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A B S T R A C T

As the utilization of LiDAR (Light Detection and Ranging) is getting more affordable and available for a wider
audience, the analysis of point clouds constructed by laser scanning is earning more attention. Airborne LiDAR
is especially useful in the analysis and classification of land objects. We are able to determine if they are natural
or artificial objects and what changes occurred to them throughout time by examining multi-temporal data. The
goal of our research was to define a completely automatized methodology for the segmentation of vegetation
(specifically trees) in urban environment, followed by the qualification and quantification of change detection.
Our proposed algorithm provides a robust approach designed to scale dynamically to large areas, in contrast
to existing methods that require manual or semi-supervised human interaction and can only be applied on
relatively small areas. The algorithm was tested on parts of the Dutch and the Estonian altimetry archives,
point cloud datasets that provide several terabytes of data. It was proved to be an effective method for the
qualified and quantified change detection of trees, including height and volume changes.

1. Introduction

Change detection of vegetation has become a highly important issue
in our days since the alteration of the ecosystem affects urban life,
such as living conditions and urban planning. Expansion of urban
area and industrialization both have a great impact on vegetation
growth, therefore it is important to continuously monitor and analyze
the changes . Plants can be ranked by certain qualities, e.g. type, height,
or in a more specific case canopy density of trees, etc.

Multispectral satellite imagery and aerial photography are still the
main data source for land cover classification. LiDAR is a possible alter-
native of raster scanning although not as widespread due to the higher
cost and limited availability. As a result there are no comprehensive
LiDAR records of the Earth. One of the greatest advantages of LiDAR
is that it makes it possible to compare 3D point clouds which not
only makes classification, but filtering temporary objects, and change
detection easier than using 2D imagery. On the other hand, the
comparison of point clouds is definitely more complex algorithmically
compared to raster images since the points are not likely to be located
in the same spatial point when examining multiple point clouds from
different epochs. In fact, significant differences may occur in the quality
and density of point clouds when the same area is recorded in different
epochs.
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While change detection and land cover classification are well-
researched topics for which several manual or semi-automatic methods
exist (Hyyppä et al., 2001; Yu et al., 2006; Yang et al., 2020), most
available algorithms are usually applicable and were tested only for
smaller areas. The goal of this paper is to define a robust, automated
tree segmenting method that is independent of tree species, targeting
especially large urban and suburban areas. Through evaluating multiple
scanning epochs of the same area, the main goal of our method is to
quantify the changes of trees. This includes changes in canopy volume,
tree height and tree presence.

The most important contributions of this paper are (𝑖) defining a
novel approach for segmenting trees with multiple local maximum
points and overlapping trees based on both a horizontal and vertical
distance between the formed clusters; (𝑖𝑖) comparing two different pair-
ing algorithms, centroid distance and Hausdorff distance for matching
detected trees between the evaluated epochs; and (𝑖𝑖𝑖) creating a robust,
automatized, open-source algorithm pipeline and software framework
capable of processing large datasets efficiently. To the best of our
knowledge, no previous research or work targeted the automatized
processing of larger territories. The implementation was tested on the
Dutch and the Estonian national altimetry archives, which are public
point cloud datasets acquired by airborne laser scanning.
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The rest of the paper is structured as follows: Section 2 overviews
the related literature of land coverage classification, single tree segmen-
tation and change detection methods based on LiDAR data. Section 3
presents the study dataset, the AHN point cloud. In Section 4 we
describe our methodology of tree segmentation and pairing between
multiple epochs, followed by the evaluation of change analysis. In
Section 5 we test our methodology on multiple sample areas, discuss
and validate the results against a reference dataset, and compare our
results with other methods in literature. Finally, we conclude our work
in Section 6 and discuss future work.

2. Related work

2.1. Classification of land coverage

Various approaches exist for processing point clouds and using them
in classification, with special regard to vegetation. Antonarakis et al.
(2008) describe two models for distinguishing natural and planted
forestry, one of which includes ground hits while the other one does
not. The former relies on the use of bimodal distribution skewness and
kurtosis models. A skewness value and a kurtosis value was chosen
to define which pixels belonged to a natural forest, and which ones
belonged to a planted one. This method also proved to be useful in
determining if the tree was younger or mature. Bellakaout et al. (2016)
mention a classification method that identifies and utilizes different
contour types by which objects can be classified. The paper describes
four different object classes that contain terrestrial objects identified by
contours: superior contour, inferior contour, uniform surface and non-
uniform surface. These classes allow the extraction of soil, vegetation,
buildings and roads. Song et al. (2002) describe a study whose aim
was to evaluate the use of LiDAR data in land cover classification.
The key of this method is to classify objects based on the intensity of
reflection. The point clouds were converted into grid form by the IDW
and the Kriging interpolation methods and the acquired intensity data
was divided into four classes: grass, tree, asphalt road, and house roof.
Beside the classification of vegetation, attribute estimation such as tree
or canopy height can also be performed (Hamraz et al., 2017). The
combined usage of aerial photography and airborne LiDAR to enable
more precise classification and tree height estimation in forestry has
also been studied (Suárez et al., 2005).

Machine learning has become a frequently utilized approach in
classification methods, and land coverage classification is no exclu-
sion. Shaker et al. (2019) used machine learning algorithms in order to
automatize land–water classification. Such algorithms can also be used
for more specific land coverage classification. Sun et al. (2019) compare
three deep learning methods to determine if (and to what extent) they
are suitable for the mapping of tree species in a tropical environment.

2.2. Single tree segmentation

Segmenting single (individual) trees is a well-researched topic with
several somewhat similar approaches. Papers by Kaartinen et al. (2012)
and Eysn et al. (2015) give very good summaries and comparison
of the existing methods based on their matching rates among other
aspects. Local maximum detection in trees is a widely used tech-
nique in tree segmentation which is applied along with other methods.
Complementing local maximum detection, these methods include low-
pass filtering with a convolution matrix (Monnet et al., 2010; Eysn
et al., 2012; Kaartinen et al., 2012; Dalponte et al., 2014) for image
blurring. Clustering with region growing (Dalponte et al., 2014) and the
watershed algorithm are also frequently applied in tree segmentation
in order to determine tree edges in the point cloud (Sambugaro et al.,
2013; Lindberg et al., 2014; Yang et al., 2020). Besides pointwise
segmentation, delineating tree contours is also applied in multiple
papers (Lindberg et al., 2014; Jakubowski et al., 2013; Sambugaro
et al., 2013).

2.3. Change detection in point clouds

There are two distinct types of change detection: binary and quan-
tifiable change. The former is a simple approach which only determines
whether there was a change in the scene. Its result is mostly a binary
map where no change is indicated by 0, change is indicated by 1.
Quantifiable change, on the other hand, strives to find a more complex
answer to non-binary questions on the exact nature of the change. The
binary type is often simply called change detection, while quantifiable
change detection is called deformation analysis (Vosselman and Maas,
2010).

The existing methods can be grouped into the following categories.

2 1
2 dimensional visibility maps: The dimension of the point cloud

can be reduced to 2 1
2D if the observation happens from a fixed

scanner position. This way objects can appear, disappear, and
move in the point cloud, revealing contingent binary changes in
the scene. A spherical coordinate system is used to determine
if there are any changes in the point clouds: the dataset that
was captured later (and perhaps from a different but fixed stand-
point) is transferred into the coordinate system. Afterwards, it
is checked whether the reference cloud points are present in
the new cloud. If a point is there in the new cloud, it is checked
whether it represents an object at this location or not. Points can
also be invisible due to occlusion (Vosselman and Maas, 2010).

Direct DEM comparison: This binary method extends digital eleva-
tion models with a simple subtraction process and it adjusts the
results to eliminate errors caused by misregistration (Vosselman
and Maas, 2010). It can be used both in urban areas and in
nature. In addition, it is worth noting that direct DEM compar-
ison is a decent quantifiable method as well, since exact height
and volume changes can be measured by comparing DEMs. dos
Santos et al. (2020) use DSM comparison to produce a difference
DSM for their method of building change detection, as a first
step to determine height changes in the point cloud.

Pointwise deformation analysis: Most methods for change detection
are based on DEMs constructed from point clouds. Other quan-
tifiable methods examine raw point clouds in order to achieve
more accurate results. Butkiewicz et al. (2008) describe a change
detection method that finds deformations in urban environment
over time , both in vegetation and buildings. It also uses
raw LiDAR point clouds. It calculates bounds for what could
be scanning error or geological variation and compares the
distance of points in different scans. This method is capable of
detecting changes in individual and grouped objects as well.

Object-oriented deformation analysis: This quantifiable method
makes use of the observation that man-made objects are mostly
constructed by geometric shapes like planes and cylinders (Lin-
denbergh and Pietrzyk, 2015). Although these shapes are easily
recognizable by only a couple of points, the cloud still consists
of hundreds of thousands to millions of points. This redundancy
might be used to determine every facet of change in the scene
the dataset represents.

LiDAR proves to be an effective technology for monitoring changes
in vegetation . Vegetation is mostly represented by irregularly dis-
tributed points in the dataset. LiDAR-based monitoring is also efficient
because the laser beams easily penetrate through leaves and the canopy
of trees. The denser the point cloud, the easier it is to detect changes in
height and land coverage. In addition to changes in trees and forestry,
changes in the total biomass of an area can be monitored by analyzing
multitemporal laser scanned data. The point clouds can be collected
both by terrestrial and airborne laser scanning.
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Meyer et al. (2013) tried to estimate the biomass change of a 0.5
km2 tropical area. They collected canopy height metrics and used an
importance analysis method to evaluate the importance of the vari-
ables. They demonstrated the use of spatial scales in biomass estimation
and determined that they give more accurate results when used on
finer scales. Kaasalainen et al. (2014) use the TIN model to detect
quantitative changes in tree growth and litter production. They created
a flexible surface model of each tree using the QSM method (Raumonen
et al., 2013) and compared it to the model created with the TIN model
and gave results of 10% accuracy.

3. Dataset description

Two multitemporal point cloud altimetry archives were selected as
study datasets (Fekete and Cserép, 2021).

• The Dutch Actueel Hoogtebestand Nederland (AHN),1 which covers
The Netherlands, 41.526 km2 per each data acquisition. There
are three different datasets in AHN, from which we chose the
AHN-2 and the AHN-3 point clouds due to their higher den-
sity of points (6–10 points/m2). The AHN-2 point cloud (PDOK,
2013) was scanned between 2007 and 2012, while the AHN-3
acquisition (PDOK, 2015) was started in 2014 and was finished
in 2019.

• The Estonian Elevation Dataset 2 produced by the Estonian Land
Board also contains three data acquisitions and covers the com-
plete territory of Estonia, 45.339 km2 per each dataset. Since
larger cities were covered multiple times (typically each year)
with low-altitude flights as part of the last scanning between 2017
and 2020, we used the point clouds from this time span, again due
to their higher density of points (18-30 points/m2).

Raw point clouds are extremely large in both datasets (Swart,
2010), e.g. AHN is built up of 1372 tiles each of which covers 31.25
km2. A single tile is typically over 15 GB (in LAS format). AHN offers
preprocessed DEMs with 0.5 m and 5 m resolution whose data size is 0.5
GB per tile. The vertices in the DEMs (Mukherjee et al., 2013; San and
Suzen, 2005; Zhang and Montgomery, 1994) contain the accumulated
height values, calculated by e.g. the inverse distance weighting (IDW)
algorithm (Shepard, 1968), typically represented in GeoTiff format.
This model also reduces the number of data points to analyze, by
controlling the grid size of the DEM.

In order to spare time and computational cost, and produce the
most accurate results possible, we used the 0.5 m resolution DEMs of
AHN-2 and AHN-3 for our research. In case of the Estonian Elevation
Dataset, preprocessed DEMs are only available for the latest acquired
state, therefore surface and terrain models were generated from the raw
point clouds with the open-source CloudCompare tool, with the same 0.5
m resolution.

3.1. Demonstration area

A demonstration area had to be selected to properly showcase the
proposed methodology, which contains urban environment with plenty
of vegetation, preferably with considerable changes between the two
analyzed epochs of data acquisition. The campus of the Delft University
of Technology and its surroundings were selected as a test area,
which fulfills these criteria. The city of Delft was scanned in the years
2008 and 2014 for AHN-2 and AHN-3, respectively. The steps of the
algorithm in Section 4 will be demonstrated on a sample area of the TU
Delft Campus. This is presented with Google Satellite image in Fig. 1.
We illustrate how the algorithm works by step-by-step snapshots from
the processing of the AHN-2 dataset.

The Estonian Elevation Dataset will be used in Section 5 for evalu-
ating our proposed methodology on various sample territories.

1 Actueel Hoogtebestand Nederland: http://www.ahn.nl/index.html.
2 Estonian Elevation Dataset: https://geoportaal.maaamet.ee/eng/.

Fig. 1. Satellite image of the study area.

4. Methodology

We define an algorithm which, when executed on a preprocessed
point cloud, produces a cluster map that covers every tree in the area
by exactly one cluster. Upon evaluation on multitemporal point clouds,
changes in tree presence, height and canopy volume can be calculated.
We will describe the steps of the algorithm in the coming subsections
as follows.

1. Produce a canopy height model of the DSM and DTM of the area
in the same epoch.

2. Remove excess local maximum points from the CHM.
3. Interpolate the erroneous nodata points in the CHM.
4. Collect the remaining local maximums.
5. Construct a cluster map from the collection of seed points in

which one cluster is equivalent to one tree.
6. Apply morphological opening on the cluster map to erode outlier

points.
7. Pair up clusters of the same area in different epochs and seclude

trees without a pair in both epochs.
8. Calculate change metrics in the vegetation:

8.1. height difference of tree pairs;
8.2. volume difference of tree pairs and epochs.

The steps of the algorithm are depicted in Fig. 2 and are described
in detail in the following sections.

4.1. Producing canopy height models

The canopy height model (CHM) represents the height of individual
trees that are present in the examined area. It is constructed by
subtracting a digital terrain model (DTM) from a digital surface model
(DSM) (Hyyppä et al., 2008). A DSM contains a point cloud of the
top of the surface depicting the terrain and the natural and man-
made environmental elements. On the other hand, a DTM represents
the bare-earth surface, this is why their difference provides a fine model
of the vegetation. The results of canopy height model production are
illustrated by Fig. 3.

4.2. Low-pass filtering

Classification originates and expands from a distinctive seed point
in the CHM. For trees, the obvious choice is to originate a point set
(called cluster) from the highest point of the tree. However, canopy
height models are not reliable for good clustering on their own

http://www.ahn.nl/index.html
https://geoportaal.maaamet.ee/eng/
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Fig. 2. Flowchart of the algorithm. Steps highlighted with purple background contain the main contributions of the proposed algorithm: segmenting trees with multiple local
maximums and overlapping tree clusters; and comparing centroid and Hausdorff distance in the cluster pairing step..

Fig. 3. AHN-2 canopy height model. All height values are represented in meters.

because they might contain multiple local maximum points per tree.
This makes future classification results have smaller clusters. This
is why the number of local maximum points needs to be reduced by
removing several unnecessary peaks. The elimination was done by a
sweeping-window Gaussian blurring transformation, with the following
convolution matrix:

1
16

⋅
⎡

⎢

⎢

⎣

1 2 1
2 4 2
1 2 1

⎤

⎥

⎥

⎦

This low-pass filtering is similar to the one used by Hyyppä et al.
(2001), however we introduced a special rule for handling nodata
values – points in the raster grid where the 𝑍 coordinate is missing.3
These nodata values were treated as zero values when performing the
multiplication, but the divisor 16 was also reduced accordingly in such
cases. With this modification we managed to eliminate the distorting
effect of nodata values on the low-pass filter. The results of low-pass
filtering are illustrated by Fig. 4.

3 For surfaces that absorb the laser pulse (e.g. water), the DEM sources
contain nodata values. The CHMs generated in Section 4.1 also contain nodata
values for the grid positions where one or both source datasets have a nodata
value.

Fig. 4. Low-pass filtering performed on AHN-2.

Our convolution matrix is a 3 × 3 Gaussian filter, commonly used in
image blurring. We have experimented with a 5 × 5 Gaussian convolu-
tion matrix with varying results: while in some cases it eliminated more
local maximums for larger trees, it also hindered the correct detection
of small trees. Ultimately, the difference in the number of detected trees
was below 1%, therefore the simpler 3 × 3 convolution matrix was
used.

4.3. Elimination of low points

The previously filtered canopy height model still contains points
that do not belong to trees. These points typically come from vege-
tation that is shorter than an average tree. In order to have only trees
in the CHM, we executed a sweeping-window transformation on the
model that erased every point below a threshold value4 of 1.5 m. The
results of the elimination of low points are illustrated in Fig. 5.

4.4. Collecting local maximum points

First of all, we needed the seed points of the prospective clusters.
As mentioned before, the most reasonable decision was to set the tree

4 The constant of 1.5 m was adapted to the trees of the temperate climate
zone. It may vary depending on the average height of trees in an area.
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Fig. 5. Elimination of low points performed on AHN-2.

tops as seed points. This was achieved by executing a sweeping-window
calculation on the point cloud which ran a 3 × 3 kernel matrix (window)
through the points and saved the point to a container if it was located
higher than all its neighboring points, meaning it was a local maximum
point.

4.5. Interpolation of nodata points

In order to achieve more accurate results and eliminate holes, we
need to fill the nodata points that are near a potential cluster. We
achieved this by applying a type of majority filter (Gurney et al., 1983):
the value of a nodata point is calculated as the arithmetic mean of the
adjacent points with value.

4.6. Tree crown segmentation

Once the seed points are collected, the next step is to construct
clusters of them that cover the same tree and extend them by classifying
the remaining points. In order to define a cluster map that covers the
vegetation tree by tree, 2 constant values are needed:

• Maximum horizontal value, 𝑚𝑎𝑥ℎ: the assumed greatest horizontal
radius that a tree canopy can reach calculated from its seed point.

• Maximum vertical value, 𝑚𝑎𝑥𝑣: the assumed greatest vertical dif-
ference of the seed point and another arbitrary point in a cluster.

A cluster will be constructed by gradually expanding the set of
points originating from the seed point, for which we define the neigh-
bors of a cluster as the points adjacent to the cluster but not part of it or
any other cluster. No other limitations are given when we collect the
neighbors of a cluster. The neighboring points can be used for various
purposes that have their own limitations. Further filtration is carried
out later.

For the created clusters it is still possible that multiple seed points
are present in one single tree, even though a local maximum-decreasing
step was described in Section 4.2. This might occur when a tree consists
of multiple local peaks that surround local valleys (Chen et al., 2006). If
two (or more) clusters cover the same tree then they should be merged.
In order to determine whether a valley between seed points is empty
space between two trees, or a local valley in a single tree, the ratio 𝑟
of the tree heights and the depth of the valley has to be calculated.
For this calculation, we chose the seed point of the shorter tree, so if
𝑟 > 1.0, then the valley defines separate trees, otherwise it is a local
valley in one tree. The possible cluster merge cases are illustrated in
Fig. 6:

(A) depicts the case where two tall trees are very close. The valley
between them is marking that the seed points belong to different
trees.

(B) illustrates the case when a tall and a shorter tree are close. This
case does not require merging either.

(C) [(A)]shows that when there is a valley inside a (taller) tree,
merging is required.

(D) depicts when two shorter trees are close. This case does not
require merging either.

Equipped with the collection of seed points and the depth of the
valley, the following algorithm is described for the construction of the
cluster map:

1. Define 𝑚𝑎𝑥ℎ and 𝑚𝑎𝑥𝑣.
2. Construct a cluster for each seed point. Let the set of all clusters

be 𝐶.
3. Filter the neighbors of every cluster: calculate the horizontal

𝑑ℎ(𝑝, 𝑠) and vertical 𝑑𝑣(𝑝, 𝑠) distance of a point 𝑝 to the seed point
𝑠. If 𝑑ℎ(𝑝, 𝑠) ≤ 𝑚𝑎𝑥ℎ and 𝑑𝑣(𝑝, 𝑠) ≤ 𝑚𝑎𝑥𝑣 and 𝑝 is not a nodata
value, then add the point to the filtered neighbor set of the cluster.

4. Take all cluster pairs (𝑐𝑖, 𝑐𝑗 ) (𝑖 < 𝑗) and the height of their seed
points 𝑧(𝑠𝑖) and 𝑧(𝑠𝑗 ). Construct the intersection of their filtered
neighbor sets.

5. Take each point 𝑝 in the intersection (if there is any), and
calculate the sum height difference 𝑑𝑧 for 𝑧(𝑠𝑖) and 𝑧(𝑠𝑗 ) and the
height of the current point, 𝑧(𝑝).

𝑑𝑧 = 𝑧(𝑠𝑖) + 𝑧(𝑠𝑗 ) − 2 × 𝑧(𝑝) (1)

6. Calculate the ratio 𝑟 of 𝑑𝑧 against 𝑧(𝑠𝑖) and 𝑧(𝑠𝑗 ).

𝑟 =
𝑑𝑧

𝑚𝑖𝑛(𝑧(𝑠𝑖), 𝑧(𝑠𝑗 ))
(2)

If 𝑟 < 1.0 and neither of 𝑐𝑖 and 𝑐𝑗 are to be merged yet, then list
𝑐𝑖 and 𝑐𝑗 to be merged.

7. Merge the listed cluster pairs.
8. Expand the clusters by the previously determined neighbors. Do

not add points twice that form intersections, nor add points to
clusters that no longer exist.

9. Repeat from step 3 until there are no changes made to the cluster
map.

At the end of the algorithm, a cluster map is constructed which
covers one tree by one cluster. The results of tree crown segmentation
are illustrated in Fig. 7.

This step is followed by the removal of small clusters that contain
too few points to cover a tree and are most likely the result of DTMs
containing tall objects other than trees such as lamp posts, or reflected
points on buildings. As a result of the removal step, the number of
clusters is significantly decreased.

4.7. Morphological filtering

Morphological image processing (Gonzalez and Woods, 2006; Ef-
ford, 2000) is an image-manipulation method that is suitable for mod-
ifying the shape of an image. In our research, it relies on the exis-
tence of pixels, therefore it is specifically applicable for binary image
processing.

Morphological opening was performed on the previously
constructed clusters iteratively three times. In the erosion operation
of the opening, a point was removed from the cluster if less than 6 of
its neighboring points were in the cluster. In the dilation operation, a
point was added to the cluster if any of its neighbors were already in
it.5

The results of morphological opening are illustrated in Fig. 8.

5 These constants (6 and 0) may vary according to the average canopy
radius of the examined area.
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Fig. 6. The four types of possible cluster merges.

Fig. 7. Tree crown segmentation performed on AHN-2.

4.8. Cluster pairing

While the irregularity of the original 3D data points are smoothed
with the DEM construction, it still results in clusters covering the
same tree not being located at the exact same place even in the DEM.
Therefore we must pair up the clusters in the two epochs and also
determine which trees lack a pair. If the algorithm does not find a
pair for a given cluster then it is presumable that if it is present in the
first point cloud then the tree it covers was cut between the epochs,
and if it is present in the second one, it was planted some time after
the first data acquisition.

Fig. 8. Morphological opening performed on AHN-2.

Two methods were implemented and tested for pairing as described
in the following subsections.

4.8.1. Centroid distance
Let 𝐸𝑝𝑜𝑐ℎ1 and 𝐸𝑝𝑜𝑐ℎ2 denote the two processed epochs and 𝑛1

and 𝑛2 be the number of clusters in the examined two cluster maps
respectively. Pairing up clusters according to their distance of centroids
can be done in a linear 𝜃(𝑛1 ∗ 𝑛2) asymptotic complexity.6 This
method allows pairing one 𝐸𝑝𝑜𝑐ℎ2 cluster to multiple others in 𝐸𝑝𝑜𝑐ℎ1,

6 Assuming that 𝑛1 = 𝑛2 = 𝑛 as a simplification it will be 𝜃(𝑛2)..
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thus losing partial injectivity and distorting results. This problem was
handled as follows.

1. Define the maximum horizontal distance 𝑚𝑎𝑥ℎ𝑐 of any two clus-
ters. Let 𝐶1 be the cluster set of 𝐸𝑝𝑜𝑐ℎ1 and 𝐶2 be that of
𝐸𝑝𝑜𝑐ℎ2. Let 𝑆 be the set of pairs.

2. Take every 𝑐𝑖 (𝑖 ∈ 1..|𝐶1|) that is not already paired and search
for the nearest 𝑐𝑗 (𝑗 ∈ 1..|𝐶2|) by calculating the distance of
their centroids where 𝑑ℎ(𝑐𝑖, 𝑐𝑗 ) ≤ 𝑚𝑎𝑥ℎ𝑐 and insert the pair into
𝑆. Note, that this can result in 𝑐𝑗 paired to multiple clusters in
𝐶1.

3. Take each pair from 𝑆 where 𝑐𝑗 = 𝑐𝑘 (𝑘 ∈ 1..|𝐶2|), search for the
pair with minimal distance and erase the others from 𝑆. This step
results in previously paired clusters from 𝐶1 getting unpaired.
For this reason, a new iteration is needed to search for a pair for
lone clusters.

4. Repeat from step 2 until no new pairs are found. Hence, the pair
set is partially injective.

4.8.2. Hausdorff-distance
The Hausdorff-distance (Rockafellar and Wets, 2009) of two point

sets is a maximin function: the maximum distance of the cluster to
the nearest point of the other cluster. Formally, for sets 𝐴 and 𝐵 the
Hausdorff-distance can be defined as:

ℎ(𝐴,𝐵) = 𝑚𝑎𝑥𝑎∈𝐴(𝑚𝑖𝑛𝑏∈𝐵(𝑑(𝑎, 𝑏))) (3)

The naive distance calculation and comparison require very high
computational cost due to the high number of points in a cluster. In
addition to 𝑛1 and 𝑛2 representing the cluster counts as defined in
Section 4.8.1, let 𝑚1 be the average number of points in an 𝐸𝑝𝑜𝑐ℎ1
cluster and 𝑚2 be that in 𝐸𝑝𝑜𝑐ℎ2. Since the calculation requires the
distance of every point in an 𝐸𝑝𝑜𝑐ℎ1 cluster to be calculated to every
point in an 𝐸𝑝𝑜𝑐ℎ2 cluster and this calculation has to be done for each
cluster in both cluster maps, the asymptotic bound for the calculation
of Hausdorff-distance is 𝜃(𝑛1 ∗ 𝑛2 ∗ 𝑚1 ∗ 𝑚2).7 In order to decrease
the consequent long runtime and high CPU time consumption, we
applied the early break and the random sampling optimizations defined
by Taha and Hanbury (2015) and refined by Zhang et al. (2017). These
optimizations make the Hausdorff distance calculation more effective:
in a theoretic best-case scenario8 it reaches the same 𝜃(𝑘 ∗ 𝑙) execution
time like the centroid-based approach. We also introduced a horizontal
threshold value 𝑇ℎℎ as the greatest possible distance between two
clusters based on their centroid distance (as defined in Section 4.8.1)
to further boost the performance.

Pairing by the Hausdorff-distance is not partially injective either,
which problem was handled in a similar manner as for the centroid
distance. The results of cluster pairing are illustrated in Fig. 9.

4.9. Difference of tree heights

Height differences of individually paired trees and average height
difference of an area can be calculated from the data acquired in the
previous steps.

Let 𝐶1 be the cluster set of 𝐸𝑝𝑜𝑐ℎ1 and 𝐶2 be that of 𝐸𝑝𝑜𝑐ℎ2. Let
𝑧(𝑝𝑒𝑎𝑘(𝑐𝑖)) be the maximum height of a cluster 𝑐𝑖, where 𝑐𝑖 ∈ 𝐶1. Let
𝑧(𝑝𝑒𝑎𝑘(𝑐𝑗 )) be the maximum height of a cluster 𝑐𝑗 , where 𝑐𝑗 ∈ 𝐶2. Let
𝛿ℎ(𝑐𝑖, 𝑐𝑗 ) be the height difference of this cluster pair which is calculated
as follows:

𝛿ℎ(𝑐𝑖, 𝑐𝑗 ) = 𝑧(𝑝𝑒𝑎𝑘(𝑐𝑗 )) − 𝑧(𝑝𝑒𝑎𝑘(𝑐𝑖)) (4)

If 𝛿ℎ > 0, then the tree has grown since the first scan, and if 𝛿ℎ < 0, then
the tree has been cut back by some natural or human force. 𝛿ℎ = 0 is

7 Assuming that 𝑛1 = 𝑛2 = 𝑛 and 𝑚1 = 𝑚2 = 𝑚 as a simplification, the
computational cost can be approximated as 𝜃(𝑛2 ∗ 𝑚2)..

8 In a worst-case scenario the execution time will not improve at all.

Fig. 9. Detected paired and unpaired clusters.

Fig. 10. Height differences of paired clusters.

highly unlikely even if a tree has already reached its height limit since
the scanning is inconsistent and points do not usually fall to the same
exact coordinates in different inspections.

Height difference for individual trees of the sample area are visual-
ized by Fig. 10.

4.10. Difference between tree volumes

Once each and every one of the trees in the examined area are
located, we are able to calculate their individual and aggregate canopy
volume. This calculation can only be done in seasons when there are
actual leaves on the trees since they build up the canopy and provide
the volume.

Calculating the volume of a tree is a difficult task if done very accu-
rately since the clusters that represent tree canopies can be considered
completely irregular polygons. It would be a very high-demanding task
to calculate the exact volume of a cluster regarding computational costs
and execution time, so we took advantage of the raster grid instead. Let
𝑉𝑐𝑖 be the volume of cluster 𝑐𝑖, 𝑧(𝑝𝑛) be the height of a point and |𝑐𝑖|
be the total number of points in the cluster. The computation of 𝑉𝑐𝑖 is
described by Eq. (5).

𝑉𝑐𝑖 =
|𝑐𝑖|
∑

𝑛=1
𝑧(𝑝𝑛) ∗ 0.52 (5)

As mentioned in Section 3, the real distance between two grid points
is 0.5𝑚 which is why the multiplication is done by 0.52. After that, the
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Table 1
Basic data and runtime information of the sample territories.

Name Area Pairing method Runtime

Single street 0.103 km2 centroid 4.09 s
Hausdorff 26.29 s

Amsterdam city center 1.937 km2 centroid 16 min 08 s
Hausdorff 20 min 07 s

TU Delft Campus 2.143 km2 centroid 20 min 30 s
Hausdorff 30 min 17 s

Delft city center 8.640 km2 centroid 9 h 04 min
Hausdorff 10 h 51 min

Tallinn city center 1.0 km2 centroid 6 min 32 s
Hausdorff 11 min 58 s

total volume of the trees in the former epoch is extracted from that
of the latter epoch, and similar conclusions can be drawn from the
difference as in the case of tree height changes.

5. Results and discussion

We tested the algorithm on four territories of different sizes from
the AHN dataset and one territory from the Estonian Elevation Dataset.
Table 1 contains the name and area of each territory along with perfor-
mance information for both pairing methods. The preprocessing steps
(starting from 4.1, finished at 4.7) were carried out concurrently for the
two epochs, while the further tasks (from 4.8 to 4.10) were executed
sequentially without any parallelization applied on a single CPU core.
Increase of runtime is non-linear with the growth of territory size due
to the quadratic computational cost mentioned in Section 4.8.1.

Table 2 contains the results of the tree segmentation (number of de-
tected clusters) and the pairing carried out by different pairing methods
for each sample territory. The centroid distance pairing method turned
out to be a better solution in a general scenario with respect to both
computational complexity and – contradicting our initial assumptions
– the accuracy of the cluster pairing. Hausdorff distance was proved to
be a better choice in case of concave polygons, such as buildings (Liu
et al., 2019), since it provides the distance of actual points in a cluster
rather than a fictive centroid, which might lie outside of the edges
of a concave polygon. Our research showed that in the case of trees,
where the segmented objects are nearly always convex polygons, the
simpler centroid distance can be a better approach in cluster pairing,
as the centroids give a good representing point for the middle of trees.
Increasing the horizontal threshold 𝑇ℎℎ of the cluster pairing could
improve the results of the Hausdorff distance based pairing with the
possible side-effect of mispairing clusters in other cases.

Removed trees were only present among the 𝐸𝑝𝑜𝑐ℎ1 clusters, while
New trees were only found in the 𝐸𝑝𝑜𝑐ℎ2 clusters. These values are
unrealistically high compared to the number of detected cluster pairs.
Through manual evaluation we deduced that building facades, irreg-
ular rooftops and larger statues can be misdetected as trees by our
algorithm, as also observable on Fig. 9.

Table 3 contains the aggregated volume and total volume difference
of both epochs for each sample territory. The individual results should
be considered an approximation of the reality, since the volumes were
calculated from the dimensions of the bounding box of each tree.
However, since this distortion of data is present in both epochs, the
difference of the two aggregated values is an accurate indicator of the
overall change in biomass.

Individual height differences of trees are visualized by Fig. 10 and
Fig. 12 for the Single Street and the TU Delft Campus sample territories
respectively. For the larger Delft city center territory, an interactive
online visualization was created.9 Through this interface the users can

9 Available at http://gis.inf.elte.hu/ahn/ahn_veg_delft_wms.html.

Fig. 11. Interactive tool for detailed, vegetation level altimetry change analysis for the
Delft city center sample territory.

view the raw, tree level output of the algorithm and fetch the exact
altimetry difference of a marked location. A screenshot of the web
application is depicted in Fig. 11.

5.1. Validation

To assess the quality of our method, a validation of the results have
been performed using the city-wide Trees and Main tree structure
datasets from the Amsterdam open geodata portal10 as reference.

• The Trees dataset contains various information about the trees
that are managed by the municipality of Amsterdam, including
their location and optionally the year of planting, the height and
the radius of their crown. This dataset was useful to calculate a
proper estimation of true positive and false negative detections.

• The Main tree structure dataset describes the main road network of
Amsterdam where the trees are managed by the municipality and
local regulations of planting, replacing, rootable space, allowed
trunk circumference, etc. apply. This dataset was useful to filter
out trees in private properties, so the proper rate of false positives
could also be calculated.

The validation was evaluated by comparing the coordinates of
detected trees in the Amsterdam city center sample territory for the AHN-
3 dataset with the coordinates of the registered trees in the reference
Trees dataset. We consider only those trees that (𝑖) lie within the
20 meter buffer of the road network11 in the Main tree structure dataset;
and (𝑖𝑖) were planted before 2015, since the AHN-3 data acquisition
was completed in that year for Amsterdam. To compensate for the
inaccuracy of positioning between the input and the reference datasets,
we allowed 3 meters of tolerance between the segmented clusters’
centers and the registered coordinates in the reference dataset.

For the examined territory our proposed algorithm detected 1738
individual trees. Among the 1411 trees contained in the reference
dataset, 1129 of them (80.01%) were successfully matched by our
algorithm. There were 282 false negative (19.99%) and 609 false
positive (35.04%) detections. An interactive online visualization of the
output of the validation was also created.12 Through manual examina-
tion of the results we concluded that the most common reasons for
misdetection of trees were the following:

• Their crown was too small horizontally and was removed after
the segmentation phase of the algorithm.

10 https://maps.amsterdam.nl/open_geodata/
11 The Main tree structure dataset describes the road network as a vector layer

of linestrings.
12 Available at http://gis.inf.elte.hu/ahn/ahn_veg_ams_ver.html.

http://gis.inf.elte.hu/ahn/ahn_veg_delft_wms.html
https://maps.amsterdam.nl/open_geodata/
http://gis.inf.elte.hu/ahn/ahn_veg_ams_ver.html
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Table 2
Results of tree segmentation and different pairing methods at the sample territories.
Sample territory Epoch 1

clusters
Epoch 2
clusters

Pairing
method

Tree
pairs

Removed
trees

New
trees

Single street 168 173 centroid 112 56 61
Hausdorff 106 62 67

Amsterdam city center 3 865 3 585 centroid 2 157 1 708 1 428
Hausdorff 2 170 1 695 1 415

TU Delft Campus 3 834 4 128 centroid 2 115 1 719 2 013
Hausdorff 1 922 1 912 2 206

Delft city center 17 375 17 634 centroid 9 878 7 497 7 756
Hausdorff 9 137 8 238 8 497

Tallinn city center 2 109 2 082 centroid 1 431 678 651
Hausdorff 1 343 766 739

Fig. 12. Height differences of paired clusters in the TU Delft Campus sample territory.

• Their height was too small, and only a few pixels reached the
1.5 meter threshold in the DEM. Hence they were considered
small clusters and removed.

• The distance between the detected cluster center and the refer-
ence coordinate of the tree was over 3 m. This usually occurred
for larger trees as the manually recorded reference position is
sometimes on the boundary of the tree crown (or even outside
of it).

5.2. Comparison with other methods

We compared the results of our algorithm with other existing meth-
ods we previously discussed in Section 2 to assess the effectiveness of
the proposed method. Table 4 summarizes the measured differences.
We investigated the extraction, matching, commission, and omission

Table 3
Results of volume calculation for different epochs at the sample territories.

Sample territory Epoch 1 volume Epoch 2 volume Difference

Single street 80 751 m3 128 616 m3 47 866 m3

Amsterdam city center 607 223 m3 716 067 m3 108 845 m3

TU Delft Campus 1 582 340 m3 2 481 330 m3 898 989 m3

Delft city center 5 669 190 m3 8 755 340 m3 3 086 150 m3

Tallinn city center 1 487 250 m3 1 686 700 m3 199 453 m3

rate defined as Eq. (6) and (9), in accordance with Yang et al. (2020).

Extraction rate =
𝑁𝑒𝑥𝑡
𝑁𝑟𝑒𝑓

⋅ 100% (6)

Matching rate =
𝑁𝑚𝑎𝑡𝑐ℎ
𝑁𝑟𝑒𝑓

⋅ 100% (7)
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Table 4
Comparison of results provided by previous tree segmentation methods and our algorithm.

ID Method Extraction rate Matching rate Commission rate Omission rate

1 Local maximum + Filtering 51 45 9 59
2 Local maximum + Region growing 57 43 20 61
3 Local maximum + Multiscale CHM 101 46 61 57
4 Local maximum + Watershed 86 49 49 55
5 Segmentation + Clustering 139 53 95 51
6 Local maximum with 3 × 3 kernel 154 54 113 51
7 Local maximum with 5 × 5 kernel 52 41 16 63
8 Watershed + 3D spatial distribution 107.8 67.6 37.3 32.5
9 Our proposed algorithm 123.2 80.0 35.0 20.0

Commission rate =
𝑁𝑐𝑜𝑚
𝑁𝑒𝑥𝑡

⋅ 100% (8)

Omission rate =
𝑁𝑜𝑚
𝑁𝑟𝑒𝑓

⋅ 100% (9)

𝑁𝑒𝑥𝑡, 𝑁𝑚𝑎𝑡𝑐ℎ, 𝑁𝑐𝑜𝑚, 𝑁𝑜𝑚, and 𝑁𝑟𝑒𝑓 are the cardinalities of extracted,
matching, false positive (commission), false negative (omission), and
reference trees, respectively.

The experimental results of Methods #1-#7, i.e. local maximum
+ filtering (Monnet et al., 2010), local maximum + region grow-
ing (Dalponte et al., 2014), local maximum + multiscale CHM (Eysn
et al., 2015), local maximum + watershed (Lindberg et al., 2014),
segmentation + clustering (Sambugaro et al., 2013), local maximum
with 3 × 3 kernel, and local maximum with 5 × 5 kernel (Eysn et al.,
2012) were previously benchmarked by Eysn et al. (2015). Method
#8, i.e. watershed + 3D spatial distribution (Yang et al., 2020) is a
state-of-the-art method.

The experimental results show that our proposed algorithm sig-
nificantly outperforms the previous methods regarding the matching
rate and omission rate of tree segmentation, while still producing an
acceptable extraction rate and commission rate, comparable to other
state of the art methods. Considering the robustness in execution time,
evaluation area and the independence of tree species, the proposed
method has multiple advantages.

6. Conclusions

The goal of our research was to develop an automatized, robust
algorithm for the change detection of trees based on LiDAR data
in large urban areas. The algorithm works with preprocessed DEM
files instead of raw point clouds in order to decrease computational
complexity. Two cluster maps are produced of the DEMs through
a processing pipeline. Afterwards, the corresponding clusters of each
cluster map are paired, producing a new map. The paired cluster map
is suitable for change detection analysis.

Two nationwide datasets covering the Netherlands and Estonia were
selected for testing our method. The sample territories cover urban
environments with plenty of vegetation.

The results and their validation have shown that the algorithm
fulfills the initial expectations for detecting trees in an urban area.
However, artificial objects (typically building facades) can distort the
results with false positive cases , which increase the number of removed
and new trees in the first place. Cluster construction and pairing
has provided representative data of the quantifiable changes (i.e. tree
presence, height, and volume).

Future work includes increasing the accuracy of tree segmentation
and cluster pairing, primarily focusing on reducing false positive de-
tections. From a performance point of view, the algorithm could
be improved by parallel data processing in the algorithm steps. The
concurrent processing of non-overlapping areas (e.g. AHN tiles) would
enable large-scale execution of the algorithm in a HPC environment.
Both pairing methods can be further accelerated by creating spatial
indexes for the cluster maps, e.g. a quadtree or R-tree.

Computer code availability

The prototype implementation of the algorithm was carried out in
standard C++11 as part of the PointCloudTools geospatial framework.

Source code is available at https://github.com/mcserep/PointClou
dTools and released under the BSD-3 license. The project was tested to
build and run on Windows 10 and Ubuntu Linux 18.04/20.04 LTS.
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