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a b s t r a c t

A blocking set in a projective plane is a point set intersect-
ing each line. The smallest blocking sets are lines. The second
smallest minimal blocking sets are Baer subplanes (subplanes of
order

√
q). Our aim is to study the stability of Baer subplanes in

PG(2, q). If we delete
√
q+1−k points from a Baer subplane, then

the resulting set has size q+k and (
√
q+1−k)(q−

√
q) 0-secants.

If we have somewhat more 0-secants, then our main theorem
says that this point set can be obtained from a Baer subplane or
from a line by deleting somewhat more than

√
q + 1 − k points

and adding some points. The motivation for this theorem comes
from planes of square order, but our main result is valid also for
non-square orders. Hence in this case the point set contains a
relatively large collinear subset.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A blocking set is a point set intersecting each line. It is easy to see that the smallest blocking
ets of projective planes are lines. A blocking set is non-trivial if it contains no line. A blocking set
s minimal, when no proper subset of it is a blocking set. Using combinatorial arguments Bruen
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proved that the smallest non-trivial blocking sets of PG(2, q) have at least q+
√
q+1 points. When

is a square, minimal blocking sets of this size exist; they are the points of a Baer subplane, that
s a subplane of order

√
q.

There are lots of interesting results on blocking sets, for a survey see [1,3] and [4,14]. For a set
S, a line meeting S in i points is called an i-secant. Instead of 0-secants, we sometimes use the term
kew lines or external lines.
The stability question for blocking sets would mean that sets having few 0-secants can be

btained from blocking sets by deleting a relatively small number of points. Some results of this
ype can be found in [11] and [10]. The next theorem of Erdős and Lovász shows the stability of
ines.

heorem 1.1 (Erdős–Lovász [6]). If S is a set of q + k points, 0 ≤ k ≤
√
q + 1, and the number of

0-secants is less than (⌊
√
q⌋ + 1 − k)(q − ⌊

√
q⌋), where k ≤

√
q + 1, then the set contains at least

+ k − ⌊
√
q⌋ + 1 collinear points.

Note that for k =
√
q + 1, there is no such set (the number of 0-secants of S is expected to be

ess than 0). For k <
√
q + 1, the result is sharp for q square: deleting

√
q + 1 − k points from a

aer subplane gives this number of 0-secants. For the proof the reader is referred to [3].
The aim of this paper is to study the stability of Baer subplanes. So we have a set that has a little

ore 0-secants than what is guaranteed by the Erdős–Lovász bound. Then we wish to prove that
t can be obtained from a Baer subplane (or a line) by deleting and adding some points.

The exact formulation of our main result is the following.

heorem 1.2. Let B be a point set in PG(2, q), with cardinality q + k, 0 ≤ k ≤ 0.6
√
q and 1600 ≤ q.

ssume that the number of skew lines of B is less than (q −
√
q − c)(

√
q − k + c + 1), where

≤ c ≤ 0.05
√
q − 2. Then B contains more than q + 1 − (

√
q − k + c + 1) points from a line or

ore than q +
√
q + 1 − (

√
q − k + c + 1) points from a Baer subplane.

. Preliminaries

Here we collect some results from [11], which will be used later.

emma 2.1 ([11]). Let S be a point set of size less than 2q in PG(2, q), q ≥ 81, and assume that the
umber of external lines δ of S is less than (q2 − q)/2. Denote by s the number of external lines of B
assing through a point P. Then (2q + 1 − |S| − s)s ≤ δ. ■

When δ is relatively small, for example O(q
√
q), then after solving the second order inequality in

the lemma above, we get that s is either relatively small (O(
√
q)) or it is relatively large (q−O(

√
q)).

ote that if we delete few points from a minimal blocking set, then this is exactly the case; the
umber of skew lines through a deleted point is O(q) and small otherwise (see [2]).

heorem 2.2. [11] Let B be a point set in PG(2, q), q ≥ 16, of size less than 3
2 (q + 1). Denote the

umber of 0-secants of B by δ, and assume that

δ < min
(
(q − 1)

2q + 1 − |B|
2(|B| − q)

,
1
2
(q −

√
q)3/2

)
. (1)

hen B can be obtained from a blocking set by deleting at most δ
2q+1−|B| +

1
2 points of it.

If |B| = q, then δ has to be at most the second term in (1). Observe that if the size of B is less
han q +

√
q/2, then Theorem 1.1 is stronger than Theorem 2.2. Also note that when the size of

B is around q +
√
q, Theorem 1.1 gives almost nothing, while the theorem above still gives some

reasonable bound on the number of 0−secants. The situation is similar with our main theorem for
|B| > q + 0.6

√
q, that is our main theorem is weaker in this case than Theorem 2.2.
2
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3. The stability of Baer subplanes

The aim of this section is to prove a stability version of the Erdős–Lovász bound. That is, we
how that a set of q + k points having at most (q −

√
q − c)(

√
q − k + c + 1) skew lines either

contains a relatively large collinear set or it contains q + k − c points from a Baer subplane. Note
that if we delete

√
q − k + c + 1 points from a Baer subplane and add c points, then our point set

′ will have at least (q −
√
q − c)(

√
q − k + c + 1) and at most (q −

√
q)(

√
q − k + c + 1) + 1 skew

ines. (In the last bound we only need that +1, when we delete an entire Baer subline from the
aer subplane.) Throughout this paper, we will assume that c ≥ 0 and so from c ≤ 0.05

√
q − 2 in

Theorem 3.11, it follows that q ≥ 1600.
Note that for the point set B′, the points through which there pass at least (q−

√
q−c) 0-secants

are exactly the points that were deleted from the Baer subplane. In the first theorem we assume
that there are no such points.

Theorem 3.1. Let B be a point set in PG(2, q), 1600 ≤ q, with cardinality q+k, 0 ≤ k ≤ 0.6
√
q. Assume

hat the number δ, of skew lines of B is at most (q−
√
q−c)(

√
q−k+c+1), where 0 ≤ c ≤ 0.05

√
q−2.

urthermore, suppose that there is no point in PG(2, q), through which the number of skew lines is at
east q −

√
q − c. Then B contains a Baer subplane or a line.

We will prove the theorem through a sequence of lemmas. The upper bound on δ and solving
the quadratic inequality in Lemma 2.1 give that the number of skew lines through a point cannot
be in a certain interval.

Lemma 3.2. The number of skew lines to B through a point is either at most
√
q − k + c + 1 or at

least q −
√
q − c. If the assumptions of Theorem 3.1 hold, then the latter case cannot occur. ■

Using a similar argument we can say something about the number of lines through a point P in
, which intersect B in at least two points. This will be called the degree of P .

emma 3.3. The degree of a point in B is either at most
√
q + c + 2 or at least q −

√
q − c + k − 2.

roof. Let P be a point in B. The number of skew lines, δ′ to the point set B \ {P} is at most δ + q
nd hence by Lemma 2.1, the number of skew lines through P to B \ {P} is less than

√
q− k+ c + 3

or larger than q −
√
q − c − 1 and so the proof follows. ■

Lemma 3.4. There are at most 2(
√
q + c + 2) points in B with degree at least q −

√
q − c + k − 2.

oints with such degree will be called points with large degree.

roof. Let L1, L2, . . . , Lq2+q+1 be the lines of PG(2, q) and denote by ni the number of points of B
on the line Li. Then∑

ni>1

(ni − 1) = |B|(q + 1) − (q2 + q + 1) + δ = k(q + 1) + δ − 1. (2)

Note that
∑

ni>1 ni is the sum of the degrees of the points in B, and it is
∑

ni>1(ni −1)+
∑

ni>1 1
nd so 2

∑
ni>1(ni − 1) is an upper bound on the sum of the degrees. Hence there can be at most

(k(q+ 1)+ δ − 1)/(q−
√
q− c + k− 2) points in B with degree at least q−

√
q− c + k− 2, which

s at most 2(
√
q + c + 2). ■

The next lemma summarizes some important properties of B.

Lemma 3.5.

(i) Every line intersects B in at most
√
q + c + 2 points or there is a line contained in B.

(ii) The intersection of any two lines, each intersecting B in more than
√
q+c+2
2 points, lies in B.
3
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Proof. Let ℓ be a line and let P be a point of B \ ℓ. Then the degree of P is at least |ℓ ∩ B|. If
here is a point P ̸∈ ℓ, which has degree at most

√
q + c + 2, then |B ∩ ℓ| ≤

√
q + c + 2. If each

̸∈ ℓ has large degree, then by Lemma 3.4 there are at most 2(
√
q + c + 2) such points, hence

|B ∩ ℓ| ≥ |B| − 2(
√
q + c + 2). Now assume that ℓ is a line and |ℓ ∩ B| ≥ |B| − 2(

√
q + c + 2). We

show that ℓ ⊆ B. Suppose to the contrary that R ∈ ℓ \ B. Then the number of 0-secants through R
is at least q − 2(

√
q + c + 2). By Lemma 3.2, through such a point there are at least q −

√
q − c

0-secants, but this contradicts the assumption of Theorem 3.1; hence we proved (i).
To prove (ii), assume to the contrary that through a point P ̸∈ B there are two lines both

intersecting B in more than
√
q+c+2
2 points. Then the number of skew lines through P is more than

+1−2− (|B|− (
√
q+c+2)), that contradicts Lemma 3.2 and the assumption of Theorem 3.1. ■

From now on we assume that there is no line contained in B.

emma 3.6. Let P be a point in B with degree at most
√
q + c + 2. Then there are more than

0.8(
√
q + c + 2) lines through P intersecting B in more than

√
q+c+2
2 points.

Proof. Assume to the contrary that there is a point P in B not satisfying the lemma. Using
Lemma 3.5 (i) and counting the points of B on the lines through P , we get that B has at most
0.8(

√
q + c + 2)(

√
q + c + 2) + (1 − 0.8)(

√
q + c + 2)

√
q+c+2
2 points (here P was counted degree of

P times), which is a contradiction since (0.8 +
1−0.8

2 )(
√
q + c + 2)2 < q ≤ q + k. ■

Two lines meeting B in more than
√
q+c+2
2 points intersect in a point of B, hence if we take these

ines through two points of B (and disregard the line joining the two points) then we get a relatively
large ‘‘grid‘‘ R′ inside B. Lemma 3.10 (2) will show that such grids can be embedded in a somewhat
larger subgroup grid R, which has transitive automorphism group. Finally, we will show that there
can be only few points that are not in the intersection of B and the subgroup grid and so it will
ollow that the subgroup grid is relatively large and it is contained in B. For the construction of the
ubgroup grid, Kneser’s theorem is needed.

esult 3.7 (Kneser [8]). Let (G, +) be an Abelian group, ∅ ̸= A, B be finite subsets of G. Then there is a
ubgroup H of G such that A + B = A + B + H and |A + B| ≥ |A + H| + |B + H| − |H|. ■

orollary 3.8. Let M and N be subsets of the Abelian group (G, +). Assume that |M| = |N| and
hat |M + N| < 3

2 |M|. Then there exists a subgroup H, so that M + N = M + N + H and both M
nd N are contained in a coset of the subgroup H (not necessarily in the same coset of H), that is
M + H| = |N + H| = |H|.

A similar result can be found in [12].

roof. Kneser’s theorem assures that there is a subgroup H of G, so that M + N = M + N + H and
|M + H| + |N + H| − |H| ≤ |M + N|. As |M| ≤ |M + H| and |N| ≤ |N + H|, the above inequality
and the assumption that 4

3 |M + N| < 2|M| imply that 1
3 |M + N| < |H|. Since M + N is the union

of some cosets of H , the above inequality implies that M + N is either one coset of H or the union
of two cosets. The first case immediately yields the corollary. Now assume to the contrary that
|M + N| = 2|H|. The condition |M + N| < 3

2 |M| (and |M + N| = 2|H|) implies, |M| = |N| > |H|.
ence |M + H| ≥ 2|H| and |N + H| ≥ 2|H|, so Kneser’s theorem gives that |M + N| ≥ 3|H|; a
ontradiction. ■

emma 3.9. There exist three collinear points in B such that each of them has degree at most
√
q+c+2.

oints with such degree will be called points with small degree.

roof. By Lemma 3.6, through a point with small degree, there are more than 0.8(
√
q + c + 2)

elatively long lines (these are lines intersecting B in more than (
√
q + c + 2)/2 points) and by

Lemma 3.4 there are only few points in total with large degree. Hence we can easily find a line
4
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intersecting B in more than
√
q+c+2
2 points and containing almost only small degree points. More

recisely, through a point T with small degree there pass more than 0.8(
√
q+ c +2) relatively long

ines and in total there are at most 2(
√
q + c + 2) points with large degree, hence by the pigeon

ole principle there is a line through T containing at most 2 points with large degree. ■

Actually, the proof above gives that the three points lie on a relatively long line. But we will not
use this fact in the next lemma.

Lemma 3.10. Let P0, P1 and P2 be three collinear points from B, so that each of them has degree at
most

√
q + c + 2. Let us choose our coordinate system so that these three points are (0, 1, 0), (0, 0, 1)

and (0, 1, −1) and let ℓ be the line containing them. Consider the lines through P0 and P1 intersecting
B in more than (

√
q + c + 2)/2 points. These two sets of lines determine the grid R′. Then

(1) R′
⊆ B.

(2) R′ is contained in a subgroup grid R = {(x, y) : x ∈ a + H, y ∈ b + H}, where H is a subgroup of
the additive group of GF(q) and a, b ∈ GF(q).

(3) R′ contains at least (⌈0.8(
√
q + c + 2)⌉ − 1)2 points of R ∩ B.

(4) The subgroup grid R has a transitive automorphism group.

Proof. (1) follows from Lemma 3.5. (2): The lines through P0 intersecting B in more than (
√
q +

c + 2)/2 points have homogeneous coordinates [c∗, 0, 1], c ∈ C∗. Similarly, the lines through P1
ntersecting B in more than (

√
q+ c +2)/2 points have homogeneous coordinates [d∗, 1, 0], d ∈ D∗.

The lines through P2 intersecting B in at least 2 points have homogeneous coordinates [e, 1, 1],
e ∈ E. Note that |C∗

|, |D∗
| ≥ 0.8(

√
q + c + 2) − 1 (the line ℓ might be a relatively long one so

comes the −1) and |E| ≤
√
q + c + 2. Observe also, that the lines [c∗, 0, 1], [d∗, 1, 0] and [e, 1, 1]

are concurrent if and only if c∗
+ d∗

= e. So if we take any c∗ and d∗, then the lines [c∗, 0, 1] and
[d∗, 1, 0] meet in a point Q of B. So if the line QP2 has coordinates [e, 1, 1], then e is in E and so
C∗

+D∗
⊆ E. Now let G be the additive group of GF(q) and assume that |C∗

| ≥ |D∗
| and so disregard

some lines from C∗ in order to obtain the set C with |C | = |D∗
| ≥ 0.8(

√
q + c + 2) − 1, hence we

can apply the corollary of Kneser’s theorem (Corollary 3.8) to deduce that there exists a subgroup
H of the additive group of GF(q), so that C and D are contained in a coset of H . So |E| = |H| and
ence |H| ≤

√
q + c + 2.

(3) follows from Lemma 3.6 (and from (2)). The automorphism group that acts regularly on R is
just the group {αh,k : (x, y) ↦→ (h + x, k + y) : h, k ∈ H}, which proves (4). ■

Proof of Theorem 3.1. Finally, we will show that the subgroup grid R of Lemma 3.10 is a Baer
ubplane minus one line, which is contained in B and consequently the entire Baer subplane must
e contained in B.
Note that the size of the subgroup H defining R should divide q and |H| ≤

√
q + c + 2 implying

|H| ≤
√
q. On the other hand, by Lemma 3.10, |R′

| is at least (⌈0.8(
√
q+ c + 2)⌉− 1)2 > q/2, which

hows that |H| =
√
q.

Let P0, P1, P2 be three collinear points having small degree (see Lemma 3.9). Construct the grid
R′ and the subgroup grid R containing it as in Lemma 3.10. First we will show that there are few
points in B\R and not on the line ℓ containing P0, P1, P2. Let P be a point in B\ (R ∪ ℓ). Applying the
automorphisms {αh,k : h, k ∈ H} of R (see the proof of Lemma 3.10), shows that the orbit of P under
he automorphism group of R has size at least |R|. Hence there must be a point Q in the orbit of P
hat is not in B, otherwise B would have at least |R|+|R ∩ B| ≥ 2|R ∩ B| > 2(⌈0.8(

√
q+c+2)⌉−1)2 ≥

(⌈0.8(
√
q + 1)⌉ − 1)2 points, that is larger than q + k. It follows from Lemma 3.2, that through Q

here are at least q −
√
q + k − c lines intersecting B. Let x denote the number of lines through

which intersect B in at least 2 points. Note that x ≤ |B| − (q −
√
q + k − c). Hence the total

umber of points on the lines passing through Q and having more than one point of B is at most
+|B|−(q−

√
q+k−c). This shows that there are at least |B ∩ R|−(x+|B|−(q−

√
q+k−c)) 1-secants

of B∩ R through Q . So the total number of lines through Q intersecting B∩ R in at least one point is at
east |B ∩ R|−(x+|B|−(q−

√
q+k−c))+x, which is |B ∩ R|−(|B|−(q−

√
q+k−c)) = |B ∩ R|−(

√
q+c).

his means that also through P there must be at least this many lines intersecting R. Hence at least
5
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(|B ∩ R| − (
√
q + c)) − (|R| − |B ∩ R|) = 2|B ∩ R| − q − (

√
q + c) lines through P contain a point of

∩ R. So the degree of P is at least 2|B ∩ R|−q− (
√
q+ c). Using |B ∩ R| > (⌈0.8(

√
q+ c +2)⌉−1)2,

t can be easily checked that it is larger than
√
q+ c + 2 when q ≥ 1600. So, by Lemma 3.3, it must

e at least q−
√
q− c + k. By Lemma 3.4, there are at most 2(

√
q+ c + 2) such points, which gives

|B \ R| ≤ 2(
√
q + c + 2).

For simplicity, let ℓ be the line at infinity and consider the directions determined by the grid
(the points of ℓ that lie on lines joining two points of the grid R). Recall that, by Lemma 3.10,
= {(x, y) : x ∈ a + H, y ∈ b + H}.
If P ′, P ′′

∈ R and τ is a translation by the vector (h, k) then τ (P ′), τ (P ′′) ∈ R and they determine
he same direction as P ′, P ′′. This shows that the lines of one parallel class are either 0-secants
o R or they intersect R in the same number of points. So through a determined direction (hence
n each line we see at least 2 points) there can be at most q/2 lines intersecting R. If such a
etermined infinite point was not in B, then the number of 0-secants of B through it would be
t least q/2− |B \ R| ≤ q/2− 2(

√
q+ c + 2). By Lemma 3.2, through such a point there would pass

t least q−
√
q−c 0-secants of B, but as there are no such points by the assumption of Theorem 3.1,

etermined directions should be in B. Hence R determines at most
√
q+ c + 2 directions. It is well-

nown and also easy to prove (see beginning of [1, Section 3] or [9, Section 2.1]) that R together with
he directions determined by R forms a blocking set. By Sziklai [13, Corollary 5.1], R together with
ts directions determined is either a Baer subplane or a line or R determines at least 1+q1/3⌈ q2/3+1

q1/3+1
⌉

irections. It is easy to check that
√
q+ c +2 < 1+q1/3⌈ q2/3+1

q1/3+1
⌉ and as R is a

√
q×

√
q grid, it must

be an affine Baer subplane.
If there is a point in R\B, then there are

√
q+1 lines through it which intersect R. We have seen

hat |B \ R| ≤ 2(
√
q+c+2), so through a point of R\B there would pass at least q−

√
q−2(

√
q+c+2)

0-secants of B. A point with so many 0-secants does not exist by Lemma 3.2. So together with the
points of B on ℓ, we see that B contains a Baer subplane. ■

Instead of the result by Sziklai we could have used some results of Rédei [7], but the newer
results are sharper and so they are easier to use.

Theorem 3.11. Let B be a point set in PG(2, q), 1600 ≤ q, with cardinality q + k, 0 ≤ k ≤ 0.6
√
q.

ssume that the number, δ of skew lines of B is less than (q −
√
q − c)(

√
q − k + c + 1), where

0 ≤ c ≤ 0.05
√
q − 2. Then B contains more than q + 1 − (

√
q − k + c + 1) points from a line or more

than q +
√
q + 1 − (

√
q − k + c + 1) points from a Baer subplane.

Proof. Lemma 3.2 implies that the number of skew lines through a point not in B is either at most
q− k+ c + 1 or at least q−

√
q− c. Let A be the set of points with at least q−

√
q− c skew lines

through it. Let δ(k) := (q−
√
q− c)(

√
q− k+ c + 1). Let us add a point P of A to B. Then B ∪ { P} has

+ k′ points, where k′
= k + 1 and the number of skew lines is at most δ(k′). So again Lemma 3.2

mplies that the number of skew lines through a point not in B is either at most
√
q− k′

+ c + 1 or
t least q−

√
q− c. Thus we can continue adding the points of A one by one to B. When k′ reaches

.6
√
q, denote the resulting set by B′. Then by Theorem 2.2, this point set can be obtained from a

blocking set by deleting at most δ(k′)
2q+1−|B′|

+
1
2 <

δ(k′)
2q+1−(q+0.6

√
q+1) +

1
2 < 0.5

√
q points. Note that the

ize of this blocking set is less than q+1+ q1/3⌈ q2/3+1
q1/3+1

⌉, when q > 1600; hence by Sziklai Corollary
.1 [13], each line intersects it in 1 mod

√
q points and so by Bruen [5] this blocking set is either

Baer subplane or a line. If k′ does not reach 0.6
√
q at all, then applying Theorem 3.1 for the set

B ∪ A, we get that it contains a line or a Baer subplane. Hence in both cases there is a set A′, such
that B ∪ A′ is either a Baer subplane or a line. Note that if we delete

√
q − k + x + 1 points from

a Baer subplane and add x points outside of this Baer subplane, then the number of skew lines is
at least (q −

√
q − x)(

√
q − k + x + 1). Hence x < c. Similarly, if we delete x points from a line

and add k − x + 1 points, then the number of skew lines will be at least (q − k + 1 − x)x. Hence
x <

√
q − k + c + 1. ■
6
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Remark 3.12. We may extend our main result to negative k, that is for sets with size less than q.
To prove Lemma 3.6 we need that

(0.8 +
1 − 0.8

2
)(
√
q + c + 2)2 < q + k (3)

So for example if c < 0.02
√
q − 2 and −0.06q < k, then the previous inequality remains true.

s c has to be at least 0, this means that q > 10000.
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