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ABSTRACT 

USING OBJECT DETECTION TO NAVIGATE A GAME PLAYFIELD 

 

 

Peter Hyde-Smith 

 

Marquette University, 2023 

 

 

Perhaps the crown jewel of AI is the self-navigating agent. To take many sources 

of data as input and use it to traverse complex and varied areas while mitigating risk and 

damage to the vehicle that is being controlled, visual object detection is a key part of the 

overall suite of this technology. While much efforts are being put towards real-world 

applications, for example self-driving cars, healthcare related issues and automated 

manufacturing, we apply object detection in a different way; the automation of movement 

across a video game play field. We take the TensorFlow Object Detection API and use it 

to craft an avoidance system in conjunction with a Java front end that allows fire and 

forget movement to augment normal play. 
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I. INTRODUCTION 

A. Background Information 

 Automation in game-play is not a new thing. There are many programs and 

features out there that allow you to get ahead in the game with little to no user input.  

In many cases, this involves having to reverse engineer or gain direct access to the 

game application memory, which in many cases can be detected and then stopped by a 

game client and server. Overall, it is a risky process because in many cases (especially in 

multiplayer games) it violates the terms of service and can result in account bans. In some 

cases, however, the more famous examples like DeepMind playing StarCraft, there is a 

sanctioned API that is open to be interacted with. These are clearly more research 

focused and are posed as problems to be solved rather than any actual practical use. In 

either case, whether intentional or not, these bots look at the game state and react 

accordingly.  

 A less sophisticated way this can be achieved is by capturing via auto-key 

software, preset routes and commands for different tasks. This does not necessarily 

interact with the internal state of the game application, but can still be detected based on 

behaviors. 

 We propose a third alternative applied particularly to short and medium distance 

character movement, taking a balance between direct game-state interaction and overt 

scripting. Using object detection, we can capture segments of the game screen in a 

custom overlay and feed the images into models that can detect objects and use that 

information to programmatically assist the user with the inputs for the game. Tools like 

these are already being incorporated as assistive features, like Forza’s driving assistance 
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or are in the process of being developed and will be released in the near future, where 

companies like Sony create user-customized AI profiles that can play games. Game-

agnostic autonomous control is not only convenient but also can powerful tool for 

accessibility of games that do not have such built-in features. 

B. Goals 

• First, we create the game-agnostic interface that can glean information from the 

game world similar to that of a player, using TensorFlow Object Detection API 

and transfer learning. This is object detection in real-time on a novel data set from 

the game, Star Wars: The Old Republic (SWTOR) [1]. 

• Second, we improve the efficacy of the model used by the interface to process 

information by applying techniques from generative adversarial networks (GAN) 

to generate a more robust training data set. 

• Finally, we program an avoidance algorithm to take into account the information 

capture and move to avoid objects that are in the movement path allowing for a 

fire-and-forget movement automation. 
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II. RELATED WORK 

A. Machine Learning and Video Games 

In a video segment with Ars Technica [2], the Creative Director of the Forza 

Franchise Dan Greenawalt speaks about the evolution of the game's drivatars. Forza is a 

game franchise centered around automobile racing, and a key aspect to it is having other 

non-player characters inhabiting the roads. From the inception of applying machine 

learning techniques in 2005, to its current iteration in the most recently released game, 

Forza 5 Horizons, the differences and sophistication have come a long way. The drivatars 

are an example of using machine learning to solve game-related problems. Greenawalt 

goes on to explain, the data from that governed the behavior of these non-player 

characters (NPCs) in the early games was local and consisted of maybe, a hundred laps 

generated form the player itself. However, with the newest online game, there were 

millions of laps worth of data generated in the first week of release from the many 

players. This data, which consisted of things like car position, track, speed and other 

analytics like that, helped the developers of the game classify track portions to allow the 

Fig. 1. Drivatars in Forza Horizon 5. 



4 
 

creation of behavior profiles that these drivatars could use. As seen in Fig.1, the player’s 

car in the center and the drivatars around it. 

 The company DeepMind, which is a subsidiary of Alphabet inc. has achieved two 

separate instances of game automation using Machine learning. The first was from the 

work of David Silver et. al relating to the problem of chess [3]. Chess, a problem that has 

been considered since the inception of the field of computer science, is a good example of 

creating an automated player. Early solutions were hardware based, these gave way to 

algorithms and finally with the late 1990's, the shift towards machine learning emerged. 

What is achieved in [3] is the adaptation of an earlier program, AlphaGo, which was 

created to solve the game of Go. The training techniques were generalized and 

formulated into a new program, named AlphaZero, which was then given the rules of 

chess. Within twenty-four hours, the computer player had surpassed human skill. Because 

of the generalization, AlphaZero was also able to play the game of Shogi as well. 

 Similarly, in 2017 a framework was created by Vinyals et. al which combined 

computer vision and reinforcement learning [4]. The framework included an overlay that 

could extract information from the StarCraft II, a real-time strategy game known for its 

competitive ESports space. Top players are usually measured by things such as clicks per 

second. With the overlay and the reinforcement learning, the agents were able to achieve 

limited success at a novice level. While this is good for a prototype and proof of concept, 

later in 2019 Vinyals et. al returned with the breakthrough achievement of their AI, 

named AlphaStar, being able to function at the Grandmaster ranking [5]. 

 David Papp writes about his experience using machine learning to advance and 

automate tasks within the multiplayer roleplaying game Runescape [6]. The game, known 
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for its extensive skill system as well as other things like combat and player economy, 

requires much time investment. Papp uses Tensorflow and OpenCV in conjunction with 

the Java programming to create an interface that can control a character and direct it to 

interact with 'harvestable nodes' on screen. This is completely separate from the in-game 

engine, in contrast with something like the aforementioned Forza Drivatars. Information 

is only gained through object detection and then acted upon. 

 Sony takes all of these, one step further and has applied for a patent [7] to create a 

'default game profile' based on information gained from monitoring a player's action 

when it plays. It can then control and play the game for the player.  

 

 

Fig. 2. Patent of Sony's user profile to play games [7]. 
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What all these examples have in common are the automation of behaviors of one or 

many aspects of a game's 'game-loop' - that is the small repeatable tasks that are a part of 

the greater experience of the game. While some of these 'loops' may have a certain allure 

when a player is new to the game, over time those can become less enjoyable, while still 

requiring a significant investment of time. Those enjoyable experiences turn towards a 

grind and run the risk of player burnout. As games are primarily meant to be subjectively 

'fun' it is understandable that even the games industry itself is moving towards these 

supplementary technologies that can enhance the worth of the game to the user. 

B. Object Detection 

Generally, object detectors are an extension of CNNs used for classification 

problems. As such, object detectors are typically built upon a backbone network of an 

image classifier. In the case of transfer learning, the weights from those classifier 

backbones are then used as a starting point for training with whatever object detection 

architecture is used. Where they differ however, while classifiers tend to take the whole 

image into account and identify it, object detectors must achieve localization of the 

classified object and then do it for multiple classes. While there are several different 

notable architectures, in essence each breaks the target images into much smaller sub-

images and attempts to ‘classify’ each of these, then remembering where the position 

was. The most notable architectures in use today are the Faster R-CNN, Single-Stage 

Detectors (SSDs) and the You Only Look Once (YOLO) framework. Each has their own 

strengths and drawbacks, which can then be balanced with trade-offs based on the 

problem domain. Some tend to have better inference times with the tradeoff being a 

lower mean average precision (mAP), while others are slower but have a higher mAP 
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overall. SSDs tend to do well with larger objects, but have a harder time detecting smaller 

objects, this is offset by having some of the fastest inference times however [8]. 

C. Mean Average Precision (mAP) as a Metric for Model Efficacy 

 Mean average precision is the evaluation metric used by object detection to 

determine the efficacy of a model. The basics of it derive from using true positives, false 

negatives and false positives. True negatives are not used as they do not apply to the 

problem. Note, when computing if something is a true positive, the intersection over 

union (IoU) between the ground truth box and the predicted box is used to determine 

what qualifies. Typically, this threshold is set at .5 for a prediction to be counted as a true 

positive. That means if greater than or equal to half the area of the prediction bounding 

box is overlapping with half of the area of the ground truth box it will count as a true 

positive. 

To compute the mean average precision, you must first compute precision and 

recall. Precision is computed by taking the number of true positives and then dividing 

them by the sum of true Positives and false positives. False positives are in object 

detection are defined as the presence of objects being predicted where there is no ground 

truth specified. Recall is computed similarly to Precision, but instead of false positives, 

there are false negatives. False negatives in object detection are defined as the presence 

of in a location specified by ground truth annotations that have not been predicted as 

objects by the model. That is, the model does not see an annotated object. 

 To calculate average precision, you need to plot the precision-recall curve which 

is done by taking the predictions on a body of evaluations ordered by confidence and 
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calculating the change in recall and precision. This gives a curve. After this precision-

recall curve is graphed, you can then calculate the area under the curve. In the COCO 

challenge, this is taken one step further, using a varying IoU threshold each class’s AP is 

predicted. From there, over all classes the mean average is taken. In particular the COCO 

mAP uses the range from 0.05 to 0.95. The .5mAP and .75mAP use .5 and .75 IoU 

thresholds respectively, which is why the .5 mAP usually is the highest [9]. 

D. Important Datasets in Object Detection 

 There are two primary datasets that are used as a basis for training the network 

backbones of the object detectors. The MS COCO dataset [9] and the VOC dataset [10] 

and the. Each of these involves a large body of images that are annotated and used as 

challenge benchmarks for state-of-the-art detectors. Published in 2015 in a paper entitled 

Common Objects in Context, the MSCOCO data set is used both in the training object 

detection portion of the pre-trained models in the TensorFlow object detection API as 

well as in many of the detection architecture papers as an alternative to the other 

competition datasets. The COCO dataset contains ninety classes and over a million 

images.  The PASCAL VOC dataset [10] is an earlier counterpart to the COCO dataset, 

published originally in 2005 and was used as a basis for a challenge in object detection 

research. Starting in 2007 the dataset had 20 classes and 9,000 images which increased 

over time until 2012 where it had 11,530 images and 27,00 annotations. Examples of 

classes include person, bird, bicycle and chair.  
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E. Single Shot Multibox Detector 

 The original implementation of the Single Shot Multibox Detector (SSD) was 

created to address problems that were involved with contemporary object detection 

architectures. At that time, the Faster R-CNN architecture had been released, citing a 5 

frames per second (FPS) inference time while boasting state-of-the art model accuracy 

[11]. However, identifying the bottle neck of having to train both a feature box proposal 

network and the pixel resampling that came along with it (in addition to the classification 

portion)  

 Liu et al. in [12] set out to achieve real-time speeds while also maintaining a 

comparable accuracy. The original implementation of the Single Shot Multibox Detector 

uses the VGG-16 classification network as a backbone. It is a convolutional feed forward 

network, but the classification layers are removed and replaced with the object detection 

features. The main feature that sets their SSD architecture apart was the introduction of a 

fixed number default boxes that are used in conjunction with layers of feature mAPs over 

different resolutions. At each resolution layer, bounding boxes and their offsets are 

calculated and confidence scores are generated. This allows multiple potential high-

quality detection. During training, anything with a Jaccard index of .5 or higher being 

labeled as a prediction with the ground truth. With these proposals, it can then choose the 

best fit during the last layers of the detection model in the suppression layers. One thing 

to note, boxes in the smaller resolution layers will not predict objects that are at a larger 

scale, thus preventing many smaller 'positives' inside a larger object.   

 The original implementation uses the VOC mAP guidelines with results of .79 

with 52 fps. This differs with the newer coco metrics in that it does not take into 
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consideration the average precision taken over multiple IoUs. Therefore, it is more 

comparable to the mAP at 50% score. 

 Further improvements were made on the SSD Architecture by Lin et. al involving 

their modifications to the cross-entropy loss, called Focal Loss, that deals with class 

imbalance between the foreground and background. Furthermore, they used various 

ResNet backbone networks with a FPN head [13]. Adopting the improvements from [13] 

Huang et al. brought the configurations over to the Tensorflow API making them 

available for transfer learning, of which the model variant we use is one [8]. 

F. EfficientDet-D2 

The EfficientNet-B0 backbone [14] was developed by using Neural Architecture Search 

which optimizes accuracy and FLOPS. This is then used as a backbone (pre-trained on 

ImageNet) for EfficentDet-D2 which is single stage detector that uses a bi-directional 

feature pyramid network (BiFPN) (connected feature network layers that are used to 

detect objects at different scales and are bi-directional) [15], is smaller, computationally 

cheaper and scales well [16]. Sawada et al. use the EfficentDet architecture on a custom 

data set of images taken from the mirror angle of cars. Their baseline implementation 

achieves an mAP of 47.6% which is then improved upon with their own modifications to 

achieve an mAP at 50% IoU of 52.2% [17]. Further object detection work was done by 

Srikanth et. al in an attempt to identify objects with the inclusion of hand to assist the 

visually impaired. While their results have a decrease of the mAP to 75.85%, they 

postulate could be due to the small number of images (500) they use in their data set [18]. 

A final example of EfficientDet in action comes from Li et. al with the detection of 

watercraft. Using different implementations of EfficientDet (-D0, -D3, D4) they achieved 
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mAPs of 65%, 76.4% and 87.5% and FPS between 21 and 42. Their tests with YOLO 

were comparable, but EfficientDet's accuracy was better overall [19]. 

G. Faster R-CNN 

Faster R-CNN is an evolution of the earlier Fast R-CNN architecture. It too uses a 

classification backbone, but differs from the SSD in that it is a two-stage detector. Instead 

of default boxes, there is a region proposal network that generates a fixed number of 

boxes. After this, there is a second stage that goes through every proposed region and 

classifies it [11].  Faster R-CNN are generally more accurate than their SSD counterparts 

at the cost of some speed, though advances have greatly increased their inference time 

[20]. 

H. YOLO Framework 

The Yolo framework is worth mentioning, as it is the state-of-the-art architecture that 

is constantly pushing the field forward. As of 2022 it boasts as the fastest architecture for 

object detection, using what it calls a 'bag of freebies' that is constantly being improved. 

Not only does it have competitive and in some cases, the top mAP scores of object 

detectors, including an mAP of 56.8% with 30 fps or higher on a V100 GPU [21]. It also 

has the advantage of not having the drawbacks that the SSDs run into, namely small 

object detection. Unfortunately for the scope of this project, the framework has limited 

support for integration with Java where the TensorFlow framework has both the object 

detection API and a full implementation in Java to make use of that API. 
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I. GAN 

While the dataset we use is currently around 7,100 images with many more 

annotations across five classes, it would be useful to increase the number of images. 

However, to create more images, we turn to GAN which uses a generative and 

discriminant network that feed into each other until the generative network can produce 

samples that the discriminator cannot distinguish from the original data set [22]. 

 These techniques have been taken further, both to create synthetic data sets and to 

augment and retrain classifiers with improved results. Example data sets include 

dermatology [23], microbial [24], tomato plant diseases [25] and traffic [26] have all 

shown that augmenting the original data set with a certain amount of synthetic or GAN 

transformed images shows an improvement on the baseline. Some of these greatly 

benefited from the synthetic additions because of class imbalances [23]. 

 Another way GAN has been used, is to optimize existing synthetic images to with 

features from originals resulting in 'enhanced' synthetic images which then can be used to 

improve the results of models [27].   

 In some cases, the usefulness goes even beyond just improvement, in the case 

where medical laws prohibit or limit the use of patient data, synthetic data can be 

generated to train models, mitigating ethical concerns [28]. 

 As the previous examples suggest, the application of GAN can be beneficial 

across a wide variety of data sets. We feel that applying GAN to our own data set will 

help generate a more diverse examples, while reducing some of the workload needed to 

annotate them. 
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III. METHODOLOGY 

A. Tensorflow Object Detection API 

 The TensorFlow object detection API [8] is the backbone of this project. It 

provides a wide range of pre-trained detection models that are a convenient starting point 

at which we can continue training via transfer learning with our own dataset. For use with 

our programs, we have chosen to work with the SSD ResNet152 V1 FPN 640x640 and 

the SSD MobileNet V2 FPN 640x640. These both take an image with a height of 640 

pixels as an input and output detection boxes. 

B. JavaFX 

JavaFX is an application framework used to create GUI-based Java applications. It is 

a partial successor to Swing, though due to evolving demands within the industry it has 

not fully superseded it. Instead, it exists as robust alternative to creating desktop and web 

applications. JavaFX programs generally consist of the application, a stage, scene and 

then all child objects. In some cases, it is possible to implement everything via code, and 

some of the simpler programs do, however there is also the ability to use FXML, which is 

a companion format that can be used to define layouts that are then loaded into the 

application.  

 Typically, these FXML documents are managed by a controller class which is 

where much of the dynamic nature of the platform exists. Both in-code and FXML have 

their strengths. Defining things strictly with code is useful in situations where a more 

dynamic approach to layouts is needed, while FXML is useful for defining static, well 

organized and easily readable layouts that don’t need to change as much. Regardless, 
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JavaFX brings modern GUI features to the Java ecosystem and allows for example, the 

Java TensorFlow API to be showcased in the form of displaying images and inferences. 

C. Java Tensorflow API 

The TensorFlow API has an implementation in Java. While it is experimental, it still 

functions as a bridge between the trained outputs of python TensorFlow APIs and the 

Java language. This is particularly useful in situations where access to Java’s robust 

environment is needed to perform certain tasks. It especially useful where primary 

language familiarity and proficiency is with Java. In essence, the saved model bundles 

that are the results of training with the Tensorflow Object Detection API can be exported 

and then loaded into a Java program where it can then be interacted with. 

D. Hutta Dataset 

The data set we used has been generated from the game, Star Wars: The Old Republic 

[1] on the planet Hutta (a starting playfield in the game). The images have been taken to 

match the model inputs. There are five object classes, which were chosen to be the most 

common and contained that a character in the playfield would run into. These classes are: 

log, junk, stone, stump and tree. There were two rounds of collecting pictures for this 

data set, each with their own process of capturing objects for training. To capture images 

for the data set, we have written a command line Java program that uses the AWT Robot 

library to fire off a series of repeated screen captures. The program is configurable with 

the number of images to take, the time between each image capture and the output file 

names. To annotate images, we have used the VGG image annotator tool [29]. 
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 The first collection involved finding examples of objects and using a circling 

pattern at close, medium and far distances. This created a varied data set, both looking at 

the object as well as a changing backdrop. There were a total of 1,694 images collected in 

this manner. One drawback to this, is most of the object annotations ended up being in 

the center of the image, with less variation along the y-axis.  

 As such, in an attempt to remedy this, an alternate way of collecting the images 

was conducted. An object was selected and the capturing point of view was moved in a 

striping pattern along the y-axis, essentially dividing the image into columns and moving 

the image along these. 5,500 images were captured in this way. Images where created 

that had objects located in a more evenly distributed manner in the image, versus the mid-

horizon plane of the previous method. A drawback to this was less variance of the 

background space within the image, but the hope was that combining both into a single 

data set to train on, would provide good coverage for both.  

log, 3952, 23%

junk, 3754, 22%

stone, 2370, 14%

stump, 3898, 
22%

tree, 3227, 19%

Class Breakdown

log

junk

stone

stump

tree

Fig. 3. Breakdown of the unmodified Hutta Dataset class annotations. 
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 Both methods usually contained one larger object which would have been the 

subject of the capture, while having many smaller objects in the background. While not 

every object in the images is annotated, the attempt was made to capture most of those 

that would be considered potential objects to avoid. Overall, the dataset consists of a total 

of 7,194 images and 17,202 annotations. Per Figure 3. The log, junk and stump classes 

are generally balanced, with the tree class having a slightly lower number of annotations. 

The stone class however does lag behind by about 8-9%, effectively around 1,500 less 

annotations. To address this class imbalance this is where we apply the use of conditional 

GAN to increase the frequency of that object class within the dataset. For model 

evaluation we have used separately generated dataset consisting of 100 images and 635 

annotations. 
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Fig. 4. An example of the log class 
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Fig. 5. An example of the stone class 
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Fig. 6. An example of the junk class 
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Fig. 7. An example of the stump class 

  



21 
 

 

Fig. 8. An example of the tree class. 
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E. Conditional GAN and the Creation of Synthetic Data 

We used the CGAN implementation at [30] modified to take labels into 

consideration. Our generator architecture consisted of a latent noise dimension input of 

128, which was up sampled over the course of several layers to a 256x256 output. 

Radford, Metz and Chintala layout several architecture best practices which [30] 

incorporates in its implementation. Among the best practices, are the use of 

Conv2DTranspose, Batch Normalization and Leaky ReLU layers in both the 

Discriminator and Generator. A dropout with 0.5 in the discriminator and we use the 

Adam optimizer with a learning rate of 0.0002 and a beta 1 value of 0.5 [31].  

The output of an image with 256 height and width was chosen, to create a confined 

object that would be scalable to within the medium and large area ranges of the COCO 

eval metrics. The data used to create train the GAN is extracted from the main dataset. 

Annotations that are of medium size or larger according to the COCO eval metrics are 

used to copy the sub-image onto a square based on the longest side. The background is 

set to a random color sampled from the extracted image. These then form the basis for 

our GAN training dataset, which contains around 6000 of these thumbnails. Since the 

class imbalance we are primarily trying to fix involves the stone class, we generate a 

range of images and chose by hand which ones that resemble the subject matter. After 

this we annotate the image and extract it using python and then modify the existing 

dataset by placing these extracted object images onto the existing 640x640 in a random 

place near the horizon band they usually occur.  

With this modification we then take note of where each object is placed and bring the 

number of annotations up in line with the other class distribution. With that we then are 
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able to measure class AP and check to see if there is an improvement in training based on 

the additional synthetic annotations. 
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Fig. 9. Generator architecture. 
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Fig. 10. Discriminator architecture. 
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F. VSI – Visual Simulation Interface 

The AWT Robot class is a part of the Java AWT library [32] which is a part of the 

swift framework. The swift framework was one of Java's answers to creating GUI-based 

desktop applications. This was later supposed to be deprecated and turned obsolete by the 

introduction of the JavaFX library, but it has largely survived and, as in our case, can 

actually be used in tandem with its later counterpart. 

The Robot class can be used to control other desktop applications and was 

originally intended to be used as an automated testing tool for the AWT apps. However, 

it can be applied further in a way that allows a Java program to automate other tasks. We 

have used it in two ways primarily, first to capture images and via the screenshot function 

and secondly, to provide a way to programmatically input keystrokes, mouse movement 

and mouse clicks to other programs. This was functionality is exemplified in David 

Papp's automated program for mining in Runescape. We have been inspired by it and 

adapted it's use to be in line with our MMORPG control set.  

The movement functionality is activated with the ctrl+M hotkey which calls the 

toggleMovement() method. This method toggles a continuous movement mode that drive 

the in-game character forward using the W key as input. Specifically, the Robot object 

sends a key-press down signal, then sends a delay signal for a set period of time, in this 

case we have chosen 100ms, and finally sends a subsequent key-press up signal. This is 

used in conjunction with the AnimationTimer class from the JavaFX library, which sends 

a pulse continuously by calling it's handle() method.  
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The handle() method is called by the JavaFX application framework when the 

AnimationTimer class is given the start(). This handle() method is actually defined within 

the aforementioned toggleMovement() the method which is where the AnimationTimer is 

instantiated if it does not already exist. To clarify, the toggleMovement() method will call 

start() or stop() on the Animation timer based on the moving variable which is defined in 

the MainController class (which is where this logic resides in).  

The inference and capture functionality are initiated in the same way, by using the 

ctrl+E hotkey. This calls the toggleContinuous() method which repeatedly draws a screen 

capture (BufferedImage) on a canvas object in the JavaFX scene. Depending on the 

inference interval setting, which defaults to 1 per second, the toggleContinuous() method 

will periodically call the captureSingleImage() method with a true flag. This signals the 

program to call not only take a screen shot and render it, but also to send the image to the 

Model class which handles the actual interaction with the saved model bundle.  

The Model class opens this saved model (usually the first call takes around six or 

seven seconds, with subsequent calls being shorter) and allows it to serve its default 

functionality, which is to take an input image and return inferences in the form of tensors 

from which things like confidence scores, bounding boxes, inference classes etc. can be 

extracted. These are then wrapped in an Inference object which is then sent back to the 

MainController which calls a pruning function on it.  

The pruning function sets the confidence threshold. All boxes with a confidence 

below the threshold are discarded. These are then rendered on top of the buffered image 

for each inference call, giving a visual representation of what the model is detecting. 

Though the confidence threshold tends to be an arbitrary setting, generally lower 
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thresholds yield more boxes per object while higher thresholds yield less objects per 

object. The strictest settings tend to miss detections, so while it is configurable a setting 

in the midpoint between the two extremes usually produces good enough inferences to 

work with. 

Finally, the algorithm to avoid objects relies on a few things. First, the objects 

must come within the screen threshold which is denoted in yellow lines, two vertical and 

a singular horizontal. The vertical lines represent the x-minimum (left-side) and x-

maximum coordinates and the horizontal lines represents the y-minimum coordinate (the 

max is the bottom edge of the image, so 640).  

As objects boxes are detected to have an overlap of the predicted box area with 

this avoidance threshold, the program initiates the avoidance movement. This consists of 

sending the button_press_down and button_press_up commands with the W code (for 

forward movement). There is a similar screen activation portion that fires before this, 

moving the mouse to a (512, 512) and then sending a few rapid mouse_mutton_up/down. 

This ensures the focus is on the correct program.  

To avoid, the algorithm checks the lower-left and lower-right avoidance 

thresholds to determine which way to turn. If neither, then it is chosen randomly. While 

avoiding, the algorithm will not initiate object avoidance again until it corrects back onto 

its original course. The rationale for this is to ensure the character ends up traveling in the 

general direction originally chosen, as part of the algorithm involves a turn and forward 

movement avoiding the object, enough forward movement to pass it, a turn back towards 

the original path of movement, a small amount of forward movement to and then a final 

turn onto the original course.  
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Again, both the detection and movement functionality are meant to be toggled on 

and off via hotkey and to work in tandem to control the game character and avoid 

obstacles. It functions as an enhanced auto-run feature. 

G. Hardware and Software 

There are several different pieces of hardware that have been used to throughout the 

process of this thesis. There are the GPU and AI nodes on the Raj HPC cluster \cite{raj} 

and two personal machines. The AI nodes have eight Tesla V100 GPU with GPU 

interconnect, which allows them to be fully leveraged by the TensorFlow library, as 

opposed to the GPU nodes which only leverage two at a time.  

The personal machines consist of an NVIDIA GeForce GTX 1080 8GB VRAM and 

16 GB of RAM and another NVIDIA 2070 SUPER with 16 GB of RAM. Note, the 

personal machines are used to run the front-end and real time inference, while Raj was 

used for training.  

Finally, while modern cards would likely be able to handle the workload of running 

the game Star Wars: The Old Republic [1] and run the detection inferences, we have 

decided to Parsec [33] which is an application that can be used to host a game on one 

computer and stream it to another. This is similar to VNC protocol or remote desktop in 

function, but is optimized to be real-time with a good enough internet connection (which 

is more achievable than buying a state-of-the-art GPU).  
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IV. DATA AND ANALYSIS 

A. Performance of Object Detection Models 

Though the object detection portion chiefly relies on transfer learning, the 

TensorFlow object detection API [8] has its quirks and learning curves. A few things to 

note when dealing with the original benchmarks laid out in the TF Model Zoo, they are 

taken on hardware that is comparable or better than some of the NVIDIA Titan cards. So, 

while the speed benchmarks are a good starting point for determining which models are 

the fastest, there is degradation in performance, especially on the considerably weaker 

hardware of the aforementioned NVIDIA GTX 1080, which is only about 60% as 

powerful as the TITAN series. Thus, the inference times we were achieving with the full 

SSD architecture made it difficult to get to something remotely close to real-time object 

detection, especially considering some of the extra overhead that goes along with the 

regular Java program. Alternatively, there is the MobileNet optimization of this SSD 

architecture, which achieved similar efficacy while nearly halving the speed. TABLE I 

shows the different inference times in milliseconds and mean average precision metrics. 

TABLE I  

COMPARISON OF MODELS 

 

To achieve some measure of hyperparameter optimization we created a python script 

to generate configs, randomizing hyperparameters that could be modified in arbitrary 

ranges. We then prepared a SLURM script that ran singular training jobs based on these 
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configurations. There were roughly 170 runs that resulted in an increase of 6-7% increase 

in mAP50 over the default configurations. 

B. Performance of Conditional GAN and its Effect on Model Efficacy 

Training the GAN was a balance between monitoring for mode failure, seeing how 

realistic the generated article looked and convergence failure. Mode failure is when the 

generator becomes too specialized and begins to generate only a small or even singular 

object. This tended to happen after 300-400 epochs. However, the features did not look 

realistic enough until well after that. So, it was a balance between finding the best-

looking generator checkpoints and to use weights from those to generate artifacts. The 

artifacts we decided are shown in Fig. 11. 

  

 

 

 

These crops shown in Fig. 12. were accomplished by using the Microsoft Paint 3D smart 

crop tool [34] which does a good job of homing in on the ‘object’ part of the image. This 

Fig. 12. Cropped stone artifacts. 

Fig. 11. Generated stone images. 
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saved a lot of time. Examples of how the crops would be placed are in Fig. 13. By doing 

this, we were able to generate an extra 1,337 stone objects to add to the dataset and 

programatically calculate their annotation coordinates. This fixed the class imbalance of 

the stone, which had less than the others and being able to do this in such a manner saved 

about 5-6 man hours of manually collecting more images and annotating objects. We then 

used this new modified dataset to retrain the SSD mobilenet and we were able to achieve 

a 2-3% mAP increase, measured at across several checkpoints during the training process 

Fig. 13. Example of placed synthetic object. 
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as well as the final 50,000 step mark, a comparison you can in TABLE I of the previous 

subsection. 
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Fig. 14. Discriminator loss. 
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Fig.  15. Generator loss. 
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V. CONCLUSION 

A. Objectives 

The intention of this thesis was to prototype a program that would act as an interface 

between the machine learning aspect of object detection and the practical application of it 

to a limited-scope real-world problem. We found that that with a custom dataset, transfer 

learning and a front-end application, it is possible to navigate a game character through a 

playfield.  

B. Contributions 

Over the course of work on this thesis we created a new fully annotated dataset 

comprising of over 7,000 images and over 17,000 annotations. We showed demonstrable 

results applying that dataset in a practical use-case, adding to the body of work 

surrounding object detection and what it can be used to achieve. Not only in real-world 

applications, but also in virtual instances reflected in the computer game subject matter of 

our dataset.  

We also then used a conditional GAN to synthesize data based on the original body of 

the dataset and add more objects where needed, this resulted in an improvement of the 

model efficacy by fixing class imbalances.  

Finally, using the APIs available we created a non-trivial application that showcases 

how the implementations of TensorFlow across two different languages can come 

together with more traditional code to create a useful game-inference visualization 

interface that aids with the automation of tasks.  
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C. Future work 

With the current prototype, the algorithm is programmatic rather than leveraging 

machine learning techniques. There is still room for improvement, particularly in the 

application of reinforcement learning. Future work could improve on the simplistic 

avoidance measures that are currently being used and create a more robust decision-

making framework to control the character. In terms of conventional programmatic 

solutions, we suspect it would be possible to create some sort of cache of detections, 

though this would involve quite a bit of work to try and remember both the detections and 

the movements of the character.  

Perhaps a better solution would be to delegate the decision-making responsibility 

some sort of reinforcement learning controller, of course this would come with its own 

challenges and require the introduction of a reward and feedback system based on the 

visual and spatial information captured by the inference portion.  

Further expansion of the automation tasks is another goal to making a more robust 

and fully featured system, it could include not just navigation but other game tasks, like 

node interaction, combat and other more interactive tasks.  

Finally, it would be interesting to explore beyond the TensorFlow framework and try 

to incorporate the Yolo framework with more customized solutions and the ability to 

incorporate those more state-of-the art detectors as well as moving away from the 

sometimes-unwieldy TF implementations for purpose-built solutions in Java.  
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