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We consider quantitative versions of Helly-type questions, that
is, instead of finding a point in the intersection, we bound the
volume of the intersection. Our first main result is a quantitative
version of the Fractional Helly Theorem of Katchalski and Liu,
the second one is a quantitative version of the (p, q)-Theorem of
Alon and Kleitman.
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1. Introduction

The study of quantitative versions of Helly-type questions was initiated by Bárány, Katchalski
and Pach in [6], where the Quantitative Volume Theorem is shown, stating the following. Assume
that the intersection of any 2d members of a finite family of convex sets in Rd is of volume at least one.
Then the volume of the intersection of all members of the family is of volume at least c(d), a constant
depending on d only.

In [6], it is proved that one can take c(d) = d−2d2 and conjectured that it should hold with
c(d) = d−cd for an absolute constant c > 0. It was confirmed with c(d) ≈ d−2d in [20], whose
argument was refined by Brazitikos [8], who showed that one may take c(d) ≈ d−3d/2. For more on
quantitative Helly-type results, see the surveys [10,15].

Quantitative variants of the Fractional Helly Theorem and the (p, q)-Theorem (see the statements
below) have been obtained in [11,21,22]. In the present note, we prove such results as well. The
main difference with those works is that we aim at low Helly numbers, but, in return, we obtain
worse bounds on the volume. Thus, our work may be considered rough approximation of some
intersections, while the earlier works are fine approximations.
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The Fractional Helly Theorem due to Katchalski and Liu [17] (see also [18, Chapter 8]) states
the following. Fix a dimension d, and an α ∈ (0, 1), and let C be a finite family of convex sets in Rd

with the property that among the subfamilies of C of size d + 1, there are at least α
(

|C|

d+1

)
for which the

intersection of the d + 1 members is nonempty. Then, there is a subfamily C′
⊂ C of size |C′

| ≥
α

d+1 |C|

such that the intersection of all members of C′ is nonempty.
Our first main result is the following, a Quantitative Fractional Helly Theorem (QFH in short).

Theorem 1.1 (QFH). For every dimension d ≥ 1 and every α ∈ (0, 1), there is a β ∈ (0, 1) such that
the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfamilies of size 3d + 1, there
are at least α

(
|C|

3d+1

)
for whom the intersection of the 3d + 1 members is of volume at least one.

Then, there is a subfamily C′
⊂ C of size at least β|C| such that the intersection of all members of C′

is of volume at least d−cd2 with a universal constant c > 0.

In [21], using results on fine approximation of a convex body by polytopes, it is shown that one
may find a subfamily whose members intersect in a set of volume at least 1 − ε (in place of our
d−cd2 ), if size ε−O(d2) subfamilies are checked (in place of our 3d+1). We may call such result a ‘fine’
Fractional Helly theorem: the size (volume or surface area or some other quantity) of the intersection
of the subfamily that we find is close to the size of the intersection of the subfamilies that need to
be checked.

Remark 1.2 (Ellipsoids and Volume). A well known consequence of John’s Theorem, is that the
volume of any compact convex set K in Rd with non-empty interior is at most dd times larger than
the volume of the largest volume ellipsoid contained in K . More precise bounds for this volume
ratio are known (cf. [4]), but we will not need them. Thus, from this point on, we phrase our results
in terms of the volume of ellipsoids contained in intersections. Its benefit is that this is how in the
proofs we actually ‘‘find volume’’: we find ellipsoids of large volume.

In this spirit, we re-state our result in terms of ellipsoids. It immediately yields Theorem 1.1 by
Remark 1.2.

Theorem 1.3 (QFH in Terms of Ellipsoids). For every dimension d ≥ 1 and every α ∈ (0, 1), there is a
β ∈ (0, 1) such that the following holds.

Let C be a finite family of convex sets in Rd. Assume that among all subfamilies of size 3d + 1, there
are at least α

(
|C|

3d+1

)
for which the intersection of the 3d + 1 members contains an ellipsoid of volume

one.
Then, there is a subfamily C′

⊂ C of size at least β|C| such that the intersection of all members of C′

contains an ellipsoid of volume at least cd
2
d−5d2/2+d, where c is the universal constant from Theorem 2.1.

Remark 1.4. The lower bound on β obtained by our proof is α

Cd with a universal constant C > 1.
Note that in the case of the classical Fractional Helly Theorem, the sharp bound on β shown in [16]
by Kalai is β = 1 − (1 − α)

1
d+1 , see also [12] by Eckhoff.

Holmsen [14] recently showed that, in an abstract setting, a colorful Helly-type result implies a
fractional one. In [22], the authors combine Holmsen’s result with a Quantitative Colorful Helly
Theorem ([9, Proposition 1.4], [22, Corollary 1.0.3]) to obtain a quantitative fractional result,
Proposition 1.5. We note that this approach works only when the size of subfamilies considered is
large, d(d+3)

2 . Theorem 1.3 is the first fractional Helly-type result on volume that concerns subfamilies
of linear size and not quadratic in the dimension.

Proposition 1.5 (QFH — Large Subfamilies, [22, Theorem 5.2.1]). For every dimension d ≥ 1 and every
α ∈ (0, 1) the following holds.

Let C be a finite family of convex bodies in Rd. Assume that among all subfamilies of size d(d+3)
2 , there

are at least α
(

|C|

d(d+3)
2

)
for which the intersection of the d(d+3)

2 members contains an ellipsoid of volume
one.
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Then, there is a subfamily C′
⊂ C of size at least β|C| such that the intersection of all members of C′

contains an ellipsoid of volume one, where β =
2α

d(d+3) .

To help compare with Theorem 1.3, we give a short proof of Proposition 1.5 in Section 3.

Remark 1.6. In general, the value of β we obtain is better than the one Holmsen’s abstract

result [14] would yield, which is roughly
(

α

3d4

)(
d/

√
2
)d2

. On the other hand, in [14], it is shown
that β → 1 as α → 1.

Next, we turn to the (p, q)-Theorem, a strong generalization of Helly’s Theorem, conjectured by
Hadwiger and Debrunner in 1957 [13] and proved by Alon and Kleitman [3] in 1992. It states that
there is a function H such that if we have a family C of convex sets in Rd, and among any p of them
there are q with a nonempty intersection (p ≥ q ≥ d + 1), then there is a set T with |T | ≤ H(p, q, d)
such that every member of C contains at least one point from T .

Observe that for any p ≥ q ≥ d + 1, we have that H(p, q, d) ≤ H(p, d + 1, d). Thus, to show the
existence of the function H , it is sufficient to show that H(p, d + 1, d) is finite for all p ≥ d + 1.

Definition 1 (Quantitative v-Transversal Number). For a v > 0, we say that a family T of ellipsoid of
volume v is a quantitative v-transversal of a family C of convex bodies in Rd, if every C ∈ C contains
at least one ellipsoid from T . The quantitative v-transversal number τ = τ (C, v) for C is the smallest
cardinality of a quantitative v-transversal.

If there is a C ∈ C that contains no ellipsoid of volume v, then we set τ (C, v) = ∞.

Our second main result follows. We phrase it without reference to q in the definition of H , in
fact, we fix q at the smallest possible value for which we can prove the statement, q = 3d + 1.

Theorem 1.7 (Quantitative (p, q)-Theorem – Small Lower Bound on p). For every dimension d ≥ 1 and
every positive integer p ≥ 3d + 1, there is an integer H = H(p, d) such that the following holds.

Let C be a finite family of convex sets in Rd, each containing an ellipsoid of volume one, and assume
that among any p members of C, there exist 3d + 1 whose intersection contains an ellipsoid of volume
one.

Then, C has quantitative v-transversal number at most H(p, d) with v = cd
2
d−5d2/2+d, where c is

the universal constant from Theorem 2.1.

In [21], it is shown in a very general setting that a ‘fine’ Fractional Helly Theorem implies a ‘fine’
(p, q)-Theorem. In [22], an ‘intermediate range’ result is obtained: p needs to be at least d(d+3)

2 (that
is stronger than our assumption p ≥ 3d+ 1), and, in return, we obtain a quantitative 1-transversal,
that is, there is no loss in the volume of the ellipsoids. Theorem 1.7 is the first (p, q)-type result on
the volume with a lower bound on p which is linear and not quadratic in the dimension.

Proposition 1.8 (Quantitative (p, q)-Theorem – Large Lower Bound on p, [22, Theorem 5.0.1]). For every
dimension d ≥ 1 and every positive integer p ≥

d(d+3)
2 , there is an integer H = H(p, d) such that the

following holds.
Let C be a finite family of convex sets in Rd, each containing an ellipsoid of volume one, and assume

that among any p members of C, there exist d(d+3)
2 whose intersection contains an ellipsoid of volume

one.
Then, C has quantitative 1-transversal number at most H(p, d).

For other ‘fine’ (p, q) theorems, that is, results where the number of selected sets is much larger
(say, exponential in d) and, in return, one obtains a good approximation of the volume (and not just
the volume of the largest ellipsoid contained in a set), see [19] and [11].

The structure of the paper is the following. In Section 2, we introduce some of our tools, mostly
from [9]. We prove Proposition 1.5 in Section 3. Next, as a preparation for the (p, q) results, in
Section 5, we prove a quantitative version of the Selection Lemma and the Weak Epsilon Net
Theorem (see the statements of these two classical results in that section). Next, in Section 6,
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we give a short direct proof of Proposition 1.8. The arguments in these sections are modeled
on proofs of the corresponding classical (i.e., non-quantitative) results: the combinatorial core of
those arguments are extracted, and then combined with geometric facts from [9], which guarantee
uniqueness of certain ellipsoids contained in a convex body (see Lemmas 2.4 and 2.5).

In contrast, the proofs of Theorems 1.3 and 1.7 require further ideas, that are presented in
Sections 4 and 7. The difficulty in proving these results, where ‘‘rough approximation’’ is required,
that is, the number of sets to be selected is O(d) and not O(d2) (and, in return, there is a substantial
loss of volume) is explained at the beginning of Section 7.

2. Preliminaries

We will rely on the following quantitative Helly theorem that is phrased in terms of the volume
of an ellipsoid contained in a convex body.

Theorem 2.1 (Quantitative Helly Theorem). Let C1, . . . , Cn be convex sets in Rd. Assume that the
intersection of any 2d of them contains an ellipsoid of volume at least one. Then

⋂n
i=1 Ci contains an

ellipsoid of volume at least cdd−3d/2 with an absolute constant c > 0.

Theorem 2.1 was stated in [20] for volumes of intersections and not volumes of ellipsoids with
the weaker bound cdd−2d, which was an improvement of the volume bound d−2d2 given by Bárány,
Katchalski, and Pach [6]. The proof in [20] clearly yields containment of ellipsoids as stated herein,
and the argument was later refined by Brazitikos [8], who obtained the bound cdd−3d/2 as stated
above.

Another one of our key tools is the following observation from [9].

Lemma 2.2 ([9, Lemma 3.2]). Assume that the origin centered Euclidean unit ball, Bd is the largest
volume ellipsoid contained in the convex set C in Rd. Let E be another ellipsoid in C of volume at least
δvol

(
Bd

)
with 0 < δ < 1. Then there is a translate of δ

dd−1 Bd which is contained in E.

We state an immediate corollary of the Fractional Helly Theorem (see page 1).

Proposition 2.3. For every dimension d ≥ 1 and every α ∈ (0, 1), the following holds.
Let C be a finite family of convex sets in Rd and let L be a convex set in Rd. Assume that among

all subfamilies of size d + 1, there are at least α
(

|C|

d+1

)
for which the intersection of the d + 1 members

contains a translate of L.
Then, there is a subfamily C′

⊂ C of size at least α
d+1 |C| such that the intersection of all members of

C′ contains a translate of L.

Proof of Proposition 2.3. We use the following operation, the Minkowski difference of two convex
sets A and B:

A ∼ B :=

⋂
b∈B

(A − b).

It is easy to see that A ∼ B is the set of those vectors t such that B + t ⊆ A.
Now, replace each convex set C in C by C ∼ L, and apply the Fractional Helly Theorem (see

page 1). □

The following definition and two lemmas introduce the unique lowest ellipsoid of volume one
contained in a convex body.

Definition 2. For an ellipsoid E, we define its height as the largest value of the orthogonal projection
of E on the last coordinate axis.

Lemma 2.4 (Uniqueness of Lowest Ellipsoid, [9, Lemma 2.5]). Let C be a convex body, such that it
contains an ellipsoid of volume one. Then there is a unique ellipsoid of volume one such that every
other ellipsoid of volume one in C has larger height. We call this ellipsoid the lowest ellipsoid in C.

4
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Lemma 2.5 (Lowest Ellipsoid Determined by O(d2) Members of an Intersection [9, Lemma 3.1]). Let
C1, . . . , Cn be a finite family of convex bodies in Rd whose intersection contains an ellipsoid of volume
one. Then, there are d(d+3)/2−1 indices i1, . . . , id(d+3)/2−1 ∈ [n] such that

⋂n
i=1 Ci, and

⋂d(d+3)/2−1
j=1 Cij

have the same unique lowest ellipsoid.

3. Proof of Proposition 1.5 – QFH for large subfamilies

The following argument follows closely the proof of Theorem 8.1.1. in [18], the only difference
is the use of the unique lowest ellipsoid of a convex body (Lemma 2.4) instead of its lexicographic
minimum.

Let C = {C1, . . . , Cn}. We call an index set I ∈

(
[n]

d(d+3)
2

)
good, if the corresponding intersection

∩i∈ICi contains an ellipsoid of volume at least one. We say that a
( d(d+3)

2 − 1
)
-element subset S ⊂ I

of a good index set I ∈

(
[n]

d(d+3)
2

)
is a seed of I , if ∩i∈ICi and ∩i∈SCi have the same lowest ellipsoid.

By Lemma 2.5, all good index sets have a seed.

Since we have α

(
n

d(d+3)
2

)
good index sets and only

(
n

d(d+3)
2 − 1

)
possible seeds, there is a( d(d+3)

2 − 1
)
-tuple S ∈

(
[n]

d(d+3)
2 − 1

)
which is the seed of at least

α

(
n

d(d+3)
2

)
(

n
d(d+3)

2 − 1

) = α
n −

d(d+3)
2 + 1

d(d+3)
2

good index sets. Every such good index set has the form S ∪ {i} for some i ∈ [n] \ S. So we have

α
n− d(d+3)

2 +1
d(d+3)/2 convex bodies containing the lowest ellipsoid of ∩i∈SCi, plus the ( d(d+3)

2 −1) bodies from
S. Hence, the lowest ellipsoid of ∩i∈SCi is contained in at least

α
n + 1 − d(d + 3)/2

d(d + 3)/2
+

d(d + 3)
2

− 1 ≥
2αn

d(d + 3)
convex bodies among the Ci, completing the proof of Proposition 1.5.

4. Proof of Theorem 1.3 – QFH for small subfamilies

Let C = {C1, . . . , Cn}. We call an index set I ∈
(

[n]
3d+1

)
good, if the corresponding intersection ∩i∈ICi

contains an ellipsoid of volume at least one. We say that a 2d-element subset S ⊂ I of a good index
set I ∈

(
[n]

3d+1

)
is a seed of I , if the volume of the John ellipsoid of ∩i∈SCi is at most c−dd3d/2 times

the volume of the John ellipsoid of ∩i∈ICi, where c is the absolute constant from Theorem 2.1. By
Theorem 2.1, all good index sets have a seed.

Since we have α
( n
3d+1

)
good index sets and only

( n
2d

)
possible seeds, there is a (2d)-tuple S ∈

(
[n]
2d

)
which is the seed of at least

α
( n
3d+1

)( n
2d

) ≥ γ

(
n

d + 1

)
good index sets. Here γ depends on α and d, but not on n.

Let I1, . . . , Iγ ( n
d+1)

be good index sets whose seed is S. Denote the John ellipsoid of the intersection
∩i∈SCi by E and the John ellipsoid of ∩i∈IjCi by Ej. By Lemma 2.2, for every j, there is a vj ∈ Rd such
that cdd−5d/2+1E + vj ⊆ Ej.

Thus, we have shown that at least γ
( n
d+1

)
of the (d+ 1)-wise intersections contain a translate of

cdd−5d/2+1E . We can apply Proposition 2.3 with L = cdd−5d/2+1E , which implies that there are γ

d+1n
such Ci, that their intersection contains a translate of cdd−5d/2+1E . And, since E has volume at least
one, this ellipsoid has volume at least cd

2
d−5d2/2+d, completing the proof of Theorem 1.3.
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5. Roadmap to (p, q): Selection lemma and weak epsilon net

In [2], partly by extracting the combinatorial arguments presented in earlier works, it is shown
in an abstract setting (that is, working with hypergraphs in general, and not specifically with
convex sets in Rd) that a (p, q)-theorem may be obtained from a fractional Helly-type theorem
in the following manner. First, combined with a Tverberg-type theorem, a fractional Helly-type
theorem yields a selection lemma [2, Proposition 11], which in turn yields a weak epsilon-net
theorem [2, Theorem 9] using a greedy algorithm. On the other hand, if a hypergraph satisfies the
(p, q) condition, then the hypothesis of the fractional Helly-type theorem holds. It follows that the
fractional transversal number of the hypergraph is bounded from above, which, combined with a
weak epsilon-net, yields that its transversal number is bounded as well, which is what the (p, q)-
theorem states. In the rest of the paper, we will mark where we follow this path, and where we do
not.

In this section, we state the above listed classical (non-quantitative) results along with their
quantitative analogs.

Tverberg’s Theorem (see [23], and for a simpler proof [24]) states the following. For every
dimension d ≥ 1 and integer r ≥ 1, if m ≥ (r − 1)(d + 1) + 1 and {x1, . . . , xm} is a set of points
in Rd of size m, then there is a partition ∪

r
i=1Ii = [m] such that ∩

r
i=1conv

(
{xj : j ∈ Ii}

)
is not empty.

It is shown in [2, Proposition 10] that in an abstract setting, a fractional Helly-type theorem yields
a Tverberg-type theorem. However, the Tverberg number (the lower bound on m) obtained there is
very large. Luckily, we have a quantitative Tverberg theorem due to Sarkar, Xue and Soberón with
a much better Tverberg number.

Theorem 5.1 (Quantitative Tverberg Theorem [22, Theorem 4.1.2]). For every dimension d ≥ 1 and
integer r ≥ 1, if m ≥ (r −1)

( d(d+3)
2 + 1

)
+1 and {E1, . . . , Em} is a multiset of ellipsoids of volume one,

then there is a partition ∪
r
i=1Ii = [m] such that ∩

r
i=1conv

(
{Ej : j ∈ Ii}

)
contains an ellipsoid of volume

one.

We will need the following form of the above result.

Corollary 5.2 (Quantitative Tverberg Theorem with Equal Parts). For every dimension d ≥ 1, if
a =

( d(d+3)
2 − 1

) ( d(d+3)
2 + 1

)
+ 1, b =

d(d+3)
2 and {E1, . . . , Eab} is a multiset of ellipsoids of volume

one, then there is a partition ∪
b
i=1Ii = [ab] such that |I1| = · · · = |Ib| = a and ∩

b
i=1conv

(
{Ej : j ∈ Ii}

)
contains an ellipsoid of volume one.

Proof of Corollary 5.2. Pick any a element subset I ⊂ [ab] and use Theorem 5.1 with r = b. It yields
a partition ∪

b
i=1I

′

i = I such that ∩
b
i=1conv

(
{Ej : j ∈ I ′i }

)
contains an ellipsoid of volume one. Now

complete the parts of the obtained partition from the remaining (ab − a) indexes into a-element
disjoint index sets I1 ⊃ I ′1, I2 ⊃ I ′2, . . . , Ib ⊃ I ′b. Since conv

(
{Ej : j ∈ I ′i }

)
⊂ conv

(
{Ej : j ∈ Ii}

)
, the

partition ∪
b
i=1Ii = [ab] will have the desired properties. □

The Selection Lemma (the planar version first proved by Boros and Füredi [7], the general
version due to Bárány [5]) states the following. For every dimension d ≥ 1, there exists a λ ∈ (0, 1)
with the following property. If {x1, . . . , xn} is a multiset of points in Rd, then there is a subset H ⊆

(
[n]
d+1

)
with |H| ≥ λ

( n
d+1

)
such that ∩I∈Hconv

(
{xj : j ∈ I}

)
is not empty. .

Lemma 5.3 (Quantitative Selection Lemma). For every dimension d ≥ 1, there exists an integer a(d) and
a real number λ(d) ∈ (0, 1) with the following property. If n ≥ a and {E1, . . . , En} is a multiset of volume
one ellipsoids in Rd, then there is a subsetH ⊆

(
[n]
a

)
with |H| ≥ λ

(n
a

)
such that ∩I∈Hconv

(
∪{Ej : j ∈ I}

)
contains an ellipsoid of volume one.

The proof follows closely the proof of [2, Proposition 11].

Proof of Lemma 5.3.
Let a =

( d(d+3)
2 − 1

) ( d(d+3)
2 + 1

)
+ 1 and b =

d(d+3)
2 as in Corollary 5.2.

6
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Let S =
{
conv (∪{Ei : i ∈ I}) : I ∈

(
[n]
a

)}
. Our plan is to show that a positive fraction of b-tuples

in S has an intersection which contains an ellipsoid of volume one in order to apply Proposition 1.5
to S. Let

T =

{
{I1, . . . , Ib} : Ii ∈

(
[n]
a

)
, Ii ∩ Ij = ∅ for i ̸= j and

∩
b
i=1 conv

(
∪{Ej : j ∈ Ii}

)
contains an ellipsoid of volume 1

}
.

Observe that |T | is at least
( n
ab

)
, since, according to Corollary 5.2, for each J ∈

(
[n]
ab

)
there exists

pairwise disjoint I1, . . . , Ib ∈
(J
a

)
such that ∩

b
i=1conv

(
∪{Ej : j ∈ Ii}

)
contains an ellipsoid of volume

one, and so each J contributes a different b-tuple in T . Hence

|T | ≥

(
n
ab

)
≥

( n
ab

)ab
≥

1
(ab)(ab)

((n
a

)
b

)
,

which means that we can apply Proposition 1.5 to S and conclude that a λ(d) = β

(
1

(ab)(ab)
, d

)
fraction of the members of S has an intersection that contains an ellipsoid with volume 1. This
completes the proof of Lemma 5.3. □

The Weak Epsilon Net Theorem, proved by Alon, Bárány, Füredi and Kleitman [1] states the
following. For every dimension d ≥ 1 there exists a function f : (0, 1] → R with the following
property. For any ε ∈ (0, 1], if C is a finite family of convex bodies in Rd, and w : Rd

→ [0, 1] is a
weight function such that

∑
x∈C w(x) ≥ ε for all C ∈ C, and

∑
x∈Rd w(x) = 1, then there is a set S ⊂ Rd

such that each C ∈ C contains an element of S, and S is of size at most f (ε).

Theorem 5.4 (Existence of Quantitative Weak ε-Nets). For every dimension d ≥ 1 there exists a function
f : (0, 1] → R with the following property.

For any ε ∈ (0, 1], if C is a finite family of convex bodies in Rd, and E is a finite family of volume
one ellipsoids in Rd, and w : E → [0, 1] is a rational weight function on this family of ellipsoids such
that

∑
E∈E,E⊆C w(E) ≥ ε for all C ∈ C, and

∑
E∈E w(E) = 1, then there is a family S of ellipsoids of

volume one such that each C ∈ C contains a member of S , and S is of size at most f (ε).

Proof (Sketch of the Proof of Theorem 5.4). The existence of quantitative weak epsilon nets follows
from the Quantitative Selection Lemma (Lemma 5.3), using a greedy algorithm. A very similar
proof can be found in [18, Theorem 10.4.2.]. We provide an outline of the proof for the readers
convenience.

Since w is rational, there is an integer D and an integer valued function w̃ such that w(E) =
w̃(E)
D

for all E ∈ E . Let Ẽ be the multiset containing w̃(E) copies from each E ∈ E . We construct the set S
greedily choosing ellipsoids one by one. We start with the empty set S0 = ∅. Once Si is constructed,
if there is a C ∈ C containing no ellipsoid from Si, then let Ẽi be the ellipsoids from Ẽ contained in C .
The size of Ẽi is at least εD. The Quantitative Selection Lemma, Lemma 5.3 guarantees an ellipsoid
E in the convex hulls of at least λ(d)

(
|Ẽi|
a(d)

)
different a(d)-tuples from Ẽi. Let Si+1 = Si ∪ {E}.

We obtain an upper bound on f (ε) by observing that at the beginning, there are
(
|Ẽ|

a

)
a-tuple

with no ellipsoid from S0 in their convex hulls, and this number of ’not hit’ a-tuples decreases by
at least λ

(
ε|Ẽ|

a

)
in each step. □

We note that by using Theorem 5.1, we obtain a smaller f (ε) than the one guaranteed by [2,
Theorem 9], where only combinatorial arguments are used.

6. Proof of Proposition 1.8 – quantitative (p, q)-theorem with a large bound on p

Let C be a finite family of convex bodies in Rd as in Proposition 1.8. We will represent C as
a finite hypergraph. For each subfamily of C, take the lowest volume one ellipsoid contained in
the intersection of that subfamily, if there is such an ellipsoid. This way, we have a finite family

7
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of volume one ellipsoids. This family of ellipsoids, denote it by E , will be the vertex set of our
hypergraph. For each C ∈ C, consider the subfamily of ellipsoids in E that are contained in C .
The edges of the hypergraph will be subfamilies of ellipsoids obtained this way. We denote this
hypergraph by (E,H).

A fractional transversal of a hypergraph is a function ϕ : E → [0, 1] such that for every H ∈ H,
the sum

∑
E∈H ϕ(E) is at least one. The fractional transversal number of (E,H) is just the infimum

of
∑

E∈E ϕ(E) over all fractional transversals.
In [2, Theorem 8], the authors establish an upper bound for the fractional transversal number of

all hypergraphs satisfying a certain fractional Helly property and a (p, q)-property.

Theorem 6.1 ([2]). Let (V ,H) be a hypergraph with the following properties.
There is a function β : (0, 1) → (0, 1) such that for every H1, . . . ,Hn ∈ H, if at least α

(n
q

)
of the

q-tuples from {H1, . . . ,Hn} have nonempty intersection with some α ∈ (0, 1), then there are a β(α)n
members from {H1, . . . ,Hn} having nonempty intersection.

There are positive integers p ≥ q such that among any p members of H, some q have a nonempty
intersection.

In this case, the fractional transversal number of (V ,H) can be bounded with a function depending
on p, q and β only.

Proposition 1.5 guarantees that our (E,H) satisfies the fractional Helly property with q =
d(d+3)

2 .
The (p, q)-property needed in Theorem 6.1 is assumed in Proposition 1.8. Hence by Theorem 6.1
and Proposition 1.5, the fractional transversal number of (E,H) is bounded from above by some
T > 0 that depends on d only.

Note that since any fractional transversal is a solution of a linear program with integer co-
efficients, there is an optimal solution with rational ϕ. Our Quantitative Weak ε-Net Theorem,
Theorem 5.4, applied with ε = 1/T and a normalized ϕ now completes the proof of Proposition 1.8.

In summary, the proof of Proposition 1.8 mainly follows the classical line of reasoning that yields
the (p, q)-Theorem. As we will see in the next section, to obtain Theorem 1.3, some other ideas are
required.

7. Proof of Theorem 1.7 – quantitative (p, q)-theorem with a small bound on p

First, we discuss why the same argument as in the previous section cannot be repeated. The main
idea in Section 6 was that we considered a hypergraph representing our convex sets, and studied
properties of this hypergraph. In the setting of Theorem 1.7, however, there are two hypergraphs:
we obtain one if we consider ellipsoids of volume one in our convex sets, and we obtain another,
if ellipsoids of volume v are considered (with v = cd

2
d−5d2/2+d). Thus, some additional care is

required.

Definition 3 (Quantitative Fractional v-Transversal Number). For a subset S ⊆ Rd, let Ev(S) be the set
of volume v ellipsoids contained in S. Let C be a family of subsets of Rd and let ϕ : Ev(Rd) → [0, 1]
be a function that attains only finitely many nonzero values. We say that ϕ is a quantitative fractional
v-transversal for C, if

∑
E∈Ev (C) ϕ(E) ≥ 1 for all C ∈ C. The quantitative fractional transversal number

of C is the infimum of
∑

E∈Ev (Rd) ϕ(x) over all quantitative fractional transversals ϕ of C.

Lemma 7.1 (Boundedness of Quantitative Fractional v-Transversal Number). For every d and p ≥ 3d+1
there exists a h = h(p, d) > 0 with the following property.

Let C be a finite family of convex sets in Rd, each containing an ellipsoid of volume one, and assume
that among any p members of C, there exist 3d + 1 whose intersection contains an ellipsoid of volume
one.

Then C has quantitative fractional v-transversal number less than h with v = cd
2
d−5d2/2+d, where c

is the universal constant from Theorem 2.1.

Proof. We are going to use linear programming duality as in [3], but first we need the definition
of quantitative fractional v-matching numbers.

8
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Definition 4. Let C be a finite family of convex sets in Rd and let m : C → [0, 1] a function. We say
that m is a quantitative fractional v-matching for C, if for every ellipsoid E ⊂ Rd with volume v, the
sum

∑
E⊂C∈C m(C) is at most 1. The quantitative fractional v-matching number of C is the supremum

of
∑

C∈C m(C) over all quantitative fractional v-matchings of C.

Let v = cd
2
d−5d2/2+d. Note that if we consider each member C of C as the collection of all

volume v ellipsoids that it contains, then we obtain a hypergraph with finitely many edges, but
an infinite vertex set. However, we can replace this infinite vertex set by a finite one, just like at
the beginning of Section 6, and obtain another hypergraph with the same (fractional) transversal
and matching numbers as those of the original hypergraph. Now, we may apply the duality of
linear programming to see that the quantitative fractional v-matching number and the quantitative
fractional v-transversal number are equal for any family of convex sets C. We denote it by ν∗

v (C).
We know also, that being a solution of a linear program with integer coefficients, there is an

optimal quantitative fractional v-matching taking only rational values. Let m be such a quantitative
fractional v-matching and suppose, that m(C) =

m̃(C)
D for every C , where m̃(C) and D are integers.

Let C̃ = {C1, . . . , CN} be the multiset that contains m̃(C) copies of each C ∈ C. Thus, we have

N =

∑
C∈C

m̃(C) = Dν∗

v (C) (1)

Taking some sets with multiplicities does not change the quantitative fractional matching
number, so ν∗

v (C̃) = ν∗
v (C). We know that among any p members of C, there are 3d + 1 whose

intersection contains an ellipsoid with volume 1. So among any p̃ = 3d(p − 1) + 1 members of C̃
there are 3d + 1 whose intersection contains an ellipsoid with volume 1, because the p̃ element
multiset from C̃ either contains 3d + 1 copies of the same set, or p different sets from C.

For every I ∈
(
[N]

p̃

)
there is a subset J ⊂ I with |J| = 3d + 1 and ∩j∈JCj containing an ellipsoid of

volume one. So there are at least(N
p̃

)(N−3d+1
p̃−3d+1

) ≥ α

(
N

3d + 1

)
3d + 1-tuples from C whose intersection contains an ellipsoid of volume one. We can apply
Theorem 1.3 and conclude that there are βN sets from C̃ whose intersection contains an ellipsoid
with volume v.

On the other hand, for any ellipsoid E of volume v, we have∑
C∈C:E⊆C

m̃(C)
D

=
1
D
#{C ∈ C̃ : E ⊆ C} ≤ 1.

Thus, by (1), we have that no ellipsoid of volume v can be in more than N
ν∗
v (C)

of the sets from C̃,
hence ν∗

v (C) ≤
1
β
, completing the proof of Lemma 7.1. □

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. If among any p members of C there are 3d+ 1 whose intersection contains
an ellipsoid of volume 1, then from Lemma 7.1 it follows, that C has quantitative fractional v-
transversal number at most h(p, d) with v = cd

2
d−5d2/2+d. Let ϕ be a quantitative fractional

v-transversal of size h(p, d), and for every ellipsoid E with volume v let w(E) =
ϕ(E)
h(p,d) . We can

use Theorem 5.4 with w and C and conclude that there is a 1
h -net S with volume v ellipsoids for

C of size at most f
( 1
h

)
. Since for every C ∈ C the inequality

∑
E⊂C w(E) ≥

1
h holds, every C ∈ C

contains at least one ellipsoid from S and Theorem 1.7 follows with H(p, d) = |S| = f
(

1
h(p,d)

)
. □

8. Concluding remarks

The following questions are left open. First, can the Helly number 3d + 1 be replaced by 2d in
Theorems 1.1, 1.3, 1.7? It would be interesting to see such result, even if the volume bound on the
ellipsoid is worse than the d−cd2 , which we obtained.
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Second, can the volume bound in the above mentioned theorems be replaced by d−cd?
Finally, as mentioned in Section 3, according to [14] by Holmsen, a colorful Helly type theorem

yields a fractional Helly type theorem in the abstract setting, when one hypergraph is considered
(see Section 7 for the explanation of one hypergraph vs. two). Can one give a quantitative analog
of this result? More precisely, if we make some assumptions on a pair of hypergraphs, then does
a colorful Helly type theorem that holds for the pair of hypergraphs imply the corresponding
fractional result for the same pair? That would mean that Theorem 1.1 follows from [9] by an
abstract argument.
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