

A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO₂ into Value-Added Products

Rafael Estevez ^(D), Laura Aguado-Deblas ^(D), Felipa M. Bautista ^(D), Francisco J. López-Tenllado, Antonio A. Romero ^(D) and Diego Luna *

Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, 14014 Córdoba, Spain

* Correspondence: diego.luna@uco.es; Tel.: +34-957212065

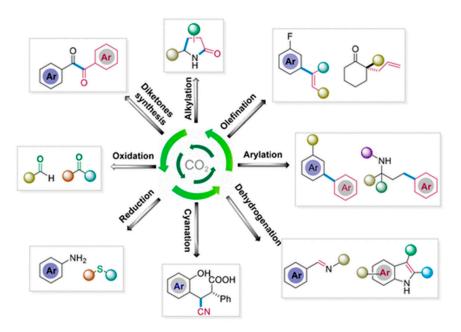
Abstract: The catalytic hydrogenation of captured CO_2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO_2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H₂ and captured CO_2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO_2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO_2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.

Keywords: CO₂ hydrogenation; power-to-gas; power-to-liquid; green methanol; methanation reaction; Fischer-Tropsch process; E-fuels; synthetic fuels

1. Introduction

Nowadays, there is a serious concern about the danger caused by the high GHG (greenhouse gas emissions) produced by our way of life, and in particular by the anthropogenic emissions of carbon dioxide (CO_2) . Thus, if current trends continue, the planets temperature could rise dangerously, accelerating the climate change and resulting in an increase in the level of the oceans and their acidification. This scenario is already having a very negative impact on the ecosystems of the planet, as well as having a deep negative influence on the economic and social development of many countries all over the world [1]. To reduce the impact of this atmospheric pollutant, an important effort is being made, embodied in different international treaties, to carry out the substitution of fossil fuels with different renewable energy sources [2]. Considering that CO₂ alone accounts for around 77% of total greenhouse gases and that natural removal of CO_2 through forests and oceans is not enough to remove the excessive amount of CO₂ present in the atmosphere, other CO_2 mitigation strategies are required. Thus, in addition to renewable energies such as hydropower, wind, and solar energy, which are being considered as alternatives for fossil fuel mitigation, the use of various technologies for the Carbon Capture and Storage (CCS) of CO₂ [3], as well as its subsequent transformation into useful chemicals [4], is being considered, because CO_2 is a nontoxic chemical that is widely used as a C1 building block in the synthesis of highly important chemicals (Figure 1) [5,6].

Citation: Estevez, R.; Aguado-Deblas, L.; Bautista, F.M.; López-Tenllado, F.J.; Romero, A.A.; Luna, D. A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO₂ into Value-Added Products. *Catalysts* **2022**, *12*, 1555. https://doi.org/ 10.3390/catal12121555


Academic Editors: Mónica Viciano, Sergio Sopeña de Frutos and Carolina Blanco

Received: 26 October 2022 Accepted: 25 November 2022 Published: 1 December 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

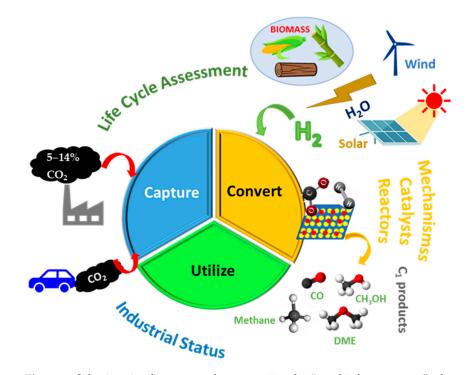

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Figure 1. CO₂-Promoted Reactions for the Synthesis of Fine Chemicals and Pharmaceuticals. Reproduced with permission from the author [6]. Copyright © 2021, American Chemical Society.

In addition, CO₂ is being used not only in chemical transformation but also in mineralization and biological processes, such as those of an autotrophic biota and some microorganisms such as algae, cyanobacteria, and chemoautotrophic bacteria that have CO₂ fixing mechanisms [7], following routes such as thermochemical, electrochemical, and photocatalytic conversion, with different levels of maturity and performance [8,9].

Hence, catalytic conversion of CO_2 into chemicals and fuels is a "two birds, one stone" approach to fighting climate change, contributing also to solving the energy and green supply deficits in the modern world, as shown in Figure 2 [10].

Figure 2. Selective circular process demonstrating the "two birds, one stone" advantage of chemical transformation of captured CO_2 into fuels or chemical commodities over other technologies for simple capture and storage.

In this way, as a complementary strategy to the capture and storage of CO_2 , it is also necessary to consider the capture, storage, and utilization (CCS/U) of CO_2 as a feedstock for the synthesis of different fine chemical products, such as urea, methanol, formic acid, dimethyl ether, dimethyl or diethyl carbonates, and many others [5,11–13].

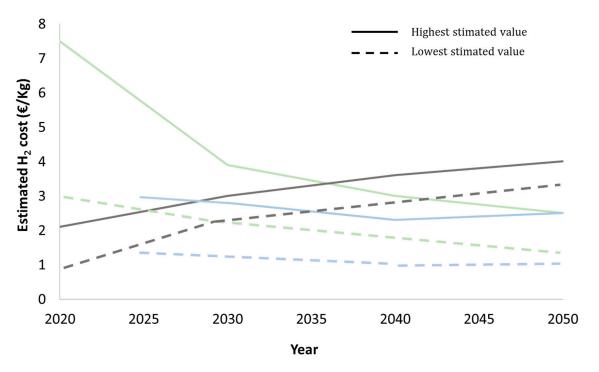

Therefore, it is completely pertinent to evaluate the technical possibilities to hydrogenate the CO_2 after its capture as one of the most promising ways to transform it into fine chemicals or biofuels. According to data in Table 1, considering blue hydrogen's low emissions level, blue and green hydrogen could be used together to begin the transition to net zero emissions, which is planned for 2050. As can be seen, the blue hydrogen could constitute an intermediate for use in the CO_2 hydrogenation processes, also considering that, at this time, the European Union Commission has labeled as sustainable some energy raw materials, such as nuclear and natural gas [14].

Table 1. A comparative summary of hydrogen production processes and hydrogen color codes.

Hydrogen	Brown	Grey	Blue	Green
Feedstock	Coal	Natural Gas	Natural Gas	Renewable electricity
Carbon Capture	Gasification No CCS	Steam methane reforming No CCS	Advanced gas reforming CCS	Electrolysis
GHG: Emissions (tonCO ₂ /tonH ₂)	Highest 19	High emissions 11	Low emissions 0.2	Potential for zero GHG emissions
Estimated Cost (per kg H ₂)	\$1.2-\$2.1	\$1-\$2.1	\$1.5-\$2.9	\$3–\$7.5

CCS: carbon capture and storage; GHG: greenhouse gas; tCO₂/tH₂—ton of carbon dioxide per ton of hydrogen.

In addition, it must be taken into account that the production costs of both types of hydrogen will continue to decline over the next few decades, favoring the CCS/U process, as can be seen in Figure 3 [15].

Figure 3. A comparative summary of estimated hydrogen production costs in the next two decades. (Green lines: green hydrogen; blue lines: blue hydrogen; grey lines: grey hydrogen).

Furthermore, it is necessary to consider the necessary complementarity between both types of hydrogen over a long period of time to guarantee a stable supply of this raw

material over time for any CO_2 hydrogenation process carried out on an industrial scale. Besides, green hydrogen is greatly influenced by climatic factors, mainly wind intensity and solar radiation, so a supply of hydrogen obtained by a technology controlled by a safe raw material, such as natural gas, that generates very low CO_2 emissions is foreseeable [16].

On the other hand, the massive production of electricity, obtained by renewable technologies, can be used as another strategy that could complement the decarbonization process. However, this requires an effective and economically viable method that allows its storage, given the extreme dependence of these technologies on the climate. In this sense, the transformation of CO₂ and water by either power-to-liquids (P2L) and/or power-to-gas (P2G) processes, employing this Renew Energy, has recently gained much attention as an efficient way for CO₂ mitigation and obtaining value-added synthetic crude and/or synthetic natural gas [17]. Hence, combining the use of CO_2 and renewable H_2 , obtained by water electrolysis, to produce chemicals and biofuels seems to be the most promising way for a larger H_2 utilization as an energy vector, providing, for instance, methane or methanol, as well as other light oxygenated hydrocarbons for fuel cell (FC) applications in electric engines [18]. In this way, a closed loop between Renew Energy sources and CO_2 reuse can be obtained, coupled with the benefits of clean energy sources and fossil fuels. The main drawback of these processes is that they are not economically competitive yet in comparison with processes carried out with conventional hydrogen (blue or gray), which is obtained from fossil fuels, with the consequent CO_2 emissions [19,20].

Up to date, there are still several applications more economically described for CO_2 capture and utilization than catalytic hydrogenation processes, such as methane recovery from hydrates [21], the production of biofuel and biomaterials by bacteria for the production of value-added products such as biodiesel, bioplastics, extracellular polymeric substances, biosurfactants, and other related biomaterials [22], or CO_2 utilization in agricultural greenhouses. However, the CCS methods are recognized as the most useful procedures to reduce CO_2 emissions while using fossil fuels in power generation [23]. Furthermore, the economic cost of producing green hydrogen is expected to fall rapidly, allowing the activation of various catalytic hydrogenation procedures on an industrial scale capable of significantly reducing GHG emissions. Thus, several studies are being conducted to develop innovative hydrogen generation systems by using low-carbon energy like wind and solar, which could enable the wide use, effective storage, and full market penetration of green hydrogen [24].

In this regard, either natural gas steam-methane reforming (SMR) or blue hydrogen could be considered a viable partner for accelerating hydrogen penetration in CO₂ capture, storage, and utilization (CCSU) [25].

Thus, catalytic hydrogenation processes close the cycle that allows the recovery of green hydrogen, obtained in very different amounts depending on seasonal fluctuations in renewable energy production. In addition, through these catalytic hydrogenation processes, a portfolio of useful chemicals and renewable fuels can be obtained, such as methane, methanol, ethanol [26], cyclic carbonates [27,28], or higher hydrocarbons such as aromatics [29,30], etc. Figure 4 [31].

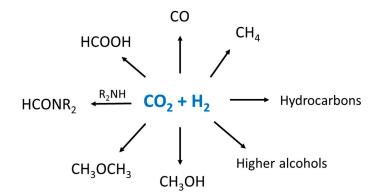


Figure 4. Catalytic CO₂ hydrogenation pathways to obtain fine chemicals and renewable fuels.

Among these processes, methanol obtained by hydrogenation of CO_2 using electrocatalytically generated green hydrogen presents a great interest for the development of a complete strategy for the application of renewable energies since it can be used to convert and store the excess of electrical energy into chemical energy, contributing to smooth the natural fluctuation in the Renew Energy supply [32].

In fact, as can be seen in Figure 5, about 48% of the total methanol demand is for chemical intermediate uses, whereas the remaining 52% is for energy uses. The predominant use of methanol, at 29%, is in the production of formaldehyde, followed by its use in alternative fuels, such as gasoline blending, DME, and biodiesel, which make up 21% of the total demand.

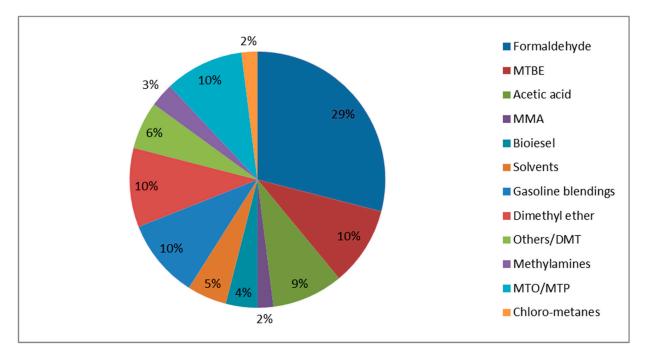


Figure 5. Currently, methanol is the main fuel used.

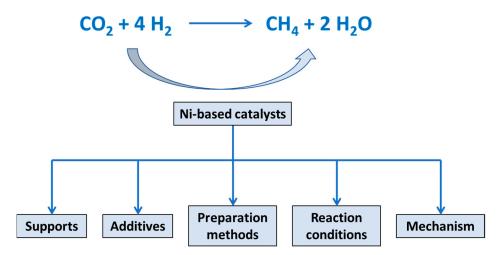
Therefore, methanol could become a central compound in the worldwide energy landscape. Summarizing, in the near future, the utilization of CO₂ and H₂ obtained by water electrolysis to produce P2L and P2G is one of the most promising strategies for CO₂ mitigation. However, due to economic limitations, CCS methods are recognized as the most useful procedures to reduce CO₂ emissions. In this sense, catalytic hydrogenation of CO₂ to obtain different products with added-value presents great interest. This review provides an overview of the various CO₂ heterogeneous catalytic hydrogenation reactions that can be used for the storage and transport, with a focus on the so-called liquid and gaseous organic hydrogen carriers, that is, the processes known as power-to-gas (P2G) and power-to-liquids (P2L).

2. Catalytic Hydrogenation of CO₂ to Renewable Methane

The catalytic hydrogenation of CO₂ to methane and water is a thermochemical process described over a hundred years ago and is known as the Sabatier reaction, or CO₂ methanation (Equation (1)) [33]. This is carried out catalytically at high temperatures (300–400 °C) and pressures (30 bar) in the presence of a suitable catalyst [34], although low-catalytic low temperature methanation has been studied in recent years [35]. By using green hydrogen, synthetic natural gas (SNG) is obtained, which can be used directly or stored for later use, allowing the transfer of electrical energy to a useful renewable fuel.

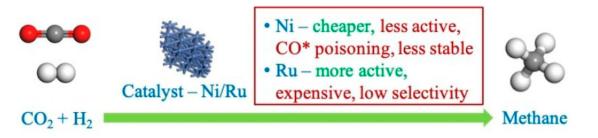
$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O, \Delta H^0_{298K} = -165 \text{ kJ/mol}$$
 (1)

The reaction is thermodynamically favored ($\Delta G_{298K} = -113.2 \text{ kJ/mol}$), but it involves an eight-electron process to reduce the fully oxidized carbon to methane, with important kinetic limitations, so that a catalyst is required in order to achieve high selectivity and conversion. Thus, catalysts based on noble- and transition-metal materials (Ru, Rh, Pd, and Ni) supported on metal oxides (Al₂O₃, CeO₂, ZrO₂, TiO₂, SiO₂, La₂O₃) are usually applied for the CO₂ methanation process [36–39]. Therefore, even though Ru is the most active metal, its high cost limits the large-scale application of Ru-based catalysts. In contrast, Ni-based systems are the most widely investigated for industrial purposes, as they combine a reasonable high selectivity for methane with lower costs [40,41].


Nevertheless, sintering of Ni nanoparticles and carbon deposition on the support surfaces of catalysts usually lead to their deactivation [42]. The carbon deposition phenomenon occurs either through CO disproportionation reactions (Equation (2)), or via CH_4 decomposition (Equation (3)), ref. [43]:

$$2CO \to C + CO_2, \Delta H^0_{298K} = -173 \text{ kJ mol}^{-1}$$
(2)

$$CH_4 \rightarrow C + 2 H_2, \Delta H^0_{298K} = 75 \text{ kJ mol}^{-1}$$
 (3)


Thus, an incessant number of investigations currently aim at achieving the CO_2 conversion to methane via hydrogenation, using deposited Ni on very different supports and applying it with very different methodologies, since the tandem Ni/support exhibit a higher performance/cost ratio. To optimize the efficiency of these supported Ni catalysts, various inorganic materials, including Al_2O_3 , SiO_2 , TiO_2 , CeO_2 , and ZrO_2 , that favor the dispersion of Ni particles and enhance their activity and stability, have been studied. In this respect, the sintering of Ni particles supported on Al_2O_3 can be inhibited to some extent, so that Al_2O_3 seems to be superior to the other supports [42,44–48].

On the other hand, in order to optimize these Ni/Al₂O₃ systems, extensive studies about the influence of operating conditions on carbon deposition, with special emphasis on the effects of the operating temperature, reaction time, and H₂/CO ratio, are being carried out, given that all are significant factors in the morphology and amount of carbon deposits, because until now it has not been possible to satisfactorily eliminate this carbon deposition in the Ni/Al₂O₃ catalysts [44,45,49–52]. Furthermore, there is a substantial amount of research being conducted on other factors that may influence both the catalytic performance and the intensity of carbon deposition during successive reactions with reused, supported Ni catalysts. Figure 6 collects a number of parameters influencing the catalyst design to improve the low-temperature catalytic performance of supported Ni catalysts toward the CO₂ methanation process [53].

Figure 6. Main parameters influencing the catalyst design to improve the catalytic performance of supported Ni catalysts in the CO₂ methanation process. Adapted from ref. [54].

On the other hand, mixtures of inorganic solids as supports, in many cases together with Al₂O₃, as well as other metals as co-catalysts with Ni, such as Co, La, Ru, and many others, have also been studied [46,55–59]. In this regard, the bimetallic systems Ni and Ru have shown promising results [60,61], outperforming the reaction over monometallic Ru or Ni catalysts. Thus, the formation of Ni-Ru alloys or the synergy between two adjacent metallic phases open the door to new high-performance and low-cost methanation catalysts [62,63], as illustrated in Figure 7.

Figure 7. Differential aspects between supported Ni and Ru metals in developing a more active, stable, and selective catalyst for the CO₂ methanation reaction. Adapted from ref. [63]. Copyright 2021 John Wiley and Sons.

The determining steps in the reaction, using Ni and Ru catalysts, are the HCO^{*} dissociation to CH^{*} and O^{*} and the CH₃^{*} hydrogenation to CH₄, respectively. Hence, as the selectivity of the reaction on Ni is higher than that on Ru, the activity attained on Ru catalysts is higher. Therefore, it can be concluded that the combination of both metals allows for a characteristic synergistic activity, in which Ru drastically improves the reducibility of Ni catalysts, also improving the Ni metallic dispersion and providing additional methanation sites [62]. In addition, it is an important finding that the addition of certain promoters, such as CeO₂, La₂O₃, Sm₂O₃, Y₂O₃, and ZrO₂ is clearly beneficial, not only because the corresponding metal-oxide promoted catalysts exhibited higher catalytic performance than Ni/Al₂O₃, but also because the stability along the successive uses is clearly increased [64]. CO₂ methanation has recently been achieved on Mg-promoted Fe catalysts, where Mg/Fe₂O₃ catalysts exhibiting the highest yield of 32% (400 °C) in CH₄ production, under practical operation conditions (8 bar, 10,000 h⁻¹) [65]. Thus, the competitive advantage presented by the low price of these materials in comparison with those usually used, Ni and Ru, should be highlighted.

Considering the huge amount of work regarding CO_2 methanation, a review of different catalysts usually investigated in carbon dioxide methanation by using different noble and non-noble metals supported on different materials is collected in Table 2.

Table 2. A comparative summary of different metal-supported catalysts studied in the carbon dioxide methanation process.

Metal	Promoter	Catalyst Support	Conversion (%)	Т (°С)	P (atm) *	Ref.
Ni	CeO ₂	γ-Al ₂ O ₃	>60	300	0–10	[34]
Ru	—	TiO ₂	>60	210-300	1.0	[66]
Ru	—	Al ₂ O ₃ , CeO ₂ , MnO _x , ZnO	25-80	400	1.5	[67]
Ni	_	CeO ₂ , Al ₂ O ₃ , Y ₂ O ₃	60–80	250-500	1.0	[42]
Ni	TiO ₂	Al ₂ O ₃	40	550	3.0	[43]
Ni	Mn	TiO ₂	95	350	_	[68]
Ni, Ni-Co	_	Al ₂ O ₃	90	350-400	1.0	[44]
Ni	_	CeO ₂ -ZrO ₂	55–99.8	200-350	—	[49]
Ni	_	ZrO ₂	72	300	—	[69]

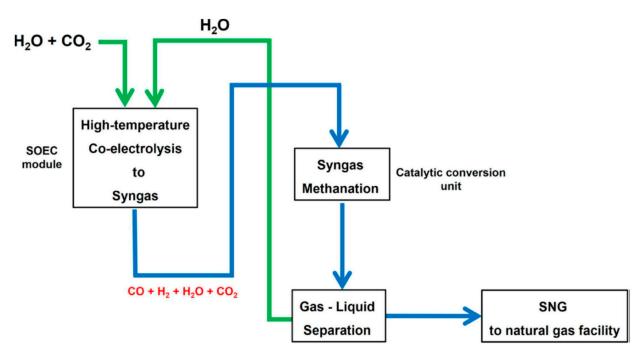

Metal	Promoter	Catalyst Support	Conversion (%)	Т (°С)	P (atm) *	Ref.
Ni	_	Al ₂ O ₃	5–75	350-450	1.0	[45]
Ni	Ce	SiC	80–95	600	10–15	[47]
Ni	La	Mg-Al	61	250	1.0	[50]
Ni	La	γ-Al ₂ O ₃	4–14	377-400	1.0	[46]
Ni-Ru	_	CaO-Al ₂ O ₃	84	380–550	1.0	[70]
Ni	CeO ₂	Al ₂ O ₃ -ZrO ₂ -TiO ₂	83	300-400	5.0	[51]
Ni-ZrO ₂	_	Carb. Nanotubes	10–50	200-500	1.0	[52]
Ni	_	γ -Al ₂ O ₃	66–92	250-350	_	[71]
Ni/Al ₂ O ₃	_	3D-copper	3–45	300-500	1.0	[72]
Ni	_	Al ₂ O ₃ , CeO ₂ , CeO ₂ -ZrO ₂	60-80	200-450	1.0	[73]
Ni/GDC	_	Ceramic monolith, Open-cell foam	70–52	300-600	1.0	[74]
Ni	_	Attapulgite	60-80	200-600	1.0	[75]
Ni	_	Al ₂ O ₃ , CeO ₂ , ZrO ₂	70–90	200-600	1.9	[76]
Ni	Sm ₂ O ₃ , Pr ₂ O ₃ , MgO	CeO ₂	55	200-500	1.0	[77]
Ni	_	CeO ₂ nanocatalyst	84	220	1.0	[78]
Ni		CeO ₂	81	250	1.0	[79]
Ni	La	Hydrotalcite-Al ₂ O ₃	60-80	225-425	1.0	[55]
Ni	_	Sepiolite, Todorokite	70–100	250-450	1.0	[80]
Ni	_	ZSM-5@MCM-41	80	400	1.0	[81]
Ni	La	MgO, Al ₂ O ₃	60–80	200-400	1.0	[82]
Ni-Ru	_	Al_2O_3	70–85	200–500	1.0	[60]
Ni	_	Al_2O_3	30	400	15.8	[48]
Ni	Mg, Ca, Sr, Ba	Al_2O_3	40-60	200-600	1.0	[56]
Ni	_	Al ₂ O ₃ , CeO ₂	60-80	200-500	1.0	[83]
Ni	_	Al ₂ O ₃ -ZrO ₂	60–77	160-460	1.0	[57]
Ni-Ru	_	Al_2O_3	40-85	250-550	1.0	[61]
Ni-Ru	_	MgO-Al ₂ O ₃	40-65	650–550	1.0	[84]
Ni	Pt, Ru, Rh	CeO ₂ , CeZrO ₄ , CeO ₂ /SiO ₂	65–70	200-400	1.0	[85]
Ni-Ru		CeO ₂ -ZrO ₂	50-80	200-450	1.0	[86]
Ni-Ru		MgAl ₂ O ₄	55–70	200-400	1.0	[87]
Ni	CeO ₂ , La ₂ O ₃ , Sm ₂ O ₃ , Y ₂ O ₃ , ZrO ₂	Al ₂ O ₃	75–95	200–300	5.0	[64]

Table 2. Cont.

* Atm = 1, indicates atmospheric pressure, in flow process.

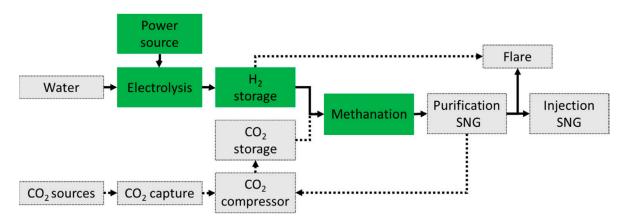
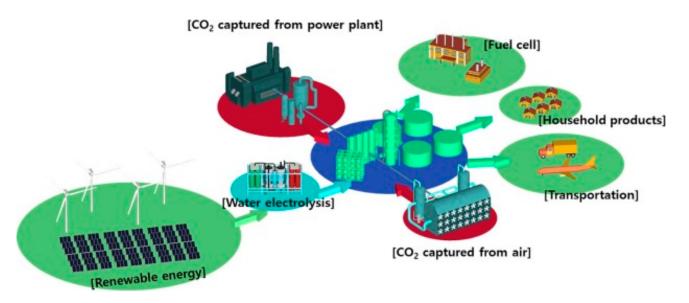

As can be seen, very good CO_2 conversion values have been obtained, as the 99.8% value reported by Ashok et al. over a Ni supported on CeO_2 -ZrO₂ [49]. In addition to the importance of CO_2 methanation by itself, the possibility of integrating the water electrolysis and CO_2 methanation is a highly effective way to store the excess of renewable electricity produced by whichever renewable sources, such as wind and photovoltaic power generation, are intermittent due to weather conditions [88]. Therefore, storage of the electric excess is closely related to the power-to-gas (P2G) systems, so they are promising technologies to achieve this purpose. Thus, the transformation of green energy into synthetic natural gas (SNG) is carried out, which, as it comes from CO_2 obtained by capture and storage (CCS), exhibits a renewable character. Besides, the generated SNG can be stored or directly injected into the existing natural gas network.

Figure 8 shows the integrated co-electrolysis and syngas methanation for the direct production of synthetic natural gas from CO_2 and H_2O using a hydrotalcite-derived 20%Ni-2%Fe/(Mg, Al)O_x catalyst and a commercial methanation catalyst (Ni/Al₂O₃) [89].

Figure 8. Integrated P2G process for synthetic natural gas (SNG) production from CO₂ and H₂O. Adapted from ref. [89]. Copyright 2021 John Wiley and Sons.

Likewise, a general plant scheme to transform CO₂ and water into synthetic natural gas is shown in Figure 9 [90]. Thus, in a circular power to gas process, renewable hydrogen, or green hydrogen, produced by water electrolysis powered by renewable electricity, such as solar or wind, will be critical to achieving net-zero emissions, and major advances in electrolyzer technologies are being developed in this regard [91–99]. However, the efficiency of the plant processes, regardless of the technological methodology or the experimental conditions used, strongly depends on the efficiency of metal-supported catalysts, Table 2.


Figure 9. Power-to-Gas (PtG) plant scheme as implemented for the production of synthetic natural gas from CO₂ and green H₂. Reproduced from ref. [90], open access, Copyright 2020 Elsevier.

3. Catalytic Hydrogenation of CO₂ in Power-to-Liquid (P2L) Processes

Various liquid organic hydrogen carriers (LOHCs) compounds, such as hydrocarbons or high molecular weight alcohols, can be obtained through catalytic hydrogenation of CO_{2} , but the most prominent power-to-liquid (P2L) processes at this time are methanol synthesis, DME production [100], and Fischer-Tropsch fuels [101].

3.1. Catalytic Hydrogenation of CO₂ to Renewable Methanol

Methanol is supposed to have potential not only as a hydrogen-alternative energy vector (i.e., direct use as a fuel), but also as a hydrogen storage material. In addition, given that methanol is already synthesized on a large scale, there is the possibility of using existing infrastructure and production plants [102]. Accordingly, methanol is the simplest C1 liquid product that can be obtained from CO₂ (Figure 10). Therefore, methanol can be considered a key component of the anthropogenic carbon cycle in the framework of a "Methanol Economy" [103–105]. Indeed, the versatility of methanol, currently used to obtain multiple chemical products such as formaldehyde, acetic acid, methyl tertiary-butyl ether (MTBE), dimethyl ether (DME), or even olefins, as well as the possibility of its use as renewable fuel, while also taking advantage of the existing infrastructures for the transport and distribution of fuels, is what justifies the so-called "Methanol Economy" [106]. Thus, even though most of the methanol is currently produced from natural-gas-derived syngas, its alternative production using CO₂, water, and renewable electricity could present an opportunity to advance toward carbon neutrality [107].

Figure 10. Overview of the Power-to-Liquid (P2L) scheme for renewable green methanol synthesis using CO_2 hydrogenation technology with green H_2 [104].

Regarding the different possibilities to obtain methanol from captured CO_2 , such as electrochemical, photochemical, photoelectrochemical, and catalytic conversion, it is the heterogeneous catalysis that attracts the most attention.

The heterogeneously catalyzed reaction of hydrogen with carbon monoxide and carbon dioxide (syngas) to obtain methanol was described nearly 100 years ago, and the standard catalyst Cu/ZnO/Al₂O₃, currently applied in the methanol industrial synthesis reaction, has been used for the last 50 years [108,109]. This industrial reaction is currently taking place over Cu-ZnO/Al₂O₃ catalysts at pressures of 5 and 100 atm and temperatures in the 220–300 °C interval. Despite the fact that the reaction is exothermic, the conversion of CO₂ to methanol is kinetically limited, only obtaining a methanol conversion of around 15–25%. Thus, methanol is produced from synthesis gas (syngas) on an industrial scale, which is obtained from the steam reforming of fossil methane with a certain CO/H₂ ratio called metgas, which also contains about 3% by volume of CO₂. When this metgas is treated with H₂ at high pressures and moderate temperatures in the presence of conventional catalysts, Cu/ZnO/Al₂O₃, methanol is obtained (Equation (4)) [108]:

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O \Delta H = -49.16 \text{ kJmol}^{-1}$$
(4)

However, by starting with pure CO_2 and H_2 , rather than a mixture of CO, CO_2 , and H_2 as in the syngas procedure, the chemical process is simplified, so the reaction and purification processes in conventional methanol-producing industrial plants could also be simplified. That is because, despite the direct synthesis of methanol from CO_2 is less exothermic (Equation (5)) and it is also accompanied by the reverse water–gas-shift (RWGS) as a secondary reaction (Equation (6)), the high exothermic character of the methanol formation from syngas (Equation (4)) necessitates the use of a very complex reactor capable of providing efficient cooling for the heat generated. Conversely, the thermal control inside the reactor during the methanol synthesis from CO_2 is easier due to the lower heat profile of this process.

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O\Delta H = -49.16 \text{ kJmol}^{-1}$$
(5)

$$CO_2 + H_2 \rightleftharpoons CO + H_2O \Delta H = 41.22 \text{ kJmol}^{-1}$$
(6)

Another advantage of this process is that the only reaction impurities are essentially limited to water and dissolved CO_2 in the crude methanol. In this way, it is possible to diminish the cost and improve the efficiency of the process in comparison with the process of methanol production from syngas. Another important issue is the overall cost of the two processes, given that today, syngas is cheaper than green hydrogen and captured CO_2 . For this reason, great efforts are being made to obtain green hydrogen on an industrial scale or other low-carbon hydrogen production methods, such as aqua hydrogen or blue hydrogen (obtained via new technologies from fossil fuels but with a lower carbon footprint).

Given that there is a general motivation regarding the use of captured CO_2 for the methanol synthesis as a liquid-to-power process, a great effort is being devoted to improving the current Cu-based catalysts employed to get more active, selective, and stable heterogeneous catalysts [110]. On the other hand, new noble metal-supported catalysts, able to increase the efficiency of this process for direct CO_2 hydrogenation to obtain bio methanol are being researched [111,112].

3.1.1. Hydrogenation CO₂ to Methanol using Cu-Based Catalysts

Once the convenience of advancing the catalytic processes of direct hydrogenation of CO_2 to obtain methanol was accepted, the first candidates were copper-based catalysts due to both their low cost and their good efficiency for methanol synthesis from synthesis gas, or Syngas [113,114]. However, some disadvantages, such as the formation of CO as a byproduct of the reverse water-gas shift (RWGS) reaction (Equation (6)), and the sintering of copper particles, which are responsible for catalyst deactivation after several reuses, determine the need to get better catalytic systems [115]. That is why numerous studies are currently being carried out in an attempt to improve the catalytic behavior of Cu, for which the role of various supports and/or additives that work as promoters is being investigated. The supports mainly consist of several metal oxides, such as Al₂O₃, SiO₂, ZnO, ZrO₂, CeO₂, TiO₂, or In₂O₃. The main role of these supports and promoters is to alter the electronic and geometric properties of active centers, thereby altering the metal-support interactions. Thus, various authors demonstrate that the yield to methanol is determined by active sites modulated by metal-support interaction as well as the influence of promoters [116]. This electronic interaction between supports and catalytically active metals is manifested through its influence on the energy levels of the frontier orbitals of the corresponding metal. The closer they are to the corresponding HOMO-LUMO of the CO_2 and H_2 molecules, the greater the catalytic efficiency of the reaction.

Thus, in a relatively short period of time, numerous studies have appeared on the performance of Cu catalysts by examining the effects of the composition of the support and the influence of the method of catalyst synthesis (Table 3), the influence of several additives used as promotors (Table 4), as well as other factors of interest in the final behavior of the catalyst, including the use of CuO instead of Cu metal as a catalytically active species (Table 5). In Tables 3–5, the comparative performance of different Cu-supported catalyst

systems in the carbon dioxide hydrogenation to methanol reaction is collected. In general, the catalytic performance of the catalysts was tested in a fixed-bed stainless-steel tubular reactor at different pressures and temperatures. Furthermore, the conversion and selectivity to methanol limits values obtained are collected. In this regard, an extensive review of supported Cu catalysts studied is presented, focusing on the last five years and highlighting the special importance that the CO_2 hydrogenation catalytic process has gained.

Catalyst Support	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm)	Ref.
ZnO/Al_2O_3	60–90	50-80	210-250	60	[109]
ZnO/ZrO_2	50-80	65–85	220	30	[117] ^a
ZnO/ZrO_2	20-60	30–90	200-300	1–40	[113] ^b
Al ₂ O ₃	50-70	50-65	180-300	1–360	[114] ^a
ZnO	2–9	45–95	220-300	30	[118]
Al ₂ O ₃ /MgO	0–25	20-30	150-250	10	[119]
ZrO_2/CeO_2	3–10	40-82	220-260	30	[120] ^c
SiO ₂	5	79	190 - 250	30	[121]
ZrO_2/ZnO	30–70	30-70	190-250	10-30	[122]
Na-ZSM-5/ZnOx	2–12	25-100	200-300	30	[123]
CuO/ZrO_2	5–15	15-70	230	10	[124]
Al ₂ O ₃ /MgO	20-35	5–35	200-400	20	[125]
Al_2O_3/ZnO	5–35	5-70	200-400	20	[126]
SiO ₂ /TiIV Surf.	4–18	49-85	230	25.0	[127]
$SiO_2/ZnII$ Surf	1–5	48-86	230	50.0	[128]
ZnO/ZrO ₂ /Mg-Al (LDH)	1–7	50-100	200-300	30.0	[129]
ZnO/MnO/SBA-15 silica	4-8	100	180	40.0	[130]
ZnO	9–13	65-80	240	30.0	[131]
ZnO/SiO_2	90-100	65-100	250	40.0	[132]
ZrO ₂	2–7	30-70	350	10.0	[133]
ZnO/Attapulgite	12–18	7–25	320	6.0	[134]
ZnGa/LDH nanosheet	17-20	30-50	270	50.0	[135]
Sr-Perovskite	1–16	36-63	200-280	20-50	[136]
$Ce_xZr_yO_z$	5–16	45–95	200-300	30	[137]
ZrO _x	13.1	78.8	260	45	[138] ^c
ZrO ₂	1.0-5.0	68–75	220	30	[139]
ZnO	1.0-25.0	10-90	200-300	20	[140]
ZnO/Faujasite	2.0	27–35	240-260	15	[141] ^{a,c}
ZnO/CeO_2	1.0-3.5	20-70	250	30	[142] ^c
$ZnO/ZrO_2/C$ -nanofibers	8-14	78–92	180	30	[143]
ZnO/Al_2O_3	10-28	33-85	240	40	[144]
ZnO/SiO_2	8-14	50-59	220	30	[145]
AlCeO	2–24	12–95	200-280	30	[146]
AlCeO	6–22	25–97	200-280	30	[147]
ZnO	1–14	1-60	150-300	1.0	[148]
CeO ₂	1–7	20–90	240-300	20	[149]
$Al_2O_3/ZrO_2/ZnO$	<7.0	43-59	230	30	[150]
ZnO/ZrO_2	19.6	50	280	50	[150]
ZnO/ZrO_2	9–15	87–98	250	50	[151]
Al_2O_3	50	-	325	1.25	[152]

Table 3. Comparative performance of different Cu supported catalysts in the carbon dioxide hydrogenation to methanol reaction obtained by using different solid supports and/or different synthesis.

^a This study mainly deals with the effects of the CO_2 hydrogenation reaction mechanism. ^b The catalysts' ability to be reused is determined. ^c Special attention is paid to the existence of strong metal-support interaction effects (SMSI).

Promoter	Catalyst Support	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm)	Ref.
Pr ₂ O ₃	ZnO	80–100	75–100	200–260	30	[115]
In_2O_3	ZrO ₂	1–6	60–90	210-290	10-250	[153]
CeO ₂	Al_2O_3	16–23	59–94	220-280	40	[147]
LaOx	Silica SBA-15	45-85	45-81	220-280	30	[154]
W	CeO ₂	13	87	250	35	[155]
Pd	Ce _{0.3} Zr _{0.7} O ₂	15–25	90–95	250	50	[156] ^a
Sm_2O_3	ZrO_2	8-14	50-80	230	10	[157]
Al + Ga	ZnO	16–18	99	250	30	[158]
Al	ZnO	1–17	99	250	30	[159] ^b
Zn	Graphene	18-20	50-80	250	15.0	[160]
Hydrotalcite	$ZnO-Al_2O_3$	6	64–73	250	15-30	[161]
ZnO-ZrO ₂	Hydrotalcite	3–6	35-65	250	25.0	[162]
Zn, Ga	SiO2	0.5-5.0	10-80	220-280	8.0	[163]
Pd	SiO2	6.6–3.7	12-30	300	41	[164]
Pd	$Ce_xZr_{1-x}O_2$	13-20	10-25	250-300	30-60	[156]
Ni	CeO ₂ -nanotube	2–18	75–86	220-300	20-40	[165]
ZnO	Al_2O_3	10-20	50-100	160-250	10-25	[137] ^a
MgO	ZnO	4–16	25-100	200-300	30	[166]
MgO, CaO, SrO, BaO, ZnO	Al_2O_3	2–9	10-100	200-400	20	[167]

Table 4. Influence of the use of different additives on the performance of the carbon dioxide hydrogenation to methanol reaction using different Cu-supported catalysts.

 a This study focuses on the effects of the CO_2 hydrogenation reaction mechanism. b The catalysts' ability to be reused is determined.

Promoter	Catalyst Support	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm)	Ref.
	ZrO ₂	5–15	15-70	230	10	[124]
ZnO/ZrO_2	SBA-15 silica	10-25	20-35	250	30	[168]
ZnO/ZrO_2	Mg-Al (LDH)	1–7	50-100	200-300	30.0	[129]
In ₂ O ₃	CuO	5–12	50-90	220-280	5-30	[169]
	CuO/ZrO_2	2–12	20-70	230	10.0	[170]
	CuO/CeO ₂ /TiO ₂	1.5-6.5	28-52	190-235	30	[171]
$MoO_3/WO_3/Cr_2O_3$	$CuO/ZnO/ZrO_2$	18-20	40-48	240	40	[172]
	$CuO/ZnO/Al_2O_3$	10-16	>99	250	50	[173]
Ag	CuO/ZrO ₂	4-8	25-45	270	10	[174]
C .	$CuO/Ce_{0.4}Zr_{0.6}O_2$	7–13	72–96	220-280	30	[175]
	CuO/ZnO	38	70	270	50	[176]
	CuO/ZnO/CeO ₂	14-20	95–98	240	1.0	[177] ^a
	$Cu/Zn/Ce/TiO_x$	4–7	25-45	275	30	[178]
	CuO/ZnO/TiO ₂ /Zr	3–25	15-85	200-280	30	[179]
CuO/ZnO/CeO ₂	TiO ₂ nanotubes	10-20	25-80	220-300	30	[180]
	$CuO/ZnO/ZrO_2$	9–17	40-54	300-600	30	[181]
Graphene oxide	CuO/ZnO/ZrO ₂	2–25	10-76	200-280	20	[182]
Carbon	CuO/ZnO	8–24	18-60	230-290	30	[183]
WO ₃	CuO-ZnO-ZrO ₂	5-20	42-64	240	30	[184]
ZrO_2/Al_2O_3	CuO/ZnO	20-25	40-95	200-260	27.6	[185]
In_2O_3 , Pd	CuO/ZnO/Al ₂ O ₃	7–16	99–100	250	50	[186]
La ₂ O ₃	CuO/ZnO/Al ₂ O ₃	1–18	5-100	160-260	1.0	[187]
SiO ₂	$CuO/ZnO/ZrO_2$	2–5	10-70	200-280	20	[188]
	$CuO/ZnO/ZrO_2$	4–15	45-85	240	30	[189]
	$CuO/CeO_2/ZrO_2$	5-20	2-8	200-260	30	[190] ^b
Ag	CuO/ZrO_2	1–7	30-70	230	10	[191]
Zeolite	CuO/ZnO/ZrO ₂	5-20	5–12	260	30	[192]
CuO-ZnO	Al_2O_3 , SiO_2	2–14	46-59	250, 270	30, 50	[193]
	$Ce_{1-x}Zr_xO_2$	2–15	10-95	200-300	30	[194]
La _x Sr _{1-x} CuO	Perovskite	1–16	4-55	250-300	30	[195]
ZrO_2 , MnO_2	CuO-ZnO/SBA-15	8–9	10-25	250	30	[196]
CuO/ZnO	Oyster Shells	1–2	50-70	250	30	[197]
Pd	CuO/ZnO/Al ₂ O ₃	1–10	10-90	180-240	50	[198]
La, Ti or Y	CuZnIn/MZrO _x	2–6	40-80	225	20	[199]
La, Ce, or Sm	CuZnO/Zn-AlO _x	25	54	250	40	[200]

Table 5. Comparative performance in the carbon dioxide hydrogenation to methanol reaction, of different CuO supported catalysts, using different solid as supports, different synthesis methods or different additives.

^a The reusability of the catalysts is determined. ^b This study mainly deals with the effects of the CO₂ hydrogenation reaction mechanism.

The influence of copper form, according to its size, i.e., bulk, nanoparticle, and cluster, has been deeply studied. In general, copper nanoparticles would enable higher activity due to having an overall higher Cu surface exposure, although more energy is generally required to increase the reaction kinetics. Regarding copper clusters, small clusters of small metallic particles tend to perform better at higher dispersion. For instance, the Cu₄ clusters exhibited a lower activation barrier to CO_2 hydrogenation than bulk Cu(111) [201].

Promoters are added to the catalyst to achieve three possible outcomes: increasing the number of available active sites, maintaining the Cu surface stability, particularly by increasing the Cu dispersion, and increasing electron transfer to the active sites, all of which can improve the catalyst activity. For their part, support materials are used to immobilize Cu particles in order to increase active site dispersion and maintain high thermal stability. Active metal–support interaction can promote a high synergy, increasing the reaction activity, particularly if the support can adsorb and transfer the reactants to the active sites without taking part in the reaction itself [116]. As can be seen in Tables 4 and 5, a great number of additives, supports, and promoters have been tested. The results obtained with this huge number of Cu catalysts studied usually fall within those usually described for the Cu-ZnO/Al₂O₃ catalysts used in the catalyzed reaction of hydrogen with carbon monoxide and carbon dioxide (syngas) to obtain methanol in the industrial synthesis reaction. This special reactivity of this industrial catalyst for methanol synthesis is attributed to the effects

of strong metal-support interactions (SMSI) that allow a favorable synergy between Cu and the Zn atoms. This means that it is feasible to optimize the choice of catalysts, considering other parameters of technical and economic importance, such as the cost of the catalyst and the possibility of its reuse in successive reactions.

However, despite the fact that using waste CO_2 should decrease the methanol production cost, the significantly low price of this CO_2 gas means that this process remains a challenge, mainly caused by the lack of an efficient catalyst that can perform this reaction in a successful way in terms of kinetics and methanol selectivity. For this reason, it is an objective of extreme priority to advance in the development of new catalysts with good activity and high selectivity for methanol synthesis through CO_2 hydrogenation.

Despite the fact that to date, Cu-based catalysts are the most important catalysts for the conversion of syngas to methanol due to their excellent reactivity and low cost, they exhibit serious shortcomings when CO_2 replaces CO because CO_2 is more inert than CO, leading to lower CO_2 conversion. Besides, the water produced during this reaction results in the sintering of catalytically active copper sites. For this reason, numerous investigations are being directed to the search for efficient catalysts in this process using non-Cu-based heterogeneous catalysts such as noble or rare metals or mixed oxide catalysts represented by M-ZrOx (M = Zn, Ga, and Cd) solid solution catalysts, which present high methanol selectivity and catalytic activity as well as excellent stability to improve the catalytic activity, selectivity, and durability of catalysts in CO_2 hydrogenation [202].

3.1.2. CO₂ Hydrogenation to Methanol by Noble or Rare Metal-Based Catalysts

Despite their limited availability and high cost, many supported noble metal-based catalysts (Pd, Pt, Au, and Ag) can achieve high methanol selectivity and catalytic activity even at low temperatures with excellent stability. Hence, a large amount of research has been conducted in recent years to optimize the catalytic behavior of systems based on noble metals for the CO_2 hydrogenation to methanol. In this sense, various factors can influence the final catalytic behavior, such as the composition of the support, the synthesis method, or the influence of various additives used as promoters (Table 6). In this respect, the catalytic behaviour of bimetalic catalysts has also piqued the interest of researchers. In this respect, the most interesting results are collected in Tables 6 and 7.

Table 6. A comparative summary of different noble metals and rare earth supported catalysts studied in the carbon dioxide hydrogenation process to produce methanol.

Noble Metal	Promoter	Catalyst Support	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm)	Ref.
Au		In ₂ O ₃	5–13	60–100	250-300	50	[203] ^a
Ir		In ₂ O ₃	18	70	300	50	[204]
Pd	Ga	SiO ₂	1–5	81	230	25	[205]
Pd		CeO ₂	2–18	4-100	200-280	10-250	[206]
Pd	Al	ZnO	2–14	15-70	250	30	[207]
Pd		In ₂ O ₃	3	100	280	50	[208]
Pt		In_2O_3	37	63	30.0	1.0	[209]
Pd		In ₂ O ₃ /SBA-15	13	83	260	50	[210]
Ni ₅ Ga ₃		SiO ₂	3–35	11–16	200-300	1.0	[211]
Ni		Ga ₂ O ₃	0.5–1	10-100	160-300	5.0	[212]
Re		TiO ₂	1–2	82	150	50	[213]
Ti		MoOx/TiO ₂	80	70	150	50	[214]
ReO _x		TiO ₂	18	98	200		[215]
Co		SiO ₂	2–14	10-80	260-320	20	[216]
Ag		In_2O_3	5–30	75–100	200-275	50	[217]
Au		ZrO_2	5–9	40-70	140-220	30	[218]
Au		MxOy ^b	5–45	10–95	200-350	1.0	[219]
Au		In_2O_3 -ZrO ₂	2–15	65-100	200-300	50	[220]
Au		CuO/CeO ₂	4-10	30	200-300	30	[221]
Au		CeO ₂	1=2	5-45	240	5∓50	[222]
Ru		In_2O_3	1–30	70–97	200-300	50	[223]
Au		ZrO ₂	4–6	48–75	240	40	[224]

Noble Metal	Promoter	Catalyst Support	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm)	Ref.
Au		ZnO-ZrO ₂	4.5-6	82–95	320	55	[225]
Rh		In ₂ O ₃	1–17	56-100	250-300	50	[226]
Rh		$In_2O_3 - ZrO_2$	1–18	65-100	250-300	50	[227]
Pt		In ₂ O ₃	1–15	54-100	225-300	50	[228] ^a
Pd		In_2O_3	1-20	70-100	200-300	50	[229]
Ni		In_2O_3	1–18	60-100	200-300	50	[230]
Au		In_2O_3	2–14	70-100	225-300	50	[203] ^a
Rh		In_2O_3	4-10	60-80	270-320	50	[231] ^a
Ni	ZrO_2	In_2O_3	1–18	43-100	200-300	50	[232]
Ni	-	In_2O_3	6-15	30-80	280	50	[233]
Pd		In_2O_3	10	72	295	30	[234] ^a
Pd		SiO ₂	_	64-71	200	30	[235]
Pd	Ga_2O_3	SiO_2	10	17-65	220-250	30	[236]
Pd	- 0	$ZnZrO_x$	4-35	5–90	200-400	50	[237]
Pd		CeO ₂	2-10	40-78	200-260	50	[238]
Pd		SiO ₂	1-20	1–28	220-280	8.0	[239]

Table 6. Cont.

^a Special attention is paid to the existence of strong metal-support interaction effects (SMSI). ^b MxOy: Al₂O₃, TiO₂, Fe₂O₃, CeO₂, and ZnO.

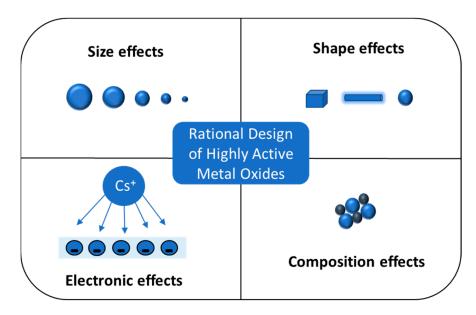
Table 7. A comparative summary of different bimetallic-supported catalysts studied in the carbon dioxide hydrogenation process to obtain methanol.

Metal	Catalyst Support	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm)	Ref.
Ni/In/Al	SiO ₂	1.6-3.8	1–12	210-290	1.0	[240] ^a
Ni/In	SiO ₂ -SBA-15	1–17	1–90	300	5-50	[241]
Co/In	In ₂ O ₃	19	69	300	50	[242]
In/Pd	SiO ₂	2–5	61	300	40	[243]
Rh/In	Al_2O_3	1–10	5–90	270	45	[244] ^a
Pd/Zn	CeO ₂	8-17	65–98	220-270	20	[245]
Ca/Pd/Zn	ZrO_2	2-10	97-100	220-270	20-30	[246] ^a
In/Ru	SiO ₂	1–5	20-85	200-240	34	[247]
Ni/Ga	SiO_2 , CeO_2 , ZrO_2	1–6	5–30	180-270	1–30	[248] ^a
Pd/Cu	SiO ₂	1.6-2.8	18–27	300	30-50	[249]
Pd/Cu	M _x O _v ^b	7–16	28-34	300	40	[250] ^a
Pd/Cu	SiO ₂	3–7	12-40	300	40	[251]
Pd/Cu	SiO ₂	3–6	12-40	300	40	[252]
Cu/Ni	Graphene	7.87	98.7	225	40	[253]
Pd/Cu/Zn	SiC	1–11	10-100	150-300	1.0	[254]
Cu/Ni	Mordenite	100	30-60	220	30	[255]
Ru/Mo	Ru–Mo Phosphide	0.5-4.5	5–75	180-220	65-72	[256]
Rh/Co	nanospheres	100	96	150	24	[257]
Pd/Zn/Al	ZnO , Al_2O_3	0.5-4.0	15-70	250	30	[207]
Ni/Sn	InZrO ₂	1–5	55-100	225-275	25	[258]
Pd/Cu	TiO ₂ -MO ₂ ^c	7–16	25-40	250	40	[259]
Ni/Ga	Hydrotalcite	2-3.5	60-100	200-300	30	[72]
Pd/Cu	CeO ₂	2–17	24-84	190-270	30	[260] ^a
Cu/Zn	Coord. polymer	13-20	25–59	220-260	40	[261]
Cu/Zn	UiO-66 (Zr) MOF	12–22	28–54	220-300	30	[262]
Cu/ZnO	Al_2O_3	5–11	64–87	220-260	30	[263] ^a
Ag/Cu	Mordenite		48-61	230	30	[264]
Cu/Zn	UiO-66 (Zr) MOF	25-30	15–24	230	50	[265]
Cu/Pd	SiO ₂	2–32	1–4	220-360	40	[266] ^a
Pd/In	Unsupported nanoparticles	<3.0	25–90	190–270	50	[267]

^a Special attention is paid to the existence of strong metal support interaction (SMSI), and/or geometric and/or electronic effects. ^b MxOy: TiO₂, ZrO₂, CeO₂, Al₂O₃, SiO₂. ^c TiO₂-MO₂: TiO₂-CeO₂ and TiO₂-ZrO₂.

As can be seen, a wide screening of heterogeneous catalysts containing noble or rare metals (e.g., Pd, Pt, Au, Rh, Ru, Ir, and Re based catalysts), as well as bimetallic systems have been studied. In general, the results obtained have revealed their excellent catalytic activity, stability, and resistance compared with Cu-based catalysts. In this regard, special

attention has been paid to the effects of metal content exhibit on the activation degree for the hydrogen adsorption in the active centers, as well as the effect of support in metal dispersion and the resistance of the catalyst deactivation along the susceptive uses.


From the results depicted in Table 6, the In_2O_3 seems to be one of the best options as a support for noble metals, achieving CO_2 conversion between 10–20% and selectivity values up to 100% with Pt, Pd, and Ni as metals.

On the other hand, metal sintering, as well as the effect of different synthesis methods in the development of different morphological and/or metal-support interaction effects have also been considered, as well as the Single-Atom Catalysts (SACs) technique, which promotes atomically distributed active metal sites on the support surfaces. In this way, SACs provide great advantages in minimizing the usage of precious metals with a 100% atom-utilization efficiency, which thus results in improved catalytic reactivity [268].

It is noteworthy that bimetallic catalysts are best suited for methanol hydrogenation in comparison to their monometallic counterparts. Herein, a summary regarding the advances of the bimetallic catalysts (Ni, Cu, Pd, Rh, Ru, Zn, and In-based bimetallic systems) for methanol production in recent years, as well as the different strategies to enhance the catalytic activity, including regulating the active species, nanoparticle size, and catalyst support, have been included, Table 7.

3.1.3. CO₂ Hydrogenation to Methanol over Mixed Oxide-Based Catalysts

Despite the fact that catalysts based on the use of supported Cu [269] or noble metals [270] have demonstrated their ability to produce methanol as a product of CO₂ hydrogenation, the investigation of simple metal oxides or diverse metal oxides mixtures (MOs) to obtain heterogeneous systems with enough catalytic activity, selectivity, and durability for the synthesis of methanol from CO₂ hydrogenation is currently an important line of research, collecting a large number of publications in recent years. The most interesting results are summarized in Table 8. In this regard, a rational design of Mos has been proposed, i.e., the general optimization framework followed to fine-tune non-precious metal oxide sites and their surrounding environment through appropriate synthetic and promotional or modification routes, as shown in Figure 11 [271].

Figure 11. Representative scheme of the parameters affecting the catalytic behavior of metal oxides (MOs) in the CO₂ hydrogenation process: size, shape, composition, and electronic/chemical state. Adapted from ref. [271], open access, Catalysts 2020.

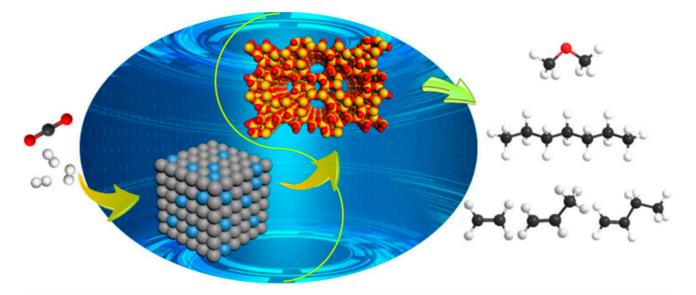
The multiple studies collected in Table 8 show that there are fundamentally two options that meet expectations. On the one hand, results obtained using binary metal

oxides $ZnO-ZrO_2$ and, and on the other hand, heterogeneous catalysts including In_2O_3 , either alone or in various hybrid mixtures. In this sense, some research is currently directed to the optimization of the $ZnO-ZrO_2$ mixtures, evaluating parameters that implement the highly selective production of CH_3OH [272,273], whereas the other line intends the evaluation of the promoting effect of incorporating Ga or small amounts of Cu into ZnZrOx solid solutions [274,275].

Metal Oxides	Conversion (%)	S _{CH3OH} (%)	Т (°С)	P (Atm.)	Ref.
NiO/In ₂ O ₃	1–3	50-60	250	30	[276] ^a
In_2O_3	1–10	45-95	240-330	30	[277] ^b
InO_x/ZrO_2	0.5–2.5	70-80	250-300	50	[278] ^a
ZnO/ZrO_2	10	86–91	315-320	50	[279] ^c
ZrO_2/In_2O_3	0.4–5.0	85	220-300	50	[280] ^a
$GaxIn_{2-x}O_3$	7–35	0.5-35	320-400	30	[281] ^a
In ₂ O ₃ -ZrO ₂	3–11	53–91	255-300	40	[282]
MaZrO _x ^d	4.3–12.4	80	250-300	50	[283]
GaZnZrO _x	7.7-8.8	86-88	320	50	[274]
In_2O_3/ZrO_2	e	e	270-310	30-55	[284]
In ₂ O ₃	17	92.4	300	50	[285]
In ₂ O ₃ /Support ^f	0.1–6.0	5-40	220-300	1.0	[286] ^a
In ₂ O ₃ /Support ^g	1-20	5–51	260-360	30	[287]
ZnO/ZrO_2	9.2	50-95	320	30	[288]
MnO_x/Co_3O_4	3–57	2–22	250	10	[289]
GaxIn _{2-x} O ₃	7–38	_	320-400	30	[281]
ZnO/ZrO_2	10	10-85	320	50	[272]
Co_3O_4/In_2O_3	10	30-70	300	40	[290]
ZnZrO _x ^h	1–18	30–90	200-360	45	[291]
In_2O_3/ZrO_2	3–8	65–90	300	50	[292]
Co_xO_y/MgO	7–35	8–30	i	1.0	[293]
InNi ₃ C _{0.5} /ZrO ₂	25.7	90.2	325	60	[294] ^a
In_2O_3/ZrO_2	5–30	_	320-400	20	[295]
$ZrZnO_x/zeolite$	1-8	5-30	400	30	[273]
In ₂ O ₃ /GO ^j	1–14	5-100	200-450	30	[296]
In ₂ O ₃	4–18	20-85	260-360	40	[297]

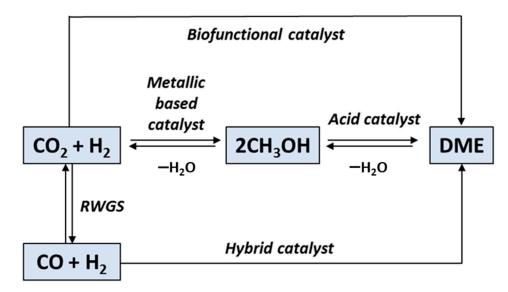
Table 8. A comparative summary of different active metal oxides catalysts studied in the carbon dioxide hydrogenation process to obtain methanol.

^a Special attention is paid to the existence of strong metal support interaction (SMSI) and/or geometric and/or electronic effects. ^b A phase-mixing strategy is used in the synthesis of catalysts. ^c The ability of the catalysts for their reuse is determined. ^d (Ma = Cd, Ga). ^e Results are expressed in terms of methanol space-time yield. ^f Supports ZrO₂ and CeO₂. ^g Supports MnO and MgO. ^h Promoters, small amounts (<2%) of Cu, Pd, or Pt. ⁱ Non thermal plasma-catalysis DBD reactor. ^j Graphene oxide, GO.


Besides, it has also been verified that several mixed systems with oxides [287,296], including ZrO₂, or transition metals, such as Co, Ni, Sn, Pd [298,299], or CuO [300]. Moreover, PdZn alloy catalysts supported on ZnFe composite oxides [301] or molybdenum phosphide catalysts have also been studied, attaining very promising results [302].

Nevertheless, from the different options covered to date, indium oxide-based catalysts are attracting the highest interest due to their excellent selectivity to methanol and high activity for CO₂ conversion. Therefore, most of the new high-performance catalysts are described over ternary Cu-based catalysts with several promotor compounds, including In, Ce, Zn, or Zr [303,304].

3.1.4. Methanol Reaction Process for CO₂ Hydrogenation to Fuels and Chemicals


By coupling two successive reactions using a bifunctional catalyst, the hydrogenation of CO_2 to methanol can be applied to obtain C2+ compounds, including dimethyl ether (DME), light olefins, and gasoline-type hydrocarbons [59]. Thus, after the conversion of CO_2 and H_2 to CH_3OH on the surface of a suitable catalyst, the methanol is dehydrated or coupled on zeolites, alumina, or some other suitable acid-base catalyst, according to the scheme shown in Figure 12. Consequently, the synthesis of products with two or more

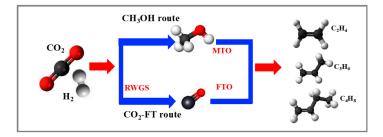
carbons (C2+) from CO₂ hydrogenation can be achieved by first converting of CO₂ to carbon monoxide or methanol and then conducting a C–C or C–O coupling reaction with a bifunctional or hybrid catalyst [305].

Figure 12. Schematic reaction mechanism of direct CO₂ hydrogenation to C2+ products over bifunctional catalysts. Reproduced with permission from ref. [59], open access Nat. Commun. 2021.

In this respect, dimethyl ether (DME) is a versatile raw material and an interesting alternative fuel that can be produced directly by catalytic hydrogenation of CO_2 [105,306]. Therefore, this process is considered a potential vector to contribute to the CO_2 reduction because of its lower operating costs compared to the classic two-step synthesis of DME, CO, and hydrogen. Figure 13 shows a general scheme of the DME formation. In recent years, a great number of studies have been carried out with the aim of finding a good catalyst for the production of DME from syngas. However, multiple investigations are currently comparing direct CO_2 -to-DME to bifunctional/hybrid catalytic systems. Table 9 collects a comparative summary of the different bifunctional/hybrid catalytic systems recently studied in the carbon dioxide hydrogenation process to obtain DME.

Figure 13. General scheme for the synthesis of DME by direct hydrogenation of CO₂ with hybrid or bifunctional catalysts.

Metal Catalyst	Acid Catalyst	Conversion (%)	S _{CO} (%)	S _{CH3OH} (%)	S _{DME} (%)	Т (°С)	P (Atm.)	Ref.
CZZA ^a	HZSM-5	25–28	20-80	5–7	10-70	220-280	27.6	[185]
CuO/ZnO/ZrO ₂	Zeolite	2-20	15-20	5-12	1-30	260	30	[192]
CuO/ZnO/Al ₂ O ₃	SiO ₂ -Al ₂ O ₃	5–9	49-65	11-17	22-35	260	30	[307]
Cu-BTC MOF ^b	Al ₂ O ₃	2-26	15-25	5-50	14-90	260	30	[308]
CuO/ZnO/ZrO ₂	$Zr(SO_4)_2$	14-17	60-80	7-20	14-28	260	20	[309]
CuZnAlZrCe	ZSM-5	13-19	59-63	9–11	26-33	250	30	[310]
In ₂ O ₃	HNT ^c	1-5	0.0	20-80	10-70	200-300	10-40	[311]
CZA/HPW ^d	TiO ₂	5-22	14-17	5-99	7–59	250	30	[306]
CuZnAlSi/Sn		10	50-60	5–9	80-85	280	40	[312]
$CuO/ZnO/ZrO_2$	SAPO-11	40-50	0.0	10-50	50-90	250-325	10-50	[313]
CZA ^e	HZSM-5	25	25-28	7.0	65-70	220-280	21-42	[314]
CuO/ZnO	HZSM-5	15-35	10-30	5-88	10-80	200-260	15-20	[315]
CuZnOZrO ₂	WOx/Al ₂ O ₃	10-20	64-69	8-17	15-28	300	20	[316]
Cu/ZnO/MO _x ^f	SAPO-34	5-20	50-90	19-24	25-31	200-260	10	[317]
$Cu/ZnO/ZrO_2$	HZSM-5	1–11	9–90	6-18	5-75	200-330	30	[318]
GaZrOx		1–9	10-88	10-100	10-25	240-380	30	[319]
CuO/ZnO/Al ₂ O ₃	SAPO-18	1-8	5-8	3-15	85-90	250-350	20-40	[320]
CuO/ZnO/Al ₂ O ₃	MCM-41-TPA g	2–7	23-65	18-50	18-25	220-250	45	[321]
Cu/ZnO/ZrO ₂	ZSM5	8-11	15-49	24-26	38-58	240	30	[322]
nano-Pd/In ₂ O ₃	H-ZSM-5	6-11	40-45	17-19	36-42	280-300	30	[323]
Gallium nitride		1-25	40-82	18-42	0-80	300-450	20	[324]


Table 9. Comparative summary of different bifunctional/hybrid catalytic systems for improving the direct conversion of CO₂ to DME.

^a CZZA: CuO/ZnO/ZrO₂/Al₂O₃. ^b Cu-BTC MOF: Cu-1,3,5-benzenetricarboxylate metal–organic framework (Cu-BTC MOF). ^c HNT: natural clay halloysite nanotubes, and HNT modified with Al-MCM-41 silica arrays. ^d CZA-HPW: Cu/ZnO/Al₂O₃-H₃PW₁₂O₄₀. ^e CZA: CuO/ZnO/Al₂O₃. ^f MO_x: Al₂O₃, CeO₂, or ZrO₂. ^g TPA: tungstophosphoric acid.

In summary, it can be said that DME is currently considered a firm candidate for its application in the circular process of capturing and using CO_2 , not only to carry out an effective mitigation of environmental problems [325], but also to contribute to obtaining chemical products of interest to society [326].

3.2. One-Step Process for the Conversion of CO₂ to Light Olefins

Light olefins such as ethylene, propylene, and butylene are currently among the top petrochemicals and fuels produced. These olefins are used to produce a wide variety of polymers, plastics, solvents, and cosmetics. Moreover, light olefins can be oligomerized into long-chain hydrocarbons that can be used as fuels, making them a desirable product with high potential. Thus, their production from CO_2 hydrogenation can contribute to a great extent to the elimination of CO_2 emissions. Nowadays, there are mainly two methods for the synthesis of light olefins from captured CO_2 . The first one is the modified Fischer-Tropsch synthesis (FTS), where carbon monoxide is obtained by the reverse water gas shift (RWGS) reaction in a first step and, in a second step; CO is hydrogenated to lower hydrocarbons (HCs) [327,328]. On the other hand, the production of light olefins can be obtained by a different two-step process, usually called the methanol to olefins process, consisting of the hydrogenation of CO_2 into methanol and subsequently a dehydration-condensation process, as shown in Figure 14. These pathways will be discussed in more detail in the following subsections.

Figure 14. General scheme for the synthesis of DME by direct hydrogenation of CO₂ with hybrid or bifunctional catalysts Reaction scheme for CO₂ hydrogenation to light olefins [328].

3.2.1. CO₂ Hydrogenation in a One-Step Process over Bifunctional or Hybrid Catalysts

At present, the production and marketing of low molecular weight olefins is already being carried out through the MTO process, which has high selectivity values for C2–C4 olefins [329], since this process, along with the methanol-to-gasoline (MTG) process, are technological discoveries in the synfuels arena, first introduced by Mobil Oil Corporation [330]. However, although considerable progress has been made in the hydrogenation of carbon dioxide to various C1 chemicals, it is still a great challenge to synthesize valueadded products with two or more carbons directly from CO_2 , given the technical and economic interest of the process. In this regard, a great number of investigations have been carried out. Most of these studies aimed at evaluating the experimental conditions and/or the bifunctional catalysts able to couple two successive reactions, the hydrogenation of CO_2 to methanol, followed by its dehydration or coupling on zeolites, alumina, or some other suitable acid-base catalyst. A comparative summary of the different bifunctional/hybrid catalysts recently studied in the MTO process with high selectivity for light olefins is collected in Table 10.

Table 10. Comparative summary of different bifunctional/hybrid catalytic systems for the MTO process for improving the direct conversion of CO₂ to light olefins.

Metal Catalyst	Acid Catalyst	Conversion (%)	S _{CO} (%)	S _{C2-C4} (%)	S _{C5} (%)	Т (°С)	P (Atm)	Ref.
In ₂ O ₃	HZSM-5	12-15	45-50	20-25	79	340	30	[331]
Cu/CeO ₂	SAPO-34	4-20	30-75	30-65	4–9	300-500	20	[332]
ZnZrOx	Zeolites ^a	18-24		1.5-2.8	2–9	325-400	10	[333]
InCo	Zn-zeolite beta	8.0	6	8	85	300	50	[334]
In_2O_3/ZrO_2	SAPO-34	17-26	64-70	65-82	2-5	380	30	[335]
ZnO/ZrO_2	SAPO-34	42–45 ^b	4-22	76-85	2–3	375	15	[336]
ZnGaOx spinel	SAPO-34	7-50		15-76	5–7	400	40	[337]
$In_2O_3/Zr\dot{O}_2$	SAPO-34	15–21 °		3–6		400	30	[338]
In_2O_3/ZrO_2	SAPO-34	23-25	2-6	2–7		400	30	[339]
In-Zr	SAPO-34	35		93		400	30	[340]
Mn ₂ O ₃ -ZnO	SAPO-34	9-30	50-91	86-92	3–13	380	30	[341]
Fe/Co	K-Al ₂ O ₃	37-42	12-16	67	17-21	320	20	[342]
Fe ₅ C ₂	Zeolite ^d	8-56	1-49	12–93 ^e	1-56	300	10	[343]
In ₂ O ₃	SAPO-34	18-35	18-37	16-34		340-400	10-25	[344]
ZnZrOx	SAPO-34	9–14	40-43	82-83		380	30	[345]
In_2O_3/ZrO_2	SAPO-34	29-38	45-90	68-85	3–5	400	10-30	[331]
ZnZrO	SAPO-34	10-15		80.0	1–3	330-380	20	[346]
InCeOx/InCrOx	SAPO-34	5-20	15-60	70-90	3–7	300-350	10-35	[347]
CuZnZr(CZZ)	SAPO-34	10-20	57-86	70-88	0.5-5	400	20	[348]
NiCu/CeO ₂	SAPO-34	12-20	55-85	62-79	2-4	350-450	20	[349]
ZnO/Y_2O_3	SAPO-34	6-28	75–97	90-94	1-5	390	40	[350]
ZrS/Fe ₂ O ₃ @KO ₂	SAPO-34	46-48	24-27	42-55	25-38	375	30	[351]
10K ₁₃ Fe ₂ Co ₁₀₀ Zr	Polymetallic fibers	10-48		70-80		400	30	[352]
ZnO/ZrO_2	MnSAPO-34 f	15-21	g	90–99	0.4-7.6	380	20	[353]
GaZrO _x	SAPO-34	5-12	50-60	92-95	1–3	370-410	30	[354]
CuO/ZnO/Al ₂ O ₃	SAPO-34	50-56	4-10	50-56	h	250-450	30	[355]
In ₂ O ₃	SAPO-34 ⁱ	27-51	3–75	50-92	5-20	360	25	[356]
CuO/ZnO	kaolin/SAPO-34	33-58	7-10	78-81	j	400	30	[357]
Y ₂ O ₃ /Fe/Co	SAPO-34	7-18	31-35	75-85	1–3	300-400	10-25	[358]
FeZnK	SAPO-34	42-50	14-20	54-61	8-25	280-360	15	[359]
FeNa	Supports ^k	19–33	10-60	17–73		320	20	[360]

^a Zeolites and silicoaluminophosphates with different topologies, MOR, FER, MFI, BEA, CHA, and ERI. ^b CH₄ selectivity, 2–9%. ^c oxygenates (MeOH and DME): 0.0–0.5%. ^d Containing K, Ce or La. ^e CH₄ Conversion 7–86%. ^f Polymetallic fibers. ^g CH₄: 2.4–8.6. ^h CH₄: 15–18. ⁱ With Fe-Co/K-Al₂O₃ as composite. ^j CH₄: 11–112. ^k SiO₂, Al₂O₃, ZrO₂ and CNT (multi-walled carbon nanotube).

According to recent research developed, in this tandem catalytic process, methanol is obtained as the product of CO_2 hydrogenation in this tandem catalytic process by using various metal oxides; however, in the second acid-catalyzed C–C coupling reactions, zeo-lites SAPO-34 are the main catalysts used. In this respect, the acidity and pore structure of the zeolites seem to be decisive factors in obtaining this coupling process among silicoaluminophosphate (SAPO) zeotype materials. Current research seems to show that SAPO-34 is the best acidic catalyst for obtaining C2–C4 olefins and is superior to other catalysts such as ZSM-5 or SSZ-13 [361–363].

On the other hand, they are also being evaluated with promising results, including the use of Fe-based catalysts promoted with K, Na, Mn, Zn, and Ce to increase lower olefin selectivity, owing to their enhanced CO₂ adsorption ability and facilitation of the formation and stability of active species Fe_5C_2 . Furthermore, the favorable effect of Fe-Co bimetallic systems on the formation of C2+ hydrocarbons in these supported catalysts has been demonstrated [364]. Thus, the combination of these various factors—the application of Fe catalysts supported on different solids, activated by metals such as Co and alkali metals—constitute promising lines of research for obtaining light olefins from the hydrogenation of CO₂ [365]. Finally, using this tandem technique of hydrogenation of CO₂ in the presence of supports of an acid nature, attempts are also being made to obtain various aromatic compounds. Thus, the use of a series of metal oxides (In_2O_3 , Cu-Zn-Al, and ZnZr_xO) with different spherical HZSM-5 zeolites has been investigated to obtain the direct conversion of CO₂ to aromatics [366].

3.2.2. Modified Fischer-Tropsch Synthesis Route

The modified Fisher-Tropsch synthesis route has a clear controlling factor, determined by the RWGS reaction, since it exhibits an endothermic and reversible character, which limits the CO₂ conversion to CO at values around 20% [367]. However, the FTS process, on the other hand, is a well known route for the transformation of syngas (CO + H₂) into C2+ hydrocarbons, that proceeds on catalyst surfaces through the following steps: (1) adsorption and dissociation of CO and H₂; (2) formation of CH_x (x = 0–3) species on catalyst surface; (3) C–C bond formation through coupling of CH_x species, that leading to chain growth and surface CnHm intermediates or CH₄ by the hydrogenation of CH_x species; (4) dehydrogenation or hydrogenation of C_nH_m into olefins or paraffins compounds [368].

Fe, Co, and Ru metals are conventionally employed as active catalyst components owing to their capabilities in both CO dissociation and C–C coupling or chain growth [369]. However, the C–C coupling is uncontrollable on these metal surfaces, leading to a statistical distribution of products, i.e., the Anderson-Schulz-Flory (ASF) distribution. Consequently, one of the main objectives of the research on these catalytic systems is finding supports, either metal or bimetallic. In this sense, it has been shown that Ni-Fe catalysts improved selectivity towards CO without significantly compromising FTS process activity, coupling the high activity of Ni catalysts with the high CO selectivity of Fe [370]. Similarly, a large number of studies have recently evaluated the behavior of different supports, different metals, and different operating conditions in the CO_2 -FT process, as collected in several reviews [328,371,372]. Besides, a comparative summary of the different FTS catalysts recently studied are collected in Table 11. Obviously, this table expresses very summarized values of several selected parameters, obtained from very extensive studies addressing different goals but aiming to carry out an approximate comparison between the different catalysts currently evaluated in FTS reactions.

Table 11. Comparative summary of different catalytic systems for FTS process active	vity improving the
direct conversion of CO ₂ to light olefins.	

Metal Catalysts	Alkali Metal	Support	Conversion (%)	S _{CO} (%)	S _{CH4} (%)	S _{C2-C5} (%)	Т (°С)	P (Atm)	Ref.
Fe	_	Carbon	14–52	5-49	3-8	5–38	300	25	[373]
Со	_	SAPO-34		64-74	24-28	65-70	220	20	[374]
Fe ₃ O ₄ /Mn	Na		22-30	14-32	12-36	64-88	320	5.0	[375]
Co	Κ	Al_2O_3	15-97	1-34	2-33	2–57	200-350	1-50	[376]
Fe ₅ C ₂	_		41-50	3-10	20-46	51-70	320	30	[377]
Fe/Co	K		32-58	2-10	8-36	62-82	300	25	[378]
Fe/Mn	Κ		38.2	5.6	10.4	22.3	300	10	[379]
Co/Mn	Na	SiO ₂	45-47	18-20	2.0	52-54	260-270	50	[380]
Fe/Co (Ru)	Κ		30-57	2-16	7-30	54-84	450	2.0	[381]
Co_3O_4/MnO_2	_		42-48	2-39	4-23	90–96	270	1.0	[382]
Co/Pt	_	ZSM-5	10-28		52-100	10-48	200-500	1-30	[383]
Fe	Na	ZSM-5	18-22	28-32	22-41	30-54	450	20	[384]
Fe/C	K	X-ZSM-5 ^a	34-36	18-20	10-15	85-89	320	20	[385]
CuFeO ₂	_		13-18	28-32	1-60	40-95	300	10	[386]
Cu/Fe	_	Al_2O_3	35-42	23-42	28-38	51-91	300-400	30	[387]
Fe		SMC b	8–45	16-86	5–11	70–89	260	10	[388]

Metal Catalysts	Alkali Metal	Support	Conversion (%)	S _{CO} (%)	S _{CH4} (%)	S _{C2-C5} (%)	Т (°С)	P (Atm)	Ref.
Ru/Ni(NPs) ^c			2-30	0-47	1-100	7–76	150	2-8.5	[389]
Raney-Fe, Fe		SiO ₂	4-12	14-27	5-22	22-78	220-265	20	[390]
Fe/Ti ^d	K		30-35	38-85	23-25	72–75	320	20	[391]
FeMn	_	HZSM-5	28-40	64-68		58-69	280	10	[392]
RuCl ₃ /Ru	_			0-85	14-100	17.5	180	50	[393]
Co, CoO, Co_3O_4		$Si_xAl_vO_z$	3–35	0-12	6-31	15-93	220-260	20	[394]
Fe ₃ O ₄		SiO ₂	5–7	2–5	57-93	7-43	220	1.0	[395]
Fe ₃ O ₄ /Fe _x C _v	Na		36-46	8-11	36-60	16-52	320	20	[396]
Fe ₃ O ₄ /FeC _x		Mesop. C	15-54	5-31	13-75	25-87	320	30	[397]
Co/Ce/La		Al_2O_3	13	49-52	15	99–100	230	20	[398]
Co@CoOx/Co ₂ C- Mn	Na		1–62	1–92	45-70	29–54	230-310	40	[399]
Fe-/Co		SiO ₂	4-20	11–13	26-45	43-70	260-280	20	[400]
FeCo X,(X: La, Mn, Zn)	К	Al ₂ O ₃	65–100	30–38	0–58	44–100	300	10	[401]
Co		C/SiO ₂ ^e	2-8	6-14	21-32	62-70	250	5	[402]
Co ₆ /MnOx			15	0-0.7		0–99	200	8	[403]
Fe ₂ O ₃	Κ	Al ₂ O ₃	40-47	19-33	20-31	40-50	400	30	[404]
Fe-Co	K	Al_2O_3	37-49	9–29	14-23	58-68	320-360	20-30	[405]
Fe-Cu	K		24-41	6–16	5-10	79–88	250-340	20	[406]
$X-Fe_5C_2/ZnO$	Na		2-28	15-36	10-16	68–89	280-370	25	[407]
Ni		MgAl ₂ O ₄	6–70	2–96	3–98		330-400	1.0	[408]
FeAlO _x	Na	HZSM-5/SiO ₂	29-48	8-18	10-35	47–88 ^f	335-400	35	[409]
Fe-Zn	K	SAPO	43-48	14-18	15-40	36–57	320	15	[359]
Fe-Zn	Na		15-39	14-30	12-48	52-88	340	25	[410]
ZnCo _x Fe _{2-x} O ₄		SiO ₂	24–52	6–16	16-21	36.1	260-340	25	[275]
Fe (Cu, Mn, V, Zn, Co)	К	Al_2O_3	29–40	10–20	15–22	65–74	340	20	[411]

Table 11. Cont.

^a X: K⁺, Na⁺, Cu²⁺, Mn²⁺, Mg²⁺, Ce²⁺, La³⁺, or Cs²⁺. ^b spherical mesoporous carbon: (SMC). ^c nanoparticles (2–3 nm), in a hydrophobic ionic liquid (IL). ^d K–Fe–Ti layered metal oxides (LMO). ^e oxygenates, including alcohols and aldehydes Sel.(%): 2–8. ^f Selectivity to aromatics: 7–30.

As can be seen, the majority of catalysts investigated in the two consecutive processes for CO_2 Fischer-Tropsch synthesis (CO_2 -FTS) contain metallic Fe as the active species, enhanced with different inorganic supports, other transition metals, and/or alkali metals. Therefore, these are similar catalysts to those employed in the last few years to obtain olefins from syngas. The main handicap is that these catalysts also work for the water-gasshift reaction (WGSR), producing large amounts of CO_2 as areaction product [412–414]. Some recent research using different catalysts as well as different kinds of feedstocks (coal, biomass, methane via reforming, and nonconventional energy sources) to obtain the syn-gas (CO and H_2) is shown in Table 12.

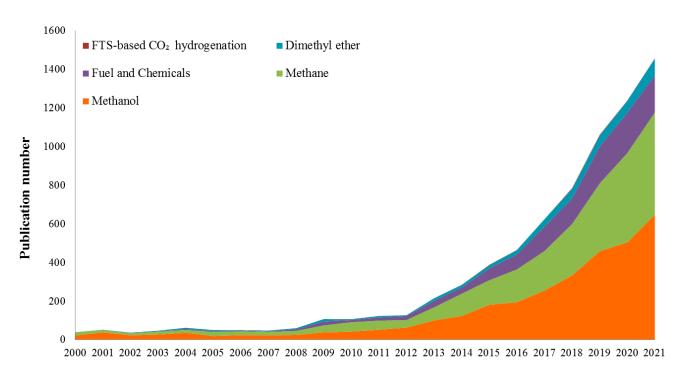
Table 12. Comparative summary of different catalytic systems for Fischer-Tropsch (FTS) improving the direct conversion of the water-gas-shift reaction (WGSR) to light olefins.

Metal Catalysts	Alkali Metal	Support	Conversion (%)	S _{CO2} (%)	S _{CH4} (%)	S _{C2-C5} (%)	Т (°С)	P (Atm)	Ref.
α-Fe ₂ O ₃		SiO ₂ , Al ₂ O ₃	18-65	25-36	16-19	81–94	280	10	[415]
Fe-Mn, Cu		SiO ₂	75–96	23-45	15-19	80-85	200	20	[416]
CoMnAlO _x ^a		SiO ₂	5-14	9-48	2-24	45–85 ^b	260	10	[417]
Co-Re, Pt-ZSM-5		Al_2O_3	5-75			24–43 °	225-255	20-30	[418]
Fe	Na	ZSM-5	24-87	26-42	16-41	57-85	300	10	[419]
Co, Re		Al ₂ O ₃ , CNT	2–4		42-56	44–58	210	1.9	[420]
Fe-Zn	Na	Zeolites ^e	47-44	88–95	11-16	75-80	360	1.0	[421]
CoO-Co		SiO ₂ , TiO ₂ , Al ₂ O ₃	24–75			45-83	210	20	[422]
Fe-Cu	К	2 0	65-90	16	19-37	63-81	340	15	[423]
$Fe_1Zn_{1,2}O_x$	Na		38-95	31-37	15-19	85-87	340	20	[424]
Fe, Fe ₃ C		Carbon	80-90	10-14	7–9	88-90	250-350	34-85	[425]
Fe	K	Al_2O_3	7–90	18-70	7–8	12–74	300-420	20	[426]

^a Composite oxides. ^b Oxygenates, including alcohols and aldehydes Sel.(%): 6–14. ^c Selectivity C_{10} - C_{20} (%). ^d γ -alumina, α -alumina and carbon nanotube (CNT). ^e Zeolites: HY, NaY, ZSM-5, SAPO-34, H β , Li β , Na β , K β , and Rb β .

Therefore, from the conventional Fischer-Tropsch reaction, it is possible to access catalytic systems that could be tested in modified Fischer-Tropsch processes capable of

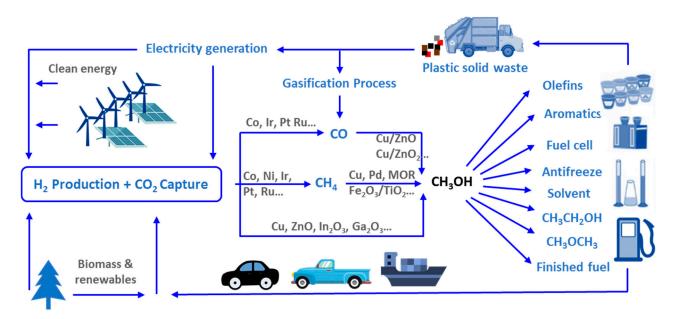
using CO_2 as a raw material to access light olefins (C2-C4) widely used in different fields such as the synthesis of polymers and pharmaceutical intermediates. However, the chain length distributions are given by the Anderson-Flory (ASF) distribution, which limit the C2-C4 range to less than 58% [427]. Finally, it is possible to integrate waste CO_2 in synthesis using Fe-based Fischer-Tropsch with green H₂ as well as olefin oligomerization, thereby increasing the production of value-added liquid hydrocarbons [428].


4. Concluding Remarks, Challenges, and Research Outlook

The use of CO_2 as a raw material for the production of various chemicals via catalytic hydrogenation is currently a necessary eventuality, not only because global warming is a risk, but also, and more importantly, because there is a real possibility of technologically accessing sufficient amounts of green hydrogen at an affordable, economical cost. In this respect, the use of hydrogen as an energy vector, not only in a significant number of heavy industries but also in transportation fuels, is expected to decisively contribute to meeting decarbonization goals to achieve net zero emissions in the next two decades. However, these objectives do not only mean to address efficient hydrogen production but also its trustworthy transportation and storage. For this purpose, it is currently considered that the use of different liquid organic hydrogen carriers (LOHCs) is a valuable solution to making available a reliable and on-demand hydrogen supply. However, green hydrogen can also be stored and transported as a 'green' feedstock for the synthesis of biofuels and several fine chemicals.

Therefore, the production of green hydrogen via electrolysis and its storage and transportation using some hydrogen carriers such as ammonia or methanol must be considered as part of sustainable chemical and biofuel manufacturing. Thus, the power-to-ammonia concept allows producing ammonia by the Haber–Bosch process, the currently second most produced industrial chemical, from air, water, and (renewable) electricity. Besides, methanol synthesis, with a global production capacity of around 85 million metric tons per year, which is expected to rise in the coming years, can be obtained by catalytic CO_2 hydrogenation. In this regard, methanol is one of the most important industrial chemicals, serving as a feedstock for a wide range of chemical products. Besides, it is also being used increasingly as a fuel additive and as a transportation fuel alternative. This assumption is confirmed by the high number of investigations carried out in recent decades. As can be seen in Figure 15, the production of methanol from CO_2 hydrogenation is the option most investigated, followed by CO_2 methanation.

The primary industrial process relevant to the current scenario, developed to reduce global warming, is CO_2 to methanol conversion. However, extensive commercialization of green methanol from CO_2 hydrogenation is still seriously limited by its economic viability due to various factors. These include the difficulty in accessing renewable H_2 and sources of CO_2 recovered from industrial processes, in enough quantity and purity. In addition, it must be added to these factors that the current low price of methanol, due to the low price of natural gas, has been used until now for its industrial production. Despite this, in the last decade there has been widespread industrial interest in the development of technologies in this field, probably encouraged by the increasing implementation of legal regulations on fossil fuels to mitigate climate change and the general introduction of a strict carbon tax.


Furthermore, the actual introduction of Renew Energy technologies in many countries have made solar and wind the cheapest sources of energy in many parts of the world. This has not only caused the rapid decarbonization of the electricity sector but also opened the possibility of obtaining several chemicals by CO_2 hydrogenation via electrolysis.

Year

Figure 15. Number of publications found in the Web of Science database using keywords related to CO_2 transformation in various products from 2000 to 2022. Publications include research articles, reviews, patents, books, and letters.

This new scenario allows us to consider that an exemplary carbon capture and utilization cycle based on mature technologies can meet the energy requirements of the "industrial carbon cycle", an emerging paradigm in which industrial CO_2 emissions are captured and reprocessed into chemicals and E-fuels. In this context, methanol would come to occupy a central role as a platform molecule from which most chemical commodities could be obtained (Figure 16), partially replacing the ethanol role granted by the paradigm associated with so-called green chemistry, which is primarily based on biomass feedstocks.

Figure 16. The simplified carbon cycle with green methanol as a platform molecule in the future. Adapted from ref. [429].

At the very least, the massive use of anthropogenic CO_2 would free up huge amounts of agricultural land that, in the paradigm of green chemistry, should be used for crops destined for industrial uses. For this reason, the application of CO_2 as a raw material for obtaining methanol and other chemicals could constitute the main chemical reaction to be developed in the 21st century, similar to what happened in the past 20th century with the catalytic hydrogenation reaction of nitrogen gas for the production of ammonia by the Haber–Bosch process.

Therefore, based on the existing investigations, it can be concluded that there are two priority directions that should be followed in the immediate future. On the one hand, the performance of the electrolysis processes to obtain green hydrogen must be increased as much as possible. On the other hand, implement the processes for catalytic hydrogenation of CO_2 to obtain green methanol. In this sense, it would be necessary to consider the development of more efficient heterogeneous catalysts, both in the yield obtained and in their behavior over successive uses. Likewise, it is a priority to try to obtain catalytic systems that are as economical as possible, through the use of non-noble metals, in order to obtain, in a viable technical and economic way, green methanol, which would be the platform molecule on which, in the present century, the fine chemistry will foreseeably rest.

Author Contributions: Conceptualization, D.L. and R.E.; Methodology, F.M.B. and L.A.-D.; writing—original draft preparation, D.L. and R.E.; writing—review and editing, F.J.L.-T. and R.E.; supervision, A.A.R. and F.M.B. All authors have read and agreed to the published version of the manuscript.

Funding: PID2019–104953RB-I00 Project, the Junta de Andalucía and FEDER funds (P18-RT-4822), and UCO-FEDER (1264113-RMINECO-ENE2016-81013-R (AEI/FEDER, EU).

Acknowledgments: The authors are thankful to the Spanish MICINN through the PID2019–104953RB-I00 Project, the Junta de Andalucía and FEDER funds (P18-RT-4822), and UCO-FEDER (1264113-RMINECO-ENE2016-81013-R (AEI/FEDER, EU)). R. Estevez and L. Aguado-Deblas are indebted to the Junta de Andalucía for the contract associated to the P18-RT-4822 Project. The authors are also thankful to the "Instituto Químico para la Energía y el Medioambiente (IQUEMA)" for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Zheng, X.; Streimikiene, D.; Balezentis, T.; Mardani, A.; Cavallaro, F.; Liao, H. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. *J. Clean. Prod.* 2019, 234, 1113–1133. [CrossRef]
- Teske, S.; Giurco, D.; Morris, T.; Nagrath, K.; Mey, F.; Briggs, C.; Dominish, E.; Florin, N. Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios to Achieve the Paris Agreement Goals with Non-Energy GHG Pathways for +1.5 °C and +2 °C; Springer: Berlin/Heidelberg, Germany, 2019.
- Hospital-Benito, D.; Lemus, J.; Moya, C.; Santiago, R.; Palomar, J. Process analysis overview of ionic liquids on CO₂ chemical capture. *Chem. Eng. J.* 2020, 390, 124509. [CrossRef]
- Anwar, M.; Fayyaz, A.; Sohail, N.; Khokhar, M.; Baqar, M.; Yasar, A.; Rasool, K.; Nazir, A.; Raja, M.; Rehan, M. CO₂ utilization: Turning greenhouse gas into fuels and valuable products. *J. Environ. Manag.* 2020, 260, 110059. [CrossRef] [PubMed]
- 5. Kleij, A.W.; North, M.; Urakawa, A. CO₂ Catalysis; Wiley Online Library: New York, NY, USA, 2017; Volume 10, pp. 1036–1038.
- 6. Sahoo, P.K.; Zhang, Y.; Das, S. CO₂-promoted reactions: An emerging concept for the synthesis of fine chemicals and pharmaceuticals. *ACS Catal.* **2021**, *11*, 3414–3442. [CrossRef]
- Zahed, M.A.; Movahed, E.; Khodayari, A.; Zanganeh, S.; Badamaki, M. Biotechnology for carbon capture and fixation: Critical review and future directions. *J. Environ. Manag.* 2021, 293, 112830. [CrossRef]
- Chauvy, R.; Meunier, N.; Thomas, D.; De Weireld, G. Selecting emerging CO₂ utilization products for short-to mid-term deployment. *Appl. Energy* 2019, 236, 662–680. [CrossRef]
- 9. Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. *Chem. Rev.* **2017**, *117*, 13230–13319. [CrossRef]
- Roy, S.; Cherevotan, A.; Peter, S. Thermochemical CO₂ hydrogenation to single carbon products: Scientific and technological challenges. ACS Energy Lett. 2018, 3, 1938–1966. [CrossRef]
- 11. Alper, E.; Orhan, O.Y. CO₂ utilization: Developments in conversion processes. Petroleum 2017, 3, 109–126. [CrossRef]
- 12. Sun, Y.; Lin, Z.; Peng, S.H.; Sage, V.; Sun, Z. A critical perspective on CO₂ conversions into chemicals and fuels. *J. Nanosci. Nanotechnol.* **2019**, *19*, 3097–3109. [CrossRef]

- Mustafa, A.; Lougou, B.G.; Shuai, Y.; Wang, Z.; Tan, H. Current technology development for CO₂ utilization into solar fuels and chemicals: A review. J. Energy Chem. 2020, 49, 96–123. [CrossRef]
- 14. Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Sustainable renewable energy supply networks optimization–The gradual transition to a renewable energy system within the European Union by 2050. *Renew. Sustain. Energy Rev.* **2021**, *146*, 111186. [CrossRef]
- Southall, E.; Lukashuk, L. Analysis of Liquid Organic Hydrogen Carrier Systems. Johns. Matthey Technol. Rev. 2022, 66, 271–284. [CrossRef]
- 16. Safari, A.; Roy, J.; Assadi, M. Petroleum Sector-Driven Roadmap for Future Hydrogen Economy. *Appl. Sci.* **2021**, *11*, 10389. [CrossRef]
- 17. Gao, R.; Zhang, C.; Jun, K.-W.; Kim, S.K.; Park, H.-G.; Zhao, T.; Wang, L.; Wan, H.; Guan, G. Transformation of CO₂ into liquid fuels and synthetic natural gas using green hydrogen: A comparative analysis. *Fuel* **2021**, 291, 120111. [CrossRef]
- 18. Chen, C.-Y.; Yu, J.C.-C.; Nguyen, V.-H.; Wu, J.C.-S.; Wang, W.-H.; Kočí, K. Reactor design for CO₂ photo-hydrogenation toward solar fuels under ambient temperature and pressure. *Catalysts* **2017**, *7*, 63. [CrossRef]
- 19. Martino, M.; Ruocco, C.; Meloni, E.; Pullumbi, P.; Palma, V. Main hydrogen production processes: An overview. *Catalysts* **2021**, *11*, 547. [CrossRef]
- Hong, X.; Thaore, V.B.; Karimi, I.A.; Farooq, S.; Wang, X.; Usadi, A.K.; Chapman, B.R.; Johnson, R.A. Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study. *Int. J. Hydrogen Energy* 2021, 46, 32914–32928. [CrossRef]
- Cannone, S.F.; Lanzini, A.; Santarelli, M. A review on CO₂ capture technologies with focus on CO₂-enhanced methane recovery from hydrates. *Energies* 2021, 14, 387. [CrossRef]
- 22. Kumar, M.; Sundaram, S.; Gnansounou, E.; Larroche, C.; Thakur, I.S. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. *Bioresour. Technol.* **2018**, 247, 1059–1068. [CrossRef]
- Sifat, N.S.; Haseli, Y. A critical review of CO₂ capture technologies and prospects for clean power generation. *Energies* 2019, 12, 4143. [CrossRef]
- Xu, D.; Li, W.; Ren, X.; Shen, W.; Dong, L. Technology selection for sustainable hydrogen production: A multi-criteria assessment framework under uncertainties based on the combined weights and interval best-worst projection method. *Int. J. Hydrogen Energy* 2020, 45, 34396–34411. [CrossRef]
- Catalan, L.J.; Rezaei, E. Coupled hydrodynamic and kinetic model of liquid metal bubble reactor for hydrogen production by noncatalytic thermal decomposition of methane. *Int. J. Hydrogen Energy* 2020, 45, 2486–2503. [CrossRef]
- Wang, L.; Wang, L.; Zhang, J.; Liu, X.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J.; Dong, X.; Yoo, S.J. Selective hydrogenation of CO₂ to ethanol over cobalt catalysts. *Angew. Chem. Int. Ed.* 2018, 57, 6104–6108. [CrossRef]
- 27. Liu, S.; Chen, H.; Zhang, X. Bifunctional {Pb10K2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO₂ with Epoxides and Knoevenagel Condensation. *ACS Catal.* **2022**, *12*, 10373–10383. [CrossRef]
- Lv, H.; Chen, H.; Fan, L.; Zhang, X. Nanocage-Based Tb3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO₂ with Epoxides and Knoevenagel Condensation. *Inorg. Chem.* 2022, *61*, 15558–15568. [CrossRef]
- Ni, Y.; Chen, Z.; Fu, Y.; Liu, Y.; Zhu, W.; Liu, Z. Selective conversion of CO₂ and H2 into aromatics. *Nat. Commun.* 2018, 9, 3457.
 [CrossRef]
- 30. Wang, Y.; Tan, L.; Tan, M.; Zhang, P.; Fang, Y.; Yoneyama, Y.; Yang, G.; Tsubaki, N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO₂ hydrogenation producing value-added aromatics. *ACS Catal.* **2018**, *9*, 895–901. [CrossRef]
- Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. *Chem. Soc. Rev.* 2011, 40, 3703–3727. [CrossRef]
- 32. Lonis, F.; Tola, V.; Cau, G. Renewable methanol production and use through reversible solid oxide cells and recycled CO₂ hydrogenation. *Fuel* **2019**, *246*, 500–515. [CrossRef]
- 33. Vogt, C.; Monai, M.; Kramer, G.J.; Weckhuysen, B.M. The renaissance of the Sabatier reaction and its applications on Earth and in space. *Nat. Catal.* **2019**, *2*, 188–197. [CrossRef]
- Alarcón, A.; Guilera, J.; Díaz, J.A.; Andreu, T. Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO₂ methanation. *Fuel Process. Technol.* 2019, 193, 114–122. [CrossRef]
- 35. Lee, W.J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent trend in thermal catalytic low temperature CO₂ methanation: A critical review. *Catal. Today* **2021**, *368*, 2–19. [CrossRef]
- Frontera, P.; Macario, A.; Ferraro, M.; Antonucci, P. Supported catalysts for CO₂ methanation: A review. *Catalysts* 2017, 7, 59. [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A review of recent catalyst advances in CO₂ methanation processes. *Catal. Today* 2020, 356, 471–489. [CrossRef]
- 38. Fan, W.K.; Tahir, M. Recent trends in developments of active metals and heterogenous materials for catalytic CO₂ hydrogenation to renewable methane: A review. *J. Environ. Chem. Eng.* **2021**, *9*, 105460. [CrossRef]
- Tada, S.; Nagase, H.; Fujiwara, N.; Kikuchi, R. What are the best active sites for CO₂ methanation over Ni/CeO₂? *Energy Fuels* 2021, 35, 5241–5251. [CrossRef]
- 40. Hu, F.; Ye, R.; Lu, Z.-H.; Zhang, R.; Feng, G. Structure–Activity Relationship of Ni-Based Catalysts toward CO₂ Methanation: Recent Advances and Future Perspectives. *Energy Fuels* **2022**, *36*, 1–156. [CrossRef]
- Mohd Ridzuan, N.D.; Shaharun, M.S.; Anawar, M.A.; Ud-Din, I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review on Performance and Progress. *Catalysts* 2022, 12, 469. [CrossRef]

- Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. CO and CO₂ methanation over Ni catalysts supported on CeO₂, Al2O3 and Y2O3 oxides. *Appl. Catal. B Environ.* 2020, 264, 118494. [CrossRef]
- Feng, F.; Song, G.; Xiao, J.; Shen, L.; Pisupati, S.V. Carbon deposition on Ni-based catalyst with TiO₂ as additive during the syngas methanation process in a fluidized bed reactor. *Fuel* 2019, 235, 85–91. [CrossRef]
- Alrafei, B.; Polaert, I.; Ledoux, A.; Azzolina-Jury, F. Remarkably stable and efficient Ni and Ni-Co catalysts for CO₂ methanation. *Catal. Today* 2020, 346, 23–33. [CrossRef]
- 45. Champon, I.; Bengaouer, A.; Chaise, A.; Thomas, S.; Roger, A.-C. Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst. *J. CO2 Util.* **2019**, *34*, 256–265. [CrossRef]
- Garbarino, G.; Wang, C.; Cavattoni, T.; Finocchio, E.; Riani, P.; Flytzani-Stephanopoulos, M.; Busca, G. A study of Ni/La-Al2O3 catalysts: A competitive system for CO₂ methanation. *Appl. Catal. B Environ.* 2019, 248, 286–297. [CrossRef]
- Liu, S.-S.; Jin, Y.-Y.; Han, Y.; Zhao, J.; Ren, J. Highly stable and coking resistant Ce promoted Ni/SiC catalyst towards high temperature CO methanation. *Fuel Process. Technol.* 2018, 177, 266–274. [CrossRef]
- Beierlein, D.; Haeussermann, D.; Pfeifer, M.; Schwarz, T.; Stoewe, K.; Traa, Y.; Klemm, E. Is the CO₂ methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive? *Appl. Catal. B Environ.* 2019, 247, 200–219. [CrossRef]
- Ashok, J.; Ang, M.; Kawi, S. Enhanced activity of CO₂ methanation over Ni/CeO₂-ZrO₂ catalysts: Influence of preparation methods. *Catal. Today* 2017, 281, 304–311. [CrossRef]
- Zhang, T.; Liu, Q. Lanthanum-modified MCF-derived nickel phyllosilicate catalyst for enhanced CO₂ methanation: A comprehensive study. ACS Appl. Mater. Interfaces 2020, 12, 19587–19600. [CrossRef]
- Mebrahtu, C.; Abate, S.; Perathoner, S.; Chen, S.; Centi, G. CO₂ methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships. *Catal. Today* 2018, 304, 181–189. [CrossRef]
- Romero-Sáez, M.D.; Dongil, A.B.; Benito, N.; Espinoza-González, R.; Escalona, N.; Gracia, F. CO₂ methanation over nickel-ZrO₂ catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. *Appl. Catal. B Environ.* 2018, 237, 817–825. [CrossRef]
- 53. Li, L.; Zeng, W.; Song, M.; Wu, X.; Li, G.; Hu, C. Research Progress and Reaction Mechanism of CO₂ Methanation over Ni-Based Catalysts at Low Temperature: A Review. *Catalysts* **2022**, *12*, 244. [CrossRef]
- Lv, C.; Xu, L.; Chen, M.; Cui, Y.; Wen, X.; Li, Y.; Wu, C.-E.; Yang, B.; Miao, Z.; Hu, X. Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO₂ methanation. *Front. Chem.* 2020, *8*, 269. [CrossRef] [PubMed]
- 55. Ho, P.H.; de Luna, G.S.; Angelucci, S.; Canciani, A.; Jones, W.; Decarolis, D.; Ospitali, F.; Aguado, E.R.; Rodríguez-Castellón, E.; Fornasari, G. Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO₂ methanation. *Appl. Catal. B Environ.* 2020, 278, 119256. [CrossRef]
- 56. Liang, C.; Hu, X.; Wei, T.; Jia, P.; Zhang, Z.; Dong, D.; Zhang, S.; Liu, Q.; Hu, G. Methanation of CO₂ over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity. *Int. J. Hydrogen Energy* **2019**, *44*, 8197–8213. [CrossRef]
- 57. Lin, J.; Ma, C.; Wang, Q.; Xu, Y.; Ma, G.; Wang, J.; Wang, H.; Dong, C.; Zhang, C.; Ding, M. Enhanced low-temperature performance of CO₂ methanation over mesoporous Ni/Al₂O₃-ZrO₂ catalysts. *Appl. Catal. B Environ.* **2019**, 243, 262–272. [CrossRef]
- Sreedhar, I.; Varun, Y.; Singh, S.A.; Venugopal, A.; Reddy, B.M. Developmental trends in CO₂ methanation using various catalysts. *Catal. Sci. Technol.* 2019, 9, 4478–4504. [CrossRef]
- 59. Ye, R.-P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q. CO₂ hydrogenation to high-value products via heterogeneous catalysis. *Nat. Commun.* **2019**, *10*, 5698. [CrossRef]
- Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castello, D.; González-Marcos, J.A.; Bueno-López, A.; González-Velasco, J.R. Effect of metal loading on the CO₂ methanation: A comparison between alumina supported Ni and Ru catalysts. *Catal. Today* 2020, 356, 419–432. [CrossRef]
- Chein, R.-Y.; Wang, C.-C. Experimental Study on CO₂ Methanation over Ni/Al₂O₃, Ru/Al₂O₃, and Ru-Ni/Al₂O₃ Catalysts. *Catalysts* 2020, 10, 1112. [CrossRef]
- 62. Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. Bimetallic Ni-based catalysts for CO₂ methanation: A review. *Nanomaterials* **2020**, *11*, 28. [CrossRef]
- 63. Polanski, J.; Lach, D.; Kapkowski, M.; Bartczak, P.; Siudyga, T.; Smolinski, A. Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. *Catalysts* **2020**, *10*, 992. [CrossRef]
- 64. Guilera, J.; del Valle, J.; Alarcón, A.; Díaz, J.A.; Andreu, T. Metal-oxide promoted Ni/Al2O3 as CO₂ methanation micro-size catalysts. *J. CO2 Util.* **2019**, *30*, 11–17. [CrossRef]
- 65. Baysal, Z.; Kureti, S. CO₂ methanation on Mg-promoted Fe catalysts. Appl. Catal. B Environ. 2020, 262, 118300. [CrossRef]
- Abdel-Mageed, A.M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R.J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO₂ methanation on highly active Ru/TiO₂ catalysts. *Appl. Catal. B Environ.* 2020, 270, 118846. [CrossRef]
- 67. Dreyer, J.A.; Li, P.; Zhang, L.; Beh, G.K.; Zhang, R.; Sit, P.H.-L.; Teoh, W.Y. Influence of the oxide support reducibility on the CO₂ methanation over Ru-based catalysts. *Appl. Catal. B Environ.* **2017**, *219*, 715–726. [CrossRef]
- Vrijburg, W.L.; Moioli, E.; Chen, W.; Zhang, M.; Terlingen, B.J.; Zijlstra, B.; Filot, I.A.; Züttel, A.; Pidko, E.A.; Hensen, E.J. Efficient base-metal NiMn/TiO₂ catalyst for CO₂ methanation. *Acs Catal.* 2019, *9*, 7823–7839. [CrossRef]

- 69. Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C.-J. Structural effect of Ni/ZrO₂ catalyst on CO₂ methanation with enhanced activity. *Appl. Catal. B Environ.* **2019**, 244, 159–169. [CrossRef]
- Liu, Q.; Wang, S.; Zhao, G.; Yang, H.; Yuan, M.; An, X.; Zhou, H.; Qiao, Y.; Tian, Y. CO₂ methanation over ordered mesoporous NiRu-doped CaO-Al₂O₃ nanocomposites with enhanced catalytic performance. *Int. J. Hydrogen Energy* 2018, 43, 239–250. [CrossRef]
- Ewald, S.; Kolbeck, M.; Kratky, T.; Wolf, M.; Hinrichsen, O. On the deactivation of Ni-Al catalysts in CO₂ methanation. *Appl. Catal. A Gen.* 2019, 570, 376–386. [CrossRef]
- 72. Men, Y.; Fang, X.; Gu, Q.; Singh, R.; Wu, F.; Danaci, D.; Zhao, Q.; Xiao, P.; Webley, P.A. Synthesis of Ni₅Ga₃ catalyst by Hydrotalcite-like compound (HTlc) precursors for CO₂ hydrogenation to methanol. *Appl. Catal. B Environ.* **2020**, 275, 119067. [CrossRef]
- 73. Ricca, A.; Truda, L.; Palma, V. Study of the role of chemical support and structured carrier on the CO₂ methanation reaction. *Chem. Eng. J.* **2019**, 377, 120461. [CrossRef]
- Vita, A.; Italiano, C.; Pino, L.; Laganà, M.; Ferraro, M.; Antonucci, V. High-temperature CO₂ methanation over structured Ni/GDC catalysts: Performance and scale-up for Power-to-Gas application. *Fuel Process. Technol.* 2020, 202, 106365. [CrossRef]
- Shen, L.; Xu, J.; Zhu, M.; Han, Y.-F. Essential role of the support for nickel-based CO₂ methanation catalysts. ACS Catal. 2020, 10, 14581–14591. [CrossRef]
- 76. Gac, W.; Zawadzki, W.; Rotko, M.; Greluk, M.; Słowik, G.; Kolb, G. Effects of support composition on the performance of nickel catalysts in CO₂ methanation reaction. *Catal. Today* **2020**, *357*, 468–482. [CrossRef]
- 77. Siakavelas, G.I.; Charisiou, N.D.; AlKhoori, S.; AlKhoori, A.A.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Yentekakis, I.; Polychronopoulou, K.; Goula, M.A. Highly selective and stable nickel catalysts supported on ceria promoted with Sm₂O₃, Pr₂O₃ and MgO for the CO₂ methanation reaction. *Appl. Catal. B Environ.* **2021**, *282*, 119562. [CrossRef]
- Xie, Y.; Chen, J.; Wu, X.; Wen, J.; Zhao, R.; Li, Z.; Tian, G.; Zhang, Q.; Ning, P.; Hao, J. Frustrated Lewis Pairs Boosting Low-Temperature CO₂ Methanation Performance over Ni/CeO₂ Nanocatalysts. ACS Catal. 2022, 12, 10587–10602. [CrossRef]
- 79. Ye, R.-P.; Li, Q.; Gong, W.; Wang, T.; Razink, J.J.; Lin, L.; Qin, Y.-Y.; Zhou, Z.; Adidharma, H.; Tang, J. High-performance of nanostructured Ni/CeO₂ catalyst on CO₂ methanation. *Appl. Catal. B Environ.* **2020**, *268*, 118474. [CrossRef]
- 80. Cerda-Moreno, C.; Chica, A.; Keller, S.; Rautenberg, C.; Bentrup, U. Ni-sepiolite and Ni-todorokite as efficient CO₂ methanation catalysts: Mechanistic insight by operando DRIFTS. *Appl. Catal. B Environ.* **2020**, *264*, 118546. [CrossRef]
- Miao, C.; Shang, K.; Liang, L.; Chen, S.; Ouyang, J. Efficient and Stable Ni/ZSM-5@ MCM-41 Catalyst for CO₂ Methanation. ACS Sustain. Chem. Eng. 2022, 10, 12771–12782. [CrossRef]
- 82. Zhang, L.; Bian, L.; Zhu, Z.; Li, Z. La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO₂ methanation performance. *Int. J. Hydrogen Energy* **2018**, *43*, 2197–2206. [CrossRef]
- Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castello, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R.; Bueno-López, A. Isotopic and in situ DRIFTS study of the CO₂ methanation mechanism using Ni/CeO₂ and Ni/Al₂O₃ catalysts. *Appl. Catal. B Environ.* 2020, 265, 118538. [CrossRef]
- 84. Bobadilla, L.; Garcilaso, V.; Centeno, M.; Odriozola, J. CO₂ reforming of methane over Ni-Ru supported catalysts: On the nature of active sites by operando DRIFTS study. *J. CO2 Util.* **2018**, *24*, 509–515.
- 85. Renda, S.; Ricca, A.; Palma, V. Study of the effect of noble metal promotion in Ni-based catalyst for the Sabatier reaction. *Int. J. Hydrogen Energy* **2021**, *46*, 12117–12127. [CrossRef]
- Renda, S.; Ricca, A.; Palma, V. Precursor salts influence in Ruthenium catalysts for CO₂ hydrogenation to methane. *Appl. Energy* 2020, 279, 115767. [CrossRef]
- Navarro, J.C.; Centeno, M.A.; Laguna, O.H.; Odriozola, J.A. Ru–Ni/MgAl₂O₄ structured catalyst for CO₂ methanation. *Renew. Energy* 2020, 161, 120–132. [CrossRef]
- 88. Salomone, F.; Giglio, E.; Ferrero, D.; Santarelli, M.; Pirone, R.; Bensaid, S. Techno-economic modelling of a Power-to-Gas system based on SOEC electrolysis and CO₂ methanation in a RES-based electric grid. *Chem. Eng. J.* **2019**, *377*, 120233. [CrossRef]
- Mebrahtu, C.; Nohl, M.; Dittrich, L.; Foit, S.R.; de Haart, L.; Eichel, R.A.; Palkovits, R. Integrated Co-Electrolysis and Syngas Methanation for the Direct Production of Synthetic Natural Gas from CO₂ and H₂O. *ChemSusChem* 2021, 14, 2295–2302. [CrossRef]
- 90. Gorre, J.; Ruoss, F.; Karjunen, H.; Schaffert, J.; Tynjälä, T. Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation. *Appl. Energy* **2020**, *257*, 113967. [CrossRef]
- 91. Inkeri, E.; Tynjälä, T.; Karjunen, H. Significance of methanation reactor dynamics on the annual efficiency of power-to-gas-system. *Renew. Energy* **2021**, *163*, 1113–1126. [CrossRef]
- 92. Park, S.; Choi, K.; Lee, C.; Kim, S.; Yoo, Y.; Chang, D. Techno-economic analysis of adiabatic four-stage CO₂ methanation process for optimization and evaluation of power-to-gas technology. *Int. J. Hydrogen Energy* **2021**, *46*, 21303–21317. [CrossRef]
- 93. Skorek-Osikowska, A. Thermodynamic and environmental study on synthetic natural gas production in power to gas approaches involving biomass gasification and anaerobic digestion. *Int. J. Hydrogen Energy* **2022**, *47*, 3284–3293. [CrossRef]
- 94. Straka, P. A comprehensive study of Power-to-Gas technology: Technical implementations overview, economic assessments, methanation plant as auxiliary operation of lignite-fired power station. *J. Clean. Prod.* **2021**, *311*, 127642. [CrossRef]
- 95. Fuentes, I.; Gracia, F. Fluid dynamic analytical model of CO₂ methanation in a microreactor with potential application in Power-to-Gas technology. *Chem. Eng. Sci.* **2022**, 251, 117465. [CrossRef]

- 96. Giglio, E.; Pirone, R.; Bensaid, S. Dynamic modelling of methanation reactors during start-up and regulation in intermittent power-to-gas applications. *Renew. Energy* **2021**, *170*, 1040–1051. [CrossRef]
- 97. Bailera, M.; Peña, B.; Lisbona, P.; Marín, J.; Romeo, L.M. Lab-scale experimental tests of power to gas-oxycombustion hybridization: System design and preliminary results. *Energy* **2021**, *226*, 120375. [CrossRef]
- Jensen, M.; Ottosen, L.; Kofoed, M. H₂ gas-liquid mass transfer: A key element in biological Power-to-Gas methanation. *Renew. Sustain. Energy Rev.* 2021, 147, 111209. [CrossRef]
- 99. Hodges, A.; Hoang, A.L.; Tsekouras, G.; Wagner, K.; Lee, C.-Y.; Swiegers, G.F.; Wallace, G.G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. *Nat. Commun.* **2022**, *13*, 1304. [CrossRef]
- Catizzone, E.; Bonura, G.; Migliori, M.; Frusteri, F.; Giordano, G. CO₂ recycling to dimethyl ether: State-of-the-art and perspectives. *Molecules* 2018, 23, 31. [CrossRef]
- Dieterich, V.; Buttler, A.; Hanel, A.; Spliethoff, H.; Fendt, S. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropschfuels: A review. *Energy Environ. Sci.* 2020, 13, 3207–3252. [CrossRef]
- 102. Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [CrossRef]
- Sarp, S.; Hernandez, S.G.; Chen, C.; Sheehan, S.W. Alcohol production from carbon dioxide: Methanol as a fuel and chemical feedstock. *Joule* 2021, 5, 59–76. [CrossRef]
- 104. Lee, B.; Lee, H.; Lim, D.; Brigljević, B.; Cho, W.; Cho, H.-S.; Kim, C.-H.; Lim, H. Renewable methanol synthesis from renewable H2 and captured CO₂: How can power-to-liquid technology be economically feasible? *Appl. Energy* **2020**, *279*, 115827. [CrossRef]
- 105. Bowker, M. Methanol synthesis from CO₂ hydrogenation. *ChemCatChem* **2019**, *11*, 4238–4246. [CrossRef]
- 106. Simon Araya, S.; Liso, V.; Cui, X.; Li, N.; Zhu, J.; Sahlin, S.L.; Jensen, S.H.; Nielsen, M.P.; Kær, S.K. A review of the methanol economy: The fuel cell route. *Energies* 2020, 13, 596. [CrossRef]
- 107. Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO₂ to Methanol: A Review. Catalysts 2022, 12, 403. [CrossRef]
- Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J.L.G.; Navarro, R. Methanol synthesis from CO₂: A review of the latest developments in heterogeneous catalysis. *Materials* 2019, 12, 3902. [CrossRef] [PubMed]
- Laudenschleger, D.; Ruland, H.; Muhler, M. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al₂O₃ catalysts. *Nat. Commun.* 2020, *11*, 3898. [CrossRef] [PubMed]
- Dang, S.; Yang, H.; Gao, P.; Wang, H.; Li, X.; Wei, W.; Sun, Y. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. *Catal. Today* 2019, 330, 61–75. [CrossRef]
- Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J.G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. *Chem. Rev.* 2020, 120, 7984–8034. [CrossRef]
- 112. Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO₂ hydrogenation to methanol. *Chem. Soc. Rev.* **2020**, *49*, 1385–1413. [CrossRef]
- Marcos, F.C.; Cavalcanti, F.M.; Petrolini, D.D.; Lin, L.; Betancourt, L.E.; Senanayake, S.D.; Rodriguez, J.A.; Assaf, J.M.; Giudici, R.; Assaf, E.M. Effect of operating parameters on H₂/CO₂ conversion to methanol over Cu-Zn oxide supported on ZrO₂ polymorph catalysts: Characterization and kinetics. *Chem. Eng. J.* 2022, 427, 130947. [CrossRef]
- 114. Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X. Plasma-Catalytic Methanol Synthesis from CO₂ Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal. 2022, 12, 1326–1337. [CrossRef]
- Zhang, G.; Liu, M.; Fan, G.; Zheng, L.; Li, F. Efficient Role of Nanosheet-Like Pr₂O₃ Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO₂ Hydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 2768–2781. [CrossRef] [PubMed]
- 116. Murthy, P.S.; Liang, W.; Jiang, Y.; Huang, J. Cu-Based Nanocatalysts for CO₂ hydrogenation to methanol. *Energy Fuels* **2021**, *35*, 8558–8584. [CrossRef]
- 117. Wang, Y.; Kattel, S.; Gao, W.; Li, K.; Liu, P.; Chen, J.G.; Wang, H. Exploring the ternary interactions in Cu–ZnO–ZrO₂ catalysts for efficient CO₂ hydrogenation to methanol. *Nat. Commun.* **2019**, *10*, 1166. [CrossRef]
- 118. Huang, C.; Wen, J.; Sun, Y.; Zhang, M.; Bao, Y.; Zhang, Y.; Liang, L.; Fu, M.; Wu, J.; Ye, D. CO₂ hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology. *Chem. Eng. J.* 2019, 374, 221–230. [CrossRef]
- 119. Tada, S.; Otsuka, F.; Fujiwara, K.; Moularas, C.; Deligiannakis, Y.; Kinoshita, Y.; Uchida, S.; Honma, T.; Nishijima, M.; Kikuchi, R. Development of CO₂-to-Methanol Hydrogenation Catalyst by Focusing on the Coordination Structure of the Cu Species in Spinel-Type Oxide Mg_{1-x}Cu_xAl₂O₄. ACS Catal. 2020, 10, 15186–15194. [CrossRef]
- Wang, H.; Zhang, G.; Fan, G.; Yang, L.; Li, F. Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO₂ Hydrogenation to Produce Methanol. *Ind. Eng. Chem. Res.* 2021, 60, 16188–16200. [CrossRef]
- 121. Yu, J.; Yang, M.; Zhang, J.; Ge, Q.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J.-D.; Sun, J. Stabilizing Cu+ in Cu/SiO₂ catalysts with a shattuckite-like structure boosts CO₂ hydrogenation into methanol. *ACS Catal.* **2020**, *10*, 14694–14706. [CrossRef]
- Chen, H.; Cui, H.; Lv, Y.; Liu, P.; Hao, F.; Xiong, W. CO₂ hydrogenation to methanol over Cu/ZnO/ZrO₂ catalysts: Effects of ZnO morphology and oxygen vacancy. *Fuel* 2022, 314, 123035. [CrossRef]
- Cui, W.-G.; Li, Y.-T.; Yu, L.; Zhang, H.; Hu, T.-L. Zeolite-Encapsulated Ultrasmall Cu/ZnOx Nanoparticles for the Hydrogenation of CO₂ to Methanol. ACS Appl. Mater. Interfaces 2021, 13, 18693–18703. [CrossRef] [PubMed]

- 124. Tada, S.; Fujiwara, K.; Yamamura, T.; Nishijima, M.; Uchida, S.; Kikuchi, R. Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO₂ for CO₂-to-methanol hydrogenation. *Chem. Eng. J.* **2020**, *381*, 122750. [CrossRef]
- 125. Dasireddy, V.D.; Neja, S.S.; Blaž, L. Correlation between synthesis pH, structure and Cu/MgO/Al₂O₃ heterogeneous catalyst activity and selectivity in CO₂ hydrogenation to methanol. *J. CO2 Util.* **2018**, *28*, 189–199. [CrossRef]
- Dasireddy, V.D.; Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO₂ hydrogenation and methanol productivity. *Renew. Energy* 2019, 140, 452–460. [CrossRef]
- 127. Noh, G.; Lam, E.; Alfke, J.L.; Larmier, K.; Searles, K.; Wolf, P.; Copéret, C. Selective hydrogenation of CO₂ to CH₃OH on supported Cu nanoparticles promoted by isolated TiIV surface sites on SiO₂. *ChemSusChem* **2019**, *12*, 968–972. [CrossRef] [PubMed]
- 128. Lam, E.; Noh, G.; Larmier, K.; Safonova, O.V.; Copéret, C. CO₂ hydrogenation on Cu-catalysts generated from ZnII single-sites: Enhanced CH3OH selectivity compared to Cu/ZnO/Al₂O₃. *J. Catal.* **2021**, *394*, 266–272. [CrossRef]
- Fang, X.; Men, Y.; Wu, F.; Zhao, Q.; Singh, R.; Xiao, P.; Du, T.; Webley, P.A. Improved methanol yield and selectivity from CO₂ hydrogenation using a novel Cu-ZnO-ZrO₂ catalyst supported on Mg-Al layered double hydroxide (LDH). *J. CO2 Util.* 2019, 29, 57–64. [CrossRef]
- Koh, M.K.; Khavarian, M.; Chai, S.P.; Mohamed, A.R. The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO₂ hydrogenation to methanol. *Int. J. Hydrogen Energy* **2018**, 43, 9334–9342. [CrossRef]
- Lei, H.; Zheng, R.; Liu, Y.; Gao, J.; Chen, X.; Feng, X. Cylindrical shaped ZnO combined Cu catalysts for the hydrogenation of CO₂ to methanol. *RSC Adv.* 2019, *9*, 13696–13704. [CrossRef]
- Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K. Simple strategy synthesizing stable CuZnO/SiO₂ methanol synthesis catalyst. J. Catal. 2019, 372, 163–173. [CrossRef]
- Tada, S.; Oshima, K.; Noda, Y.; Kikuchi, R.; Sohmiya, M.; Honma, T.; Satokawa, S. Effects of Cu precursor types on the catalytic activity of Cu/ZrO₂ toward methanol synthesis via CO₂ hydrogenation. *Ind. Eng. Chem. Res.* 2019, *58*, 19434–19445. [CrossRef]
- 134. Guo, H.; Li, Q.; Zhang, H.; Peng, F.; Xiong, L.; Yao, S.; Huang, C.; Chen, X. CO₂ hydrogenation over acid-activated Attapulgite/Ce_{0.75}Zr_{0.25}O₂ nanocomposite supported Cu-ZnO based catalysts. *Mol. Catal.* **2019**, 476, 110499. [CrossRef]
- Li, M.M.-J.; Chen, C.; Ayvalı, T.C.E.; Suo, H.; Zheng, J.; Teixeira, I.F.; Ye, L.; Zou, H.; O'Hare, D.; Tsang, S.C.E. CO₂ hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors. ACS Catal. 2018, 8, 4390–4401. [CrossRef]
- 136. Prašnikar, A.; Dasireddy, V.D.; Likozar, B. Scalable combustion synthesis of copper-based perovskite catalysts for CO₂ reduction to methanol: Reaction structure-activity relationships, kinetics, and stability. *Chem. Eng. Sci.* **2022**, 250, 117423. [CrossRef]
- Li, H.-X.; Yang, L.-Q.-Q.; Chi, Z.-Y.; Zhang, Y.-L.; Li, X.-G.; He, Y.-L.; Reina, T.R.; Xiao, W.-D. CO₂ Hydrogenation to Methanol Over Cu/ZnO/Al₂O₃ Catalyst: Kinetic Modeling Based on Either Single-or Dual-Active Site Mechanism. *Catal. Lett.* 2022, 152, 1–15. [CrossRef]
- Liu, T.; Hong, X.; Liu, G. In Situ Generation of the Cu@ 3D-ZrO x Framework Catalyst for Selective Methanol Synthesis from CO₂/H2. ACS Catal. 2019, 10, 93–102. [CrossRef]
- Wu, C.; Lin, L.; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F. Inverse ZrO₂/Cu as a highly efficient methanol synthesis catalyst from CO₂ hydrogenation. *Nat. Commun.* 2020, *11*, 5767. [CrossRef]
- 140. Pori, M.; Arčon, I.; Lašič Jurković, D.; Marinšek, M.; Dražić, G.; Likozar, B.; Crnjak Orel, Z. Synthesis of a Cu/ZnO Nanocomposite by electroless plating for the catalytic conversion of CO₂ to methanol. *Catal. Lett.* **2019**, *149*, 1427–1439. [CrossRef]
- 141. Zabilskiy, M.; Sushkevich, V.L.; Newton, M.A.; van Bokhoven, J.A. Copper–zinc alloy-free synthesis of methanol from carbon dioxide over Cu/ZnO/faujasite. *ACS Catal.* 2020, *10*, 14240–14244. [CrossRef]
- Zhu, J.; Ciolca, D.; Liu, L.; Parastaev, A.; Kosinov, N.; Hensen, E.J. Flame synthesis of Cu/ZnO–CeO₂ catalysts: Synergistic metal–support interactions promote CH₃OH selectivity in CO₂ hydrogenation. ACS Catal. 2021, 11, 4880–4892. [CrossRef]
- 143. Din, I.U.; Shaharun, M.S.; Naeem, A.; Tasleem, S.; Ahmad, P. Revalorization of CO₂ for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO₂ catalytic hydrogenation. *J. Energy Chem.* **2019**, *39*, 68–76. [CrossRef]
- 144. Zhang, C.; Yang, H.; Gao, P.; Zhu, H.; Zhong, L.; Wang, H.; Wei, W.; Sun, Y. Preparation and CO₂ hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method. *J. CO2 Util.* **2017**, *17*, 263–272. [CrossRef]
- 145. Jiang, Y.; Yang, H.; Gao, P.; Li, X.; Zhang, J.; Liu, H.; Wang, H.; Wei, W.; Sun, Y. Slurry methanol synthesis from CO₂ hydrogenation over micro-spherical SiO₂ support Cu/ZnO catalysts. *J. CO2 Util.* **2018**, *26*, 642–651. [CrossRef]
- 146. Li, S.; Guo, L.; Ishihara, T. Hydrogenation of CO₂ to methanol over Cu/AlCeO catalyst. Catal. Today 2020, 339, 352–361. [CrossRef]
- 147. Li, S.; Wang, Y.; Yang, B.; Guo, L. A highly active and selective mesostructured Cu/AlCeO catalyst for CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* **2019**, *571*, 51–60. [CrossRef]
- 148. Diez-Ramirez, J.; Dorado, F.; de la Osa, A.R.; Valverde, J.L.; Sánchez, P. Hydrogenation of CO₂ to methanol at atmospheric pressure over Cu/ZnO catalysts: Influence of the calcination, reduction, and metal loading. *Ind. Eng. Chem. Res.* **2017**, *56*, 1979–1987. [CrossRef]
- 149. Ouyang, B.; Tan, W.; Liu, B. Morphology effect of nanostructure ceria on the Cu/CeO₂ catalysts for synthesis of methanol from CO₂ hydrogenation. *Catal. Commun.* **2017**, *95*, 36–39. [CrossRef]
- 150. Kim, J.; Jeong, C.; Baik, J.H.; Suh, Y.-W. Phases of Cu/Zn/Al/Zr precursors linked to the property and activity of their final catalysts in CO₂ hydrogenation to methanol. *Catal. Today* **2020**, *347*, 70–78. [CrossRef]
- 151. L'hospital, V.; Angelo, L.; Zimmermann, Y.; Parkhomenko, K.; Roger, A.-C. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO₂. *Catal. Today* **2021**, *369*, 95–104. [CrossRef]

- 152. Chen, S.; Zhang, J.; Wang, P.; Wang, X.; Song, F.; Bai, Y.; Zhang, M.; Wu, Y.; Xie, H.; Tan, Y. Effect of Vapor-phase-treatment to CuZnZr Catalyst on the Reaction Behaviors in CO₂ Hydrogenation into Methanol. *ChemCatChem* **2019**, *11*, 1448–1457. [CrossRef]
- Yao, L.; Shen, X.; Pan, Y.; Peng, Z. Synergy between active sites of Cu-In-Zr-O catalyst in CO₂ hydrogenation to methanol. *J. Catal.* 2019, 372, 74–85. [CrossRef]
- Chen, K.; Fang, H.; Wu, S.; Liu, X.; Zheng, J.; Zhou, S.; Duan, X.; Zhuang, Y.; Tsang, S.C.E.; Yuan, Y. CO₂ hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu–LaOx interfaces. *Appl. Catal. B Environ.* 2019, 251, 119–129. [CrossRef]
- 155. Yan, Y.; Wong, R.J.; Ma, Z.; Donat, F.; Xi, S.; Saqline, S.; Fan, Q.; Du, Y.; Borgna, A.; He, Q. CO₂ hydrogenation to methanol on tungsten-doped Cu/CeO₂ catalysts. *Appl. Catal. B Environ.* **2022**, *306*, 121098. [CrossRef]
- 156. Wang, X.; Alabsi, M.H.; Zheng, P.; Mei, J.; Ramirez, A.; Duan, A.; Xu, C.; Huang, K.-W. PdCu supported on dendritic mesoporous Ce_xZr_{1-x}O₂ as superior catalysts to boost CO₂ hydrogenation to methanol. *J. Colloid Interface Sci.* **2022**, *611*, 739–751. [CrossRef]
- 157. Yamamura, T.; Tada, S.; Kikuchi, R.; Fujiwara, K.; Honma, T. Effect of Sm Doping on CO₂-to-Methanol Hydrogenation of Cu/Amorphous-ZrO₂ Catalysts. *J. Phys. Chem.* C **2021**, *125*, 15899–15909. [CrossRef]
- Guil-López, R.; Mota, N.; Llorente, J.; Millan, E.; Pawelec, B.; García, R.; Fierro, J.; Navarro, R. Structure and activity of Cu/ZnO catalysts co-modified with aluminium and gallium for methanol synthesis. *Catal. Today* 2020, 355, 870–881. [CrossRef]
- Mota, N.; Guil-Lopez, R.; Pawelec, B.; Fierro, J.; Navarro, R. Highly active Cu/ZnO–Al catalyst for methanol synthesis: Effect of aging on its structure and activity. RSC Adv. 2018, 8, 20619–20629. [CrossRef]
- 160. Deerattrakul, V.; Yigit, N.; Rupprechter, G.; Kongkachuichay, P. The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* **2019**, *580*, 46–52. [CrossRef]
- 161. Fang, X.; Men, Y.; Wu, F.; Zhao, Q.; Singh, R.; Xiao, P.; Du, T.; Webley, P.A. Promoting CO₂ hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite. *Chem. Eng. J.* **2019**, *378*, 122052. [CrossRef]
- Fang, X.; Men, Y.; Wu, F.; Zhao, Q.; Singh, R.; Xiao, P.; Du, T.; Webley, P.A. Moderate-pressure conversion of H₂ and CO₂ to methanol via adsorption enhanced hydrogenation. *Int. J. Hydrogen Energy* 2019, 44, 21913–21925. [CrossRef]
- 163. Paris, C.; Karelovic, A.; Manrique, R.; Le Bras, S.; Devred, F.; Vykoukal, V.; Styskalik, A.; Eloy, P.; Debecker, D.P. CO₂ hydrogenation to methanol with Ga-and Zn-doped mesoporous Cu/SiO₂ catalysts prepared by the aerosol-assisted sol-gel process. *ChemSusChem* 2020, 13, 6409–6417. [PubMed]
- Jiang, X.; Jiao, Y.; Moran, C.; Nie, X.; Gong, Y.; Guo, X.; Walton, K.S.; Song, C. CO₂ hydrogenation to methanol on PdCu bimetallic catalysts with lower metal loadings. *Catal. Commun.* 2019, 118, 10–14. [CrossRef]
- Tan, Q.; Shi, Z.; Wu, D. CO₂ hydrogenation to methanol over a highly active Cu–Ni/CeO₂–nanotube catalyst. *Ind. Eng. Chem. Res.* 2018, 57, 10148–10158. [CrossRef]
- 166. Sharma, S.K.; Khan, T.S.; Singha, R.K.; Paul, B.; Poddar, M.K.; Sasaki, T.; Bordoloi, A.; Samanta, C.; Gupta, S.; Bal, R. Design of highly stable MgO promoted Cu/ZnO catalyst for clean methanol production through selective hydrogenation of CO₂. *Appl. Catal. A Gen.* **2021**, 623, 118239. [CrossRef]
- Dasireddy, V.D.; Štefančič, N.S.; Huš, M.; Likozar, B. Effect of alkaline earth metal oxide (MO) Cu/MO/Al₂O₃ catalysts on methanol synthesis activity and selectivity via CO₂ reduction. *Fuel* 2018, 233, 103–112. [CrossRef]
- Mureddu, M.; Ferrara, F.; Pettinau, A. Highly efficient CuO/ZnO/ZrO₂@ SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO₂. *Appl. Catal. B Environ.* 2019, 258, 117941. [CrossRef]
- 169. Shi, Z.; Tan, Q.; Tian, C.; Pan, Y.; Sun, X.; Zhang, J.; Wu, D. CO₂ hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature. *J. Catal.* **2019**, *379*, 78–89. [CrossRef]
- 170. Fujiwara, K.; Tada, S.; Honma, T.; Sasaki, H.; Nishijima, M.; Kikuchi, R. Influences of particle size and crystallinity of highly loaded CuO/ZrO₂ on CO₂ hydrogenation to methanol. *AIChE J.* **2019**, *65*, e16717. [CrossRef]
- 171. Chang, K.; Wang, T.; Chen, J.G. Hydrogenation of CO₂ to methanol over CuCeTiOx catalysts. *Appl. Catal. B Environ.* **2017**, 206, 704–711. [CrossRef]
- 172. Wang, G.; Mao, D.; Guo, X.; Yu, J. Methanol synthesis from CO₂ hydrogenation over CuO-ZnO-ZrO₂-MxOy catalysts (M = Cr, Mo and W). *Int. J. Hydrogen Energy* **2019**, *44*, 4197–4207. [CrossRef]
- Sadeghinia, M.; Ghaziani, A.N.K.; Rezaei, M. Component ratio dependent Cu/Zn/Al structure sensitive catalyst in CO₂/CO hydrogenation to methanol. *Mol. Catal.* 2018, 456, 38–48. [CrossRef]
- 174. Tada, S.; Watanabe, F.; Kiyota, K.; Shimoda, N.; Hayashi, R.; Takahashi, M.; Nariyuki, A.; Igarashi, A.; Satokawa, S. Ag addition to CuO-ZrO₂ catalysts promotes methanol synthesis via CO₂ hydrogenation. *J. Catal.* **2017**, *351*, 107–118. [CrossRef]
- Wang, W.; Qu, Z.; Song, L.; Fu, Q. Effect of the nature of copper species on methanol synthesis from CO₂ hydrogenation reaction over CuO/Ce_{0.4}Zr_{0.6}O₂ catalyst. *Mol. Catal.* 2020, 493, 111105. [CrossRef]
- 176. Jiang, X.; Chen, X.; Ling, C.; Chen, S.; Wu, Z. High-performance Cu/ZnO catalysts prepared using a three-channel microreactor. *Appl. Catal. A Gen.* **2019**, *570*, 192–199. [CrossRef]
- Allam, D.; Bennici, S.; Limousy, L.; Hocine, S. Improved Cu-and Zn-based catalysts for CO₂ hydrogenation to methanol. *Comptes Rendus Chim.* 2019, 22, 227–237. [CrossRef]
- Chang, K.; Wang, T.; Chen, J.G. Methanol synthesis from CO₂ hydrogenation over CuZnCeTi mixed oxide catalysts. *Ind. Eng. Chem. Res.* 2019, 58, 7922–7928. [CrossRef]

- 179. Xiao, J.; Mao, D.; Wang, G.; Guo, X.; Yu, J. CO₂ hydrogenation to methanol over CuOZnOTiO₂ZrO₂ catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. *Int. J. Hydrogen Energy* 2019, 44, 14831–14841. [CrossRef]
- Shi, Z.; Tan, Q.; Wu, D. Enhanced CO₂ hydrogenation to methanol over TiO₂ nanotubes-supported CuO-ZnO-CeO₂ catalyst. *Appl. Catal. A Gen.* 2019, 581, 58–66. [CrossRef]
- Chen, D.; Mao, D.; Wang, G.; Guo, X.; Yu, J. CO₂ hydrogenation to methanol over CuO-ZnO-ZrO₂ catalyst prepared by polymeric precursor method. *J. Sol-Gel Sci. Technol.* 2019, *89*, 686–699. [CrossRef]
- 182. Witoon, T.; Numpilai, T.; Phongamwong, T.; Donphai, W.; Boonyuen, C.; Warakulwit, C.; Chareonpanich, M.; Limtrakul, J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO₂ catalyst by adding graphene oxide for CO₂ hydrogenation to methanol. *Chem. Eng. J.* 2018, 334, 1781–1791. [CrossRef]
- Ye, H.; Na, W.; Gao, W.; Wang, H. Carbon-Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO₂ Hydrogenation to Methanol. *Energy Technol.* 2020, *8*, 2000194. [CrossRef]
- Wang, G.; Mao, D.; Guo, X.; Yu, J. Enhanced performance of the CuO-ZnO-ZrO₂ catalyst for CO₂ hydrogenation to methanol by WO₃ modification. *Appl. Surf. Sci.* 2018, 456, 403–409. [CrossRef]
- 185. Ren, S.; Fan, X.; Shang, Z.; Shoemaker, W.R.; Ma, L.; Wu, T.; Li, S.; Klinghoffer, N.B.; Yu, M.; Liang, X. Enhanced catalytic performance of Zr modified CuO/ZnO/Al₂O₃ catalyst for methanol and DME synthesis via CO₂ hydrogenation. *J. CO2 Util.* 2020, *36*, 82–95. [CrossRef]
- Sadeghinia, M.; Rezaei, M.; Kharat, A.N.; Jorabchi, M.N.; Nematollahi, B.; Zareiekordshouli, F. Effect of In₂O₃ on the structural properties and catalytic performance of the CuO/ZnO/Al₂O₃ catalyst in CO₂ and CO hydrogenation to methanol. *Mol. Catal.* 2020, 484, 110776. [CrossRef]
- 187. Kourtelesis, M.; Kousi, K.; Kondarides, D.I. CO₂ hydrogenation to methanol over La2O3-promoted CuO/ZnO/Al₂O₃ catalysts: A kinetic and mechanistic study. *Catalysts* **2020**, *10*, 183. [CrossRef]
- Phongamwong, T.; Chantaprasertporn, U.; Witoon, T.; Numpilai, T.; Poo-Arporn, Y.; Limphirat, W.; Donphai, W.; Dittanet, P.; Chareonpanich, M.; Limtrakul, J. CO₂ hydrogenation to methanol over CuO–ZnO–ZrO₂–SiO₂ catalysts: Effects of SiO₂ contents. *Chem. Eng. J.* 2017, 316, 692–703. [CrossRef]
- Liang, Y.; Mao, D.; Guo, X.; Yu, J.; Wu, G.; Ma, Z. Solvothermal preparation of CuO-ZnO-ZrO₂ catalysts for methanol synthesis via CO₂ hydrogenation. *J. Taiwan Inst. Chem. Eng.* 2021, 121, 81–91. [CrossRef]
- 190. Poto, S.; van Berkel, D.V.; Gallucci, F.; d'Angelo, M.F.N. Kinetic modelling of the methanol synthesis from CO₂ and H2 over a CuO/CeO₂/ZrO₂ catalyst: The role of CO₂ and CO hydrogenation. *Chem. Eng. J.* **2022**, 435, 134946. [CrossRef]
- 191. Tada, S.; Satokawa, S. Effect of Ag loading on CO₂-to-methanol hydrogenation over Ag/CuO/ZrO₂. *Catal. Commun.* **2018**, *113*, 41–45. [CrossRef]
- Bonura, G.; Cannilla, C.; Frusteri, L.; Catizzone, E.; Todaro, S.; Migliori, M.; Giordano, G.; Frusteri, F. Interaction effects between CuO-ZnO-ZrO₂ methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO₂ hydrogenation to DME. *Catal. Today* 2020, 345, 175–182. [CrossRef]
- 193. Tursunov, O.; Kustov, L.; Tilyabaev, Z. Methanol synthesis from the catalytic hydrogenation of CO₂ over CuO–ZnO supported on aluminum and silicon oxides. *J. Taiwan Inst. Chem. Eng.* **2017**, *78*, 416–422. [CrossRef]
- 194. Wang, W.; Qu, Z.; Song, L.; Fu, Q. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce_{1-x}Zr_xO₂ catalyst for CO₂ hydrogenation to CH₃OH. *J. Energy Chem.* **2020**, *47*, 18–28. [CrossRef]
- Poerjoto, A.J.; Ashok, J.; Dewangan, N.; Kawi, S. The role of lattice oxygen in CO₂ hydrogenation to methanol over La1-xSrxCuO catalysts. J. CO2 Util. 2021, 47, 101498. [CrossRef]
- 196. Min, L.; Wei, N.; YE, H.-C.; HUO, H.-H.; GAO, W.-G. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO₂ hydrogenation to methanol. *J. Fuel Chem. Technol.* **2019**, *47*, 1214–1225.
- 197. Liu, X.; Zhan, G.; Wu, J.; Li, W.; Du, Z.; Huang, J.; Sun, D.; Li, Q. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO₂ hydrogenation. *ACS Sustain. Chem. Eng.* **2020**, *8*, 7162–7173. [CrossRef]
- 198. Trifan, B.; Lasobras, J.; Soler, J.; Herguido, J.; Menéndez, M. Modifications in the composition of CuO/ZnO/Al₂O₃ catalyst for the synthesis of methanol by CO₂ hydrogenation. *Catalysts* **2021**, *11*, 774. [CrossRef]
- Ortner, N.; Lund, H.; Armbruster, U.; Wohlrab, S.; Kondratenko, E.V. Factors affecting primary and secondary pathways in CO₂ hydrogenation to methanol over CuZnIn/MZrOx (La, Ti or Y). *Catal. Today* 2022, 387, 47–53. [CrossRef]
- Song, H.-T.; Fazeli, A.; Kim, H.D.; Eslami, A.A.; Noh, Y.S.; Saeidabad, N.G.; Moon, D.J. Effect of lanthanum group promoters on Cu/(mixture of ZnO and Zn-Al-spinnel-oxides) catalyst for methanol synthesis by hydrogenation of CO and CO₂ mixtures. *Fuel* 2021, 283, 118987. [CrossRef]
- Yang, B.; Liu, C.; Halder, A.; Tyo, E.C.; Martinson, A.B.; Seifert, S.n.; Zapol, P.; Curtiss, L.A.; Vajda, S. Copper cluster size effect in methanol synthesis from CO₂. J. Phys. Chem. C 2017, 121, 10406–10412. [CrossRef]
- Sha, F.; Han, Z.; Tang, S.; Wang, J.; Li, C. Hydrogenation of Carbon Dioxide to Methanol over Non– Cu-based Heterogeneous Catalysts. *ChemSusChem* 2020, 13, 6160–6181. [CrossRef]
- 203. Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S.D.; Rodriguez, J.A.; Liu, C.-J. Hydrogenation of CO₂ to methanol on a Auδ+–In₂O₃–x catalyst. ACS Catal. 2020, 10, 11307–11317. [CrossRef]
- 204. Shen, C.; Sun, K.; Zhang, Z.; Rui, N.; Jia, X.; Mei, D.; Liu, C.-J. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO₂ to methanol: Experimental and theoretical studies. ACS Catal. 2021, 11, 4036–4046. [CrossRef]

- 205. Docherty, S.R.; Phongprueksathat, N.; Lam, E.; Noh, G.; Safonova, O.V.; Urakawa, A.; Copéret, C. Silica-supported PdGa nanoparticles: Metal synergy for highly active and selective CO₂-to-CH₃OH hydrogenation. *JACS Au* 2021, *1*, 450–458. [CrossRef] [PubMed]
- 206. Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X. Insights into the influence of CeO₂ crystal facet on CO₂ hydrogenation to methanol over Pd/CeO₂ catalysts. ACS Catal. 2020, 10, 11493–11509. [CrossRef]
- 207. Song, J.; Liu, S.; Yang, C.; Wang, G.; Tian, H.; Zhao, Z.-J.; Mu, R.; Gong, J. The role of Al doping in Pd/ZnO catalyst for CO₂ hydrogenation to methanol. *Appl. Catal. B Environ.* 2020, 263, 118367. [CrossRef]
- 208. Frei, M.S.; Mondelli, C.; García-Muelas, R.; Kley, K.S.; Puértolas, B.; López, N.; Safonova, O.V.; Stewart, J.A.; Curulla Ferré, D.; Pérez-Ramírez, J. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO₂ hydrogenation. *Nat. Commun.* 2019, 10, 3377. [CrossRef]
- 209. Men, Y.-L.; Liu, Y.; Wang, Q.; Luo, Z.-H.; Shao, S.; Li, Y.-B.; Pan, Y.-X. Highly dispersed Pt-based catalysts for selective CO₂ hydrogenation to methanol at atmospheric pressure. *Chem. Eng. Sci.* 2019, 200, 167–175. [CrossRef]
- Jiang, H.; Lin, J.; Wu, X.; Wang, W.; Chen, Y.; Zhang, M. Efficient hydrogenation of CO₂ to methanol over Pd/In₂O₃/SBA-15 catalysts. *J. CO2 Util.* 2020, *36*, 33–39. [CrossRef]
- 211. Gallo, A.; Snider, J.L.; Sokaras, D.; Nordlund, D.; Kroll, T.; Ogasawara, H.; Kovarik, L.; Duyar, M.S.; Jaramillo, T.F. Ni₅Ga₃ catalysts for CO₂ reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity. *Appl. Catal. B Environ.* **2020**, 267, 118369. [CrossRef]
- Choi, H.; Oh, S.; Tran, S.B.T.; Park, J.Y. Size-controlled model Ni catalysts on Ga₂O₃ for CO₂ hydrogenation to methanol. *J. Catal.* 2019, 376, 68–76. [CrossRef]
- 213. Ting, K.W.; Toyao, T.; Siddiki, S.H.; Shimizu, K.-I. Low-temperature hydrogenation of CO₂ to methanol over heterogeneous TiO₂-Supported Re catalysts. *ACS Catal.* **2019**, *9*, 3685–3693. [CrossRef]
- Toyao, T.; Kayamori, S.; Maeno, Z.; Siddiki, S.H.; Shimizu, K.-I. Heterogeneous Pt and MoOx Co-Loaded TiO₂ Catalysts for Low-Temperature CO₂ Hydrogenation To Form CH₃OH. ACS Catal. 2019, 9, 8187–8196. [CrossRef]
- Gothe, M.L.; Pérez-Sanz, F.J.; Braga, A.H.; Borges, L.R.; Abreu, T.F.; Bazito, R.C.; Gonçalves, R.V.; Rossi, L.M.; Vidinha, P. Selective CO₂ hydrogenation into methanol in a supercritical flow process. *J. CO2 Util.* **2020**, *40*, 101195. [CrossRef]
- 216. Wang, L.; Guan, E.; Wang, Y.; Wang, L.; Gong, Z.; Cui, Y.; Meng, X.; Gates, B.C.; Xiao, F.-S. Silica accelerates the selective hydrogenation of CO₂ to methanol on cobalt catalysts. *Nat. Commun.* **2020**, *11*, 1033. [CrossRef]
- Sun, K.; Zhang, Z.; Shen, C.; Rui, N.; Liu, C.-J. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO₂ to methanol. *Green Energy Environ.* 2022, *7*, 807–817. [CrossRef]
- 218. Wu, C.; Zhang, P.; Zhang, Z.; Zhang, L.; Yang, G.; Han, B. Efficient hydrogenation of CO₂ to methanol over supported subnanometer gold catalysts at low temperature. *ChemCatChem* **2017**, *9*, 3691–3696. [CrossRef]
- Vourros, A.; Garagounis, I.; Kyriakou, V.; Carabineiro, S.; Maldonado-Hódar, F.; Marnellos, G.; Konsolakis, M. Carbon dioxide hydrogenation over supported Au nanoparticles: Effect of the support. J. CO2 Util. 2017, 19, 247–256. [CrossRef]
- Lu, Z.; Sun, K.; Wang, J.; Zhang, Z.; Liu, C. A highly active Au/In₂O₃-ZrO₂ catalyst for selective hydrogenation of CO₂ to methanol. *Catalysts* 2020, 10, 1360. [CrossRef]
- Wang, W.; Tongo, D.W.K.; Song, L.; Qu, Z. Effect of Au Addition on the Catalytic Performance of CuO/CeO₂ Catalysts for CO₂ Hydrogenation to Methanol. *Top. Catal.* 2021, 64, 446–455. [CrossRef]
- Rezvani, A.; Abdel-Mageed, A.M.; Ishida, T.; Murayama, T.; Parlinska-Wojtan, M.; Behm, R.J.r. CO₂ reduction to methanol on Au/CeO₂ catalysts: Mechanistic insights from activation/deactivation and SSITKA measurements. ACS Catal. 2020, 10, 3580–3594. [CrossRef]
- 223. Wu, Q.; Shen, C.; Rui, N.; Sun, K.; Liu, C.-J. Experimental and theoretical studies of CO₂ hydrogenation to methanol on Ru/In₂O₃. J. CO2 Util. 2021, 53, 101720. [CrossRef]
- Sagar, T.V.; Zavašnik, J.; Finšgar, M.; Novak Tušar, N.; Pintar, A. Evaluation of Au/ZrO₂ Catalysts Prepared via Postsynthesis Methods in CO₂ Hydrogenation to Methanol. *Catalysts* 2022, 12, 218. [CrossRef]
- Han, Z.; Tang, C.; Sha, F.; Tang, S.; Wang, J.; Li, C. CO₂ hydrogenation to methanol on ZnO-ZrO₂ solid solution catalysts with ordered mesoporous structure. J. Catal. 2021, 396, 242–250. [CrossRef]
- 226. Wang, J.; Sun, K.; Jia, X.; Liu, C.-J. CO₂ hydrogenation to methanol over Rh/In₂O₃ catalyst. *Catal. Today* 2021, 365, 341–347. [CrossRef]
- Lu, Z.; Wang, J.; Sun, K.; Xiong, S.; Zhang, Z.; Liu, C.-J. CO₂ hydrogenation to methanol over Rh/In₂O₃–ZrO₂ catalyst with improved activity. *Green Chem. Eng.* 2022, *3*, 165–170. [CrossRef]
- Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C.-J. A highly active Pt/In₂O₃ catalyst for CO₂ hydrogenation to methanol with enhanced stability. *Green Chem.* 2020, 22, 5059–5066. [CrossRef]
- Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C.-J. CO₂ hydrogenation to methanol over Pd/In₂O₃: Effects of Pd and oxygen vacancy. *Appl. Catal. B Environ.* 2017, 218, 488–497. [CrossRef]
- Jia, X.; Sun, K.; Wang, J.; Shen, C.; Liu, C.-J. Selective hydrogenation of CO₂ to methanol over Ni/In₂O₃ catalyst. *J. Energy Chem.* 2020, 50, 409–415. [CrossRef]
- 231. Dostagir, N.H.M.; Thompson, C.; Kobayashi, H.; Karim, A.M.; Fukuoka, A.; Shrotri, A. Rh promoted In₂O₃ as a highly active catalyst for CO 2 hydrogenation to methanol. *Catal. Sci. Technol.* **2020**, *10*, 8196–8202. [CrossRef]

- Zhang, Z.; Shen, C.; Sun, K.; Liu, C.-J. Improvement in the activity of Ni/In₂O₃ with the addition of ZrO₂ for CO₂ hydrogenation to methanol. *Catal. Commun.* 2022, *162*, 106386. [CrossRef]
- Frei, M.S.; Mondelli, C.; García-Muelas, R.; Morales-Vidal, J.; Philipp, M.; Safonova, O.V.; López, N.; Stewart, J.A.; Ferré, D.C.; Pérez-Ramírez, J. Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO₂ hydrogenation. *Nat. Commun.* 2021, 12, 1960. [CrossRef] [PubMed]
- 234. Cai, Z.; Dai, J.; Li, W.; Tan, K.B.; Huang, Z.; Zhan, G.; Huang, J.; Li, Q. Pd supported on MIL-68 (In)-derived In₂O₃ nanotubes as superior catalysts to boost CO₂ hydrogenation to methanol. *ACS Catal.* **2020**, *10*, 13275–13289. [CrossRef]
- 235. Alharthi, A.I.; Din, I.U.; Alotaibi, M.A.; Bagabas, A.; Naeem, A.; Alkhalifa, A. Low temperature green methanol synthesis by CO₂ hydrogenation over Pd/SiO₂ catalysts in slurry reactor. *Inorg. Chem. Commun.* 2022, 142, 109688. [CrossRef]
- 236. Collins, S.E.; Baltanás, M.A.; Delgado, J.J.; Borgna, A.; Bonivardi, A.L. CO₂ hydrogenation to methanol on Ga₂O₃-Pd/SiO₂ catalysts: Dual oxide-metal sites or (bi) metallic surface sites? *Catal. Today* **2021**, *381*, 154–162. [CrossRef]
- 237. Lee, K.; Anjum, U.; Araújo, T.P.; Mondelli, C.; He, Q.; Furukawa, S.; Pérez-Ramírez, J.; Kozlov, S.M.; Yan, N. Atomic Pd-promoted ZnZrOx solid solution catalyst for CO₂ hydrogenation to methanol. *Appl. Catal. B Environ.* **2022**, 304, 120994. [CrossRef]
- Khobragade, R.; Roškarič, M.; Žerjav, G.; Košiček, M.; Zavašnik, J.; Van de Velde, N.; Jerman, I.; Tušar, N.N.; Pintar, A. Exploring the effect of morphology and surface properties of nanoshaped Pd/CeO₂ catalysts on CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* 2021, 627, 118394. [CrossRef]
- 239. Manrique, R.; Jiménez, R.; Rodríguez-Pereira, J.; Baldovino-Medrano, V.G.; Karelovic, A. Insights into the role of Zn and Ga in the hydrogenation of CO₂ to methanol over Pd. *Int. J. Hydrogen Energy* **2019**, *44*, 16526–16536. [CrossRef]
- Richard, A.R.; Fan, M. Low-pressure hydrogenation of CO₂ to CH3OH using Ni-In-Al/SiO₂ catalyst synthesized via a phyllosilicate precursor. ACS Catal. 2017, 7, 5679–5692. [CrossRef]
- 241. Cherevotan, A.; Raj, J.; Dheer, L.; Roy, S.; Sarkar, S.; Das, R.; Vinod, C.P.; Xu, S.; Wells, P.; Waghmare, U.V. Operando generated ordered heterogeneous catalyst for the selective conversion of CO₂ to methanol. *ACS Energy Lett.* **2021**, *6*, 509–516. [CrossRef]
- Bavykina, A.; Yarulina, I.; Al Abdulghani, A.J.; Gevers, L.; Hedhili, M.N.; Miao, X.; Galilea, A.R.; Pustovarenko, A.; Dikhtiarenko, A.; Cadiau, A. Turning a methanation Co catalyst into an In–Co methanol producer. ACS Catal. 2019, 9, 6910–6918. [CrossRef]
- Snider, J.L.; Streibel, V.; Hubert, M.A.; Choksi, T.S.; Valle, E.; Upham, D.C.; Schumann, J.; Duyar, M.S.; Gallo, A.; Abild-Pedersen, F. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In–Pd catalysts for CO₂ hydrogenation to methanol. *ACS Catal.* 2019, *9*, 3399–3412. [CrossRef]
- Li, M.M.J.; Zou, H.; Zheng, J.; Wu, T.S.; Chan, T.S.; Soo, Y.L.; Wu, X.P.; Gong, X.Q.; Chen, T.; Roy, K. Methanol synthesis at a wide range of H₂/CO₂ ratios over a Rh-In bimetallic catalyst. *Angew. Chem.* 2020, 132, 16173–16180. [CrossRef]
- 245. Ojelade, O.A.; Zaman, S.F.; Daous, M.A.; Al-Zahrani, A.A.; Malik, A.S.; Driss, H.; Shterk, G.; Gascon, J. Optimizing Pd: Zn molar ratio in PdZn/CeO₂ for CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* 2019, 584, 117185. [CrossRef]
- 246. Malik, A.S.; Zaman, S.F.; Al-Zahrani, A.A.; Daous, M.A.; Driss, H.; Petrov, L.A. Selective hydrogenation of CO₂ to CH₃OH and in-depth DRIFT analysis for PdZn/ZrO₂ and CaPdZn/ZrO₂ catalysts. *Catal. Today* **2020**, *357*, *573–582*. [CrossRef]
- Geng, F.; Zhan, X.; Hicks, J.C. Promoting Methanol Synthesis and Inhibiting CO₂ Methanation with Bimetallic In–Ru Catalysts. ACS Sustain. Chem. Eng. 2021, 9, 11891–11902. [CrossRef]
- 248. Rasteiro, L.F.; De Sousa, R.A.; Vieira, L.H.; Ocampo-Restrepo, V.K.; Verga, L.G.; Assaf, J.M.; Da Silva, J.L.; Assaf, E.M. Insights into the alloy-support synergistic effects for the CO₂ hydrogenation towards methanol on oxide-supported Ni₅Ga₃ catalysts: An experimental and DFT study. *Appl. Catal. B Environ.* **2022**, 302, 120842. [CrossRef]
- Nie, X.; Jiang, X.; Wang, H.; Luo, W.; Janik, M.J.; Chen, Y.; Guo, X.; Song, C. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO₂ hydrogenation to methanol. ACS Catal. 2018, 8, 4873–4892. [CrossRef]
- 250. Lin, F.; Jiang, X.; Boreriboon, N.; Wang, Z.; Song, C.; Cen, K. Effects of supports on bimetallic Pd-Cu catalysts for CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* **2019**, *585*, 117210. [CrossRef]
- Jiang, X.; Nie, X.; Wang, X.; Wang, H.; Koizumi, N.; Chen, Y.; Guo, X.; Song, C. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO₂ hydrogenation. J. Catal. 2019, 369, 21–32. [CrossRef]
- 252. Jiang, X.; Wang, X.; Nie, X.; Koizumi, N.; Guo, X.; Song, C. CO₂ hydrogenation to methanol on Pd-Cu bimetallic catalysts: H₂/CO₂ ratio dependence and surface species. *Catal. Today* **2018**, *316*, 62–70. [CrossRef]
- 253. Wang, C.; Fang, Y.; Liang, G.; Lv, X.; Duan, H.; Li, Y.; Chen, D.; Long, M. Mechanistic study of Cu-Ni bimetallic catalysts supported by graphene derivatives for hydrogenation of CO₂ to methanol. *J. CO2 Util.* **2021**, *49*, 101542. [CrossRef]
- Díez-Ramírez, J.; Díaz, J.; Sánchez, P.; Dorado, F. Optimization of the Pd/Cu ratio in Pd-Cu-Zn/SiC catalysts for the CO₂ hydrogenation to methanol at atmospheric pressure. J. CO2 Util. 2017, 22, 71–80. [CrossRef]
- Alharthi, A.I.; Din, I.U.; Alotaibi, M.A. Effect of the Cu/Ni Ratio on the Activity of Zeolite Based Cu–Ni Bimetallic Catalysts for CO₂ Hydrogenation to Methanol. *Russ. J. Phys. Chem. A* 2020, *94*, 2563–2568. [CrossRef]
- 256. Geng, F.; Bonita, Y.; Jain, V.; Magiera, M.; Rai, N.; Hicks, J.C. Bimetallic Ru–Mo phosphide catalysts for the hydrogenation of CO₂ to methanol. *Ind. Eng. Chem. Res.* 2020, 59, 6931–6943. [CrossRef]
- 257. Zheng, X.; Lin, Y.; Pan, H.; Wu, L.; Zhang, W.; Cao, L.; Zhang, J.; Zheng, L.; Yao, T. Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO₂ hydrogenation. *Nano Res.* 2018, 11, 2357–2365. [CrossRef]
- 258. Hengne, A.M.; Samal, A.K.; Enakonda, L.R.; Harb, M.; Gevers, L.E.; Anjum, D.H.; Hedhili, M.N.; Saih, Y.; Huang, K.-W.; Basset, J.-M. Ni–Sn-supported ZrO₂ catalysts modified by indium for selective CO₂ hydrogenation to methanol. ACS Omega 2018, 3, 3688–3701. [CrossRef]

- Lin, F.; Jiang, X.; Boreriboon, N.; Song, C.; Wang, Z.; Cen, K. CO₂ hydrogenation to methanol over bimetallic Pd-Cu catalysts supported on TiO₂-CeO₂ and TiO₂-ZrO₂. *Catal. Today* 2021, *371*, 150–161. [CrossRef]
- Choi, E.J.; Lee, Y.H.; Lee, D.-W.; Moon, D.-J.; Lee, K.-Y. Hydrogenation of CO₂ to methanol over Pd–Cu/CeO₂ catalysts. *Mol. Catal.* 2017, 434, 146–153. [CrossRef]
- Zhang, C.; Liao, P.; Wang, H.; Sun, J.; Gao, P. Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO₂ hydrogenation. *Mater. Chem. Phys.* 2018, 215, 211–220. [CrossRef]
- Yu, J.; Chen, G.; Guo, Q.; Guo, X.; Da Costa, P.; Mao, D. Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition–precipitation method for CO₂ hydrogenation to methanol. *Fuel* **2022**, 324, 124694. [CrossRef]
- 263. Qi, T.; Zhao, Y.; Chen, S.; Li, W.; Guo, X.; Zhang, Y.; Song, C. Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al₂O₃ catalyst with superior methanol selectivity for CO₂ hydrogenation. *Mol. Catal.* 2021, *514*, 111870. [CrossRef]
- 264. Alotaibi, M.A.; Din, I.U.; Alharthi, A.I.; Bakht, M.A.; Centi, G.; Shaharun, M.S.; Naeem, A. Green methanol synthesis by catalytic CO₂ hydrogenation, deciphering the role of metal-metal interaction. *Sustain. Chem. Pharm.* 2021, 21, 100420. [CrossRef]
- Duma, Z.G.; Dyosiba, X.; Moma, J.; Langmi, H.W.; Louis, B.; Parkhomenko, K.; Musyoka, N.M. Thermocatalytic Hydrogenation of CO₂ to Methanol Using Cu-ZnO Bimetallic Catalysts Supported on Metal–Organic Frameworks. *Catalysts* 2022, 12, 401. [CrossRef]
- Qiu, R.; Ding, Z.; Xu, Y.; Yang, Q.; Sun, K.; Hou, R. CuPd bimetallic catalyst with high Cu/Pd ratio and its application in CO₂ hydrogenation. *Appl. Surf. Sci.* 2021, 544, 148974. [CrossRef]
- García-Trenco, A.; Regoutz, A.; White, E.R.; Payne, D.J.; Shaffer, M.S.; Williams, C.K. PdIn intermetallic nanoparticles for the hydrogenation of CO₂ to methanol. *Appl. Catal. B Environ.* 2018, 220, 9–18. [CrossRef]
- 268. Zhang, Z.; Shen, C.; Sun, K.; Jia, X.; Ye, J.; Liu, C.-J. Advances in Studies of Structural Effect of the Supported Ni Catalyst for CO₂ Hydrogenation: From Nanoparticle to Single Atom Catalyst. J. Mater. Chem. A 2022, 10, 5792–5812. [CrossRef]
- Niu, J.; Liu, H.; Jin, Y.; Fan, B.; Qi, W.; Ran, J. Comprehensive review of Cu-based CO₂ hydrogenation to CH₃OH: Insights from experimental work and theoretical analysis. *Int. J. Hydrogen Energy* 2022, 47, 9183–9200. [CrossRef]
- Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C.-J. Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO₂ hydrogenation to methanol over Ni/In₂O₃ catalyst: A theoretical study. *J. Energy Chem.* 2022, 65, 623–629. [CrossRef]
- 271. Konsolakis, M.; Lykaki, M. Recent advances on the rational design of non-precious metal oxide catalysts exemplified by CuOx/CeO₂ binary system: Implications of size, shape and electronic effects on intrinsic reactivity and metal-support interactions. *Catalysts* 2020, 10, 160. [CrossRef]
- 272. Ding, J.; Li, Z.; Xiong, W.; Zhang, Y.; Ye, A.; Huang, W. Structural evolution and catalytic performance in CO₂ hydrogenation reaction of ZnO-ZrO₂ composite oxides. *Appl. Surf. Sci.* **2022**, *587*, 152884. [CrossRef]
- Ticali, P.; Salusso, D.; Ahmad, R.; Ahoba-Sam, C.; Ramirez, A.; Shterk, G.; Lomachenko, K.A.; Borfecchia, E.; Morandi, S.; Cavallo, L. CO₂ hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO₂/zeolite catalysts. *Catal. Sci. Technol.* 2021, *11*, 1249–1268. [CrossRef]
- 274. Sha, F.; Tang, C.; Tang, S.; Wang, Q.; Han, Z.; Wang, J.; Li, C. The promoting role of Ga in ZnZrOx solid solution catalyst for CO₂ hydrogenation to methanol. *J. Catal.* 2021, 404, 383–392. [CrossRef]
- 275. Xu, Q.; Xu, X.; Fan, G.; Yang, L.; Li, F. Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCoxFe_{2-x}O₄ catalysts for highly efficient CO₂ hydrogenation to produce light olefins. *J. Catal.* 2021, 400, 355–366. [CrossRef]
- 276. Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosinov, N.; Filot, I.A.; Rabeah, J.; Bruckner, A.; Hensen, E.J. Ni–In Synergy in CO₂ Hydrogenation to Methanol. ACS Catal. 2021, 11, 11371–11384. [CrossRef]
- 277. Shi, Z.; Tan, Q.; Wu, D. Mixed-phase indium oxide as a highly active and stable catalyst for the hydrogenation of CO₂ to CH₃OH. *Ind. Eng. Chem. Res.* **2021**, *60*, 3532–3542. [CrossRef]
- 278. Chen, T.-Y.; Cao, C.; Chen, T.-B.; Ding, X.; Huang, H.; Shen, L.; Cao, X.; Zhu, M.; Xu, J.; Gao, J. Unraveling highly tunable selectivity in CO₂ hydrogenation over bimetallic In-Zr oxide catalysts. *ACS Catal.* **2019**, *9*, 8785–8797. [CrossRef]
- 279. Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO₂ solid solution catalyst for CO₂ hydrogenation to methanol. *Sci. Adv.* **2017**, *3*, e1701290. [CrossRef]
- Frei, M.S.; Mondelli, C.; Cesarini, A.; Krumeich, F.; Hauert, R.; Stewart, J.A.; Curulla Ferré, D.; Pérez-Ramírez, J. Role of zirconia in indium oxide-catalyzed CO₂ hydrogenation to methanol. ACS Catal. 2019, 10, 1133–1145. [CrossRef]
- 281. Akkharaphatthawon, N.; Chanlek, N.; Cheng, C.K.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Tuning adsorption properties of GaxIn₂-xO₃ catalysts for enhancement of methanol synthesis activity from CO₂ hydrogenation at high reaction temperature. *Appl. Surf. Sci.* 2019, 489, 278–286. [CrossRef]
- Chou, C.-Y.; Lobo, R.F. Direct conversion of CO₂ into methanol over promoted indium oxide-based catalysts. *Appl. Catal. A Gen.* 2019, *583*, 117144. [CrossRef]
- 283. Wang, J.; Tang, C.; Li, G.; Han, Z.; Li, Z.; Liu, H.; Cheng, F.; Li, C. High-Performance MaZrOx (Ma = Cd, Ga) Solid-Solution Catalysts for CO₂ Hydrogenation to Methanol. ACS Catal. 2019, 9, 10253–10259. [CrossRef]
- 284. Araújo, T.P.; Hergesell, A.H.; Faust-Akl, D.; Büchele, S.; Stewart, J.A.; Mondelli, C.; Pérez-Ramírez, J. Methanol Synthesis by Hydrogenation of Hybrid CO₂-CO Feeds. *ChemSusChem* 2021, 14, 2914–2923. [CrossRef] [PubMed]
- 285. Dang, S.; Qin, B.; Yang, Y.; Wang, H.; Cai, J.; Han, Y.; Li, S.; Gao, P.; Sun, Y. Rationally designed indium oxide catalysts for CO₂ hydrogenation to methanol with high activity and selectivity. *Sci. Adv.* 2020, *6*, eaaz2060. [CrossRef] [PubMed]

- Vera, C.Y.R.; Manavi, N.; Zhou, Z.; Wang, L.-C.; Diao, W.; Karakalos, S.; Liu, B.; Stowers, K.J.; Zhou, M.; Luo, H. Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO₂ hydrogenation. *Chem. Eng. J.* 2021, 426, 131767. [CrossRef]
- 287. Tian, G.; Wu, Y.; Wu, S.; Huang, S.; Gao, J. Influence of Mn and Mg oxides on the performance of In₂O₃ catalysts for CO₂ hydrogenation to methanol. *Chem. Phys. Lett.* 2022, 786, 139173. [CrossRef]
- Wang, X.; Wang, Y.; Yang, C.; Yi, Y.; Wang, X.; Liu, F.; Cao, J.; Pan, H. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO₂. *Appl. Catal. A Gen.* **2020**, *595*, 117507. [CrossRef]
- Stangeland, K.; Kalai, D.Y.; Ding, Y.; Yu, Z. Mesoporous manganese-cobalt oxide spinel catalysts for CO₂ hydrogenation to methanol. J. CO2 Util. 2019, 32, 146–154. [CrossRef]
- 290. Li, L.; Yang, B.; Gao, B.; Wang, Y.; Zhang, L.; Ishihara, T.; Qi, W.; Guo, L. CO₂ hydrogenation selectivity shift over In-Co binary oxides catalysts: Catalytic mechanism and structure-property relationship. *Chin. J. Catal.* **2022**, *43*, 862–876. [CrossRef]
- Xu, D.; Hong, X.; Liu, G. Highly dispersed metal doping to ZnZr oxide catalyst for CO₂ hydrogenation to methanol: Insight into hydrogen spillover. J. Catal. 2021, 393, 207–214. [CrossRef]
- Wei, Y.; Liu, F.; Ma, J.; Yang, C.; Wang, X.; Cao, J. Catalytic roles of In₂O₃ in ZrO₂-based binary oxides for CO₂ hydrogenation to methanol. *Mol. Catal.* 2022, 525, 112354. [CrossRef]
- Ronda-Lloret, M.; Wang, Y.; Oulego, P.; Rothenberg, G.; Tu, X.; Shiju, N.R. CO₂ hydrogenation at atmospheric pressure and low temperature using plasma-enhanced catalysis over supported cobalt oxide catalysts. ACS Sustain. Chem. Eng. 2020, 8, 17397–17407. [CrossRef] [PubMed]
- 294. Meng, C.; Zhao, G.; Shi, X.-R.; Chen, P.; Liu, Y.; Lu, Y. Oxygen-deficient metal oxides supported nano-intermetallic InNi₃C_{0.5} toward efficient CO₂ hydrogenation to methanol. *Sci. Adv.* **2021**, *7*, eabi6012. [CrossRef]
- Numpilai, T.; Kidkhunthod, P.; Cheng, C.K.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. CO₂ hydrogenation to methanol at high reaction temperatures over In₂O₃/ZrO₂ catalysts: Influence of calcination temperatures of ZrO₂ support. *Catal. Today* 2021, 375, 298–306. [CrossRef]
- 296. Shi, Y.; Su, W.; Kong, L.; Wang, J.; Lv, P.; Hao, J.; Gao, X.; Yu, G. The homojunction formed by h-In₂O₃ (110) and c-In₂O₃ (440) promotes carbon dioxide hydrogenation to methanol on graphene oxide modified In₂O₃. *J. Colloid Interface Sci.* 2022, 623, 1048–1062. [CrossRef]
- 297. Yang, B.; Li, L.; Jia, Z.; Liu, X.; Zhang, C.; Guo, L. Comparative study of CO₂ hydrogenation to methanol on cubic bixbyite-type and rhombohedral corundum-type indium oxide. *Chin. Chem. Lett.* **2020**, *31*, 2627–2633. [CrossRef]
- Tian, G.; Wu, Y.; Wu, S.; Huang, S.; Gao, J. CO₂ hydrogenation to methanol over Pd/MnO/In₂O₃ catalyst. *J. Environ. Chem. Eng.* 2022, 10, 106965. [CrossRef]
- 299. Tian, G.; Wu, Y.; Wu, S.; Huang, S.; Gao, J. Solid-State Synthesis of Pd/In₂O₃ Catalysts for CO₂ Hydrogenation to Methanol. *Catal. Lett.* 2022, 1–8. [CrossRef]
- Pechenkin, A.; Potemkin, D.; Rubtsova, M.; Snytnikov, P.; Plyusnin, P.; Glotov, A. CuO-In₂O₃ Catalysts Supported on Halloysite Nanotubes for CO₂ Hydrogenation to Dimethyl Ether. *Catalysts* 2021, *11*, 1151. [CrossRef]
- Wang, Y.; Wu, D.; Liu, T.; Liu, G.; Hong, X. Fabrication of PdZn alloy catalysts supported on ZnFe composite oxide for CO₂ hydrogenation to methanol. *J. Colloid Interface Sci.* 2021, 597, 260–268. [CrossRef]
- 302. Duyar, M.S.; Gallo, A.; Regli, S.K.; Snider, J.L.; Singh, J.A.; Valle, E.; McEnaney, J.; Bent, S.F.; Rønning, M.; Jaramillo, T.F. Understanding selectivity in CO₂ hydrogenation to methanol for mop nanoparticle catalysts using in situ techniques. *Catalysts* 2021, 11, 143. [CrossRef]
- 303. Zhang, G.; Fan, G.; Yang, L.; Li, F. Tuning surface-interface structures of ZrO₂ supported copper catalysts by in situ introduction of indium to promote CO₂ hydrogenation to methanol. *Appl. Catal. A Gen.* **2020**, *605*, 117805. [CrossRef]
- 304. Stangeland, K.; Chamssine, F.; Fu, W.; Huang, Z.; Duan, X.; Yu, Z. CO₂ hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium. *J. CO2 Util.* 2021, 50, 101609. [CrossRef]
- 305. Vu, T.T.N.; Desgagnés, A.; Iliuta, M.C. Efficient approaches to overcome challenges in material development for conventional and intensified CO₂ catalytic hydrogenation to CO, methanol, and DME. *Appl. Catal. A Gen.* **2021**, 617, 118119. [CrossRef]
- 306. Millán Ordóñez, E.; Mota, N.; Guil-López, R.; Garcia Pawelec, B.; Fierro, J.L.G.; Navarro Yerga, R.M. Direct Synthesis of Dimethyl Ether on Bifunctional Catalysts Based on Cu–ZnO (Al) and Supported H₃PW₁₂O₄₀: Effect of Physical Mixing on Bifunctional Interactions and Activity. *Ind. Eng. Chem. Res.* 2021, 60, 18853–18869. [CrossRef]
- 307. Liu, Z.; An, X.; Song, M.; Wang, Z.; Wei, Y.; Mintova, S.; Giordano, G.; Yan, Z. Dry gel assisting crystallization of bifunctional CuO–ZnO–Al₂O₃/SiO₂–Al₂O₃ catalysts for CO₂ hydrogenation. *Biomass Bioenergy* 2022, 163, 106525. [CrossRef]
- Guo, Y.; Feng, L.; Liu, Y.; Zhao, Z. Cu-embedded porous Al₂O₃ bifunctional catalyst derived from metal–organic framework for syngas-to-dimethyl ether. *Chin. Chem. Lett.* 2022, 33, 2906–2910. [CrossRef]
- Temvuttirojn, C.; Chuasomboon, N.; Numpilai, T.; Faungnawakij, K.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Development of SO₄^{2–}–ZrO₂ acid catalysts admixed with a CuO-ZnO-ZrO₂ catalyst for CO₂ hydrogenation to dimethyl ether. *Fuel* 2019, 241, 695–703. [CrossRef]
- Mureddu, M.; Lai, S.; Atzori, L.; Rombi, E.; Ferrara, F.; Pettinau, A.; Cutrufello, M.G. Ex-LDH-based catalysts for CO₂ conversion to methanol and dimethyl ether. *Catalysts* 2021, *11*, 615. [CrossRef]

- Pechenkin, A.; Potemkin, D.; Badmaev, S.; Smirnova, E.; Cherednichenko, K.; Vinokurov, V.; Glotov, A. CO₂ hydrogenation to dimethyl ether over In₂O₃ catalysts supported on aluminosilicate halloysite nanotubes. *Green Process. Synth.* 2021, 10, 594–605. [CrossRef]
- 312. Zhang, L.; Bian, Z.; Sun, K.; Huang, W. Effects of Sn on the catalytic performance for one step syngas to DME in slurry reactor. *New J. Chem.* **2021**, *45*, 3783–3789. [CrossRef]
- Ateka, A.; Sánchez-Contador, M.; Portillo, A.; Bilbao, J.; Aguayo, A.T. Kinetic modeling of CO₂⁺ CO hydrogenation to DME over a CuO-ZnO-ZrO₂@ SAPO-11 core-shell catalyst. *Fuel Process. Technol.* 2020, 206, 106434. [CrossRef]
- 314. Ren, S.; Shoemaker, W.R.; Wang, X.; Shang, Z.; Klinghoffer, N.; Li, S.; Yu, M.; He, X.; White, T.A.; Liang, X. Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO₂ hydrogenation. *Fuel* 2019, 239, 1125–1133. [CrossRef]
- 315. Godini, H.R.; Kumar, S.R.; Tadikamalla, N.; Gallucci, F. Performance analysis of hybrid catalytic conversion of CO₂ to DiMethyl ether. *Int. J. Hydrogen Energy* **2022**, *47*, 11341–11358. [CrossRef]
- 316. Suwannapichat, Y.; Numpilai, T.; Chanlek, N.; Faungnawakij, K.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Direct synthesis of dimethyl ether from CO₂ hydrogenation over novel hybrid catalysts containing a CuZnOZrO₂ catalyst admixed with WOx/Al₂O₃ catalysts: Effects of pore size of Al₂O₃ support and W loading content. *Energy Convers. Manag.* 2018, 159, 20–29. [CrossRef]
- Navarro-Jaén, S.; Virginie, M.; Thuriot-Roukos, J.; Wojcieszak, R.; Khodakov, A.Y. Structure–performance correlations in the hybrid oxide-supported copper–zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO₂. *J. Mater. Sci.* 2022, 57, 3268–3279. [CrossRef]
- Fang, X.; Jia, H.; Zhang, B.; Li, Y.; Wang, Y.; Song, Y.; Du, T.; Liu, L. A novel in situ grown Cu-ZnO-ZrO₂/HZSM-5 hybrid catalyst for CO₂ hydrogenation to liquid fuels of methanol and DME. J. Environ. Chem. Eng. 2021, 9, 105299. [CrossRef]
- 319. Feng, W.-H.; Yu, M.-M.; Wang, L.-J.; Miao, Y.-T.; Shakouri, M.; Ran, J.; Hu, Y.; Li, Z.; Huang, R.; Lu, Y.-L. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrO x oxide catalysts. ACS Catal. 2021, 11, 4704–4711. [CrossRef]
- 320. Ateka, A.; Ereña, J.; Pérez-Uriarte, P.; Aguayo, A.T.; Bilbao, J. Effect of the content of CO₂ and H₂ in the feed on the conversion of CO₂ in the direct synthesis of dimethyl ether over a CuOZnOAl₂O₃/SAPO-18 catalyst. *Int. J. Hydrogen Energy* 2017, 42, 27130–27138. [CrossRef]
- 321. Şeker, B.; Dizaji, A.K.; Balci, V.; Uzun, A. MCM-41-supported tungstophosphoric acid as an acid function for dimethyl ether synthesis from CO₂ hydrogenation. *Renew. Energy* **2021**, 171, 47–57. [CrossRef]
- Singh, R.; Tripathi, K.; Pant, K.K.; Parikh, J.K. Unravelling synergetic interaction over tandem Cu-ZnO-ZrO₂/hierarchical ZSM5 catalyst for CO₂ hydrogenation to methanol and DME. *Fuel* 2022, 318, 123641. [CrossRef]
- 323. Tan, K.B.; Tian, P.; Zhang, X.; Tian, J.; Zhan, G.; Huang, J.; Li, Q. Green synthesis of microspherical-confined nano-Pd/In₂O₃ integrated with H-ZSM-5 as bifunctional catalyst for CO₂ hydrogenation into dimethyl ether: A carbonized alginate templating strategy. *Sep. Purif. Technol.* 2022, 297, 121559. [CrossRef]
- 324. Liu, C.; Kang, J.; Huang, Z.-Q.; Song, Y.-H.; Xiao, Y.-S.; Song, J.; He, J.-X.; Chang, C.-R.; Ge, H.-Q.; Wang, Y. Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. *Nat. Commun.* 2021, 12, 2305. [CrossRef] [PubMed]
- 325. Catizzone, E.; Freda, C.; Braccio, G.; Frusteri, F.; Bonura, G. Dimethyl ether as circular hydrogen carrier: Catalytic aspects of hydrogenation/dehydrogenation steps. *J. Energy Chem.* **2021**, *58*, 55–77. [CrossRef]
- 326. Ateka, A.; Rodriguez-Vega, P.; Ereña, J.; Aguayo, A.; Bilbao, J. A review on the valorization of CO₂. Focusing on the thermodynamics and catalyst design studies of the direct synthesis of dimethyl ether. *Fuel Process. Technol.* 2022, 233, 107310. [CrossRef]
- 327. Weber, D.; He, T.; Wong, M.; Moon, C.; Zhang, A.; Foley, N.; Ramer, N.J.; Zhang, C. Recent Advances in the Mitigation of the Catalyst Deactivation of CO₂ Hydrogenation to Light Olefins. *Catalysts* **2021**, *11*, 1447. [CrossRef]
- 328. Ma, Z.; Porosoff, M.D. Development of tandem catalysts for CO₂ hydrogenation to olefins. *ACS Catal.* **2019**, *9*, 2639–2656. [CrossRef]
- Zhao, Z.; Jiang, J.; Wang, F. An economic analysis of twenty light olefin production pathways. J. Energy Chem. 2021, 56, 193–202. [CrossRef]
- Gogate, M.R. Methanol-to-olefins process technology: Current status and future prospects. *Pet. Sci. Technol.* 2019, 37, 559–565.
 [CrossRef]
- 331. Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J. Direct conversion of CO₂ into liquid fuels with high selectivity over a bifunctional catalyst. *Nat. Chem.* 2017, 9, 1019–1024. [CrossRef]
- Sedighi, M.; Mohammadi, M. CO₂ hydrogenation to light olefins over Cu-CeO₂/SAPO-34 catalysts: Product distribution and optimization. J. CO2 Util. 2020, 35, 236–244. [CrossRef]
- 333. Tada, S.; Kinoshita, H.; Ochiai, N.; Chokkalingam, A.; Hu, P.; Yamauchi, N.; Kobayashi, Y.; Iyoki, K. Search for solid acid catalysts aiming at the development of bifunctional tandem catalysts for the one-pass synthesis of lower olefins via CO₂ hydrogenation. *Int. J. Hydrogen Energy* 2021, 46, 36721–36730. [CrossRef]
- 334. Dokania, A.; Ould-Chikh, S.; Ramirez, A.; Cerrillo, J.L.; Aguilar, A.; Russkikh, A.; Alkhalaf, A.; Hita, I.; Bavykina, A.; Shterk, G. Designing a Multifunctional Catalyst for the Direct Production of Gasoline-Range Isoparaffins from CO₂. *JACS Au* 2021, 1, 1961–1974. [CrossRef] [PubMed]

- 335. Dang, S.; Gao, P.; Liu, Z.; Chen, X.; Yang, C.; Wang, H.; Zhong, L.; Li, S.; Sun, Y. Role of zirconium in direct CO₂ hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. *J. Catal.* **2018**, *364*, 382–393. [CrossRef]
- 336. Liu, Z.; Ni, Y.; Hu, Z.; Fu, Y.; Fang, X.; Jiang, Q.; Chen, Z.; Zhu, W.; Liu, Z. Insights into effects of ZrO₂ crystal phase on syngas-to-olefin conversion over ZnO/ZrO₂ and SAPO-34 composite catalysts. *Chin. J. Catal.* **2022**, 43, 877–884. [CrossRef]
- 337. Li, N.; Zhu, Y.; Jiao, F.; Pan, X.; Jiang, Q.; Cai, J.; Li, Y.; Tong, W.; Xu, C.; Qu, S. Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel. *Nat. Commun.* **2022**, *13*, 2742. [CrossRef]
- Portillo, A.; Ateka, A.; Ereña, J.; Bilbao, J.; Aguayo, A. Role of Zr loading into In2O3 catalysts for the direct conversion of CO₂/CO mixtures into light olefins. *J. Environ. Manag.* 2022, 316, 115329. [CrossRef]
- Portillo, A.; Ateka, A.; Ereña, J.; Aguayo, A.T.; Bilbao, J. Conditions for the joint conversion of CO₂ and syngas in the direct synthesis of light olefins using In₂O₃–ZrO₂/SAPO-34 catalyst. *Ind. Eng. Chem. Res.* 2021, *61*, 10365–10376. [CrossRef]
- 340. Gao, P.; Dang, S.; Li, S.; Bu, X.; Liu, Z.; Qiu, M.; Yang, C.; Wang, H.; Zhong, L.; Han, Y. Direct production of lower olefins from CO₂ conversion via bifunctional catalysis. *ACS Catal.* **2018**, *8*, 571–578. [CrossRef]
- 341. Mou, J.; Fan, X.; Liu, F.; Wang, X.; Zhao, T.; Chen, P.; Li, Z.; Yang, C.; Cao, J. CO₂ hydrogenation to lower olefins over Mn₂O₃-ZnO/SAPO-34 tandem catalysts. *Chem. Eng. J.* 2021, 421, 129978. [CrossRef]
- 342. Numpilai, T.; Chanlek, N.; Poo-Arporn, Y.; Wannapaiboon, S.; Cheng, C.K.; Siri-Nguan, N.; Sornchamni, T.; Kongkachuichay, P.; Chareonpanich, M.; Rupprechter, G. Pore size effects on physicochemical properties of Fe-Co/K-Al₂O₃ catalysts and their catalytic activity in CO₂ hydrogenation to light olefins. *Appl. Surf. Sci.* 2019, 483, 581–592. [CrossRef]
- 343. Guo, L.; Cui, Y.; Li, H.; Fang, Y.; Prasert, R.; Wu, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Selective formation of linear-alpha olefins (LAOs) by CO₂ hydrogenation over bimetallic Fe/Co-Y catalyst. *Catal. Commun.* **2019**, *130*, 105759. [CrossRef]
- 344. Numpilai, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Optimization of synthesis condition for CO₂ hydrogenation to light olefins over In₂O₃ admixed with SAPO-34. *Energy Convers. Manag.* **2019**, *180*, 511–523. [CrossRef]
- 345. Tian, P.; Zhan, G.; Tian, J.; Tan, K.B.; Guo, M.; Han, Y.; Fu, T.; Huang, J.; Li, Q. Direct CO₂ Hydrogenation to Light Olefins over ZnZrOx Mixed with Hierarchically Hollow SAPO-34 with Rice Husk as Green Silicon Source and Template. *Appl. Catal. B Environ.* 2022, 315, 121572. [CrossRef]
- Li, Z.; Wang, J.; Qu, Y.; Liu, H.; Tang, C.; Miao, S.; Feng, Z.; An, H.; Li, C. Highly selective conversion of carbon dioxide to lower olefins. ACS Catal. 2017, 7, 8544–8548. [CrossRef]
- 347. Wang, S.; Wang, P.; Qin, Z.; Yan, W.; Dong, M.; Li, J.; Wang, J.; Fan, W. Enhancement of light olefin production in CO₂ hydrogenation over In₂O₃-based oxide and SAPO-34 composite. *J. Catal.* **2020**, *391*, 459–470. [CrossRef]
- 348. Chen, J.; Wang, X.; Wu, D.; Zhang, J.; Ma, Q.; Gao, X.; Lai, X.; Xia, H.; Fan, S.; Zhao, T.-S. Hydrogenation of CO₂ to light olefins on CuZnZr@(Zn-) SAPO-34 catalysts: Strategy for product distribution. *Fuel* 2019, 239, 44–52. [CrossRef]
- Ghasemi, M.; Mohammadi, M.; Sedighi, M. Sustainable production of light olefins from greenhouse gas CO₂ over SAPO-34 supported modified cerium oxide. *Microporous Mesoporous Mater.* 2020, 297, 110029. [CrossRef]
- Li, J.; Yu, T.; Miao, D.; Pan, X.; Bao, X. Carbon dioxide hydrogenation to light olefins over ZnO-Y₂O₃ and SAPO-34 bifunctional catalysts. *Catal. Commun.* 2019, 129, 105711. [CrossRef]
- 351. Ramirez, A.; Chowdhury, A.D.; Caglayan, M.; Rodriguez-Gomez, A.; Wehbe, N.; Abou-Hamad, E.; Gevers, L.; Ould-Chikh, S.; Gascon, J. Coated sulfated zirconia/SAPO-34 for the direct conversion of CO₂ to light olefins. *Catal. Sci. Technol.* 2020, 10, 1507–1517. [CrossRef]
- 352. Li, W.; Zhang, A.; Jiang, X.; Janik, M.J.; Qiu, J.; Liu, Z.; Guo, X.; Song, C. The anti-sintering catalysts: Fe–Co–Zr polymetallic fibers for CO₂ hydrogenation to C2=–C4=–rich hydrocarbons. J. CO2 Util. 2018, 23, 219–225. [CrossRef]
- 353. Tong, M.; Chizema, L.G.; Chang, X.; Hondo, E.; Dai, L.; Zeng, Y.; Zeng, C.; Ahmad, H.; Yang, R.; Lu, P. Tandem catalysis over tailored ZnO-ZrO₂/MnSAPO-34 composite catalyst for enhanced light olefins selectivity in CO₂ hydrogenation. *Microporous Mesoporous Mater.* 2021, 320, 111105. [CrossRef]
- 354. Zhang, P.; Ma, L.; Meng, F.; Wang, L.; Zhang, R.; Yang, G.; Li, Z. Boosting CO₂ hydrogenation performance for light olefin synthesis over GaZrOx combined with SAPO-34. *Appl. Catal. B Environ.* **2022**, *305*, 121042. [CrossRef]
- 355. Tian, H.; Yao, J.; Zha, F.; Yao, L.; Chang, Y. Catalytic activity of SAPO-34 molecular sieves prepared by using palygorskite in the synthesis of light olefins via CO₂ hydrogenation. *Appl. Clay Sci.* **2020**, *184*, 105392. [CrossRef]
- 356. Numpilai, T.; Kahadit, S.; Witoon, T.; Ayodele, B.V.; Cheng, C.K.; Siri-Nguan, N.; Sornchamni, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J. CO₂ hydrogenation to light olefins over In₂O₃/SAPO-34 and Fe-Co/K-Al₂O₃ composite catalyst. *Top. Catal.* 2021, 64, 316–327. [CrossRef]
- Wang, P.; Zha, F.; Yao, L.; Chang, Y. Synthesis of light olefins from CO₂ hydrogenation over (CuO-ZnO)-kaolin/SAPO-34 molecular sieves. *Appl. Clay Sci.* 2018, 163, 249–256. [CrossRef]
- Oni, B.A.; Sanni, S.E.; Ibegbu, A.J. Production of light olefins by catalytic hydrogenation of CO₂ over Y₂O₃/Fe-Co modified with SAPO-34. *Appl. Catal. A Gen.* 2022, 643, 118784. [CrossRef]
- Liu, Q.; Ding, J.; Wang, R.; Zhong, Q. FeZnK/SAPO-34 Catalyst for Efficient Conversion of CO₂ to Light Olefins. *Catal. Lett.* 2022, 1–8. [CrossRef]
- 360. Liu, Y.; Chen, B.; Liu, R.; Liu, W.; Gao, X.; Tan, Y.; Zhang, Z.; Tu, W. CO₂ hydrogenation to olefins on supported iron catalysts: Effects of support properties on carbon-containing species and product distribution. *Fuel* **2022**, *324*, 124649. [CrossRef]
- Rimaz, S.; Kosari, M.; Zarinejad, M.; Ramakrishna, S. A comprehensive review on sustainability-motivated applications of SAPO-34 molecular sieve. J. Mater. Sci. 2022, 57, 1–39.

- 362. Dugkhuntod, P.; Wattanakit, C. A comprehensive review of the applications of hierarchical zeolite nanosheets and nanoparticle assemblies in light olefin production. *Catalysts* **2020**, *10*, 245. [CrossRef]
- Usman, M. Recent Progress of SAPO-34 Zeolite Membranes for CO₂ Separation: A Review. *Membranes* 2022, 12, 507. [CrossRef]
 [PubMed]
- 364. Yuan, F.; Zhang, G.; Zhu, J.; Ding, F.; Zhang, A.; Song, C.; Guo, X. Boosting light olefin selectivity in CO₂ hydrogenation by adding Co to Fe catalysts within close proximity. *Catal. Today* 2021, 371, 142–149. [CrossRef]
- Goud, D.; Gupta, R.; Maligal-Ganesh, R.; Peter, S.C. Review of catalyst design and mechanistic studies for the production of olefins from anthropogenic CO₂. ACS Catal. 2020, 10, 14258–14282. [CrossRef]
- 366. Tian, H.; He, H.; Jiao, J.; Zha, F.; Guo, X.; Tang, X.; Chang, Y. Tandem catalysts composed of different morphology HZSM-5 and metal oxides for CO₂ hydrogenation to aromatics. *Fuel* 2022, 314, 123119. [CrossRef]
- 367. Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. A short review of recent advances in CO₂ hydrogenation to hydrocarbons over heterogeneous catalysts. *RSC Adv.* **2018**, *8*, 7651–7669. [CrossRef] [PubMed]
- 368. Zhou, W.; Cheng, K.; Kang, J.; Zhou, C.; Subramanian, V.; Zhang, Q.; Wang, Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO₂ into hydrocarbon chemicals and fuels. *Chem. Soc. Rev.* 2019, 48, 3193–3228. [CrossRef]
- Cheng, K.; Kang, J.; Zhang, Q.; Wang, Y. Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis. *Sci. China Chem.* 2017, *60*, 1382–1385. [CrossRef]
- Winter, L.R.; Gomez, E.; Yan, B.; Yao, S.; Chen, J.G. Tuning Ni-catalyzed CO₂ hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation. *Appl. Catal. B Environ.* 2018, 224, 442–450. [CrossRef]
- Azhari, N.J.; Nurdini, N.; Mardiana, S.; Ilmi, T.; Fajar, A.T.; Makertihartha, I.; Kadja, G.T. Zeolite-based catalyst for direct conversion of CO₂ to C2+ hydrocarbon: A review. J. CO2 Util. 2022, 59, 101969. [CrossRef]
- 372. Wang, D.; Xie, Z.; Porosoff, M.D.; Chen, J.G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. *Chem* **2021**, *7*, 2277–2311. [CrossRef]
- 373. Hwang, S.-M.; Zhang, C.; Han, S.J.; Park, H.-G.; Kim, Y.T.; Yang, S.; Jun, K.-W.; Kim, S.K. Mesoporous carbon as an effective support for Fe catalyst for CO₂ hydrogenation to liquid hydrocarbons. *J. CO2 Util.* **2020**, *37*, 65–73. [CrossRef]
- 374. Kim, H.D.; Song, H.-T.; Fazeli, A.; Eslami, A.A.; Noh, Y.S.; Saeidabad, N.G.; Lee, K.-Y.; Moon, D.J. CO/CO₂ hydrogenation for the production of lighter hydrocarbons over SAPO-34 modified hybrid FTS catalysts. *Catal. Today* 2020, 388–389, 410–416. [CrossRef]
- 375. Liu, B.; Geng, S.; Zheng, J.; Jia, X.; Jiang, F.; Liu, X. Unravelling the New Roles of Na and Mn Promoter in CO₂ Hydrogenation over Fe₃O₄-Based Catalysts for Enhanced Selectivity to Light α-Olefins. *ChemCatChem* **2018**, 10, 4718–4732. [CrossRef]
- 376. Khangale, P.R.; Meijboom, R.; Jalama, K. CO₂ hydrogenation to liquid hydrocarbons via modified Fischer–Tropsch over aluminasupported cobalt catalysts: Effect of operating temperature, pressure and potassium loading. J. CO2 Util. 2020, 41, 101268. [CrossRef]
- 377. Liu, J.; Zhang, G.; Jiang, X.; Wang, J.; Song, C.; Guo, X. Insight into the role of Fe₅C₂ in CO₂ catalytic hydrogenation to hydrocarbons. *Catal. Today* 2021, 371, 162–170. [CrossRef]
- 378. Hwang, S.-M.; Han, S.J.; Park, H.-G.; Lee, H.; An, K.; Jun, K.-W.; Kim, S.K. Atomically Alloyed Fe–Co Catalyst derived from a N-coordinated Co single-atom structure for CO₂ hydrogenation. ACS Catal. 2021, 11, 2267–2278. [CrossRef]
- 379. Yao, B.; Xiao, T.; Makgae, O.A.; Jie, X.; Gonzalez-Cortes, S.; Guan, S.; Kirkland, A.I.; Dilworth, J.R.; Al-Megren, H.A.; Alshihri, S.M. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. *Nat. Commun.* 2020, 11, 1–12. [CrossRef]
- Li, L.; Yu, F.; Li, X.; Lin, T.; An, Y.; Zhong, L.; Sun, Y. Fischer-Tropsch to olefins over C_{O2}C-based catalysts: Effect of thermal pretreatment of SiO₂ support. *Appl. Catal. A Gen.* 2021, 623, 118283. [CrossRef]
- Jiang, F.; Liu, B.; Geng, S.; Xu, Y.; Liu, X. Hydrogenation of CO₂ into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts. *Catal. Sci. Technol.* 2018, *8*, 4097–4107. [CrossRef]
- 382. Gong, K.; Lin, T.; An, Y.; Wang, X.; Yu, F.; Wu, B.; Li, X.; Li, S.; Lu, Y.; Zhong, L. Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods. *Appl. Catal. A Gen.* **2020**, *592*, 117414. [CrossRef]
- 383. Kwok, K.M.; Chen, L.; Zeng, H.C. Design of hollow spherical Co@ hsZSM5@ metal dual-layer nanocatalysts for tandem CO₂ hydrogenation to increase C²⁺ hydrocarbon selectivity. J. Mater. Chem. A 2020, 8, 12757–12766. [CrossRef]
- Liu, R.; Ma, Z.; Sears, J.D.; Juneau, M.; Neidig, M.L.; Porosoff, M.D. Identifying correlations in Fischer-Tropsch synthesis and CO₂ hydrogenation over Fe-based ZSM-5 catalysts. J. CO2 Util. 2020, 41, 101290. [CrossRef]
- 385. Guo, L.; Sun, S.; Li, J.; Gao, W.; Zhao, H.; Zhang, B.; He, Y.; Zhang, P.; Yang, G.; Tsubaki, N. Boosting liquid hydrocarbons selectivity from CO₂ hydrogenation by facilely tailoring surface acid properties of zeolite via a modified Fischer-Tropsch synthesis. *Fuel* 2021, 306, 121684. [CrossRef]
- Choi, Y.H.; Jang, Y.J.; Park, H.; Kim, W.Y.; Lee, Y.H.; Choi, S.H.; Lee, J.S. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. *Appl. Catal. B Environ.* 2017, 202, 605–610. [CrossRef]
- 387. Liu, J.; Zhang, A.; Jiang, X.; Liu, M.; Sun, Y.; Song, C.; Guo, X. Selective CO₂ hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: Dependence on Cu–Fe interaction. ACS Sustain. Chem. Eng. 2018, 6, 10182–10190. [CrossRef]
- Chen, Q.; Liu, G.; Ding, S.; Sheikh, M.C.; Long, D.; Yoneyama, Y.; Tsubaki, N. Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. *Chem. Eng. J.* 2018, 334, 714–724. [CrossRef]

- 389. Qadir, M.I.; Bernardi, F.; Scholten, J.D.; Baptista, D.L.; Dupont, J. Synergistic CO₂ hydrogenation over bimetallic Ru/Ni nanoparticles in ionic liquids. *Appl. Catal. B Environ.* **2019**, 252, 10–17. [CrossRef]
- 390. Wang, P.; Chen, W.; Chiang, F.-K.; Dugulan, A.I.; Song, Y.; Pestman, R.; Zhang, K.; Yao, J.; Feng, B.; Miao, P. Synthesis of stable and low-CO₂ selective ε-iron carbide Fischer-Tropsch catalysts. *Sci. Adv.* **2018**, *4*, eaau2947. [CrossRef]
- 391. Wang, X.; Wu, D.; Zhang, J.; Gao, X.; Ma, Q.; Fan, S.; Zhao, T.-S. Highly selective conversion of CO₂ to light olefins via Fischer-Tropsch synthesis over stable layered K–Fe–Ti catalysts. *Appl. Catal. A Gen.* 2019, 573, 32–40. [CrossRef]
- 392. Song, F.; Yong, X.; Wu, X.; Zhang, W.; Ma, Q.; Zhao, T.; Tan, M.; Guo, Z.; Zhao, H.; Yang, G. FeMn@ HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO₂ formation. *Appl. Catal. B Environ.* 2022, 300, 120713. [CrossRef]
- Cui, M.; Qian, Q.; Zhang, J.; Wang, Y.; Bediako, B.B.A.; Liu, H.; Han, B. Liquid fuel synthesis via CO₂ hydrogenation by coupling homogeneous and heterogeneous catalysis. *Chem* 2021, 7, 726–737. [CrossRef]
- 394. Straß-Eifert, A.; Sheppard, T.L.; Becker, H.; Friedland, J.; Zimina, A.; Grunwaldt, J.D.; Güttel, R. Cobalt-based Nanoreactors in Combined Fischer-Tropsch Synthesis and Hydroprocessing: Effects on Methane and CO₂ Selectivity. *ChemCatChem* 2021, 13, 5216–5227. [CrossRef]
- 395. Sirikulbodee, P.; Ratana, T.; Sornchamni, T.; Phongaksorn, M.; Tungkamani, S. Catalytic performance of Iron-based catalyst in Fischer–Tropsch synthesis using CO₂ containing syngas. *Energy Procedia* **2017**, *138*, 998–1003. [CrossRef]
- 396. Zhang, Z.; Liu, Y.; Jia, L.; Sun, C.; Chen, B.; Liu, R.; Tan, Y.; Tu, W. Effects of the reducing gas atmosphere on performance of FeCeNa catalyst for the hydrogenation of CO₂ to olefins. *Chem. Eng. J.* 2022, 428, 131388. [CrossRef]
- 397. Zhang, P.; Han, F.; Yan, J.; Qiao, X.; Guan, Q.; Li, W. N-doped ordered mesoporous carbon (N-OMC) confined Fe₃O₄-FeCx heterojunction for efficient conversion of CO₂ to light olefins. *Appl. Catal. B Environ.* **2021**, *299*, 120639. [CrossRef]
- 398. Guilera, J.; Díaz-López, J.A.; Berenguer, A.; Biset-Peiró, M.; Andreu, T. Fischer-Tropsch synthesis: Towards a highly-selective catalyst by lanthanide promotion under relevant CO₂ syngas mixtures. *Appl. Catal. A Gen.* **2022**, *629*, 118423. [CrossRef]
- 399. Jo, H.; Khan, M.K.; Irshad, M.; Arshad, M.W.; Kim, S.K.; Kim, J. Unraveling the role of cobalt in the direct conversion of CO₂ to high-yield liquid fuels and lube base oil. *Appl. Catal. B Environ.* **2022**, 305, 121041. [CrossRef]
- 400. Ahmad, E.; Upadhyayula, S.; Pant, K.K. Biomass-derived CO₂ rich syngas conversion to higher hydrocarbon via Fischer-Tropsch process over Fe–Co bimetallic catalyst. *Int. J. Hydrogen Energy* **2019**, *44*, 27741–27748.
- 401. Bashiri, N.; Omidkhah, M.R.; Godini, H.R. Direct conversion of CO₂ to light olefins over FeCo/XK-ΥAl₂O₃ (X = La, Mn, Zn) catalyst via hydrogenation reaction. *Res. Chem. Intermed.* 2021, 47, 5267–5289. [CrossRef]
- 402. Gong, K.; Wei, Y.; Dai, Y.; Lin, T.; Yu, F.; An, Y.; Wang, X.; Sun, F.; Jiang, Z.; Zhong, L. Carbon-encapsulated metallic Co nanoparticles for Fischer-Tropsch to olefins with low CO₂ selectivity. *Appl. Catal. B Environ.* **2022**, *316*, 121700. [CrossRef]
- 403. He, Z.; Cui, M.; Qian, Q.; Zhang, J.; Liu, H.; Han, B. Synthesis of liquid fuel via direct hydrogenation of CO₂. Proc. Natl. Acad. Sci. USA 2019, 116, 12654–12659. [CrossRef] [PubMed]
- 404. Xie, T.; Wang, J.; Ding, F.; Zhang, A.; Li, W.; Guo, X.; Song, C. CO₂ hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size. J. CO2 Util. 2017, 19, 202–208. [CrossRef]
- 405. Numpilai, T.; Witoon, T.; Chanlek, N.; Limphirat, W.; Bonura, G.; Chareonpanich, M.; Limtrakul, J. Structure–activity relationships of Fe-Co/K-Al₂O₃ catalysts calcined at different temperatures for CO₂ hydrogenation to light olefins. *Appl. Catal. A Gen.* 2017, 547, 219–229. [CrossRef]
- 406. Bradley, M.J.; Ananth, R.; Willauer, H.D.; Baldwin, J.W.; Hardy, D.R.; Williams, F.W. The effect of copper addition on the activity and stability of iron-based CO₂ hydrogenation catalysts. *Molecules* **2017**, *22*, 1579. [CrossRef] [PubMed]
- 407. Zhang, Z.; Yin, H.; Yu, G.; He, S.; Kang, J.; Liu, Z.; Cheng, K.; Zhang, Q.; Wang, Y. Selective hydrogenation of CO₂ and CO into olefins over Sodium-and Zinc-Promoted iron carbide catalysts. *J. Catal.* **2021**, *395*, 350–361. [CrossRef]
- 408. Feng, K.; Tian, J.; Guo, M.; Wang, Y.; Wang, S.; Wu, Z.; Zhang, J.; He, L.; Yan, B. Experimentally unveiling the origin of tunable selectivity for CO₂ hydrogenation over Ni-based catalysts. *Appl. Catal. B Environ.* **2021**, 292, 120191. [CrossRef]
- Sibi, M.G.; Khan, M.K.; Verma, D.; Yoon, W.; Kim, J. High-yield synthesis of BTEX over Na–FeAlOx/Zn–HZSM-5@ SiO₂ by direct CO₂ conversion and identification of surface intermediates. *Appl. Catal. B Environ.* 2022, 301, 120813. [CrossRef]
- 410. Zhang, Z.; Huang, G.; Tang, X.; Yin, H.; Kang, J.; Zhang, Q.; Wang, Y. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO₂ hydrogenation. *Fuel* **2022**, *309*, 122105. [CrossRef]
- 411. Chaipraditgul, N.; Numpilai, T.; Cheng, C.K.; Siri-Nguan, N.; Sornchamni, T.; Wattanakit, C.; Limtrakul, J.; Witoon, T. Tuning interaction of surface-adsorbed species over Fe/K-Al₂O₃ modified with transition metals (Cu, Mn, V, Zn or Co) on light olefins production from CO₂ hydrogenation. *Fuel* **2021**, 283, 119248. [CrossRef]
- Garona, H.A.; Cavalcanti, F.M.; de Abreu, T.F.; Schmal, M.; Alves, R.M. Evaluation of Fischer-Tropsch synthesis to light olefins over Co-and Fe-based catalysts using artificial neural network. J. Clean. Prod. 2021, 321, 129003. [CrossRef]
- Hodala, J.L.; Moon, D.J.; Reddy, K.R.; Reddy, C.V.; Kumar, T.N.; Ahamed, M.I.; Raghu, A.V. Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis. Int. J. Hydrogen Energy 2021, 46, 3289–3301. [CrossRef]
- 414. Shiba, N.C.; Yao, Y.; Liu, X.; Hildebrandt, D. Recent developments in catalyst pretreatment technologies for cobalt based Fisher–Tropsch synthesis. *Rev. Chem. Eng.* **2021**, *38*, 503–538. [CrossRef]
- 415. Lu, F.; Chen, X.; Lei, Z.; Wen, L.; Zhang, Y. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis. *Appl. Catal. B Environ.* **2021**, *281*, 119521. [CrossRef]

- 416. Gong, W.; Ye, R.-P.; Ding, J.; Wang, T.; Shi, X.; Russell, C.K.; Tang, J.; Eddings, E.G.; Zhang, Y.; Fan, M. Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO₂ emission. *Appl. Catal. B Environ.* **2020**, *278*, 119302. [CrossRef]
- 417. Lin, T.; Liu, P.; Gong, K.; An, Y.; Yu, F.; Wang, X.; Zhong, L.; Sun, Y. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO₂ emission. *Appl. Catal. B Environ.* **2021**, 299, 120683. [CrossRef]
- Kirsch, H.; Lochmahr, N.; Staudt, C.; Pfeifer, P.; Dittmeyer, R. Production of CO₂-neutral liquid fuels by integrating Fischer-Tropsch synthesis and hydrocracking in a single micro-structured reactor: Performance evaluation of different configurations by factorial design experiments. *Chem. Eng. J.* 2020, 393, 124553. [CrossRef]
- 419. Li, M.; Noreen, A.; Fu, Y.; Amoo, C.C.; Jiang, Y.; Sun, X.; Lu, P.; Yang, R.; Xing, C.; Wang, S. Direct conversion of syngas to gasoline ranged olefins over Na impellent Fe@ NaZSM-5 catalyst. *Fuel* **2022**, *308*, 121938. [CrossRef]
- 420. Yang, J.; Rodriguez, C.L.; Qi, Y.; Ma, H.; Holmen, A.; Chen, D. The effect of co-feeding ethene on Fischer-Tropsch synthesis to olefins over Co-based catalysts. *Appl. Catal. A Gen.* **2020**, *598*, 117564. [CrossRef]
- Hou, Y.; Li, J.; Qing, M.; Liu, C.-L.; Dong, W.-S. Direct synthesis of lower olefins from syngas via Fischer–Tropsch synthesis catalyzed by a dual-bed catalyst. *Mol. Catal.* 2020, 485, 110824. [CrossRef]
- 422. Shiba, N.C.; Yao, Y.; Forbes, R.P.; Okoye-Chine, C.G.; Liu, X.; Hildebrandt, D. Role of CoO-Co nanoparticles supported on SiO₂ in Fischer-Tropsch synthesis: Evidence for enhanced CO dissociation and olefin hydrogenation. *Fuel Process. Technol.* 2021, 216, 106781. [CrossRef]
- 423. Ghosh, I.K.; Iqbal, Z.; van Heerden, T.; van Steen, E.; Bordoloi, A. Insights into the unusual role of chlorine in product selectivity for direct hydrogenation of CO/CO₂ to short-chain olefins. *Chem. Eng. J.* **2021**, *413*, 127424. [CrossRef]
- 424. Yang, S.; Lee, S.; Kang, S.C.; Han, S.J.; Jun, K.-W.; Lee, K.-Y.; Kim, Y.T. Linear α-olefin production with Na-promoted Fe–Zn catalysts via Fischer–Tropsch synthesis. *RSC Adv.* 2019, 9, 14176–14187. [CrossRef]
- 425. Lu, Y.; Yan, Q.; Han, J.; Cao, B.; Street, J.; Yu, F. Fischer–Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. *Fuel* **2017**, *193*, 369–384. [CrossRef]
- Liu, Z.; Jia, G.; Zhao, C.; Xing, Y. Efficient Fischer-Tropsch to light olefins over iron-based catalyst with low methane selectivity and high olefin/paraffin ratio. *Fuel* 2021, 288, 119572. [CrossRef]
- 427. Lu, P.; Riswan, M.; Chang, X.; Zhu, K.; Hondo, E.; Nyako, A.; Xing, C.; Du, C.; Chen, S. Hydrogenation of CO₂ to light olefins on ZZ/MnSAPO-34@ Si-2: Effect of silicalite-2 seeds on the acidity and catalytic activity. *Fuel* **2022**, *330*, 125470. [CrossRef]
- 428. Gao, R.; Zhang, L.; Wang, L.; Zhang, C.; Jun, K.-W.; Kim, S.K.; Park, H.-G.; Gao, Y.; Zhu, Y.; Wan, H. Efficient production of renewable hydrocarbon fuels using waste CO₂ and green H2 by integrating Fe-based Fischer-Tropsch synthesis and olefin oligomerization. *Energy* 2022, 248, 123616. [CrossRef]
- 429. Zhang, X.; Zhang, G.; Song, C.; Guo, X. Catalytic conversion of carbon dioxide to methanol: Current status and future perspective. *Front. Energy Res.* **2021**, *8*, 621119. [CrossRef]