 

the performance of DC-ComBat when exposed to different site parameters drawn from different 

probability distributions. From Figure 4 and Figure 5, we observed that the skewness and kurtosis 

of the additive parameter affect the performance of the harmonization process. In Figure 5, we 

observed that when skewness and kurtosis increased, the algorithm could remove up to a maximum 

of 70%  compared to Figure 4, where skewness and kurtosis were lower, and accuracy maximum 

accuracy was only 54%. We also observed from our experiment that the performance of  DC-

ComBat degrades for a certain distribution choice for multiplicative parameters. In Figure 4 and 

Figure 5, we saw that for the Poisson distribution, performance is poor compared to other 

distributions. 

 

Figure 4 Decentralized ComBat with different distributions as the multiplicative parameter; 

Gaussian distribution (skewness: 0.26 and kurtosis: 3.3) (left) and Sub-Gaussian distribution 

(skewness: 0.12 and kurtosis: 2.2) (right) for additive parameter. 



15 

 

Figure 5 Decentralized ComBat with different distributions as the multiplicative parameter;  

Skewed-left distribution(skewness: -0.58 and kurtosis: 3.48) (left) and right skewed distribution 

(skewness: 0.34 and kurtosis: 2.34)  (right) for additive parameter 

 

5.3 Experimental Setup 3 and Observations 

In this experiment, fMRI data were collected from two site sources. Scan data were preprocessed 

to obtain rsFNC values. Next, form a large dataset with sites' rsFNC data. Then, harmonized the 

combined dataset using the ComBat algorithm. To minimize any potential confounding influence 

of age and gender, linear regression was used to regress age and sex from rsFNC data. These 

residuals were further used as rsFNC data for the machine learning classifiers. The dataset was 

prepared for machine learning classifiers by splitting it into training and testing datasets (80:20). 

The training dataset was used to train the classifiers and the test data to evaluate their 

performances. 

Next, for each classifier, a tuned model was built by performing grid-search 10-fold cross-

validation, providing a set of hyperparameters and the training set as the input data. The model 

with the best area under the curve (AUC) average test score was selected as the classifier's tuned 

model. Feature selection is achieved by extracting the random forest feature importance values. 

The lower-dimensional features, referred to as selected features, are obtained by keeping the 
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features with non-zero discriminative power. Then, the classifiers' tuned models were trained 

considering two input data cases: higher-dimensional data (all features) and lower-dimensional 

data (selected features). Using the AUC metric, the tuned models' performance was evaluated with 

the test data. The model with the best average AUC score was selected as the classifier's tuned 

model. Finally, tested the tuned models with the test dataset and reported the AUC scores. Also 

performed another experiment without applying the feature selection step in parallel and collected 

the results. 

Similarly, repeated the analysis with unharmonized data and collected the results. Finally, plot the 

AUC scores of different classifiers for visualization and comparison. Figure 6 shows the AUC 

scores of different machine learning classifiers when trained on a harmonized and unharmonized 

dataset. Results show that we got better predictive scores than the unharmonized dataset when 

using harmonization. Figure 7 shows the feature selection's AUC scores of different machine 

learning classifiers. When harmonization was applied, we observed a similar AUC score increase 

in machine learning classifiers. Figure 6 and Figure 7 showed that with or without the feature 

selection, the highest AUC score of 0.85 was achieved for the nearest neighbor classifier for 

harmonized dataset compared to the highest of 0.76 on the unharmonized dataset. The performance 

of the algorithms on harmonized datasets changes very slightly in a few cases. 
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Figure 6 AUC score comparison of different classifier for unharmonized and harmonized datasets 

considering all features 

 

Figure 7 AUC score comparison of different classifier for unharmonized and harmonized 

datasets considering feature selection. 

 

6 DISCUSSION 

In our work, we proposed a scalable decentralized version of ComBat which can be used for 

harmonizing neuroimage datasets in a decentralized fashion. From the algorithm presented above, 

we can observe that our model only shares simple meta-information about datasets which helps 

each site harmonize its dataset independently with respect to other participating sites. Also, no 

complex operation was performed in the remote node, so it does not require high computational 

power. This model has several advantages. First, data sharing becomes more manageable as it does 

not require the dataset transfer away from the original location. Secondly, we do not need to create 
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redundant copies of the datasets by pooling them on a single location, saving much space and 

reducing the computational cost associated. Thirdly, our model can be easily extended when 

participating sites increase. Fourthly, each node harmonizes its dataset independently, which 

requires less computational power. Fifthly, our model is integrated with COINSTAC, providing 

additional security during information exchange off the shelf. Finally, we can easily combine our 

model with other decentralized algorithms provided by COINSTAC to create different analysis 

pipelines. Another contribution of our work is that there is no significant difference between the 

computer parameters of centralized ComBat and decentralized ComBat. 

We presented a simple star network model which could harmonize data in a decentralized 

environment. Also, from Figure 1, it can be observed that original data never leaves the sites, which 

protects the confidentiality of the datasets. Also, the computational cost is divided among the local 

nodes. 

We observed the influence of site effects in the dataset before and after harmonization. After 

harmonization, we observed increased connectivity among the mTBI groups because 

harmonization removed the site effects. Moreover,  results in post-harmonized data Figure 3 

suggest that mTBI patients develop hyperconnectivity after TBI injuries. Based on the literature, 

increased connectivity is a regular observation in TBI as the brain reacts to the traumatic injury 

event [28,29,30]. In our case, after we removed the site effects from the datasets, we observed 

more connectivity in the TBI groups not observed before as it was mixed with site effects. Based 

on the observations, we can say that harmonization does help in removing confounding non-

biological effects allowing for more meaningful discoveries. 

In our study, we showed that our proposed model could handle an increased number of sites. Based 

on the simulation, we showed that DC-ComBat could harmonize even 250 sites simultaneously. 
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We showed in Figure 4 and Figure 5 that after the number of sites reached above 50, there was no 

change in performance. Moreover, the remote node does not perform any complex operation. 

Instead, all the complex operation, such as harmonization, is done on each local node. That is why 

the model can scale quickly when participating nodes increase. 

In our study, we observed that the performance of DC-ComBat is dependent on the two site 

parameters called additive parameter and multiplicative parameter. The base assumption of the 

ComBat model is that the multiplicate parameter will follow the inverse-gamma distribution, and 

the additive parameter will follow the Gaussian distribution. However, we cannot control the 

probability distributions of site parameters directly. That is why our proposed model may perform 

poorly for some distributions for the Poisson distribution shown in Figure 4 and Figure 5. We 

observed that Rayleigh and Weibull distributions were similar to the inverse-gamma because they 

conjugate prior to inverse-gamma [31], whereas Poisson is not for the inverse-gamma distribution. 

Moreover, we also observed that skewness and kurtosis could increase or decrease the performance 

of our model. We will not discuss the effects of probability distributions of site effects as it is not 

fully understood and will be a part of our future research direction. 

We also extended our study to observe how machine learning algorithms can perform better on a 

harmonized dataset. Data collected at two sites that used different scanners, parameters and 

acquisition methods, machine learning classifiers performed relatively poorly in this study. After 

including data harmonization in the machine learning pipeline, we found that reducing site effects 

can improve machine learning classifier performance. The New Mexico dataset was analyzed in a 

previous classification study where the authors showed that SVM has an AUC score of 0.85 [32]. 

Another study used SVM to discriminate mTBI patients from healthy controls (HC) on a different 

dataset and found an AUC score of 0.72 [33]. However, when we combined the two-sites datasets, 
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we found that the performance of the SVM classifier decreased to an AUC score of 0.62. When 

we harmonized the data and performed feature selection SVM algorithm reached an AUC score of 

0.72. The predictive score decreased because the site effect heavily affected the combined dataset. 

After harmonization, we observed a high correlation between the t-values of group difference and 

feature importance. Moreover, the previous studies only considered single-source data collected 

by a single scanner and the same acquisition methods. This contributed to our hypothesis that 

harmonization improves performance for multi-site analysis. 

The main contribution of this work is the decentralization of the harmonization process using 

ComBat and COINSTAC. The output of these two separate approaches had very insignificant 

differences due to the difference in machines precision and operating systems. Therefore, we 

conclude that both approaches produce identical output. Our proposed model is more optimal than 

the centralized approach considering the volume, confidentiality, security, and resource constraints 

associated with data.   

7 LIMITATIONS AND FUTURE DIRECTIONS 

There are several limitations in the current study, which will be addressed in future studies. We 

did not concern about the re-identification attack; we only secured the intercommunications 

between local and remote nodes. Our study worked with FNC datasets; however, we could study 

other image modalities in our subsequent studies. Moreover, we did not present many details 

related to the site parameter distributions as we had no accurate knowledge about the probability 

distribution of site parameters to compare. In future studies, we want to add differential privacy 

and study the effects of site parameter distribution in more detail. 
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8 CONCLUSION 

The proposed novel model showed that decentralized algorithms could achieve identical results as 

their centralized counterpart. Also, the decentralized approaches solve many challenges associated 

with data sharing and connecting the whole world. This study encouraged future researchers to 

contribute to making new decentralized algorithms, which will help us study all the data scattered 

across the world and produce beneficiary outcomes. 
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