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The Principal Problem with Principal Components Regression 

 Heidi Artigue Gary Smith 

 Pomona College  Pomona College 

Abstract 

Principal components regression (PCR) reduces a large number of explanatory 

variables down to a small number of principal components. PCR is thought to 

be more useful, the more numerous the potential explanatory variables. The 

reality is that a large number of candidate explanatory variables does not make 

PCR more valuable; instead, it magnifies the failings of PCR. 
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The Principal Problem with Principal Components Regression 

 Pearson (1901) and Hotelling (1933, 1936) independently developed principal component 

analysis, a statistical procedure that creates an orthogonal set of linear combinations of the 

variables in an n x m data set X via a singular value decomposition, 

X = U𝛴V' 

where U is an n x m matrix with orthonormal columns, 𝛴 is an m x m diagonal matrix with the 

ordered singular values, and V is an m x m orthonormal matrix. The non-negative eigenvalues of 

X'X are the squared diagonal elements of 𝛴, the eigenvectors of X'X are the columns of V, and the 

principal components of X are given by XV. 

 Hotelling (1957) and Kendall (1957) recommended replacing the original explanatory 

variables in a multiple regression model with their principal components. This replacement 

evolved into a recommendation by several prominent statisticians that components with small 

variances can be safely omitted from a regression model (Hocking 1976, Mansfield, Webster, 

and Gunst 1977, and Mosteller and Tukey 1977). Thus, principal components regression (PCR) 

discards the eigenvectors that have the smallest eigenvalues, in contrast to other procedures like 

surrogate regression (Jensen and Ramirez 2010) and raise regression (Garcia, Garcia, and Soto 

2011) that increase the magnitude of the small eigenvalues. 

 PCR enthusiasts evidently believe that components with small variances are of little use in 

predicting variations in the dependent variable. Mansfield, Webster, and Gunst explicitly state 

that, “The small magnitude of the latent root indicates that the data contain very little information 

on the predictiveness of those linear combinations (page 38)”. Mosteller and Tukey argued that, 

A malicious person who knew our x’s and our plan for them could always invent a y to 
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make our choices look horrible. But we don’t believe nature works that way—more 

nearly that nature is, as Einstein put it (in German), “tricky, but not downright 

mean.” (pp. 397-398) 

 Hadi and Ling (1998) show by theory and example that PCR may discard a principal 

component that is perfectly correlated with the variable being predicted, while retaining 

components that are completely uncorrelated with the dependent variable. Our point is more 

general. The principal problem with principal components regression is that it imposes 

constraints on the coefficients of the underlying independent variables that have nothing 

whatsoever to do with how these variables affect the dependent variable in the regression model. 

 Hadi and Ling note that PCR advocates argue that, “Because the PCs . . . are orthogonal, the 

problem of multicollinearity disappears completely, and no matter how many PCs are actually 

used, the regression equation will always contain all of the variables in X (because each PC is a 

linear combination of the variables in X.” The problem we highlight is that, while all of the 

original explanatory variables may be retained, their estimated coefficients are distorted by PCR 

in ways that diminish the accuracy of the model when it used to make predictions with fresh 

data. 

 Principal components regression (PCR) is now commonplace. A principal components 

transformation of the original explanatory variables is used to create a set of orthogonal 

eigenvectors, with the corresponding eigenvalues representing the fraction of the variance in the 

original data that is captured by each eigenvector. The principal components selected for the 

multiple regression model are then based on a rule such as the largest eigenvalues that capture at 

least 80 percent of the total variance. A few examples from a wide variety of fields are Cowe and 
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McNicol (1985), Stock and Watson (2002), Price, Patterson, Plenge, Weinblatt, Shadick, and 

Reich (2006), Dray (2008), Sanguansat (2012), Sainani (2014), Qi and Roe (2015), and 

Sabharwal and Anjum (2016). 

 Some argue that PCR solves the multicollinearity problem created by high correlations 

among the original explanatory variables; for example, Kudyba (2014), Alibuhtto and Peiris 

(2015). However, a transformation that retains all the principal components doesn’t affect the 

implicit estimated values or standard errors of the coefficients of the original variables or the 

predicted values of the dependent variable. The regression model is affected if some of the 

principal components are omitted, but, as will be illustrated later, this is because restrictions with 

no theoretical basis are imposed on the original parameters. 

 More recently, PCR has become popular in exploratory data analysis where there is a 

dauntingly large number of candidate explanatory variables and the researcher wants to let the 

data determine the final model; for example, Sakr and Gaber (2014), Taylor and Tibshirani 

(2015), Jolliffe and Cadima (2016), Verhoef, Kooge, and Walk (2016), George, Osinga, Lavie, 

and Scott (2016), Chen, Zhang, Petersen, and Müller (2017). 

 Among others, Gimenez and Giusanni (2017) emphasize that it is difficult to interpret the 

coefficients of the principal components because they are weighted averages of the coefficients 

of the underlying explanatory variables. Others criticize PCR for its linearity and propose a 

variety of nonlinear weighting schemes; for example, Liu, Li, McAfee, and Deng (2012), Deng, 

Tian, and Chen (2013), Yuan et al. (2015), Bitetto, Mangone, Mining, and Giannossa (2016), and 

Yu and Khan (2017). 

 These issues are not the most serious problem with principal components regression. The 
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eigenvector weights depend solely on the correlations among the explanatory variables, with no 

regard for the dependent variable that the model will be used to predict. As a consequence, PCR 

may constrain the coefficients of the original explanatory variables in ways that cause the model 

to fare poorly with fresh data. Specifically, the constraints that the eigenvector weights impose 

on the implicit estimates may cause the estimated coefficients of nuisance variables to be large, 

while the estimated coefficients of important explanatory variables may be very small or have 

the wrong sign. 

 The Appendix uses a very simple model to provide a detailed example of the practice and 

pitfalls of principal components regression. We also use a Monte Carlo simulation model to 

demonstrate how this core problem with principal components regression is exacerbated in large 

data sets. 

A Simulation Model 

 All the explanatory variables in our Monte Carlo simulations were generated independently 

in order to focus on the fact that a principal components analysis might be fooled by purely 

coincidental, temporary correlations among the candidate explanatory variables, some of which 

are nuisance variables that are independent of the true explanatory variables and of the variable 

being predicted, and might be useless, or worse, out-of-sample. 

 Two hundred observations for each candidate explanatory variable were determined by a 

Gaussian random walk process: 

        𝜀 ~ N[0, 𝜎x] (1) 

where the initial value of each explanatory variable was zero, and 𝜀 was normally distributed 

with mean 0 and standard deviation 𝜎x. The central question is how effective principal 

Xi,t = Xi,t−1 + ε i,t
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components regression is at estimating models that can be used to make reliable predictions with 

fresh data. So, in each simulation, 100 observations were used to estimate the model’s 

coefficients, and the remaining 100 observations were used to test the model’s reliability.  

 All of the data were centered by subtracting the sample means. The in-sample data were 

centered on the in-sample means and the out-of-sample data were centered on the out-of-sample 

means so that the out-of-sample predictions would not be inflated if the in-sample and out-of-

sample means differed. 

 Five randomly selected explanatory variables (the true variables) were used to determine the 

values of a dependent variable 

 ,                  𝜐 ~ N[0, 𝜎y] (2) 

where the value of each 𝛽 coefficient was randomly determined from a uniform distribution 

ranging from 2 to 4, and 𝜐 is normally distributed with mean 0 and standard deviation 𝜎y. The 

range 0 to 2 was excluded because the real variables presumably have substantial effects on the 

dependent variable. Negative values were excluded so that we can compare the average value of 

the estimated coefficients to the true values. The other candidate variables are nuisance variables 

that have no effect on Y, but might be coincidentally correlated with Y. 

 A principal components analysis was applied to the in-sample data to determine the 

eigenvalues, eigenvectors, and principal components. The multiple regression model was 

estimated by using the principal components associated with the largest eigenvalues such that at 

least 80 percent of the variation in the explanatory variables is explained by these components. 

 Our base case was 𝜎x = 5, 𝜎y = 20, and 100 candidate variables, but we also considered all 

Yt = βi Xi ,t
i=1

5

∑ +νt
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combinations of 𝜎x = 5, 10, or 20; 𝜎y = 10, 20, or 30; and 10, 50, 100, 500, or 1000 candidate 

variables. One million simulations were done for each parameterization of the model. 

Results 

 The number of principal components included in a multiple regression equation is not 

affected by the standard deviation of Y since the eigenvalues do not depend on Y, just the 

correlations among the candidate explanatory variables. For the same reason, the number of 

included principal components does not depend on whether the candidate variables truly affect 

the dependent variable or are merely nuisance variables. 

 In our simulations, it also turned out that the assumed standard deviation of the explanatory 

variable hardly mattered either, at least for the range of values considered here; so, we only 

report the results for our base case of 𝜎x = 5 and 𝜎y = 20. 

 With 100 candidate variables, the average PCR equation had 3.01 principal components. 

Table 1 shows that the average number of components retained increased with the number of 

candidate variables. 

 We used the estimated coefficients of the principal components included in the multiple 

regression model to calculate the implicit estimates of the coefficients of the five real variables 

and each of the nuisance variables. The expected value of the coefficient of each of the five real 

variables is 3.0; the true coefficient of each nuisance variable is 0. 

 Table 1 shows that the average value of the implicit estimated coefficients of the nuisance 

variables was close to zero, while the average value of the implicit estimates of the coefficients 

of the true explanatory variables was substantially less than 3 and approached zero as the number 

of candidate variables increased. This reflects our earlier comment that the construction of 
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principal components using eigenvector weights imposes unwelcome constraints on the 

estimated coefficients of the explanatory variables. As the number of candidate variables 

increases, they become essentially indistinguishable, with estimates that average near zero and 

consequently do not capture the importance of the real explanatory variables that determine the 

dependent variable. As the coefficient estimates become essentially noisy, the model becomes 

less useful for making predictions. 

 Table 2 uses three metrics to compare the in-sample and out-of-sample prediction errors. The 

first is the simple correlation between the actual and predicted value of the dependent variable. 

The second metric is the mean absolute error (MAE) 

 !  (3) 

The third metric is the root mean square error (RMSE): 

 !  (4) 

 The first row, “5M” in Table 2, is a baseline, using multiple regression estimates with the five 

true explanatory variables. The other estimates use the principal components with the largest 

eigenvalues. The principal components models consistently performed far worse out-of-sample 

than in-sample. As the number of candidate variables increased, the in-sample fit worsened 

somewhat, while the out-of-sample fit deteriorated substantially. 

 The results are robust with respect to the number of observations. An increase in the number 

of observations improves the precision of the estimated coefficients of the principal components, 

but does materially affect the results, because the flaw in PCR is that correlations among the 

MAE =
Ŷ −Y

t=1

n

∑
n

RMSE =
Ŷ −Y( )2

t=1

n

∑
n
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explanatory variables are used to constrain the implicit estimates of the model’s original 

coefficients and, on average, these correlations are not affected by an increase in the number of 

observations. For example, with 𝜎x = 5, 𝜎y = 20, and 100 candidate variables, 100,000 

simulations with 1,000 observations gave results that were essentially the same as in the case of 

100 observations: 2.989 versus 3.00 average number of included components; 0.0951 versus 

0.091 average estimated coefficients of the true variables; 0.0001407 versus 0.00004 average 

estimated coefficients of the nuisance variables; and 0.8432 versus 0.819 in-sample and 0.1423 

versus 0.144 out-of-sample average correlations between the predicted and actual values of the 

dependent variable. 

 The conclusions are also little affected by in-sample correlations among the explanatory 

variables. We focused on independent candidate variables because we wanted to emphasize the 

reality that PCR will often give large weights to nuisance explanatory variables even if they are 

independent of the true explanatory variables. For comparison, we also considered the case of 

candidate variables with 0.9 pairwise correlations. Table 3 shows the results for the base case of 

200 observations (half in-sample and half out-of-sample) and 100 candidate variables. If the 

candidate variables happen to be highly correlated in-sample, but uncorrelated out-of-sample, 

PCR tended to choose fewer components (an average of 1.40 versus 3.00), have roughly equal 

small coefficients for all the variables, and have a better fit in-sample with an equally poor fit 

out-of-sample. The weaknesses of PCR evidently do not hinge on the in-sample correlations 

among the explanatory variables. 

 On the other hand, Table 3 also shows that PCR did relatively well if the explanatory 

variables happen to be highly correlated both in-sample and out-of-sample. In the first two 
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scenarios shown in Table 3, the independence of the explanatory variables out-of-sample 

exposed the PCR pitfall of putting inappropriate weights on the explanatory variables. If the 

explanatory variables happen to continue to be highly correlated out-of-sample, then these 

inappropriate weights are not as costly because it doesn’t matter as much whether the estimation 

procedure can distinguish between true variables and nuisance variables. 

Conclusion 

 The promise of principal components regression is that it is an efficient way of selecting a 

relatively small number of explanatory variables from a vast array of possibilities, based on the 

correlations among the explanatory variables. The problem in that the eigenvector weights on the 

candidate variables have nothing to do with their relationship to the variable being predicted. 

Mildly important variables may be given larger weights than important variables. Nuisance 

variables may be given larger weights than the true explanatory variables. The coefficients of the 

true explanatory variables may be given the wrongs signs. 

 It might be thought that the larger the number of possible explanatory variables, the more 

useful is the data reduction provided by principal components. The reality is that principal 

components regression is less effective and more likely to be misleading, the larger is the number 

of potential explanatory variables.  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Appendix A Principal Components Regression Example 

 Equations 1 and 2 were used to generate twenty observations for four explanatory variables, 

of which two variables, X1 and X2, were used with randomly determined coefficients (3.092 and 

3.561, respectively) to determine the values of the dependent variable Y. The other two 

explanatory variables, X3 and X4, were nuisance variables. To keep the standard errors 

comparable to the main paper, we used 𝜎x = 5 and 𝜎y = 5. The first ten observations were used 

for the in-sample statistical analysis, with the ten remaining observations reserved for an out-of-

sample test of the model. These data are shown in Table A1. 

 The eigenvectors and eigenvalues for the four explanatory variables are shown in Table A2. 

The sum of the eigenvalues is 1,778.42, with the first and second eigenvalues a fraction 0.601 

and 0.287 of the total, respectively. Using the 0.80 rule, the two principal components 

corresponding to these eigenvalues were used in the multiple regression equation. 

 The first two principal components are 

 PC1 = 0.7536X1 – 0.4429X2 + 0.2586X3 + 0.4112X4 (1) 

 PC2 = – 0.5423X1 – 0.0320X2 + 0.6124X3 + 0.5743X4 (2) 

 The absolute values of the weights were larger for the first explanatory variable than for the 

second, even though the true coefficient of the second variable was larger than the true 

coefficient of the first variable (3.092 versus 3.561). The weights given the two nuisance 

variables were comparable to the weights given the real variables. Notice also, that in the first 

principal component, the weights for the first and second explanatory variables have opposite 

signs, even though their true coefficients have the same sign. The inescapable problem is that the 

principal component weights are derived from the correlations among the explanatory variables 
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with no concern for how the dependent variable is related to the explanatory variables. 

 If we had used only the first component in our regression model, the implicit coefficients of 

X1 and X2 would necessarily have had opposite signs (one would have an incorrect sign) and the 

implicit coefficients of the nuisance variables would be substantial. Matters are more 

complicated when more than one principal component is included in the multiple regression 

equation, but it remains true that the implicit estimates of the coefficients of the original 

explanatory variables are constrained by the principal component weights—which depend on the 

correlations among the explanatory variables rather than their effects on the dependent variable. 

 The matrix multiplication of the original data by the eigenvector weights gives the principal 

components shown in Table A3. Using the 0.80 rule, a multiple regression using the first two 

principal components gave these estimates, with the standard errors shown in parentheses 

 !  (3) 

 The substitution of Equations 1 and 2 into the multiple regression Equation 3 gives the 

implicit estimates of the coefficients of the original explanatory variables shown in Table A4. 

The coefficient of X2, the variable with the largest true coefficient, has the wrong sign, and the 

coefficient of two nuisance variables are substantial. 

 Equation 3 was used to make out-of-sample predictions for observations 11 through 20. Table 

A5 shows that the out-of-sample prediction errors were much larger than the in-sample errors, no 

doubt because the model’s estimated coefficients were so inaccurate. For comparison, a naive 

model that completely ignores the explanatory variables and simply predicts that Y will equal its 

average value (0) has a MAE of 31.30 and a RMSE of 36.15. The principal components 

Y = 0.000 + 0.777PC1 − 2.028PC2
(6.399) (0.619) (0.895)
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regression model was somewhat worse than useless for making predictions.  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Table A1 Original Data 

 observation Y X1 X2 X3 X4 

 1  –19.760 5.134  –10.697 8.379 10.619 

 2 24.903 6.741 1.246 7.035 10.937 

 3  –13.865 1.782  –4.638 3.937 3.488 

 4  –11.974  –2.652 0.713 0.849 1.836 

 5  –23.935  –9.772 2.985 3.411  –2.995 

 6  –28.906  –14.161 4.479  –1.394  –6.317 

 7  –8.628  –8.842 4.113  –6.448  –5.164 

 8 40.070 0.030 10.750  –5.308  –1.883 

 9 8.939 4.444  –3.188  –6.411  –6.080 

 10 33.155 17.297  –5.764  –4.050  –4.440 

 11 16.855  –2.358 6.622 0.342 14.457 

 12 32.368 4.027 4.537 2.522 9.209 

 13 57.864 6.049 10.789 4.635 4.640 

 14 49.416 1.800 12.446 1.011 1.777 

 15  –2.782 3.933  –1.563  –1.395 2.848 

 16  –16.983  –1.153  –4.771 1.514  –4.049 

 17  –24.526 3.101  –9.064  –0.149 0.582 

 18  –29.090  –2.512  –6.998 0.481  –2.160 

 19  –22.178  –4.184  –2.512  –3.523  –11.667 

 20  –60.943  –8.703  –9.485  –5.439  –15.637 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Table A2 The Eigenvalues and Eigenvectors 

                              Eigenvectors                              

 Eigenvalues  E1 E2 E3 E4  

 1068.35 0.7536 –0.5423 0.3126 0.2006 

 511.1 –0.4429 –0.032 0.867 0.2261 

 174.99 0.2586 0.6124  –0.0398 0.746 

 23.98 0.4112 0.5743 0.3859 –0.5934 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Table A3 Principal Components 

 observation Y PC1 PC2 PC3 PC4 

 2 24.903 10.844 6.894 7.129 0.392 

 3 –13.865 5.849 3.597  –2.274 0.176 

 4 –11.974 –1.340 2.990 0.464 –0.826 

 5 –23.935 –9.036 5.572 –1.759 3.037 

 6 –28.906 –15.613 3.055 –2.926 0.881 

 7 –8.628 –12.276  –2.251 –0.934 –2.590 

 8 40.070  –6.885  –4.693 8.814 –0.406 

 9 8.939 0.603  –9.726 –3.466 –1.003 

 10 33.155 12.715  –14.226 –1.143 1.779 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Table A4 True and Estimated Coefficients 

 Explanatory Variable True Coefficient Estimated Coefficient 

 X1 3.093 1.686 

 X2 3.561 –0.279 

 X3 0 –1.041 

 X4 0 –0.845 
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Table A5 Prediction Errors 

     Mean Correlation       Mean Absolute Error   Root Mean Square Error 

  In-Sample Out-Sample  In-Sample Out-Sample  In-Sample Out-Sample  

  0.700 –0.542 13.27 36.87 16.93 40.73 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Table 1 Average Number of Principal Components and Estimated Coefficients 𝜎x = 5, 𝜎y = 20 

 Number of Average Number of    Average Estimated Coefficient    

 Candidate Variables Included Components True Variables Nuisance Variables 

 5 2.04 1.224 N/A 

 10 2.44 0.733  –0.00019 

 50 2.95 0.177 0.00005 

 100 3.00 0.091 0.00004 

 500 3.01 0.018 0.000009 

 1,000 3.02 0.009 0.0000004 
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Table 2 In-Sample and Out-of-Sample Prediction Errors, 𝜎x = 5, 𝜎y = 20 

     Mean Correlation       Mean Absolute Error   Root Mean Square Error 

 Candidates In-Sample Out-Sample  In-Sample Out-Sample  In-Sample Out-Sample  

 5M 0.983 0.980 15.47 17.47 19.34 21.79 

 5 0.835 0.542 41.29 81.51 51.14 97.42 

 10  0.825 0.410 44.95 94.08 55.69 112.33 

 50 0.820 0.200 47.51 105.44 58.83 125.78 

 100 0.819 0.144 47.66 106.37 59.01 126.96 

 500 0.818 0.061 48.42 108.76 59.91 129.70 

 1000 0.817 0.047 48.94 110.77 60.69 132.62 

5M: multiple regression with five true variables; the other estimates use principal components  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Table 3 One Hundred Highly Correlated Candidate Variables, 𝜎x = 5, 𝜎y = 20 

 Correlation Among Candidate Variables 
 ————————————————————- 
 None In-Sample Only In- and Out-of-Sample 

Average Number of Included Components 3.00 1.43 1.43 

Average Estimated Coefficient 

 True Variables 0.091 0.158 0.158 

 Nuisance Variables 0.00004 0.142 0.142 

Mean Correlation 

 In-Sample 0.819 0.981 0.981 

 Out-of-Sample  0.144 0.198 0.972 

Mean Absolute Error  

 In-Sample 47.66 33.41 33.41 

 Out-of-Sample  106.37 105.88 50.65 

Root Mean Square Error 

 In-Sample 59.01 41.27 41.27 

 Out-of-Sample  126.96 126.33 60.89 
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