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1. Introduction

Originally motivated by physics, ergodic theory became an independent mathematical
discipline in the 1930s with the appearance of the classical ergodic theorems due to von
Neumann and Birkhoff. Since then, ergodic theorems have been extended and generalized
in many directions and surprising connections to other areas of mathematics have been
discovered. We mention three major directions: the multiple, the subsequential and the
weighted ergodic theorems.

o Multiple ergodic theorems, dealing with averages of the form

N

1

N E T"f1 - T fo---T* fy
n=1

and introduced by Furstenberg in his celebrated ergodic theoretic proof of Sze-

merédi’s theorem, have deep connections to, e.g., combinatorics, harmonic analysis,

number theory, group theory and form an active area of research, see Furstenberg

[34,35], Furstenberg, Katznelson [36], Bourgain [14], Host, Kra [39], Ziegler [61], Leib-

man [47], Bergelson, Leibman, Lesigne [9], Tao [56], Walsch [58], Donoso, Sun [24].
¢ Subsequential ergodic theorems concern averages

for a subsequence (k,) of N and are natural from the physical point of view. They
have been studied by Furstenberg, Bourgain, Wierdl and others using methods from
harmonic analysis and number theory, see Bourgain [13], Wierdl [59], Nair [51], Bel-
low, Losert [7], Jones, Olsen, Wierdl [42], Rosenblatt, Wierdl [53], Akcoglu, Bellow,
Jones, Losert, Reinhold-Larsson, Wierdl [1], Krause [44], Zorin-Kranich [62], Eis-
ner [26].

o Weighted ergodic theorems concerning averages of the form

1 N
W

with (a,) C C go back to the Wiener-Wintner theorem [60] and are connected to
both additive number theory and the recent Sarnak conjecture, see Green, Tao [37],
Sarnak [54], El Abdalaoui, Kulaga-Przymus, Lemanczyk, de la Rue [5].

The Wiener-Wintner theorem deals with pointwise convergence for the family of
linear weights (e(nf)), 0 € R, where e(x) := €*™®, see Assani [2]. Lesigne [48,49]
extended it to polynomial weights of the form (e(P(n)))s%, for real polynomials P,
see also Frantzikinakis [33] and Assani [2] and the generalization to nilsequences by
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Host, Kra [40] and Eisner, Zorin-Kranich [29]. For topological versions of the Wiener-
Wintner theorem and its generalizations see Robinson [52], Assani [2, Chapter 2.6]
and Fan [30].

For more weighted ergodic theorems see Bellow, Losert [7], Berend, Lin, Rosen-
blatt, Tempelman [8], Bourgain, Furstenberg, Katznelson, Ornstein [15], Lin, Olsen,
Tempelman [50], Eisner, Lin [28], Fan [31]. For a different type of weighted ergodic
theorems with arithmetic weights we refer to Cuny, Weber [23] and Buczolich [17].
A related question to weighted ergodic theorems is about the convergence of ergodic
series > 7 an f(T"x). We can refer to Cohen and Lin [20], Fan [32] and Cuny and
Fan [22]. In Izumi [41] the question about the convergence of Y L f(T"z) was first
raised. Positive answers would be improvements of the ergodic theorems. But there
are no such answers in general. Negative answers were given by Halmos [38], Dowker
and Erdés [25], moreover by Kakutani and Petersen [43].

Surprisingly, pointwise convergence of the simplest mixture of the subsequential and
weighted ergodic averages, namely polynomial averages with polynomial weights, is still
open in general. Pointwise convergence of the unweighted square averages % 25:1 ™ f
was proved by Bourgain [10,11,13] for LP, p > 1, answering a question of Bellow and
Furstenberg, see also Krause [44], whereas divergence in L' was shown by Buczolich,
Mauldin [19], extended by LaVictoire [57] to all monomials. The averages along squares
with linear weights

e(nh) T f (1.1)

an

were treated by Bourgain [12,13] and Eisner, Krause [27] where pointwise convergence in
LP p > 1, was shown for every 6, partially uniformly in 6. Note that a Wiener-Wintner
type result for the weighted double averages

N
v Z (nO) T f1 - T?" f,
for bounded functions was obtained by Assani, Duncan, Moore [3] from Bourgain’s un-
weighted double recurrence result [14]. See also Assani, Moore [4] for an extension to
polynomial weights.

In this paper we study convergence of the averages (1.1) for f € L' and show that
for many 6 the weight (e(fn)) is L'-universally bad, extending the mentioned above
convergence results in L?, p > 1, by Bourgain and Eisner, Krause as well as the divergence

result of unweighted averages by Buczolich, Mauldin in L!'. More precisely, we treat
polynomial weights (e(P(n)0)) with P € Z[-].
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Definition 1.1. Let (a,) C C and (k,) be a subsequence of N. We say that the pair
((an), (kn)) is L'-universally bad if for every ergodic invertible system (X, u,T) on a
nonatomic standard probability space there is f € L'(X,u) such that the weighted
averages along (k)

1 N
~ > a Tk f (1.2)
n=1

diverge on a set of positive measure.

Some authors use aperiodic instead of ergodic in the definition of universally bad
sequences, see for example [2], [6] and [7]. One can show analogously to the unweighted
case that the two versions of the definition are equivalent. In this paper we use the
ergodic version and this way we follow for example [19], [53] and [57].

Thus, using the terminology of Definition 1.1, Buczolich and Mauldin [19] showed that
((1),n?) is L'-universally bad. This result was slightly generalized in [57] by LaVictoire
to show that ((1),n9) is L'-universally bad and in [16] by Buczolich to show that for
any polynomial g(n) of degree two with integer coefficients the sequence ((1),¢q(n)) is
L'-universally bad. Both these generalizations were based on the original argument of
[19]. It is still an open question whether for a “general” polynomial ¢(n) of degree at
least three with integer coefficients the sequence ((1),¢(n)) is L'-universally bad.

In this paper we restrict our attention to the base case k, = n2. For the above
mentioned slightly generalized cases which depend on the argument of [19] similar results
to Theorem 1.2 can be obtained. The case of general polynomials g(n) of degree at least
three with integer coefficients is a challenging unsolved problem.

Our main result is the following.

Theorem 1.2. Let P € Z[-] be a polynomial and let M be the set of all 6 € [0,1) such
that the pair (e(0P(n)), (n?)) is L'-universally bad. Then the following assertions hold.

(a) QN[0,1) C M.
(b) M\ Q contains a dense set of Liouville numbers.

(¢) M is a dense G5 subset of [0,1] and therefore residual.

2. Main tool

Next we need to recall some definitions and theorems, and tweak some arguments
from [19]. We start with the definition of M — 0.99 distributed random variables.

Definition 2.1. For a positive integer M we say that a function or a random variable,
X :[0,1) = R is M—0.99 distributed if X (z) € {0,0.99,0.99 - 1,...,0.99 - 2= M+1} "and
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A{x €10,1): X(x) =0.99-271}) =0.99 -2~ M+~ for [ = 0,..., M — 1, where X denotes
the Lebesgue measure.

An easy calculation shows that

u = / X(x)d\(z) =0.992-M-27M=1 > 09. M .27 M1 (2.1)

[0,1]

On the probability space ([0,1),A) we can consider pairwise independent M — 0.99-
distributed random variables X}, for A = 1, ..., K for a sufficiently large K. Assume that
u denotes the mean of these variables.

By the weak law of large numbers A {x : ‘% Zle Xn(z) — u‘ > %} —0as K — oo.
Given § > 0 we can select K so large that

1 al U
)\{x:?};Xh(x)Z§}>l—5. (2.2)

With slight change of notation we recall Theorem 8 from [19].

Theorem 2.2. Given § > 0, M and K there exist 19 € N, which defines a translation

n [0,1) by T(z) = x + % modulo 1, EsC[0,1) with A(Es) < d, a measurable function
g :[0,1) — [0,+00) with f[O,l) gd\ < K - 27M*2_ and pairwise independent M—0.99-
distributed random wvariables Xy, h = 1,..., K defined on ([0,1),\) such that for all
x € [0,1)\Ej5 there exists N, satisfying

1 & K

— 9T (@) > Y Xn(x). (2.3)

T k=1 h=1

2

»
Il

This theorem is highly non-trivial and its proof in [19] is quite technical. In [18] there
is some heuristic outline of this argument. One of the key elements of this argument is
coming from number theory and is related to the randomness of quadratic residues (see
[45] and [46]). Another version of the argument of [19] can be found in [57].

Our main tool will be the following corollary of Theorem 2.2. Here and later, we denote
by Zg4 the cyclic group {0,...,d — 1}. On Z4 we denote by T the shift transformation
Tx=2xz+1 mod d.

Corollary 2.3. For every Ny € N and every ,C > 0 there exist an arbitrarily large
7 €N, a set E C Z, with proportion less than ¢ in Z., a positive bounded function f
on Z, with [ fdu < e (n being the normalised counting measure), and Ny > Ny such
that the inequality

N
1 2
NN n§:1(T H>c (2.4)
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holds for everyl € Z. \ E.

Verification of Corollary 2.3 based on methods of [19]. We can now modify slightly the
proof of Theorem 1 on p. 1528 of [19]. We select p such that

<Sand32.C-4- P<§ (2.5)

’BM—‘
N

We let M, = 4P, § = % and select K such that for M, — 0.99-distributed random
variables X, h =1,..., K we have (2.2) satisfied and hence for this K by (2.1) we have

K
1 .
A(U,) > 1 =6 for Uy = {m P § Xp(x) > 0—29 M - 2Ml} . (2.6)
h=1

By Theorem 2.2 used with ¢ = %, M, and K there exist o € N, Fy/, C [0,1) and a
periodic transformation 7' : [0,1) — [0,1), T'(z) = z + % modulo 1, g : [0,1) — [0, +0),
X, pairwise independent M,, — 0.99-distributed random variables defined on [0,1) such
that A\(Ey/,) < ;1) and for all x € [0,1) \ Ey/, there exists N, such that

&

1 ) K
N g(Tk x) > ZXh(m)
T k=1

B
Il

andf01)fd>\<K 2~ Mp+2

One can observe that on p. 1527 of [19] at the beginning of the proof of Theorem 8
one can choose A = Nj instead of A =1 and this implies that N, > Nj holds in (2.3).
By using a slightly larger exceptional set El/p D By, still satisfying A(El/p) < 1/p we
can select No such that Ny < N, < Nj holds for any = ¢ El /p- One can also observe
that any integer multiple of 7y could also be used, so 7y can be arbitrarily large.

Put U, = U, \ El/p. Then A(Up) > 1 — % and for z € U, there exists N, € [Ny, Ny]
such that

K
0.9
— 3" g(M"2) > Y Xp(2) > K- = My -2
Thus letting ¢, = K - 09, M, -2~ Mp=1"and

(7 {x bupﬁz ) >t } (2.7)

we have U, C ﬁp and hence )\(U ) > 1— 2. On the other hand,

Jod\ _ KoMt 3
ty K93 M, 2-My—1 T M,
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Now set G = € . g. Then (2.5) and the above inequality imply that [ Gd\ < /2. We
tP

also put £ = [0,1) \ U'p. Then \(E) < /2.
Next we need a sort of a transference argument to move the above results onto the

integers.
Given ¢ : [0,1) = R, z € [0,1/7) put

|
—

T

<p(x+ %) and Ar =7 Mjo,1/r),

3=

pr(z) =

I
=}

J
where Aljo,1/r) is the restriction of the Lebesgue measure onto [0,1/7).

By this notation we have

[ elaiiriz) /}j( L) ax() 28)

[0,1) [0, 1/7')
= / or(x) - TdA(z) = / or(x)dA ().
[0,1/7) [0,1/7)
For x € [0,1/7) and a measurable set A C [0,1) let p,r.(A4) = xa,(x) =
1 Z; o XA (x + %) Then using (2.8) with ¢(x) = xz(x) we obtain that
_ — €
| ra®rire(@) = [ xu@ire) = 2E) < 5,
[0,1/7) [0,1)
This implies that
— 1
: > —. .
/\T<{m €[0,1/7) : piro(E) > a}) <3 (2.9)
Using (2.8) with ¢(x) = G(z) > 0 we obtain similarly
5
/ Gr(z)d\( / G(x)d\(x 5
[0,1/7) [0,1)
and this implies that
1
: > —. .
)\({x e[0,1/7): G (z) > e}) <3 (2.10)

Since A, ([0,1/7)) = 1 by (2.9) and (2.10) we can select an z* € [0,1/7) such that

pr e (E) < € and G (%) < e.
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Now we can define f : Z — [0, +00), periodic by 7 such that f(I) = G(z* + {i/7})
where {.} denotes fractional part, this also defines a function on Z, which, for ease of
notation is also denoted by f.

To define the exceptional set E we say that [ € Z belongs to E iff 2* + {I/7} € E.
Then f and E are both periodic by 7, [ fdu < e, u(E) < ¢, the definition of G and (2.7)
imply (2.4). O

3. Weighted Conze principle

Definition 3.1. Let (X, 1) be a probability space and let (T) be a sequence of bounded
linear operators on L'(X, ). Define the corresponding mazimal operator T* by

(T f)(z) := sup (Taf)(x)] €[0,00], z€X, feL'(X,p).

We say that (T) satisfies a weak (1,1) mazimal inequality if there exists a constant
C > 0 such that for every f € L'(X, ) and every A > 0

w(T*f > N) < (3.1)

Cllfl
—

The following is a corollary of Sawyer’s variation of Stein’s principle, see [55, Corol-
lary 1.1].

Lemma 3.2 (Sawyer). Let (X, u, T) be an ergodic measure-preserving dynamical system
and let (Tx) be a sequence of bounded linear operators on L'(X, 1) commuting with the
Koopman operator T. Assume that (T) does not satisfy a weak (1,1) mazimal inequality.
Then there exists a function f € L*(X,u) such that T*f = oo a.e., and, in particular,
(Tn f) diverges a.e. (Moreover, the set of such functions is residual in the Baire category
sense. )

We will need the following variation of Conze’s principle.

Theorem 3.3 (Weighted Conze principle). Let (a,) C C be bounded and (k) be a sub-
sequence of N. Let C < oo be minimal such that for every system (X, u,T) and every
feLliX,p)

1 N
FOMEAY
N n=1

C
w| sup >A| < =|flh YA>0 (3.2)
NeN A
holds. Then C < oo if and only if there exists an ergodic invertible system (X, p, T) on a
nonatomic standard probability space such that for every f € L*(X, ), the weighted aver-

ages (1.2) converge a.e. Equivalently, C = oo if and only if ((ay), (kn)) is L*-universally
bad.
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The proof is an adaptation of the argument in Rosenblatt, Wierdl [53, Proof of The-
orem 5.9] which is based on the original work by Conze [21].

Proof. The “only if” part is trivial. To show the “if” part, assume that for an ergodic
invertible system (X, u,T) on a nonatomic standard probability space and every f €
LY (X, i1), the weighted averages (1.2) converge a.e. By Lemma 3.2, there is C' > 0 such
that (3.2) holds for every f € L'(X, p).

Since all nonatomic standard probability spaces are isomorphic, it suffices to show
that for every (invertible) transformation 7 on (X, 1), (3.2) holds for the same constant
C and every f € L'(X,u). Take such T. By the Halmos conjugacy lemma, there ex-
ists a sequence (.5;) of invertible transformations such that lim;_,o S;T'S,” L'— T in the
weak topology. Then by a standard approximation argument, the Koopman operators
on L*(X, ) (which we denote by the same letter) satisfy lim;_,oo $;7'S; " = T in the
strong operator topology. Thus lim;_,. S;T™S, L — 7™ in the strong operator topology
for every n € N.

Let now f € L' (X, ), A > 0 and M € N. By monotonicity it suffices to show that

L

=1
sup |— E a,T"™
H <1<N<M N &=~ f

Since (a,,) is bounded, & ZnN:1 an S T*" S " f converges to & SN @ TR f in LX)

n=1

C
> /\> < XHf”l

for every N € N, and the same of course holds for sup; <<, of the absolute value.
Since for every sequence (g,,) C L'(X, ) converging in norm to g € L'(X, i) one has
limy, 00 (2 gn(x) > A) = p(x : g(x) > ), it suffices to show that

1 N
~ > anSi TS f
n=1

C
u( up > A) <l
1<N<M

or equivalently, by the measure-preserving property of 5,
1N
E
m sup |— a, T g
<1§N§M N 7; "

for g := S, 1 f. But this holds by the definition of the constant C' and monotonicity. O

c
A <=
> >_A||g|1

4. Proof of the G5 property

We first prove that M is a Gs set. The denseness follows from Theorem 1.2 a) or b)
and will be proven in the following sections.

Proof of Theorem 1.2 c) assuming Theorem 1.2 a) or b). Observe that by Theorem 3.3,
6 € M if and only if for every C' € Q there exist a system (X, pu,T), a function f €
LY(X, p) with ||f|ls = 1 and X > 0 such that
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>)\>>

9)T"2 f(x) appears at many places in this proof we introduce the

(4.1)

>1Q

1 & :
NZ@(P(TL)G)T f

n=1

p | sup
NeN

Since —

=
1=
2
)

notation

1 N
O’ = Ng (95)

By monotonicity of the sets {x € X : maxy<y |01($)f(ar)| > A}, (4.1) is equivalent to
the existence of k € N such that

u<?vlax‘ O f(w )‘ >>§

Thus we obtain

M=) U {oenn:u(pal@s>2) > i

CeQ (X,u,T),f, ).k

where under the union sign (X, u,T) denotes an arbitrary measure-preserving system,
f € LY(X,u) an arbitrary function with ||f||; = 1, A > 0 an arbitrary real number and
k an arbitrary natural number. It remains to show that each of the sets on the right is
open, and for that it suffices to show that for given (X, u,T), f, A and k, the 1-periodic
function

. ._ (0)
g R 001 9(6) = (x| o'1] > )

is continuous.

Let 0 € R, (0;)32, C R with lim; . 6; = 6 and let ¢ > 0. Using the elementary

estimate |e(z) — e(y)| = |e*™® — e2™W| < 27|x — y|, by

0 ’
’01(\?)]0 — ol )f‘ <2m Es[lipN] [P(n)]|0 — 0;[T™ | f],

we obtain for every j € N

(0) < ‘ (95) ’
M(Ij{flg)}g’UN f’>)\+5>,u<rj{[1&<uk( o fI > A

"2
+ u(2m sup [P(n)]|0 —6;|T™ |f| > ).
ne(l,k]

Since T is p-preserving and ||f|l1 = 1, the last summand on the right hand side equals



Z. Buczolich, T. Eisner / Advances in Mathematics 384 (2021) 107727 11

u( sup 27| P(n)[|0 — 01| > ¢

 SUPne(i ) 2rr|P(n)||0 — 0;]
nell k] -

3

Therefore we have for every € > 0
u | max ‘U(e)f‘ > A +¢e | <liminf g | max ‘U(e'j)f‘ > A
N<k | N B N<k | N ’
implying, by letting € — 0,
9(0) < liminf g(6;).
j—o0

Analogously one shows g(¢) > limsup,_, ., g(¢;), implying the continuity of g and com-
pleting the proof. O

5. Reduction

We first reduce Theorem 1.2 a) and b) to the following.
Theorem 5.1. Let P € Z[-] be a polynomial with P(0) = 0. For every rational number

§ €[0,1) and every k € N there exist r > 0, a system (X, u,T) and a positive function
f € L>®(X,u) satisfying

/fSl, u(sy\tfp

for every 0 € [% —r,g—l—r].

S e0P(m)T

n=1

>k>>1—% (5.1)

==

The system (X, p, T') will be a shift on Z,,» with suitable 7 and ¢. We now show that
Theorem 5.1 implies Theorem 1.2.

Proof of Theorem 1.2 a) and b) based on Theorem 5.1. Assume that Theorem 5.1 holds
and let P € Z[]. Since multiplication by a non-zero constant does not affect divergence,
we can assume without loss of generality that P(0) = 0.

Let ’;—i € [0,1) be arbitrary. The claim for k := 1 implies the existence of an arbitrarily
small 71 > 0 such that there exist a system (X1, u1,71) and a positive f; € L=°(Xq, pq1)

such that
/flél, m(sup >1>>0
N

holds for every 6 € [% -7y, % + r1]. Take now an arbitrary rational number Z—j IS

(% —ry, % + 71). The claim for k := 2 implies the existence of an arbitrarily small 7,

a system (Xa, p2,T2) and a positive function fo € L>°(X3, u2) such that

1 < )
~ (0P (n))T7" f
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1
/fzﬁl, urz(sup >2>>—
N 2

holds for every 6 € [22 — ry, B2 4 ro] C [EL — 1y, Bt + ry]. Repeating the procedure we

get a nested sequence of rapldly decreasing mtervals [p—: — i, B p L 4 rt] such that

1 & )
= D eOP@)TE fo
n=1

satisfies the following property: For every k € N there exist a system (X, p,T) and a
positive function f € L (X, u) with property (5.1) satisfied with f; instead of f. Since
1— ¢ > 1 for k> 2 by the weighted Conze principle (Theorem 3.3), ((e(6P(n))), (n?))
is L'-universally bad. Note that we have some freedom in the above construction of @
by choosing each % and by taking r; as small as we wish.

To show (a), by taking in the above construction py := p; and ¢ := ¢ for every
k € N, we have 6 := L which was arbitrary, and (a) follows.

To show (b), take in the above construction 2’—: being all different and decrease ry,
such that r, < k. and rp < [2: — Z’:—:H hold. Then ¢ ¢ {£+, 22 ...} and ¢ is Liouville,
therefore 1rratlonal

Thus Theorem 1.2 follows. O

6. Proof of Theorem 5.1

Proof of Theorem 5.1. Let P € Z[] satisfy P(0) = 0, let £ € [0,1) be arbitrary and
k € N. We will define bounded positive functions fi,..., f, and then f := > f on
Z 4 for some large 7 € N with the normalised counting measure and the right shift.
Denote Ny := 1.

Construction of Ny, 71 and f; on Z, 4.
Let 0 < e; <1 and C7 > 0 to be chosen later. By Corollary 2.3, used with N := 1,
there exist 7 € N with 7 > ¢, the right shift transformation 7" modulo 71 on Z,, with

the normalised counting measure, a set E, C Z -, with proportion less than €; in Z,, a

function fi on Z,, with f; > 0and [, fi1 <e1, and N} := Ny > 1 = Nj such that the
T1

inequality

1N
max — Z T"zfl(l) > Cy (6.1)
n=1

Ne[l,N,] N

holds for every | € Z,, \ E;.

Consider Z,, 4> together with the normalised counting measure and the right trans-
lation which we denote by T' again. Consider further the function f; on Z, ;2 given
by
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AW i
fi(l) = .
0 otherwise.
The support of this function is contained in
Ul = {07 q27 26127 ey (7-1 - 1)(12} C Zqu2

and [, fi < 24 holds. Observe
T14

(T”2f1)(l) = f1(l+n*) =0 whenever g{nand!l € U. (6.2)
Moreover, for every n < gN; and every 6 € [— -, p + 7] observe

e(0P(n)) — e(p/qP(n))| < 27|0P(n) — p/qP(n)| < 277 P |P|.

By choosing r < we have by P(0) =0

1
dmsuppy g, [P
le(0P(n)) — 1| < 1/2, VO € [5 —r= Py r} ,  Vn < ¢Np divisible by q. (6.3)

Define E; := {mq?: m € El} and consider now [ = mq? € Uy \ E;. The inequalities
(6.1), (6.2) and (6.3) imply

N
sup R~ Z )T f)(1) = sup N >oOw n))(T™ f1)(1)

1<N<qN; 1<N<qN;

<N, g|n
1 1 2
> 5 _Sup oy Z (T f1)(0)
1<n<gn, N =0
1
—l a4y fl(m+ -
2q 1§N§qN1 n<N, g|n
C1
> — - su T” .
=2 ivem N Z Ty

Construction of Ny and f on Z,,g2.

Let e5 < &7 and Cy > (' to be chosen later. By Corollary 2.3, there exist 7 € N with
T > ¢, the right shift transformation 7" modulo 7, on Z,, with the normalised counting
measure, a set Eg C Z., with proportion less than €3 in Z,,, a function fg on Z,, with
fg >0 and fZTQ fg < &9, and N = Ny > N7 = Nj such that the inequality

Ne[N1,N2] N

1N, e
max  — ZT" fa(l) > Cy (6.4)
n=1
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holds for every | € Z,, \ Es.
Stretch fs to Z g2+, as follows. Define the function fo on Z,,.2 given by

B(5) et a-),

0 otherwise.

fg(l) =

The support of this function is contained in
Uy :={1,¢* +1,2¢* + 1,..., (2 — 1)¢* + 1} C Z,

and fZTN2 f2 < 53 holds.

Observe

(T f)(1) = fo (I+n*) =0 whenever ¢{n and!l € Us. (6.5)

Moreover, for every n < ¢N, and every 6 € [g -, % + 7] observe

e(0P(n)) —e (]—;P(n)> ‘ < 277‘9P(n) - §P(n)‘ < 27mr [18’2115)2] |P|.

By choosing r < we have by P(0) =0

R S

47 supP(1 g N, |P|

le(@P(n)) —1| <1/2 VO e F -, Py r] Vn < gN, divisible by g. (6.6)
q q

Define now Es := {m¢*> +1: m € EQ} and consider | = mq®> +1 € Uy \ Es. The
inequalities (6.4), (6.5) and (6.6) imply

N
T > (0P )T 2)()

— s — ST Re@Pm))(T™ f)(1)

aNi<N<gno N =

>osw o S @R

gN1<N<gN, n<N, qln

2

1 q ~ n
=— sup N Z fa <m+ q2>

5
4 gN1<N<gN, n<N, gln

N
> L s =S ) > 2.

T 2¢ n<nen, N = 2q
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Now, choosing Cy > ¢|| f1]|eo With ¢ > 0 to be chosen later, we see that

al c
2
sup Z NI f| < lfille < =
qugNng — ~ c
Construction of 7 and f.
In such a fashion we construct for every j € {1,...,¢*} and for ¢; < £;_1,C; > 0 to

be chosen later (where gq := 1) an integer 7; > ¢, a set E; C Z, 42 with proportion less
than €; in Z, 2, a natural number N; > N;_; and positive bounded functions f; on
Lir;q2 With ffJ < ¢; and supported on

UJ = {j*l,q2+]*1,2q2+j*1,,(T]fl)q2+]*1}CZqu2

. . P _ P i .
such that for every I € U; \ Ej and every 6 € [ —r, 2 4 r] with r < - Sepm.on TP

N . c,
. g T 1)) > 52 (6.7)
Moreover, we choose C; large enough to satisfy
1 N
% |y 2B, B 2 OP VT ©8)
< max{lfiler - Is-alloet < 2
We now consider 7 := 7y - ... 7,2 and extend the functions f; and the sets K

periodically to Z.42. (We use the same notation for these extensions.) These sets and
functions have the unchanged proportion in Z,,» and unchanged integrals, respectively.
Moreover, (6.7) holds for every | € Z,,2 \ E; and (6.8) is still true. We denote by x the
normalised counting measure on Z 4.

Define now f := f1 + ...+ f;2. We have by the monotonicity of ¢;

/ f<gea <1
Z_

by choosing £; < qiz. Define further F := E; U...U Ez.. Note that the proportion of F
2
in Z .42 is less than Zq 1€ < q’e; < ﬁ by choosing ¢; < ﬁ.
Take 0 € [£ —, 7+7’] with r < m and | € Z.g2 \ E. Then | € U; for
2q q2

some j € {1,...,¢?}. Let N satisfy ¢N;_; < N < ¢N; and decompose
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1 Y 1 Y
¥ S e@Pm) (T f Ze T f7)(0) (6.9)

n=1 n:l

N % S e(@Pm)(T™ f) (1)

Observe that by (6.7), since l € U; \ E

C
swp|Ix@) > 2.
gN;j_1<N<gNj

Moreover, by (6.8),

sup [TIN(D] < D fmlloo <a*=L < L (6.10)

NeN 1<m<j

if we choose ¢ > 8¢>.
Finally, by the triangle inequality and p(fm, > 1) < [ fim < &, for each m,

N
1 2
n sup [IIIn|> ¢ | < Z sup NZT” fm > q?
qN;j 1 <N<gNj jam<g? INi-1SN<qN; 2%
< Z I sup ZT" fm>1 (6.11)
ez aN;_1 <N<qN; N
2

< > D> T > 1)

j<m<q? n<gN;

DD SETTAR

j<m<g? n<qN;

1
3
Squ' > em<gq Nj€j+1§W
j<m<g?
by choosing ;11 < 1/(2kg’Nj).
2
Denote now Fj := {l € Uj: supyy, ,<n<qn, [ HIIN] > ¢’} and F := UJ_, F;. By the
above, u(F) < Z] 1 qu = 5. Thus if we assume in addition that [ ¢ F, the triangle
inequality (6.9), (6.10) and (6.11) lead to
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1 & c, C;
su — e(OP(n)) (T > =L - 2L _ 42
S ORI N0 > 5L =T
Ci 5
= — — >k
4q q =

if we choose C; > 4kq + ¢°. Therefore, for every | € Z,,2 \ (EUF)

s - ;ewmn))(w"’f)m > k.

Since u(EU F) < 2% = %, the proof is complete. O
7. Further questions
There are many open questions related to our results. We just mention two here.

1) Is every Liouville number universally L!-bad?
2) Is there an L'-good number?
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