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Abstract

This paper elaborates the integral transformation technique and uses it for the case

of the non-relativistic kinetic and Coulomb potential energy operators, as well as for

the relativistic mass-velocity and Darwin terms. The techniques are tested for the

ground electronic state of the helium atom and perturbative relativistic energies are

reported for the ground electronic state of the Hþ
3 molecular ion near its equilibrium

structure.
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1 | INTRODUCTION

We wish to dedicate this paper to István Mayer's memory. Two of us attended his undergraduate special course (called “speci” among the stu-

dents) at ELTE that he held until ca. 2010. During our everyday work, we still frequently point to simple calculations and theorems that we have

learned from him and from his book [1]. As students, and later, as young researchers, we got to know him as an infinitely patient and supportive

person toward the youths and their small things in research. His every reasoning and calculation was simple, because he made them simple and

made every small step clear. In this spirit, we work out in detail the theoretical background for a nice technique proposed by Pachucki et al. that

makes it possible to correct for the effects of the missing cusp of Gaussian basis functions during the evaluation of the “singular” integrals in the

Breit–Pauli Hamiltonian [2]. We imagine presenting this work on a research seminar: we can almost see István Mayer sitting and smiling in the

first row of the auditorium and he has several comments and questions. We wonder: what are they?

Pachucki et al. [2] proposed the integral transformation technique to enhance the convergence of the expectation values of terms of the

Breit–Pauli Hamiltonian that were known to be difficult to evaluate precisely in the commonly used explicitly correlated Gaussian (ECG) basis

sets [3–6].

Θi rð Þ¼ exp � r�sið ÞTAi r� sið Þ
h i

, ð1Þ

where r ∈ ℝ3n is the position vector of the particles, while si ∈ R3n and Ai ¼ Ai � 1 3½ � with Ai ∈ Rn�n are parameters of the basis function. The

parametrization is selected by minimization of the non-relativistic energy. The advantage of the ECG basis set is that it is an n-particle basis, for

which analytic matrix elements can be derived for almost all physically relevant operators. At the same time, it is also well-known that the Gauss-

ian functions fail to reproduce the analytic properties of the exact non-relativistic wave function at the particle–particle coalescence points (cusps)

and in the asymptotic range for large particle–particle separations. The integral transformation technique offers a possibility to correct for the

missing cusp effects.
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We start the present work by writing out the theoretical background of Pachucki et al. [2] in detail. During this work, we have

noticed that the ideas used for the “integral transform” (IT) evaluation of the perturbative relativistic corrections may be more generally

applicable. In a nutshell, instead of directly evaluating the expectation value of some physical quantity with the approximate wave

function

Ô
D E

¼
ð
dr1…drN Ψ r1,…,rNð Þ�Ô Ψ r1,…,rNð Þ, ð2Þ

it becomes possible to incorporate the effects of the cusp of the exact wave function. An appropriate transformation is defined by introducing I Ô with

variable ξ, and the integral is calculated in two parts,

《Ô》¼
ðξΛ
0
dξ I Ô ξð Þþ

ð∞
ξΛ

dξ eI Ô ξð Þ, ð3Þ

where we introduced the 《》 notation to emphasize the difference from the standard expectation value labeled with hi. In the short-range part,

0≤ ξ≤ ξΛ, the cusp has a negligible effect and it can be accurately computed with an ECG basis. For the long-range part, ξΛ < ξ<∞, the exact cusp

condition can be incorporated in the asymptotic tail of the transformed function (eI Ô ξð Þ) by considering the analytic behavior of the wave function

near the coalescence points.

In Sections 2 and 3, we work out the theoretical background and the analytic form of the long-range integrand for two types of ITs. Sec-

tion 4 is about the implementation, technical details and observations. Numerical results are presented for the relativistic calculations in Sec-

tion 5, for the non-relativistic calculations in Section 6, and the paper ends with a summary and conclusions (Section 7).

2 | IT FOR THE COULOMB INTERACTION AND THE DIRAC DELTA OF THE COORDINATE

In this section, we will consider the inclusion of the cusp effect for spatial integrals of operators that can be related to the inverse

of the particle-particle distance, 1=r. So, let us first consider the interaction between an electron and a nucleus, which is fixed at the

origin. In the matrix-element calculations, the relationship below is commonly used during the evaluation of the Coulomb integrals with Gaussian

orbitals [7, 8].

1
ri
¼ 2ffiffiffi

π
p
ð∞
0
dt e�r2i t

2
, ð4Þ

where the index i indicates the index of the electron. This relation can be understood as an IT (we call it t-transform) generation of 1=ri. Further-

more, by using

�4πδ rið Þ¼Δri
1
ri
, ð5Þ

we can write, following Pachucki et al. [2],

δ rið Þ¼� 1

2π3=2

ð∞
0
dt 2t2 3�2t2r2i

� �
e�r2i t

2
: ð6Þ

So, both operators can be generated by a t-integral

F rið Þ¼
ð∞
0
dt f ri ,tð Þ e�r2i t

2
, ð7Þ

where

for F rið Þ¼1=ri : f ri,tð Þ¼2=
ffiffiffi
π

p
, ð8Þ
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and

for F rið Þ¼ δ rið Þ : f ri ,tð Þ¼�π�
3
2t2 3�2t2r2i
� �

: ð9Þ

Then, by generalizing Pachucki et al.'s work for δ rð Þ [2], we re-write the expectation value for F rið Þ as

ΨjF rið ÞjΨh i¼
ð
dr1…drN Ψ r1,…,rNð Þ�F rið Þ Ψ r1,…,rNð Þ

¼
ð
dr1…drN

ð∞
0
dtf ri,tð Þ e�r2i t

2

� �
Ψ r1,…,rNð Þj j2

¼
ð∞
0
dt
ð
dr1…drNf ri,tð Þ e�r2i t

2
Ψ r1,…,rNð Þj j2

¼ 1
N

ð∞
0
dt
ð
drif ri,tð Þ e�r2i t

2
ρ rið Þ ð10Þ

where ρ rið Þ is the one-electron density function,

ρ rið Þ¼N
ð YN

j≠ i
j¼1

drj

0B@
1CAjΨ r1,…,rNð Þj2 : ð11Þ

Next, we define the IT function for F rið Þ as

IF rið Þ tð Þ¼ 1
N

ð
drif ri ,tð Þ e�r2i t

2
ρ rið Þ, ð12Þ

which can be substituted back into Equation (10),

ΨjF rið ÞjΨh i¼
ð∞
0
dtIF rið Þ tð Þ: ð13Þ

The integral IF rið Þ tð Þ can be written in an analytic form for “any” polynomial f ri,tð Þ of ri and t. In particular,

for F rið Þ¼1=ri : I1=ri tð Þ¼
2ffiffiffi
π

p
N

ð
drie

�r2i t
2
ρ rið Þ ð14Þ

and

for F rið Þ¼ δ rið Þ : I δ rið Þ tð Þ¼� 1

π
3
2N

ð
drit

2 3�2t2r2i
� �

e�r2i t
2
ρ rið Þ: ð15Þ

At first sight, it may seem strange that we introduce these complicated integral expressions, Equations (12)–(15). This is especially true for the

integral of Dirac delta that could be immediately obtained from the density at the origin. But, it is difficult to calculate the density at this point,

due to the cusp of the wave function. In numerical computations, ρ rið Þ is expanded in terms of a finite number of basis functions. The commonly

used Gaussian functions are smooth everywhere and they miss the correct description of the cusp [5, 8, 9].

The integral transformation in Equation (12) widens out the effect of the density to a finite interval due to the term e�r2i t
2
(for finite t values), and

over this finite interval, the density can be represented accurately with smooth functions. The original integral value is obtained by integration for

t ∈ 0,þ∞½ Þ. For larger t values, the Gaussian in Equation (12) becomes narrower and makes the short-range contribution (cusp) more important to IF rið Þ tð Þ.
In the following paragraphs, it will be shown that for large t values, the analytic form of the integrand can be deduced from analytic properties

of the density near the cusp. To be able to incorporate these analytic results, the full integral is evaluated as the sum of a short-range, t ∈ 0,tΛ½ �,
and a long-range, t ∈ tΛ,∞½ Þ, part (Equation 3):

1
ri

� �� �
¼
ð tΛ
0
I1=ri tð Þdtþ

ð∞
tΛ

eI1=ri tð Þdt: ð16Þ

The short-range part is evaluated by direct integration over the finite interval t ∈ 0,tΛ½ � (Appendix A). To calculate the long-range part includ-

ing the cusp effects, the following considerations are necessary.
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2.1 | Derivation of the long-range part from the cusp condition

According to Kato's cusp condition [1, 8, 10], the following relations hold for the exact non-relativistic wave function (in Hartree atomic units) for

the electron-nucleus and for the electron–electron coalescence points, respectively,

lim
riA!0

∂Ψ
∂riA

� �
ϑ,φ

¼�ZAΨ riA ¼0ð Þ and lim
rij!0

∂Ψ
∂rij

� �
ϑ,φ

¼ 1
2
Ψ rij ¼0
� �

, ð17Þ

where hiϑ,φ indicates averaging for the spherical angles, ZA is the nuclear charge number, riA is the distance between electron i and nucleus A, and

rij is the distance between electrons i and j. These conditions are valid only if the wave function does not have a node at the coalescence point,

otherwise, higher derivatives must be considered for a good description of the wave function in this regime [11, 12]. The coalescence condition

can be further elaborated by considering the effect of higher derivatives of the wave function [13, 14], which can be also affected by three-

particle coalescence conditions [15, 16]. In this paper, we use the simplest, original conditions of Equation (17) that give the following rela-

tions [17]:

lim
riA!0

∂ ρh iϑ,φ
∂riA

¼�2ZAρ 0ð Þ and lim
rij!0

∂ ηh iϑ,φ
∂rij

¼ η 0ð Þ , ð18Þ

where ρ is the one-electron density, Equation (11), and η labels the pair correlation function [18],

η rð Þ¼N N�1ð Þ
ð YN

k¼2

drk

 !
jΨ r2þ r,r2,r3,r4,…,rNð Þj2: ð19Þ

that can also be understood also as a quantity proportional to the pseudo-particle density corresponding to the relative motion for a pair of elec-

trons [5].

Then, we may consider the expansion of the spherically averaged density and pair correlation function by the coalescence point taken as the

origin (0):

ρh iϑ,ϕ rð Þ¼ ρ 0ð Þ�2ZAρ 0ð Þrþ
Xm
j¼2

Bjr
jþO rmþ1

� �
, ð20Þ

ηh iϑ,ϕ rð Þ¼ η 0ð Þþη 0ð Þrþ
Xm
j¼2

Bjr
jþO rmþ1

� �
: ð21Þ

To obtain the asymptotic form of IF rið Þ, labeled with eIF rið Þ (where tilde refers to the fact that it is valid for the asymptotic range), we insert the den-

sity expansion, Equation (20), in the definition of the IT function, Equation (12) and integrate out the angular coordinates. We explicitly show the

calculation for eIF rið Þ (and it can be carried out analogously for eIF rijð Þ using Equation (21))

for t> tΛ :

eIF rið Þ tð Þ¼ 1
N

ð2π
0
dϕ
ð1
�1
d cosϑð Þ

ð∞
0
dri r

2
i f ri ,tð Þ e�r2i t

2
ρ rið Þ

¼ 1
N

ð∞
0
dri r

2
i f ri ,tð Þ e�r2i t

2
4π ρh iϑ,ϕ rið Þ

¼4π
N

ð∞
0
dri r

2
i f ri,tð Þ e�r2i t

2
ρ 0ð Þ�2ZAρ 0ð Þriþ

Xm
j¼2

Bjr
j
iþO rmþ1

i

� �" #
,

ð22Þ

where for practical reasons, we truncate the expansion after some (“appropriate”) m value. The one-dimensional integral for ri can be evaluated

by analytic or numerical integration. For F rið Þ¼1=ri with f ri,tð Þ¼2π�1=2 in Equation (4), we obtain the asymptotic form as

for t> tΛ : eI1=ri tð Þ¼
1

t3N
2πρ 0ð Þ�8

ffiffiffi
π

p
ZAρ 0ð Þ1

t
þ
Xm
j¼2

B 1=ri½ �
j

1

tj

 !
, ð23Þ
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while for F rið Þ¼ δ rið Þ, f ri,tð Þ¼�t2 3�2t2r2i
� �

π�3=2 in Equation (6), we have

for t> tΛ : eI δ rið Þ tð Þ¼ 1

t2N

4ZAρ 0ð Þffiffiffi
π

p � 2ffiffiffi
π

p
Xm
j¼2

B δ rið Þ½ �
j

1

tj�1

 !
: ð24Þ

It is interesting to note that the asymptotic tail of the Coulomb interaction, Equation (23), decays faster than that of the Dirac delta, Equa-

tion (24), leading to a faster convergence in a finite basis representation. Using Equations (23) and (24), the integral from tΛ to ∞ is obtained in an

analytic form as

ð∞
tΛ

eI1=ri tð Þ dt ¼ 1

t2ΛN
πρ 0ð Þ�8

3

ffiffiffi
π

p
ZAρ 0ð Þ 1

tΛ
þ
Xm
j¼2

B 1=ri½ �
j

jþ2
1

tjΛ

 !
, ð25Þ

ð∞
tΛ

eI δ rið Þ tð Þ dt ¼ 1
tΛN

4ZAρ 0ð Þffiffiffi
π

p � 2ffiffiffi
π

p
Xm
j¼2

B δ rið Þ½ �
j

j
1

tj�1
Λ

 !
: ð26Þ

Although both expressions contain the particle density at the coalescence point, ρ 0ð Þ=N¼ Ψjδ rið ÞjΨh i, that is, inaccurately represented in

a(n explicitly correlated) Gaussian basis, we can obtain its precise value by using:

1
N
ρ 0ð Þ¼《δ rið Þ》 ¼

ð tΛ
0
I δ rið Þ tð Þ dtþ

ð∞
tΛ

eI δ rið Þ tð Þ dt ð27Þ

in an iterative procedure. First, the short-range integral (first term in the right-hand side of Equation (27)) is calculated by a one-dimensional quad-

rature (since this integrand is too complicated for an analytic evaluation), while the Bj parameters in the long-range part are obtained by fitting the

asymptotic part, Equation (24), to data points. The data set for the fit corresponds to “intermediate”-range t values (for practical details, see Sec-

tions 5, 6, and Appendix D). Then, using ρ 0ð Þ, obtained directly from numerical integration, the eI δ rið Þ tð Þ asymptotic function can be evaluated. In

the last step, we calculate the integrals in Equation (27) that results in an improved value for ρ 0ð Þ and an improved eI δ rið Þ tð Þ asymptotic form. The

iteration converges in a few cycles as it was noted already in Pachucki et al. [2]. Once we have the precise value for ρ 0ð Þ, we can have a good rep-

resentation for the asymptotic tail of the Coulomb interaction, eI1=ri tð Þ in Equation (23). Then, the integral value for the Coulomb interaction

including also the cusp effect can be obtained as:

1
ri

� �� �
¼
ð tΛ
0
I1=ri tð Þ dtþ

ð∞
tΛ

eI1=ri tð Þ dt: ð28Þ

For computing 《δ rij
� �

》 and 《1=rij》 a similar approach is used, but it is necessary to substitute ρ 0ð Þ, ZA , and N with η 0ð Þ, �1=2, and

N N�1ð Þ, respectively in Equations (23)–(26). The final working equations are

for t> tΛ :

eI1=rij tð Þ¼
1

t3N N�1ð Þ 2πη 0ð Þþ4
ffiffiffi
π

p
η 0ð Þ1

t
þ
Xm
k¼2

B
1=rij½ �
k

1

tk

 !
, ð29Þ

eI δ rijð Þ tð Þ¼� 1

t2N N�1ð Þ
2η 0ð Þffiffiffi

π
p þ 2ffiffiffi

π
p
Xm
k¼2

B
δ rijð Þ½ �
k

1

tk�1

 !
, ð30Þ

and

ð∞
tΛ

eI1=rij tð Þ dt¼
1

t2ΛN N�1ð Þ πη 0ð Þþ4
3

ffiffiffi
π

p
η 0ð Þ 1

tΛ
þ
Xm
k¼2

B
1=rij½ �
k

kþ2
1

tkΛ

0@ 1A , ð31Þ

ð∞
tΛ

eI δ rijð Þ tð Þ dt ¼ 1
tΛN N�1ð Þ �2η 0ð Þffiffiffi

π
p � 2ffiffiffi

π
p
Xm
k¼2

B
δ rijð Þ½ �
k

k
1

tk�1
Λ

0@ 1A , ð32Þ
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with

1
N N�1ð Þη 0ð Þ¼《δ rij

� �
》, ð33Þ

where the precise value of 《δ rij
� �

》 is obtained in an iterative procedure, similarly to 《δ riAð Þ》.

3 | FOURIER TRANSFORM FOR THE KINETIC ENERGY AND THE MASS-VELOCITY TERMS

To calculate integrals of momentum operators, it is convenient to switch to momentum space. The Fourier transform of an ECG preserves the

mathematical form of the function, and we need to consider only the changes in the parameterization. So, the Fourier transform of the basis func-

tion in Equation (1) is [2].

Θi pð Þ¼ Aj j�3
2 exp � p�sið ÞTAi p�sið ÞþCi

h i
, ð34Þ

with si ¼�2isiAi, Ai ¼ 1
4A

�1
i , and Ci ¼�sTi Aisi. For the expectation value of the non-relativistic kinetic (k¼2) and of the mass-velocity (k¼4) oper-

ators, we have to evaluate

Ψjpk1jΨ
	 
¼ ðdp1…dpn pk1 jΨ p1…pnð Þj2

¼ 1
N

ð
dp1 pk1 ρ p1ð Þ , ð35Þ

where ρ p1ð Þ is the momentum density function. The angular part of the integral can be evaluated according to Equation (A14),

Ψjpk1jΨ
	 
¼4π

N

ð∞
0
dp pkþ2 ρh iϑ,φ pð Þ¼

ð∞
0
dp Ipk pð Þ, ð36Þ

where ρh iϑ,φ pð Þ labels the spherically averaged momentum density. The explicit integrals for k¼2 (p2) are evaluated in Equations (A15) and (A16),

and the calculation can be, in principle, carried out similarly for k¼4, but we used quadrature integration, because it was fast and sufficiently

accurate (Section 5). It is interesting to note that the momentum density is spherically symmetric (second step in Equation (36)), even if si ≠0.

This observation is connected with the properties of the Fourier transform of the ECG, Equation (34), in which any coordinate-space shift vector

appears as purely imaginary vector.

Similarly to the t-transform (Section 2), the cusp dominating the small-scale behavior in coordinate space is important for the long-range part

in the inverse (now momentum) space. To be able to exploit the different characteristics for the two ranges (short and long), the integral is evalu-

ated in two parts,

《Ψjpk1jΨ》¼
ðpΛ
0
dp Ipk pð Þþ

ð∞
pΛ

dp eIpk pð Þ, ð37Þ

where the short-range part corresponds to the first term and is calculated from the ECG representation by direct integration up to some appropri-

ate pΛ threshold. The long-range part (second term) is determined by the cusp effects, and its analytic properties can be derived for the asymp-

totic tail. We will label this analytic asymptotic expression by eIpk pð Þ that is derived in the forthcoming subsection.

3.1 | The asymptotic tail of the momentum density

To show the connection of the short-range behavior in coordinate space dominated by the particle–particle coalescence point(s) and the long-

range behavior in momentum space, we need to consider a common theorem from numerical analysis [19] which connects the smoothness of a

function, f xð Þ, with the asymptotic behavior after Fourier transformation, ef kð Þ¼ Ð f xð Þeikxdx. The smoothness of f xð Þ is defined by the number of

continuous derivatives. If f xð Þ is infinitely differentiable, f xð Þ ∈ C∞, or in other words f xð Þ is smooth, then ef kð Þ decays exponentially fast at large k

6 of 21 JESZENSZKI ET AL.
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values. If the nth derivative corresponds to a Dirac delta function, then the first n�2 derivatives are continuous, f xð Þ ∈ Cn�2, andef kð Þ decays poly-
nomially with 1=kn (Appendix B).

We use this theorem, following Kimball [18], to determine the analytic form for the asymptotic tail of the momentum density function, ρ pð Þ

ρ pð Þ¼ 1
8π3

ð
eip r�r0ð ÞΓ r0,rð Þ dr dr0 ð38Þ

with the one-particle density matrix,

Γ r0,rð Þ¼N
ð
Ψ� r0,r2,…,rNð ÞΨ r,r2,…,rNð Þ

YN
i¼2

dri : ð39Þ

By substituting Equation (39) into (38) and by exchanging the order of integration, we arrive at an alternative expression for the momentum

density,

ρ pð Þ¼N
ð eΨ�

p,r2,…,rNð ÞeΨ p,r2,… ,rNð Þ
YN
i¼2

dri, ð40Þ

eΨ p,r2,… ,rNð Þ¼ 1ffiffiffiffiffiffiffiffi
8π3

p
ð
e�iprΨ r,r2,…,rNð Þ dr: ð41Þ

To describe the asymptotic tail in momentum space, it is sufficient to consider those regions of the wave function for which the singularity

occurs for higher-order derivatives (Appendix B). These regions are the points at the position of the nuclei and at the electron–electron coales-

cence points, where the exact wave function cusps.

Let us focus on a cusp at nucleus A located at RA. Then, we consider the integral form of the cusp condition [11, 20],

for ri ≈RA : Ψ r1,r2,… ,ri ,…,rNð Þ≈ 1� ZAþ fA ϑi ,φið Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q� �
Φi r1,r2,… ,ri,… ,rNð Þ , ð42Þ

where ZA is the nuclear charge number, fA ϑi ,φið Þ is an angular term, and Φ r1,…rNð Þ is a continuous function at least up to its second derivative

according to ri at RA for every particle i. The fA ϑi ,φið Þ term accounts for the angular dependence (i.e., not generally spherically symmetric) of the

wave function around the cusp. A more specific form for fA ϑi ,φið Þ can be obtained, if we consider the expansion of the one-electron contribution

of the wave function around the cusp using the eigenfunctions of the hydrogen atom [1, 11, 20]. As the leading-order contribution of the radial

part is related to rℓ, where ℓ is the angular momentum quantum number, we can neglect all ℓ≥2 angular terms for the small r. So, to describe the

non-spherical angular dependence, it is sufficient to consider the linear combinations of the first-order spherical harmonics (Y1m ϑ,φð Þ,
m¼�1,0,1). It is shown in Appendix C that the angular dependence does not have an effect on the large-momentum tail (that corresponds to the

short r range) [1, 11, 20].

In order to examine the non-smoothness of the cusp, let us consider r4
i Ψ (i.e., commonly understood as r4

i Ψ¼ =i �=ið Þ2Ψ):

r4
i Ψ¼� r4

i ZA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q� �
Φiþϕi , ð43Þ

where ϕi collects remainder terms that are smooth with respect to ri near RA. (The effect from cusps due to the other particles can be accounted

for by summing up the contributions.) If r4
i acts on the cusp, a Dirac delta singularity appears,

�ZAr4
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q
¼ �ZAr2

i
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ri�RAð Þ2
q ¼ 8πZAδ ri�RAð Þ: ð44Þ

For the fourth derivative, the integral in Equation (41) can be evaluated using the properties of Dirac delta in Equation (44), and thus, we

obtain the leading-order contribution for large momentum,

for j pi j > pΛ : eΨ r1,…,pi,…,rNð Þ¼2
ffiffiffi
2

p
ZAffiffiffi

π
p

p4i
Ψ r1,r2,…,RA,…,rNð Þe�ipiRA þO p�6

i

� �
: ð45Þ
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This short calculation demonstrates that it is indeed the cusp that determines the large-momentum behavior. In Equation (45) (valid for

large p), the next leading order comes with p�6
i . Although the p�5

i term can be neglected in the asymptotic tail, further odd powers of 1=pi are

retained to account for (possible) higher-order singularities in the wave function [13–15].

To generalize the calculation to several nuclei and electrons, we consider the following Ansatz which includes the effect of all the cusps of

the exact wave function of the many-particle system,

Ψ r1,r2,…,ri,…,rNð Þ¼
XN
i¼1

1�
XNnucl

A¼1

ZAþ fA ϑi,φið Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri�RAð Þ2

q(

þ
XN
j≠ i

1
2
þg ϑij,φij

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri� rj
� �2q )

Φi r1,r2,…,ri ,…,rNð Þ,
ð46Þ

where g ϑij,φij

� �
takes into account the angular dependence of the short-range electron–electron correlation, similarly to the fA ϑi ,φið Þ term for the

electron-nucleus cusp [11, 20]. The calculation of the large-momentum effect of the electron–electron coalescence can be carried out in a similar

manner to the electron-nucleus case, Equations (42)–(45), after a coordinate transformation to the center-of-mass and relative motion coordi-

nates including the rij displacement vector. The same arguments apply for the electron–electron cusp as for the electron-nucleus case, with the

only difference that the ZA nuclear charge number is replaced with Zee ¼�1=2. Then, the asymptotic tail in momentum space for a many-elec-

tron-many-nucleus system is obtained as

for jpi j > pΛ : Ψ r1,…,pi,…,rNð Þ¼
ffiffiffi
2

pffiffiffi
π

p
p4i

2
XNnucl

A¼1

ZAΨ r1,r2,…,RA,…,rNð Þe�ipiRA

"

�
XN
j≠ i

Ψ r1,r2,…,rj,…,rN
� �

e�ipirj

#
þO p�6

i

� �
:

ð47Þ

To obtain the asymptotic tail for the momentum density, we substitute Equation (47) into (40),

for jp j > pΛ :

ρ pð Þ¼ 2
πp8

4
XNnucl

A¼1

Z2
Aρ RAð Þþ4

XNnucl

A¼1

XNnucl

B≠ A

ZAZBcos p RA�RBð Þ½ �Γ RA,RBÞð
"

�2 N�1ð Þ
XNnucl

A¼1

ZA

ð
eip r2�RAð ÞΨ* RA ,r2,…,rNð ÞΨ r2,r2,…,rNÞ

YN
i¼2

driþcc:

 !
þη 0ð Þ�þO p�10

� �
,

 
ð48Þ

where “+cc.” means complex conjugation of the first term in the parenthesis. The interesting result that the pair correlation function appears in

the momentum distribution was first noticed in References [18, 21]. Moreover, it was also found that it leads to a fifth-order cusp in the off-

diagonal density matrix in the jellium model [22]. This fifth-order cusp has been derived recently for general atoms and molecules without using

the known results from the momentum distribution [23], hence, the asymptotic tail in Equation (48) can be obtained (as an alternative route to

the present one) by Fourier-transforming the cusp condition of the off-diagonal density matrix (Equation (20) in Cioslowski [23]).

Furthermore, it can be shown by partial integration that the integral term in Equation (48) is proportional to 1=p4 for high momentum values,

and thus, its contribution to the momentum density can be neglected, since it gives contribution only to the 1=p12 term.

Next, we can average the momentum density over the momentum orientations, that is, integrate out the angular dependence of the p vector

and divide by 4π, that reads for the second term in the square bracket of Equation (48) as

1
4π

ð2π
0
dφ
ð1
�1

d cosϑð Þcos p RA�RBð Þ½ � ¼1
2

ð1
�1

dccos pRABcð Þ¼ 1
pRAB

sin pRABð Þ, ð49Þ

and thereby, we obtain the spherically averaged momentum density,
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for p> pΛ : ρh iϑ,φ pð Þ¼ 1
4π

ð2π
0
dφ
ð1
�1

d cosϑð Þρ pð Þ

¼ 2
πp8

4
XNnucl

A¼1

Z2
Aρ RAð Þþ4

XNnucl

A¼1

XNnucl

B≠ A

ZAZB
sin pRABð Þ
pRAB

Γ RA ,RBð Þþη 0ð Þ
" #

þO p�10
� �

:

ð50Þ

3.2 | Asymptotic tail of Ipk pð Þ and its contribution to 《Ψjpk1jΨ》

Using the derived large-momentum, asymptotic tail of the momentum density, Equation (50), we can calculate its contribution to the asymptotic

tail of Ipk pð Þ, Equations (36) and (37),

for p> pΛ :

eIpk pð Þ¼4π
N

pkþ2 ρh iϑ,φ pð Þ

¼ 8
p6�kN

�
4
XNnucl

A¼1

Z2
Aρ RAð Þþ4

XNnucl

A¼1

XNnucl

B≠ A

ZAZB
sin pRABð Þ
pRAB

Γ RA,RBð Þþη 0ð Þ
�
þ
Xm
j¼1

Aj

p7�kþj
þO p�8þk�m

� �
,

ð51Þ

where the Aj coefficients are determined by fitting and m is chosen to fix the number of additional terms considered in the expansion. In our cal-

culations the typical value for m was between 4 and 7.

Using these expressions, the contribution from the large-momentum tail to 《Ψjpk1jΨ》 in Equation (37), can be calculated. In this paper, we

focus on the k¼2 and k¼4 cases, for which the final expression is

ð∞
pΛ

dp eIpk pð Þ¼ 8

5�kð Þp5�k
Λ N

4
XNnucl

A¼1

Z2
Aρ RAð Þþη 0ð Þ

" #

þ32
N

XNnucl

A¼1

XNnucl

B¼1

ZAZBΓ RA ,RBð ÞGk pΛ,RABð Þ

þ
Xm
j¼0

Aj

6�kþ jð Þp6�kþj
Λ N

þO p�7þk�m
Λ

� �
,

ð52Þ

with

G2 pΛ,Rð Þ¼ cos RpΛð Þ
2pΛ

þ sin RpΛð Þ
2p2ΛR

�R π�2Si RpΛð Þ½ �
4

for k¼2, ð53Þ

G4 pΛ,Rð Þ¼R2p2Λ�2

24p3Λ
cos RpΛð Þ�R2p2Λ�6

24Rp4Λ
sin RpΛð Þþ R3 π�2Si RpΛð Þ½ �

48
for k¼4 , ð54Þ

where Si xð Þ is the sine integral function [24].

In the numerical calculations, ρ RAð Þ and η 0ð Þ are determined by using the method described in Section 2,

ρ RAð Þ¼
XN
i¼1

Ψ δ ri�RAð Þj jΨh i, ð55Þ

η 0ð Þ¼
XN
i¼1

XN
j> i

Ψ δ ri� rj
� � Ψ	 


: ð56Þ

The quantity Γ RA,RBð Þ is an element of the density matrix, for which the cusp condition is also known [25, 26], but it is handled as a fitting

parameter in the present work.
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4 | COMPUTATIONAL DETAILS

The integral transformed functions I p̂2 , I p̂4 , I1=riA , I1=rij , I δ riAð Þ, and I δ rijð Þ are shown in Figures 1 and 2 for the example of the ground electronic

state of the helium atom (He) and the trihydrogen cation (Hþ
3 ) with protons (p) clamped at an equilateral triangular configuration with Rpp ¼

1:65 bohr.

Up to a certain ξΛ value (ξΛ ¼ pΛ for momentum operators, and ξΛ ¼ tΛ for Coulombic operators), we calculate the short-range integral analyt-

ically for I p̂2 , I1=riA , I1=rij , and by quadrature for I p̂4 , I δ riAð Þ, and I δ rijð Þ (for more details see Appendix A). For the long-range part, it is necessary to

determine the accurate value of ρ 0ð Þ and η 0ð Þ, which is calculated by an iterative procedure using Equations (24), (27), (32), and (33). Then, the

long-range part is obtained by fitting the asymptotic tail to data points using Equations (23), (29), and (51) that is followed by the analytic integra-

tion of the asymptotic tail, Equations (25), (31), and (52), using the fitted parameters.

It is critical to choose an optimal ξΛ value and a good interval for the data used for the fitting of the long-range analytic expression. We have

selected these parameters based on the inspection of the integrand evaluated with the approximate wave function (Figures 1 and 2). Close to the

origin, the asymptotic expansion fails, but the ECG basis describes well the non-analytic correlation effects in this range. The parameter ξΛ must

be large enough to ensure that the function IF rið Þ ξΛð Þ can be approximated accurately with the asymptotic expansion. At the same time, it must

be small enough to eliminate the major numerical uncertainties from the finite basis expansion. For the spherically symmetric ground state of the

helium atom (Figure 1), I ξð Þ is simple, it decreases monotonically to zero after an initial peak. The asymptotic part can be “easily” identified and

fitted to the asymptotic series. The Hþ
3 molecular ion (Figure 2) is a more “complex” system, with more complicated correlation effects, and thus,

we need to choose a larger ξΛ value to reach the asymptotic regime (which also implies the use of a larger basis set). Further details about the

accuracy of the matrix elements depending on the selection of the ξΛ value can be found in Section 6.

According to Sections 2.1 and 3.1, the long-range part of the function I ξð Þ decays polynomially due to the cusp in the exact wave

function that is approximated in the computations. At the same time, we may observe in Figure 3 that the approximate Ipk pð Þ k¼2,4ð Þ
function, corresponding to a finite ECG basis set, has artificial oscillations in momentum space and some non-negligible deviations in t-space. If

the full integral is computed by direct integration, the oscillations approximately cancel in the integral, and this explains the practical

observation that accurate results can be obtained even with ECGs that fail to satisfy analytic properties of the exact wave function. We aim to

obtain more accurate integral values by replacing the oscillatory asymptotic tail with the mathematically correct decaying form corresponding to

the cusp.

F IGURE 1 Integral transform (IT) function profile for various operators, I p̂2 , I1=riA , I1=rij , I p̂4 , I δ riAð Þ, and I δ rijð Þ for the example of the ground
electronic state of the helium atom
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In practice, the numerical accuracy of the computations is affected by the grids used for the numerical integration (if analytic integration is

not possible over the finite, short-range interval) and for the fitting procedure. Our computational strategies are explained in the following sec-

tions for the physical operators considered in this work.

5 | PERTURBATIVE RELATIVISTIC CORRECTION FOR Hþ
3 AT EQUILIBRIUM

For the spectroscopic characterization of compounds of light elements, the leading-order relativistic correction has been traditionally calculated

as the expectation value of the Breit–Pauli Hamiltonian with the non-relativistic wave function. The Breit–Pauli Hamiltonian is the leading-order

Foldy–Wouthuysen perturbation theory (FWPT) term of the Dirac–Coulomb–Breit Hamiltonian [27–29]. The singular operators that are difficult

to evaluate in a Gaussian basis appear already for the leading-order FWPT of the Dirac–Coulomb (DC) operator that reads for the two electrons

of Hþ
3 with fixed protons (N¼2 and Nnucl ¼3) as

Ĥ
FW ¼ ĤnonrelþΔĤ

FW ð57Þ

c2ΔĤ
FW
DC ¼�1

8

XN
i¼1

r4
i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

mass-velocity

þπ

2

XN
i¼1

XNnucl

A¼1

ZAδ riAð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Darwin I

�π
XN
i¼1

XN
j> i

δ rij
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Darwin II

, ð58Þ

c2ΔĤ
FW

DCB ¼ c2ΔĤ
FW

DCþ2π
XN
i¼1

XN
j> i

δ rij
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spin-spin

�
XN
i¼1

XN
j> i

1
2rij

pipjþ
rij rijpi

� �
pj

r2ij

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

orbit-orbit

¼�1
8

XN
i¼1

r4
i þ

π

2

XN
i¼1

XNnucl

A¼1

ZAδ riAð Þþπ
XN
i¼1

XN
j> i

δ rij
� ��XN

i¼1

XN
j> i

1
2rij

pipjþ
rij rijpi

� �
pj

r2ij

 !
,

ð59Þ

F IGURE 2 Integral transform (IT) function profile for various operators, I p̂2 , I1=riA , I1=rij , I p̂4 , I δ riAð Þ, and I δ rijð Þ for the example of the ground
electronic state of the Hþ

3 with protons (p) clamped at an equilateral triangular configuration with Rpp ¼1:65 bohr
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for singlet states. Ĥnonrel is the non-relativistic Hamiltonian and ΔĤ
FW
DC and ΔĤ

FW
DCB correspond to the leading-order correction to the non-

relativistic energy of the Foldy–Wouthuysen (FW) transformed DC and Dirac–Coulomb–Breit (DCB) Hamiltonians.

We have calculated the expectation value of the mass-velocity and the Darwin terms with the non-relativistic wave function both by direct

integration and by the IT technique. IT technique for the example of the simplest polyatomic molecule, Hþ
3 near its equilibrium structure (Table 1).

In Table 1, we also show the (non-singular) orbit-orbit term (last term in Equation (59)) by direct integration.

Regarding the computational parameters, the ξΛ ¼100 bohr�1 threshold value was appropriate also in this system, similarly to the He and H2

computations reported in Pachucki et al. [2]. The short-range integrals were calculated by quadrature. For the Dirac-delta terms, the numerical

integration was carried out over three subintervals, 0,1½ � bohr�1, 1,10½ � bohr�1, and 10,100½ � bohr�1, using 25, 35, and 35 Gauss–Legendre quad-

rature points. For the mass-velocity term, we have checked the convergence of the integral value over the 10,100½ � bohr�1 interval using 50, 70,

and 100 number of points. The value of the integrand at each grid point is obtained by direct evaluation of the finite basis ECG integral (Appendix

A). This setup was sufficient for a parts-per-billion (ppb) convergence of the short-range integral value.

For fitting the long-range part of the integrand, we have considered the p>60 bohr�1 tail that is beyond the range dominated by non-trivial

correlation effects (Figure 2). We have carried out the fitting of the asymptotic tail by including additional grid points from the [100, 390] bohr�1

interval with 10 bohr�1 spacing. In each fit, six parameters were included, and the squared sum of residuals was on the order of 10�20 (a.u.) for

δ rij
� �

and δ riAð Þ and 10�10 (a.u.) for the p41þp42 term. Table 1 collects the terms appearing in the relativistic corrections obtained with direct inte-

gration and by the IT technique that reduces the relative error of the expectation value by �2 orders of magnitude.

In Table 2, the leading-order FW–DC and FW–DCB energy is compared with the no-pair variational energy of the corresponding (DC and

DCB) operators [31]. In the perturbative DC energy, we observe an error cancelation for the singular terms, hence, the direct and the IT FW–DC

energies differ only on the order of 1 nEh. For the FW–DCB energy, due to the spin–spin contribution, Equation (59), there is a 15 nEh deviation

between the direct and the IT results. For comparison, we also show the variational DC(B) energies [31] that are not affected by the slow

(A) (B)

(C) (D)

F IGURE 3 Relative difference in the asymptotic tail of the numerically calculated functions Ip2 pð Þ, Ip4 tð Þ, I1=riA tð Þ, I1=rij tð Þ, and the analytic
leading-order expressions of the asymptotic tail, eI0

pk pð Þ¼N�1p�2�k128πρ 0ð Þ, eI0

1=riA
tð Þ¼N�1t�3 2πρ 0ð Þ�16

ffiffiffi
π

p
ρ 0ð Þt�1

� �
, and eI0

1=rij
tð Þ¼

N N�1ð Þ½ ��1t�32 πη 0ð Þþ2
ffiffiffi
π

p
η 0ð Þt�1

� �
for the example of the ground state of the helium atom with an increasing number of explicitly correlated

Gaussian (ECG) basis functions (Nb)
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convergence problem of the singular operators. A detailed comparison of the variational and the perturbative FW energies will be provided in

future work.

6 | AN ATTEMPT TO IMPROVE THE NON-RELATIVISTIC ENERGY WITH THE INTEGRAL
TRANSFORMATION TECHNIQUE

According to Sections 2 and 3, the integral transformation technique can be used also for the expectation values of the non-relativistic operators,

p̂2
D E

, 1=riAh i, and 1=rij
	 


. Although these expectation values converge (much) faster than the expectation value of the singular operators appe-

aring in the relativistic corrections, pinpointing their precise value would be useful to have an (even) better estimate of the complete basis limit. In

this section, we report observations of some exploratory work for the p̂2
D E

operator for the ground state of the helium atom.

Thanks to the simplicity of the I p̂2 , I1=̂riA , and I1=̂rij integrands, the short-range integrals can be obtained in an analytic form (Appendix A).

To fit the eI Ô ξð Þ asymptotic part, an equidistant grid was used. The start of the fitting interval was determined based on inspection of the inte-

grand functions (Figure 1). On the one hand, we wanted to choose a large ξ value to avoid fitting to non-trivial correlation features. On the other

hand, we wanted to choose a small ξ value to reduce the finite basis error of the ECG basis set. A short summary about the calculation of the nec-

essary ρ 0ð Þ and η 0ð Þ values is provided in Appendix D. Figure 3 shows the relative difference of I Ô ξð Þ represented by the finite basis expansion

and by the analytically known leading-order asymptotic part, eI0

pk pð Þ¼N�1p�2�k128πρ 0ð Þ, eI0

1=riA
tð Þ¼N�1t�3 2πρ 0ð Þ�16

ffiffiffi
π

p
ρ 0ð Þt�1

� �
,

and eI0
1=rij

tð Þ¼ N N�1ð Þ½ ��1t�32 πη 0ð Þþ2
ffiffiffi
π

p
η 0ð Þt�1

� �
.

For larger (but not too large, i.e., for which the finite basis representation can be trusted) ξ values, the relative difference is determined by the

contributions beyond the analytic, leading-order terms. The deviation from zero in the asymptotic limit indicates numerical errors, which originate

from the finite basis-set approximation.

For the Coulomb terms, eI1=rij and eI1=riA (Figure 3C,D), this numerical error is monotonic and has non-negligible values beyond some t value,

but by increasing the basis set size, this critical t threshold is shifted toward larger values.

TABLE 1 Expectation value of operator terms in the leading-order Foldy–Wouthuysen perturbative relativistic operators (in atomic units)
computed by direct integration (“direct”) and by the integral transformation technique (“IT”) for the ground electronic state of Hþ

3 with protons (p)
clamped at an equilateral triangular configuration with Rpp ¼1:65 bohr

Nb

r4
1þr4

2

	 
 P2
i¼1

P3
A¼1ZA δ ri�RAð Þh i δ r1� r2ð Þh i

Orbit-orbit termDirect IT Direct IT Direct IT

150 15.428820 15.467265 1.086786273 1.089641891 0.018430054 0.018340790 �0.057219009

200 15.446739 15.467346 1.088110465 1.089651086 0.018407593 0.018336611 �0.057218310

300 15.455982 15.467351 1.088821792 1.089654339 0.018368291 0.018335079 �0.057217628

400 15.456244 15.467368 1.088836952 1.089654512 0.018360864 0.018334828 �0.057217548

500 15.456360 15.467395 1.088843368 1.089654577 0.018358011 0.018334777 �0.057217524

600 15.456386 15.467395 1.088845002 1.089654597 0.018357565 0.018334773 �0.057217520

Note: The basis set size corresponds to the use of D3h point-group symmetry in the computations.

TABLE 2 Non-relativistic, perturbative (EFWDC and EFWDCB) and no-pair variational (EnpVDC and EnpVDCB) relativistic electronic energies, in Eh, for the
ground electronic state of Hþ

3 with protons (p) clamped at an equilateral triangular configuration with Rpp ¼1:65 bohr (see also caption to Table 1)

Nb Enonrel EFWDC Directð Þa EFWDC ITð Þa EnpVDC [31] EFWDCB Directð Þb EFWDCB ITð Þb EnpVDCB [31]

150 �1.343835557 �1.343850435 �1.343850437 �1.343850149 �1.343847315 �1.343847347 �1.343847343

200 �1.343835606 �1.343850488 �1.343850485 �1.343850507 �1.343847376 �1.343847396 �1.343847404

300 �1.343835623 �1.343850501 �1.343850501 �1.343850524 �1.343847402 �1.343847413 �1.343847462

400 �1.343835624 �1.343850502 �1.343850502 �1.343850526 �1.343847405 �1.343847415 �1.343847484

500 �1.343835625 �1.343850502 �1.343850503 �1.343850527 �1.343847406 �1.343847416 �1.343847496

600 �1.343835625 �1.343850502 �1.343850503 �1.343850527 �1.343847406 �1.343847416 �1.343847498

Note: We used the speed of light c¼ α�1a0Eh=ℏ with α�1 ¼137:035999084 [30].

aExpectation value of Ĥ
FW

DC , Equations (57) and (58), with the non-relativistic wave function.

bExpectation value of Ĥ
FW

DCB, Equations (57) and (59), with the non-relativistic wave function.
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Regarding the p̂k operators (Figure 3A,B), the Fourier transformation results in oscillations that can be observed for the finite-basis represen-

tation of I p̂k over the large momentum range. The oscillation amplitude decreases upon increasing the basis set size. Figure 4 shows the compari-

son of the direct and the IT integration procedures for p̂2 and p̂4. The computational details for p̂4 can be found in the Section 4. Regarding p̂2,

the fit is performed over the 10,90½ � bohr�1 interval using 1600 equidistant points. Depending on the number of the fitting parameters the

squared sum of the residuals varied between 10�11 and 10�17 (a.u.).

The effect of the choice of the pΛ threshold value, which separates the short- and the long-range intervals, and the number of the fitted

parameters in the long-range part is shown in Figure 4. For both p̂2 and p̂4, the larger the number of the fitted parameters, the better results are

observed, especially for smaller pΛ values. By increasing pΛ, all curves are close, since the high-order inverse momentum terms have a numerically

negligible contribution in this regime. For pΛ !∞, the contribution from the integral transformation goes to zero, and the direct integration result

is recovered. It is also necessary to note that although we achieve a better relative accuracy for 《p̂2》 than for 《p̂4》, the improvement of

《p̂2》 (IT) over p̂2
D E

(“direct”) is modest. This observation can be contrasted with the two orders of magnitude improvement of 《p̂2》 (IT) over

p̂4
D E

(“direct”) that appears to be a robust feature with respect to the choice of pΛ and the fitting details. For p̂2, the “optimal” interval for pΛ and

the fitting details should be very carefully chosen to observe any improvement.

7 | SUMMARY AND CONCLUSION

ECGs are often used in atomic and molecular computations, since they incorporate particle-particle correlation and they have analytic integrals

for most physically relevant operators. In spite of their advantages, they also have some drawbacks. They fail to describe correctly the particle

coalescence points and the asymptotic tail of the exact non-relativistic wave function of Coulomb-interacting point-like particles. This paper was

devoted to the study of a possible correction scheme for coalescence properties during computations with Gaussian-type functions.

For this purpose, we have presented the detailed theoretical background of the IT technique originally proposed by Pachucki et al. [2] to

enhance the convergence of singular operators appearing in perturbative relativistic corrections. The core idea of the IT technique is to rewrite

expectation values of physical quantities with an approximate wave function into a form, for which the cusp effect—characteristic for short ranges

in coordinate space—appears in the asymptotic tail of the integrand in an “inverse space” (ξ). For momentum-type operators, this transformation

is the Fourier transformation and the inverse space is momentum space (ξ¼ p). For Coulomb-type operators this is a “t-transformation” (for which

we are not aware of any common name), and for which the variable in the inverse space was labeled with ξ¼ t. Expectation values that contain

the cusp effects are obtained by computing the integral as the sum of a short-, 0≤ ξ< ξΛ, and a long-range, ξΛ ≤ ξ<∞, part. The short-range part is

calculated by direct integration with the approximate wave function expressed with ECGs.

We explained in this paper that the effect of the singular derivative of the wave function at the coalescence points, where the exact wave function

cusps, appears in the asymptotic tail of the integrand in the inverse space. Using this connection and the analytic cusp conditions, we derived the ana-

lytic form of the long-range tail of the integrands for the p2i , 1=rij, 1/riA-type operators and our derivation reproduced the asymptotic expressions for

p4i , δ riAð Þ, and δ rij
� �

of Pachucki et al. [2]. It is interesting to note that, in the inverse space, the asymptotic tail of the non-relativistic operators (p2

and 1=r) decay faster (�1=p4 and �1=t3), than the tail of the more “singular” operators, p̂4 and δ̂ rð Þ, �1=p2 and �1=t2, respectively.

(A) (B)

F IGURE 4 Relative error of 《p̂2》 and ef pð Þ¼ 1ffiffiffiffi
2π

p
Ð∞
�∞

dxf xð Þe�ipx : for helium, for various pΛ thresholds and m terms in fitting function

Equation (52). The result “direct” was obtained by direct integration with explicitly correlated Gaussians (ECGs). The reference values are

p̂2
D E

ref
¼2:903 724 377 034 119 5 bohr�2 [32] (using the virial theorem T̂i¼�E

	
), and p̂4iref ¼108:176 134 4 8ð Þ	

bohr�4 [2]
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Exploratory results were reported for the expectation values of the non-relativistic energy operators, for which, in principle, it should be pos-

sible to improve upon the non-relativistic energy with the inclusion of the cusp “effect.” The practical realization of this idea appears to be limited,

for the moment, by particular details of the fitting procedure of the asymptotic tail.

We also use the IT technique in this work to compute perturbative relativistic corrections for the ground state of Hþ
3 near its equilibrium struc-

ture. We observe error cancelation among the singular terms in the perturbative Dirac–Coulomb energy, but for the perturbative Dirac–Cou-

lomb–Breit energy the IT technique results in a 15 nEh improvement over the direct result. These perturbative relativistic energies pinpointed

with the IT technique can be used for a detailed comparison in relation with the variational relativistic result of Jeszenszki et al. [31] that will be

reported in future work.

Finally, we would like to mention that the p̂4- and δ(r)-type singular operators appear not only in the perturbative relativistic theory but also

in lower-bound theory due to the presence of the Ĥ
2
operator [5, 33, 34]. This fact contributes to the observation that the energy lower bounds

typically converge slower to the exact energy [5, 34], than the energy upper bound. It would be interesting to use (generalize) the IT technique to

the Ĥ
2
expectation value and variance computations, which may speed up the convergence of the best energy lower bounds [35] and that would

open the route to the computation of rigorous theoretical error bars for numerically computed non-relativistic energies.

ACKNOWLEDGMENTS

The authors thank Gustavo Avila for discussions about the quadrature integration. Financial support of the European Research Council through a

Starting Grant (No. 851421) is gratefully acknowledged. Robbie T. Ireland thanks the Erasmus+ program for funding a traineeship at ELTE.

AUTHOR CONTRIBUTIONS

Peter Jeszenszki: Formal analysis; investigation; methodology; software; visualization; writing – original draft; writing – review and editing. Robbie

Ireland: Investigation; methodology; software; validation; writing – review and editing. David Ferenc: Investigation; methodology; software; validation;

writing – review and editing. Edit Mátyus: Conceptualization; formal analysis; funding acquisition; investigation; methodology; project administration;

resources; software; supervision; validation; visualization; writing – original draft; writing – review and editing.

ENDNOTE
1 A discontinuous function cannot be differentiated in a rigorous way. However, the differentiation can be generalized using the so-called weak derivative

[40], which can be calculated for these functions. This leads to the expected Dirac delta function as the weak derivative of the Heaviside step function.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Péter Jeszenszki https://orcid.org/0000-0001-8696-6575

Dávid Ferenc https://orcid.org/0000-0002-5193-540X

Edit Mátyus https://orcid.org/0000-0001-7298-1707

REFERENCES

[1] I. Mayer, Simple Theorems, Proofs, and Derivations in Quantum Chemistry. Mathematical and Computational Chemistry, Springer US, Boston, MA 2003
http://link.springer.com/10.1007/978-1-4757-6519-9

[2] K. Pachucki, W. Cencek, J. Komasa, J. Chem. Phys. 2005, 122, 184101.
[3] B. Jeziorski, K. Szalewicz, Phys. Rev. A 1979, 19, 2360.
[4] W. Cencek, J. Rychlewski, J. Chem. Phys. 1993, 98, 1252.
[5] Y. Suzuki, K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems, Springer-Verlag, Berlin Heidelberg 1998. https://

www.springer.com/gp/book/9783540651529.

[6] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, K. Varga, Rev. Mod. Phys. 2013, 85, 693.
[7] S. F. Boys, Proc. R. Soc. Lond. A 1950, 200, 542.
[8] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, John Wiley & Sons, Chichester 2008.
[9] C. Hättig, W. Klopper, A. Köhn, D. P. Tew, Chem. Rev. 2012, 112, 4.

[10] T. Kato, Commun. Pure Appl. Math. 1957, 10, 151.
[11] R. T. Pack, W. B. Brown, J. Chem. Phys. 1966, 45, 556.
[12] W. Kutzelnigg, Int. J. Quantum Chem. 1994, 51, 447.
[13] V. A. Rassolov, D. M. Chipman, J. Chem. Phys. 1996, 104, 9908.
[14] D. P. Tew, J. Chem. Phys. 2008, 129, 014104.

[15] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, T. O. Sorensen, Commun. Math. Phys. 2005, 255, 183.
[16] C. R. Myers, C. J. Umrigar, J. P. Sethna, J. D. Morgan, Phys. Rev. A 1991, 44, 5537.

JESZENSZKI ET AL. 15 of 21

 1097461x, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qua.26819 by Eotvos Lorand U

niversity, W
iley O

nline Library on [20/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
sandconditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://orcid.org/0000-0001-8696-6575
https://orcid.org/0000-0001-8696-6575
https://orcid.org/0000-0002-5193-540X
https://orcid.org/0000-0002-5193-540X
https://orcid.org/0000-0001-7298-1707
https://orcid.org/0000-0001-7298-1707
http://link.springer.com/10.1007/978-1-4757-6519-9
https://www.springer.com/gp/book/9783540651529
https://www.springer.com/gp/book/9783540651529


[17] E. Steiner, J. Chem. Phys. 1963, 39, 2365.
[18] J. C. Kimball, J. Phys. A: Math. Gen. 1975, 8, 1513.
[19] B. Mercier, An Introduction to the Numerical Analysis of Spectral Methods, Springer Berlin, Berlin 2014.

[20] W. A. Bingel, Z. Naturforsch 1963, 18a, 1249.
[21] H. Yasuhara, Y. Kawazoe, Phys. A Stat. Mech. Appl. 1976, 85, 416 ISSN 03784371.

[22] N. H. March, J. Phys. A: Math. Gen. 1975, 8, L133.
[23] J. Cioslowski, J. Chem. Phys. 2020, 153, 154108.
[24] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl & M. A. McClain

NIST Digital Library of Mathematical Functions: Sine and Cosine Integrals, https://dlmf.nist.gov/6.2#ii (2021). (accessed: 15 March 2021).

[25] W. L. Clinton, L. J. Massa, Int. J. Quantum Chem. 1972, 6, 519.
[26] E. Davidson, Reduced Density Matrices in Quantum Chemistry, Elsevier Science, St Louis, MO 2014.
[27] K. G. Dyall, K. Fægri, Introduction to Relativistic Quantum Chemistry, Oxford University Press, New York 2007.
[28] M. Reiher, A. Wolf, Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science, 2nd ed., Wiley-VCH, Weinheim, Germany 2015.

[29] W. Cencek, W. Kutzelnigg, J. Chem. Phys. 1996, 105, 5878.
[30] CODATA 2018 Recommended Values of the Fundamental Constants, https://physics.nist.gov/cuu/Constants/index.html accessed: February 2021

[31] P. Jeszenszki, D. Ferenc, E. Mátyus, J. Chem. Phys. 2021, 154, 224110.
[32] G. Drake, in Springer Handbook of Atomic, Molecular, and Optical Physics (Ed: G. Drake), Springer New York, New York, NY 2006, p. 199.
[33] D. H. Weinstein, Proc. Natl. Acad. Sci. USA 1934, 20, 529.

[34] R. Ireland, P. Jeszenszki, E. Mátyus, R. Martinazzo, M. Ronto & E. Pollak ACS Physical Chemistry Au, in press. https://doi.org/10.1021/

acsphyschemau.1c00018

[35] E. Pollak, R. Martinazzo, J. Chem. Theory Comput. 2021, 17, 1535.
[36] E. Mátyus, M. Reiher, J. Chem. Phys. 2012, 137, 024104.
[37] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl & M. A. McClain NIST Digital

Library of Mathematical Functions: Expansion of plane wave in spherical harmonics, https://dlmf.nist.gov/10.60#E7 (2021). (accessed: 15 March 2021).

[38] E. W. Weisstein Spherical Bessel Function of the First Kind, https://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html (2021).
(accessed: 16 August 2021).
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APPENDIX A

NECESSARY GAUSSIAN INTEGRALS FOR THE SHORT-RANGE PART

The approximate wave function is written as a linear combination of antisymmetrized products of χ spin and Θ ECGs functions,

Ψ¼
XNb

I¼1

cIÂ χIΘIf g ðA1Þ

with the Â¼ Npermð Þ�1
2
PNperm

p¼1 εpP̂p antisymmetrization operator over the Nperm possible permutations with εp parity. Expectation values of a (per-

mutationally invariant) Ô operator can be calculated as

ΨjÔjΨ
D E

¼
XNb

I¼1

XNb

J¼1

XNperm

p¼1

c�I cJεIJp ΘIjÔjΘJp

D E
ðA2Þ

where εIJp contains the parity of the permutation and the spin integrals, and we need to calculate matrix elements of Ô with the ECG functions ΘI

and ΘJp. Particle permutation leaves the mathematical form of the ECG unchanged, and assumes transformation of the A and s parameter arrays

(for further details, see, e.g., Mátyus and Reiher [36]).

During the IT procedure, the short-range part of the expectation values is computed by direct integration with the basis functions. For the

short-range calculations, the following integrals were used.

Coulomb integral over the short-range interval

Using the following notations:
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ei ¼Aisi, ðA3Þ

eij ¼ eiþej , ðA4Þ

ηij ¼ sTi AisiþsTj Ajsj, ðA5Þ

Aij ¼AiþAj, ðA6Þ

γij ¼ eTijA
�1
ij eij�ηij, ðA7Þ

J12ð Þkl ¼ δ1kδ1lþδ2kδ2l�δ1kδ2l�δ2kδ1l , k, l¼1,…,N ðA8Þ

βij ¼ eTijA
�1
ij J12A

�1
ij eij, ðA9Þ

aij ¼Tr J12A
�1
ij

� �
, ðA10Þ

Sij ¼ exp γij
� � π

3N
2

Aij

 3=2 , ðA11Þ

the Coulomb integral for a finite range can be given explicitly as,

Θi
1
r12

� �
Λ

 Θj

� �
¼ 2ffiffiffi

π
p
ðΛ
0
dt Θi e

�r212t
2

 Θj

D E
¼ 2ffiffiffi

π
p Sij

ðΛ
0
dt 1þ t2aij
� ��3=2

e
� βij t

2

1þt2aij

¼ Sijffiffiffiffiffiffiffi
πβij

p ð Λ2βij
1þΛ2aij

0
dz z�

1
2e�z ¼ Sijffiffiffiffiffi

βij
p Λ2βij

1þΛ2aij

 !1
2

24 35:
ðA12Þ

We note that the t dependence of the short-range δ rð Þ was integrated by Gauss–Legendre quadrature.

Momentum integrals

In this subsection, we draft the integration of the angular degrees of freedom for the momentum density, which is used in the second step of

Equation (36),

ð
dp1 pk1 ρ p1ð Þ¼4π

ð∞
0
dp pkþ2 ρh iθ,ϕ pð Þ: ðA13Þ

TABLE A1 Convergence of the density and the pair correlation functions, in bohr�3, at the coalescence point for the ground-electronic state
of the helium atom computed with the IT technique

Nb ρ 0ð Þ η 0ð Þ
100 3.620845647 0.106366877

200 3.620857171 0.106350118

400 3.620858545 0.106348521

Ref. [32] 3.620858636 98(6) 0.106345371 2(2)

Note: Nb is the number of the basis functions. tΛ ¼100 bohr�1.

Abbreviation: IT, integral transform.
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To work out this step, we write down the integral for two basis functions in Fourier space that is proportional with (where a ∈ ℝþ, d ∈ ℝ3,

and d¼jd j are constant coefficients containing the exponent matrices and shift vectors of the basis functions)

ð
dp1 pk1 exp �ap21þ idTp1

� �
¼
ð2π
0
dϕ
ð∞
0
dp p2þk

ðπ
0
dθ sin θ exp �ap2þ ijdjp cos θ

� �
¼2π

ð∞
0
dppkþ2

ð1
�1
dz exp �ap2þ idpz

� �
¼4π

d

ð∞
0
dppkþ1sin dpð Þe�ap2 :

ðA14Þ

We note that id is purely imaginary for any configuration-space shift vectors, s ∈ ℝ3N, due to Equation (34). The short-range part of the inte-

gral in Equation (A14) can be calculated analytically which we show for k¼2:

p2
	 


Λ ¼4π
d

ðΛ
0
dp p3e�ap2 sin dpð Þ¼4π

d
∂a∂d

ðΛ
0
dp e�ap2 cos dpð Þ

¼4π
2d

∂a∂d

ðΛ
0
dp e�ap2þidpþe�ap2�idp
h i

¼ π3=2

d
ffiffiffi
a

p ∂a∂de
�d2

4a erf
ffiffiffi
a

p
Λþ id

2
ffiffiffi
a

p
� �

þerf
ffiffiffi
a

p
Λ� id

2
ffiffiffi
a

p
� �� �

¼ 1

8a7=2d
d 6a�d2
� �

π
3
2e�

d2
4a erf

ffiffiffi
a

p
Λþ id

2
ffiffiffi
a

p
� �

þerf
ffiffiffi
a

p
Λ� id

2
ffiffiffi
a

p
� �� ��

�4π
ffiffiffi
a

p
e�aΛ2

2adΛcos dΛð Þþ 4aþ4a2Λ2�d2
� �

sin dΛð Þ
h io

:

ðA15Þ

If the ECGs are centered at the origin of the coordinate system, we need to consider the d!0 limit of the general expression:

lim
d!0

p2
	 


Λ ¼3π3=2

2a5=2
erf

ffiffiffi
a

p
Λ

� ��πΛ
a2

3þ2aΛ2
� �

e�aΛ2
: ðA16Þ

APPENDIX B

CONNECTION BETWEEN WAVE FUNCTION DERIVATIVES IN REAL SPACE AND THE DECAY RATE OF THE ASYMPTOTIC TAIL IN

MOMENTUM SPACE

Let us consider an L2 integrable function, f xð Þ, which decays to zero for x!	∞. Moreover, its (k�1)th derivative is discontinuous at x0, and its

kth derivative at this point is related to the Dirac delta function1

dkf xð Þ
dxk

� δ x�x0ð ÞA xð Þ, ðB1Þ

where A xð Þ is a continuous regular function, which describes the kth derivative everywhere else. Next, let us consider the Fourier transform of

f xð Þ and its momentum-space properties,

ef pð Þ¼ 1ffiffiffiffiffiffi
2π

p
ð∞
�∞

dxf xð Þe�ipx : ðB2Þ

Using partial integration, f pð Þ can be expressed with the integral of the derivative of f xð Þ,

ef pð Þ¼� 1ffiffiffiffiffiffi
2π

p
ip

f xð Þe�ipx
� �∞

�∞|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

þ 1ffiffiffiffiffiffi
2π

p
ip

ð∞
�∞

dx
df xð Þ
dx

e�ipx , ðB3Þ

where the first term in the right hand is zero, since our original condition was lim
x!	∞

f xð Þ¼0. The partial integration can be repeated k times,
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ef pð Þ¼ 1ffiffiffiffiffiffi
2π

p
ð∞
�∞

dxf xð Þe�ipx ¼ 1ffiffiffiffiffiffi
2π

p �i
p

� �k ð∞
�∞

dx
dkf xð Þ
dxk

e�ipx ¼ 1ffiffiffiffiffiffi
2π

p �i
p

� �k

e�ipx0A x0ð Þ , ðB4Þ

where Equation (B1) is used and we assumed that the Dirac delta predominantly determines the integral expression above. Since e�ipx0 is bounded,

e�ipx0
 ¼1 , ðB5Þ

in the limit of large p values, f pð Þ decays polynomially,

p> pΛ : f pð Þ� 1
pk

: ðB6Þ

APPENDIX C

FOURIER TRANSFORMATION OF rf ϑ,φð Þ
In this appendix, we consider the effect of the function f ϑ,φð Þ in Equation (42) on the integrand values. The function f ϑ,φð Þ can be written as a lin-

ear combination of Y1m spherical symmetric functions. In what follows we show that the Fourier transform of rf ϑ,φð Þ is local, moreover, its contri-

bution is zero in the asymptotic tail of the kinetic and mass-velocity term integrands. So, we consider

h pð Þ¼ 1ffiffiffiffiffiffiffiffi
8π3

p
ð
dreiprrY1m ϑ,φð Þ: ðC1Þ

In order to perform the Fourier transformation let us expand the plane wave in terms of spherical harmonics [37],

eipr ¼4π
X∞
ℓ¼0

Xℓ
m¼�ℓ

iℓjℓ prð ÞY�
lm

p
p

� �
Ylm

r
r

� �
, ðC2Þ

where jℓ xð Þ is the spherical Bessel function [38]. Substituting Equation (C2) into (C1) and using the orthogonality relation between the spherical

harmonics, the angular integral can be evaluated, and we obtain

h pð Þ¼ iffiffiffiffiffiffi
2π

p Y�
lm

p
p

� �ð
dr r3j1 prð Þ: ðC3Þ

Using the identity,

∂

∂p
j0 prð Þ¼�rj1 prð Þ , ðC4Þ

which can be checked by substituting the explicit expressions for the spherical Bessel functions [38]. We can rewrite the integral in

Equation (C3) as

h pð Þ¼� iffiffiffiffiffiffi
2π

p Y�
lm

p
p

� �
∂

∂p

ð
dr r2j0 prð Þ: ðC5Þ

Then, we can recognize one of the identities of the Dirac delta function [39], δ pð Þ¼ 2p2

π

Ð
dr r2j0 prð Þ,

h pð Þ¼�
ffiffiffi
2

p
i

π3=2
Y�
lm

p
p

� �
∂

∂p
δ pð Þ
p2

, ðC6Þ

and the differentiation can be performed by using the identity δ xð Þ¼�xδ0 xð Þ for the derivative of the Dirac delta,
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h pð Þ¼3
ffiffiffi
2

p
i

π3=2
δ pð Þ
p3

Y�
lm

p
p

� �
: ðC7Þ

The appearance of δ pð Þ ensures that the resulting function is localized near the origin (small p values), and thus, it does not contribute to the

large-p asymptotic tail.

APPENDIX D

DETERMINATION OF THE ρ 0ð Þ AND η 0ð Þ VALUES FOR THE GROUND STATE OF THE He ATOM

In order to determine accurate values for δ riAð Þ¼N�1ρ 0ð Þ and δ rij
� �¼ N N�1ð Þ½ ��1η 0ð Þ, the expectation values of δ riAð Þ and δ rij

� �
are obtained in

an iterative procedure (Section 2). The grid points used in the fitting are selected according to Section 6. For δ riAð Þ and δ rij
� �

, the fitting intervals

start at 5 bohr�1, and at 1 bohr�1, respectively, which are sufficient to avoid complicated correlation effects at low t values (see also Figure 1).

(A) (B)

F IGURE D1 Relative difference in the asymptotic tail of the numerically calculated functions, I δ riAð Þ tð Þ and I δ rijð Þ tð Þ, and the analytic-leading
order expressions of the asymptotic tail, eI0

δ riAð Þ tð Þ¼8ρ 0ð Þ= ffiffiffi
π

p
t2

� �
and eI0

δ rijð Þ tð Þ¼�2η 0ð Þ= ffiffiffi
π

p
t2

� �
for the example of the ground state of the

helium atom with an increasing number of explicitly correlated Gaussian (ECG) basis functions (Nb)

(A) (B)

F IGURE D2 Relative error of 《δ riAð Þ》 and 《δ rij
� �

》 for various tΛ threshold values and m terms in the fitting, Equation (24), using
400 explicitly correlated Gaussians (ECGs). The result “direct” was obtained by numerical integration over the entire t range. The reference values
are δ riAð Þh ir ¼3:620858637 7 3ð Þ bohr�1 and δ rij

� �	 

r ¼0:106345370636 2ð Þ bohr�1 [2]
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For the asymptotic range, the relative deviation of the integrands from the leading-order analytic terms is shown in Figure D1. The function I δ riAð Þ
appears to be robust with respect to the number of basis functions, while I δ rijð Þ is more sensitive to the basis set.

After inspection of these figures, we set tΛ ¼100 bohr�1 for the upper end of the interval used for the fitting, and the beginning of the long-

range integral. The ρ 0ð Þ and η 0ð Þ values obtained in this computational setup with seven fitting parameters are collected in Table A1.

Figure D2 shows the relative error of 《δ riAð Þ》 and《δ rij
� �

》 in comparison with data available from Pachucki et al. [2]
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