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Abstract 

Black-box algorithms now account for nearly a third of all U. S. stock trades. It 

is a mistake to think that these algorithms possess superhuman intelligence. In 

reality, computers do not have the common sense and wisdom that humans 

have accumulated by living. Trading algorithms are particularly dangerous 

because they are so efficient at discovering statistical patterns—but so utterly 

useless in judging whether the discovered patterns are meaningful. 
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Be Wary of Black-Box Trading Algorithms 

 A computer algorithm is a specific sequence of steps for performing a task, such as finding a 

square root or spell-checking a word. There are many stock market trading algorithms, including 

programs that try to reduce the costs of executing trades or try to make a profit by arbitraging 

price discrepancies across different exchanges.  

 My focus is on trading algorithms that try to discover profitable statistical patterns, 

including timing trades (for example, stock prices usually go up after a surge in calm words on 

Twitter) and convergence trades (for example the term structures of German and French interest 

rates are related). These kinds of trading algorithms are typically black box in that, once the code 

is written, humans do not interfere with the algorithm or know why specific trades are made.  

 A 2017 hedge fund prospectus boasted that their “fully automated portfolio [is] run via 

computer algorithms…. All trading is conducted through complex computerized systems, 

eliminating any subjectivity of the manager” (RK Capital 2017). This was evidently thought to 

be a feature, not a flaw, because computers are smarter than humans. Many investors apparently 

agree. Black-box algorithms now account for nearly a third of all U. S. stock trades (Zuckerman 

and Hope 2017). 

 Computer “intelligence” is, in fact, very different from human intelligence. Trading 

algorithms do not understand the world in any meaningful sense, and are consequently risky 

because they are so efficient at discovering statistical patterns—but so utterly useless in judging 

whether the discovered patterns are consequential or coincidental. 

Introduction 

 The spread of the internet in the 1990s sparked the creation of thousands of internet-based 
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companies, popularly known as dot-coms. Some dot-coms had good business plans and became 

successful companies. Most did not. In too many cases, the idea was simply to start a company 

with a dot-com in its name, sell it, and walk away rich. Cooper, Orlin, and Rau (2001) found that, 

on average, companies that did nothing more than add .com, .net, or internet to their names 

nearly doubled the price of their stock. 

 The same thing is happening now with artificial intelligence (AI). In 2017 the Association of 

National Advertisers (2017) chose “AI” as the Marketing Word of the Year. AI has become 

fashionable in investing, too, with black-box trading algorithms promising more than can be 

delivered. A dot-com name does not guarantee success, nor does an AI label. 

Data Mining 

 In 2008, Chris Anderson, editor-in-chief of Wired, wrote an article with the provocative title, 

“The End of Theory: The Data Deluge Makes the Scientific Method Obsolete.” Anderson argued 

that, 

With enough data, the numbers speak for themselves…. Correlation supersedes 

causation, and science can advance even without coherent models, unified theories, or 

really any mechanistic explanation at all. 

This declaration seemed intentionally controversial at the time, but it was prescient, as many 

have abandoned the scientific method and come to believe that correlation supersedes causation. 

 The scientific method begins with a plausible theory and then collects appropriate data to test 

this hypothesis. The scientific method was the foundation for the triumph of science over 

superstition. Today, however, it has become fashionable to turn the scientific method on its head 

by scrutinizing available data “to reveal hidden patterns and secret correlations” (Sagiroglu and 
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Sinanc 2013). When a pattern is found, either make up a theory after the fact or assert that 

theories are unnecessary (Fayyad, Piatetsky-Shapiro, and Smyth, 1996; Cios, Pedrycz, Witold, 

and Kurgan 2007; Begoli and Horsey, 2012). Some go so far as to argue that using expert 

knowledge of the phenomena being modeled is not only unnecessary, but limiting (Piatetsky-

Shapiro 1991). 

 After Pepperdine University invested 10% of its portfolio in quant funds in 2016, the director 

of investments argued that, “Finding a company with good prospects makes sense, since we look 

for undervalued things in our daily lives, but quant strategies have nothing to do with our 

lives.” (Zuckerman and Hope 2017) In truth, the absence of the wisdom and common sense 

acquired by being alive is an argument against algorithmic trading. 

 The now commonplace idea that analyses begin with data rather than expert opinion goes by 

a variety of names, including data mining, knowledge discovery, knowledge extraction, and 

information harvesting. The data are mined to discover theories, extract knowledge, and harvest 

information. Data mining is the cornerstone of black-box trading algorithms. 

 There was a time when data mining was considered a misdeed, akin to plagiarism. As Nobel 

Laureate Ronald Coase (1988) lamented decades ago: “If you torture the data long enough, it 

will confess.” His caustic comment is ignored today by people who don’t understand that those 

who ransack data looking for statistical patterns will surely find some—so, their discoveries 

demonstrate nothing more than that data were ransacked. 

 In the opening lines to a forward for a book on using data mining for knowledge discovery, a 

computer scientist (Kecman 2007) wrote, without evident irony,  

“If you torture the data long enough, [it] will confess,” said 1991 Nobel-winning 
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economist Ronald Coase. The statement is still true. However, achieving this lofty goal 

is not easy. First, “long enough” may, in practice, be “too long” in many applications 

and thus unacceptable. Second, to get “confession” from large data sets one needs to 

use state-of-the-art “torturing” tools. Third, Nature is very stubborn — not yielding 

easily or unwilling to reveal its secrets at all. 

Coase did not intend his comment to be a lofty goal worth seeking, but as a succinct criticism of 

the practice of pillaging data in search of statistical significance (Tullock 2001). 

 The perils of data mining are summarized by the Texas Sharpshooter Fallacy. In one variant, 

an avowed marksman demonstrates his prowess by painting thousands of bullseyes on the side of 

a barn. After he fires his gun, he finds the bullseye he hit and paints over all the other bullseyes. 

Since he will surely hit one bullseye, this proves nothing at all. 

 In investing, this corresponds to testing a large number of theories and selectively reporting a 

small fraction of the results. For example, back before it went bankrupt, the L. F. Rothschild 

investment bank reported that during the preceding six Dragon years in the Chinese zodiac 

calendar, the U. S. stock market had gone up four times and down twice (Allan 1976). No doubt, 

the misguided analyst behind this nonsense looked at each of the 12 zodiac signs (rat, ox, tiger, 

and so on). One sign is bound to have the highest coincidental correlation with up-years in the 

stock market, and this is the sign that was reported. 

 In another example, Bolen, Mao, and Zeng (2011) reported that a data-mining analysis of 

nearly 10 million Twitter tweets during the period February to December 2008 found that an 

upswing in “calm” words was often followed an increase in the Dow Jones average up to six 

days later. 
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 These Texas Sharpshooters looked at seven different predictors: an assessment of positive 

versus negative moods and six mood states (calm, alert, sure, vital, kind, and happy) with, no 

doubt, considerable flexibility in assigning mood states to various tweets. Is nice a calm, kind, or 

happy word? Is yes! an alert, sure, or vital word? The researchers also considered several 

different days into the future for correlating with the Dow. Finally, why did they use data from 

February to December 2008? What happened to January? Why did a 2011 paper use 2008 data? 

Did the discovered patterns only exist during that peculiar period, with words, moods, and days 

that were selected after the data had been tortured? Even the lead author admitted that he had no 

explanation. 

 The second variation of the Texas Sharpshooter Fallacy is when the inept marksman fires his 

gun at a blank wall, and then draws a bullseye around the bullet hole. Since there is always a 

bullet hole to draw a bullseye around, this, too, proves nothing at all. 

 In investing, this corresponds to rummaging around in stock market data with no clear 

purpose in mind, and discovering a pattern. This was probably the origin of the Super Bowl 

Stock Market Predictor (Koppett 1978), which claims that the stock market goes up in years 

when the team that wins the Super Bowl is in the National Football Conference (NFC) or is in 

the American Football Conference (AFC), but was once in National Football League (NFL). 

 The stock market has nothing to do with the outcome of a football game. The accuracy of the 

Super Bowl Indicator is an amusing coincidence bolstered by the fact that the stock market 

usually goes up and the NFC usually wins the Super Bowl. The correlation is made more 

impressive by the gimmick of counting the Pittsburgh Steelers, an AFC team, as an NFC team 

because Pittsburgh won the Super Bowl several times when the stock market went up. 
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 The irony is that Leonard Koppett, the man who created the Super Bowl Indicator intended it 

to be an amusing demonstration of the fact that correlation is not causation: 

What does all this mean? Absolutely nothing on any rational level—and that’s exactly 

the point. Just because two sets of numbers coincide in some way, don’t leap to the 

conclusion that one set “causes” the other.  (Koppett 1978) 

He was astonished when people took the Super Bowl Indicator seriously: “It’s a joke! I meant the 

whole thing as a satire on the fallibility of human statistical reasoning. It’s too stupid to 

believe.” (Zweig, 2011) Among the credulous were two finance professors who published an 

article in the Journal of Finance arguing that, “although the theoretical relationship connecting 

the Super Bowl and subsequent stock market movements is not obvious,” the statistical 

relationship was highly statistically significant and would have very profitable if followed by 

investors (Krueger and Kennedy 1990). Spoken like true data miners. 

 I was told recently that some otherwise sophisticated investors still believe in the Super Bowl 

Indicator. They are bullish on stocks in 2018 because an NFC team, the Philadelphia Eagles, won 

the Super Bowl. 

 People used to have to work hard to torture data in search of patterns. Now it is far too easy. 

Computer trading algorithms can search for as many patterns in a second as humans can in 

weeks, months, or even years. This is not useful progress. 

Real Intelligence 

 Computers have perfect memories and can input, process, and output enormous amounts of 

information at unfathomable speeds. These features allow computers to do truly superhuman 
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feats: to work tirelessly on assembly lines, solve complicated systems of mathematical equations, 

find detailed directions to bakeries in unfamiliar towns.  

 Computers can tell us the day of the week Abraham Lincoln was born, the capital of 

Bulgaria, and the last time Arsenal won the Premier League. Computers are also relentlessly 

consistent. Asked to calculate the square root of 76,073,284, a computer will give the correct 

answer (8,722) essentially immediately, every time it is asked. Ask any human who is not a math 

freak the same question, and the answer will be slow and unreliable. It is tempting to think that 

computers are smarter than humans because they do some very difficult tasks better than 

humans. 

 Some of the allure of algorithmic trading stems from the success of computer programs 

competing against humans in checkers, chess, Go, and other games. These computer programs 

perform narrowly defined tasks that have clear goals (in chess, checkmate the opponent) 

stunningly, but they don’t mimic human thinking, which involves a creative recognition of the 

underlying principles that lead to victory. Instead, game-playing algorithms are built to exploit a 

computer’s strengths—that computers can make calculations quickly, have an infallible memory, 

and obey rules flawlessly. 

 Despite their freakish, superhuman skill at board games, computer programs do not possess 

anything resembling human wisdom and common sense. These programs do not have the general 

intelligence needed to deal with unfamiliar circumstances, ill-defined situations, vague rules, and 

ambiguous, even contradictory, goals. Deciding whether to accept a job offer, who to marry, or 

which stock to buy is very different from recognizing that moving a bishop three spaces will 

checkmate an opponent—which is why it is perilous to trust computer programs we don’t 
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understand to make decisions for us, no matter how fast they calculate square roots or how well 

they do at board games. 

The Winograd Schema Challenge 

 The Achilles’ heel of black-box trading algorithms is that they do not know, in any 

consequential sense, what words mean; so, they cannot assess whether the patterns they find are 

real or spurious. Computer algorithms data mine spectacularly well, but have no real 

understanding of the results of their data mining. 

 One way to recognize the inadequacies of computer algorithms is to consider the challenges 

identified by Stanford computer science professor Terry Winograd (1972) that have come to be 

known as Winograd schemas. Here is an example from a collection compiled by Davis (2017), a 

computer science professor at New York University: 

I can’t cut that tree down with that axe; it is too [thick/small]. 

If the bracketed word is thick, then it refers to the tree; if the bracketed word is small, then it 

refers to the axe. These kind of sentences, with more than one noun and alternate words that 

identify which noun is being referenced by a pronoun, are understood immediately by humans 

but are very difficult for computers because computers do not have the real-world experience to 

place words in context. 

  When we see a tree, we know it is a tree. We might compare it to other trees and think about 

the similarities and differences between fruit trees and maple trees. We would not be surprised to 

see a squirrel run up a pine tree or a bird fly out of a dogwood tree. We might remember planting 

a tree and watching it grow year by year. We might remember cutting down a tree or watching a 

tree being cut down. 
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 A computer does none of this. For a computer, there is no significant difference between tree, 

tiger, and eg74w, other than the fact that they use different symbols. A computer can spellcheck 

the word tree, count the number of times the word tree is used in a story, and retrieve facts about 

trees, but computers do not understand what trees are in any relevant sense, and do not respond 

to the word tree or a picture of a tree the way humans do. 

 From their life experiences, humans know that it is hard to cut down a tree if the tree is thick 

or the axe is small. Computers struggle because they have no life experiences to recall. They do 

not really know what a tree is, or an axe, or what cutting down means. 

 There is a Winograd Schema Challenge with a $25,000 prize for a computer program that is 

90 percent accurate in interpreting Winograd schemas (Levesque, Davis, and Morgenstern  

2012). In the 2016 competition, the expected value of the score for guessing was 44 percent 

correct (some schemas had more than two possible answers). The highest computer score was 58 

percent correct, the lowest 32 percent, a variation that may have been due more to luck than to 

differences in the competing programs’ abilities. 

 If computers do not know what words mean, they cannot possibly evaluate the plausibility 

of discovered statistical patterns. 

Deep Neural Networks 

 Many computer programs now use deep neural networks (DNNs) that are inspired by the 

neurons in human brains. However, DNNs do not mimic human brains because we have barely 

scratched the surface in trying to figure out how human brains work. DNNs are more 

complicated and sound sexier than earlier algorithms, but they are still just computer programs 

that identify and manipulate patterns. 
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 DNNs have improved language translation, visual recognition, and other tasks, but they are 

still limited by the reality that, unlike human brains, computers do not truly understand words, 

images, life. For example, a language translation program that identifies key words and phrases 

in a sentence, finds matching words and phrases in another language, and puts the matches in a 

grammatically correct order is not reading or writing and it is not trying to convey meaning. That 

is why the results are sometimes perfect and, other times, astonishingly bad (Hofstadter 2018). 

 Similarly, visual-recognition algorithms are very granular, analyzing pixels instead of 

concepts, and the results are very brittle. Putting graffiti on a photograph of a stop sign or even 

changing a few pixels in a picture of a stop sign—alterations that would not be noticed by 

humans—can cause state-of-the-art DNNs to fail miserably (Evtimov, Eykholt, Fernandes, 

Kohno, et al. 2017; Su, Vargas, and Kouichi 2017). Mapping pixels is not the same as knowing 

what a stop sign is. 

 Nguyen, Yosinski, and Clune (2015) demonstrated something even more surprising. In 

addition to making nothing out of something (like a computer not recognizing a stop sign), 

computers can make something out of nothing by misinterpreting meaningless images as real 

objects. For example, state-of-the-art DNNs misidentified a series of black and yellow lines as a 

school bus, completely ignoring the fact that there were no wheels, no door, and no windshield in 

the picture, because computer algorithms do not know in any relevant sense what a school bus is. 

  Sharif, Bhagavatula, Bauer, and Reiter (2016) reported that the state-of-the-art deep neural 

network programs used in facial biometric systems can be fooled by persons wearing colorful 

eyeglass frames. One of the authors, a white male, was misidentified as Milla Jovovich, a white 

female, 88 percent of the time, and another author, a 24-year-old Middle Eastern male, was 
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misidentified as Carson Daly, a 43-year-old white male, 100 percent of the time—all because the 

eyeglass frame colors led the computer program astray. Humans do not make such mistakes 

because we know what eyeglass frames are, and we know that we should look past the frames to 

identify the person we see. Computers know none of this; they just match pixels as best they can. 

A Knowledge Discovery 

 AI stock programs are susceptible to analogous mistakes because the algorithms do not 

understand in any real sense the data that they manipulate and torture. Numbers are just numbers 

and labels are just words. 

 To demonstrate this concretely, I analyzed daily observations on 100 potential explanatory 

variables in 2016 to see if a data-mining algorithm could uncover a simple model for predicting 

the level of the S&P 500 the next day. Considering all 100 possible explanatory variables, I used 

a multiple regression algorithm to estimate 9,900 models with two explanatory variables. 

 It would have taken me many months to estimate the parameters of these 9,900 models using 

a pencil and paper. It took my computer a few seconds. The best of these 9,900 estimated models 

used variables 58 and 94: 

P = 1,640.64+1.83X58 + 3.62X94 

The correlation between the predicted and actual values of the S&P in shown in Figure 1 is an 

impressive and highly statistically significant 0.93. I should evidently let my algorithm buy 

stocks when it predicts an increase in the S&P 500 the next day and sell when it predicts a 

decrease. 
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Figure 1 Some Knowledge Discovery For Stock Prices 

 What are these two predictors for the S&P 500? Suppose that they are the daily high 

temperature in Curtin, Australia, and the daily low temperature in Antelope, Montana. A human 

would know that this is nonsense. An algorithm would not. Humans know what stock prices and 

temperatures are. They know U. S. stocks are not made more or less valuable by the high or low 

temperatures in these two small cities, one of which is in Australia. An algorithm would not 

know this, because a computer cannot comprehend what these data are. 

 A computer does not know what a stock is. It could retrieve a definition of stock, though it 

might be a different kind of stock; perhaps merchandise, animals, or bouillon. Even if the 

computer program found the correct definition of stock, it would not know what the words in the 

definition mean, though it could retrieve definitions of these words, too, and then definitions of 

the words in those definitions. Beyond retrieving definitions, a computer does not know, in any 

real sense, what a stock is, what a stock price is, or why stock prices go up and down. Nor does it 

1800

1900

2000

2100

2200

2300

2400

2016 2017

S&
P5
00

actual

fitted



!13

know what the high and low temperatures in Curtin and Omak are or whether they might 

plausibly be related to U. S. stock prices. 

 A computer search for the words stock prices and Australian temperatures is unlikely to turn 

up anything that the computer would interpret as supporting or contradicting the statistical 

pattern it discovered, and, if it did find anything, the computer would be hard-pressed to assess 

the reliability of what it found. In addition, the whole claim of “knowledge discovery” is that 

computers will discover new, previously unknown patterns and relationships. By definition, a 

knowledge discovery is not something that has already been reported. How can a computer 

program that does not understand words tell whether its knowledge discovery makes sense? It 

cannot. 

 This trading model was selected after estimating 9,900 models with 2016 data and 

identifying the most accurate model. Because it was based on data, rather than logic, we 

shouldn’t expect it to work very well in predicting stock prices in 2017. Figure 2 shows that the 

accuracy in 2017 is –0.54. Yes, that is a negative sign. When the model predicted an uptick or 

downtick in stock prices, the opposite was likely to occur. 
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Figure 2 Coincidence, not Knowledge 

 What happened? How can a model work so well one year and so badly the next? That is the 

inescapable nature of data mining. Choosing a model simply because it fits a particular set of 

data closely virtually guarantees that it won’t do nearly as well with fresh data. For a model to 

work with fresh data, it needs a theoretical foundation. It has to make sense. Correlation does not 

supersede causation. 

 It might be tempting to think that perhaps this discovered statistical relationship between 

stock prices and temperatures in these two cities is real—that my algorithm discovered a 

previously unknown relationship. Anticipating such a temptation, I did not actually use daily 

temperatures or any other real variables. Each of the 100 candidate explanatory variables was a 

randomly generated variable that—because it random—is guaranteed to have no systematic 

relationship to the S&P 500. By chance alone, variables 58 and 94 happened to be statistically 

correlated with the S&P 500, The algorithm predicted stock prices based on data that have 

1800

2000

2200

2400

2600

2800

2016 2017 2018

S&
P5
00

actual

fitted

in-sample out-of-sample



!15

nothing at all to do with stock prices, but happened to have been temporarily correlated with 

them during the in-sample estimation period. 

 That is the point. Even though all the data were generated randomly and have nothing 

whatsoever to do with stock prices, my data-mining algorithm found some variables that were 

fortuitously correlated with the S&P 500. The trading rule uncovered by my data mining 

algorithm was not knowledge discovery. It was coincidence discovery. 

 The data analyzed by a trading algorithm might include some variables that really do matter; 

however, when an algorithm ransacks data looking for statistical relationships, the more 

variables it considers, the more likely it is that the variables it chooses are coincidental rather 

than causal (Calude and Longo 2016). 

Out-of-Sample Validation 

 Since a data-mined model’s weaknesses can be exposed by the deterioration of the model’s 

fit using fresh data, it is reasonable to hold out part of the available data for testing after the 

algorithm has identified a promising trading model. Data-mine part of the data for knowledge 

discovery and then validate the results by testing the discovered model with data that were set 

aside for this purpose (Mayers and Forgy 1963; Mark and Goldberg 2001). 

 It is always a good idea to test a model with fresh data. However, choosing a data-mined 

model via a repetitive cycle of in-sample estimation and out-of-sample testing does not ensure 

that a useful model will be chosen. Just as some models are certain to fit the in-sample data by 

luck alone, so some models are certain to fit both the in-sample and out-of-sample data. 

Uncovering a model that fits all the data is just another form of data mining, and doesn’t solve 

the fundamental problem, which is that models chosen to fit the data, either part of the data or all 
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of the data, cannot be expected to fit new data nearly as well. 

 To illustrate this point, Figure 3 shows the in-sample and out-of-sample fits for all 9,900 

models that use 2 of the 100 randomly generated variables. For the 2016 data used to estimate 

the models, the correlation between the predicted and actual values cannot be less than zero, 

because the best-fit model can always ignore the word variables completely and have a 

correlation of zero. The average correlation for the in-sample models was 0.73. 

!  

Figure 3 All 9,900 In-Sample and Out-of-Sample Correlations 

 For the 2017 out-of-sample data that were set aside to test the models, the correlation is 

equally likely to be positive or negative because the words are, after all, random numbers that 

have nothing at all to do with stock prices. We expect the average correlation to be close to zero. 

For these particular data, the average out-of-sample correlation happened to be 0.02. 
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 Nonetheless, some out-of-sample correlations were, by chance, strongly positive and others 

were strongly negative. Figure 3 shows that several models fit the in-sample data well and also 

do well out-of-sample, sometimes even better than in-sample. That is the nature of chance, and 

these are chance variables. 

 In-sample, where the models are fit to the data, 129 models have a correlation above 0.90. 

Out-of-sample, where the models are accurate only by chance, six of the models with 

correlations above 0.090 in-sample have even higher correlations out-of-sample. These six 

models pass the validation test with flying colors even though it was pure luck. They are still 

useless for predicting stock prices. If we didn't know better, we might think that we discovered 

something important. But, of course, we didn’t. All we really discovered is that it is always 

possible to find models that do well in-sample and out-of-sample, even if the data are just 

random noise. 

 Models should be tested with set-aside data, but set-aside data are not a cure for energetic 

data-miners. A trading algorithm would have no trouble finding a model that performs almost as 

well (or even better) out-of-sample as in-sample, even though the variable being predicted is 

only coincidentally related to the explanatory variables. A trading algorithm cannot evaluate the 

plausibility of a discovered pattern because it does not understand in any meaningful sense what 

the data are and whether they might reasonably be related to stock prices.  

Conclusion 

 Black-box trading algorithms are appealing because computers do so many things so well. 

However, the inarguable fact that computers do many difficult things much better than humans 

does not mean that computers are better investors. When it comes to investing, computers are 
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much more efficient than humans at using data-mining to discover patterns, but completely 

incapable of gauging whether the unearthed patterns are potentially useful, or are merely 

coincidental and therefore fleeting and useless. Only humans can make that assessment. 

 If a trading algorithm is hidden inside a black box, then no one—neither computers or 

humans—can tell if a discovered patterns is useful or useless. Precluding human judgment is a 

flaw, not a feature.  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