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Abstract
Defne the k-th Radon number rk of a convexity space as the smallest number (if it
exists) for which any set of rk points can be partitioned into k parts whose convex hulls
intersect. Combining the recent abstract fractional Helly theorem of Holmsen and Lee
with earlier methods of Bukh, we prove that rk grows linearly, i.e., rk ≤ c(r2) · k.
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1 Introduction

Defne a convexity space as a pair (X , C), where X is any set of points and C, the
collection of convex sets, is any family over X that contains ∅, X , and is closed under
(arbitrary) intersection and under (arbitrary) union of nested sets. The convex hull,
conv S, of some point set S ⊂ X is defned as the intersection of all convex sets
containing S, i.e., conv S = � {C ∈ C | S ⊂ C}; since C is closed under intersection,
conv S is the minimal convex set containing C . This generalization of the convex sets
of Rd includes several examples; for an overview, see the book by van de Vel [29] or,
for a more recent work, [22]. It is a natural question what properties of convex sets
of Rd are preserved, or what the relationships are among them for general convexity
spaces. Amuch investigated parameter is the Radon number rk (sometimes also called
partition number or Tverberg number), which is defned as the smallest number (if
it exists) for which any set of rk points can be partitioned into k parts whose convex
hulls intersect in a common point. For k = 2, we simply write r = r2.
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In case of the convex sets of Rd , it was shown by Radon [26] that r = d + 2 and
by Tverberg [28] that rk = (d + 1)(k − 1) + 1. Calder [8] and Eckhoff [12] raised the
questionwhether rk ≤ (r−1)(k−1)+1 also holds for general convexity spaces (when
r exists), and this became known as Eckhoff’s conjecture. It was shown by Jamison
[17] that the conjecture is true if r = 3, and that the existence of r always implies
that rk exists and rk ≤ r �log2 k� ≤ (2k)log2 r . His proof used the recursion rkl ≤ rkrl
which was later improved by Eckhoff [13] to r2k+1 ≤ (r − 1)(rk+1 − 1) + rk + 1, but
this did not signifcantly change the growth rate of the upper bound. Recently Bukh
[7] disproved the conjectured bound rk ≤ (r − 1)(k − 1) + 1 by showing an example
where r = 4, but rk ≥ 3k − 1 (just one more than the conjectured value), and also
improved the upper bound to rk = O(k2 log2k), where the hidden constant depends
on r . We improve this to rk = O(k), which is optimal up to a constant factor and
might lead to interesting applications.

Theorem 1.1 If a convexity space (X , C) has Radon number r , then rk ≤ c(r) · k.
Our proof combines the methods of Bukh with recent results of Holmsen and Lee
[16]. In particular, we will use the following version of the classical fractional Helly
theorem [18]. Here, and later, collection of f sets F1, . . . , Ff ∈ F is an intersecting

f -tuple from F if
� f

i=1 Fi 	= ∅, i.e., they have a common point.

Theorem 1.2 (Holmsen–Lee [16]) For any r ≥ 3 there is an f such that for any
α > 0 there is a β > 0 with the following property. If a convexity space (X , C) has
Radon number r , then for any finite family F of convex sets, if at least an α fraction
of the f -tuples of F are intersecting, then a β fraction of F intersect in a common
point.

There are several other connections between the parameters of a convexity space [29].
For example, the Helly number of a convexity space (X , C) is defned as the smallest
h for which if all h-tuples of a fnite family F of convex sets are intersecting, then
all sets of F intersect in a common point. It was already shown in [21] that in all
convexity spaces h < r (if r is fnite), while in [16] it was also shown that the so-
called colorful Helly number [4] can also be bounded by some function of r (and
this implied Theorem 1.2 combined with a combinatorial result from [15]).1 It was
also shown in [16] that it follows from the work of Alon et al. [2] that weak ε-nets
[1] of size c(ε, r) also exist and a (p, q)-theorem [3] also holds, so understanding
these parameters better might lead to improved ε-net bounds. It remains an interesting
challenge and a popular topic to fnd new connections among such theorems; for some
recent papers studying the Radon numbers or Tverberg theorems of various convexity
spaces, see [9–11,14,20,23,24,27], while for a comprehensive survey, see Bárány and
Soberón [6].

1.1 Restricted vs. Multiset

In case of general convexity spaces, there are two, slightly different defnitions of
Radon numbers [29, 5.19]. When we do not allow repetitions in the point set P to

1 We would like to point out that a diffculty in proving these results is that the existence of a Carathéodory-
type theorem is not implied by the existence of r .
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be partitioned, i.e., P consist of different points, the parameter is called the restricted
Radon number, which we will denote by r (1)

k . If repetitions are also allowed, i.e.,
we want to partition a multiset, the parameter is called the unrestricted or multiset
Radon number, which we will denote by r (m)

k . The obvious connection between these

parameters is r (1)
k ≤ r (m)

k ≤ (k − 1)(r (1)
k − 1) + 1. In the earlier papers multiset

Radon numbers were preferred, while later papers usually focused on restricted Radon
numbers; we followed the spirit of the age, so the results in the introduction were
written using the defnition of r (1)

k , although some of the bounds (like Jamison’s or
Eckhoff’s) are valid for both defnitions. The proof of Theorem 1.1, however, also
works for multisets, so we will in fact prove the stronger r (m)

k = O(k), and in the

following simply use rk for the multiset Radon number r (m)
k .

A similar issue arises in Theorem 1.2; is F allowed to be a multifamily? Though
not emphasized in [16], their proof also works in this case and we will use it for a
multifamily. Note that this could be avoidedwith some cumbersome tricks, like adding
more points to the convexity space without increasing the Radon number r to make
all sets of a family different, but we do not go into details, as Theorem 1.2 holds for
multifamilies anyway.

2 Proof of Theorem 1.1

Fix r , a convexity space (X , C)withRadon number r , and a collection of points P ⊂ X
with cardinality tk, where we allow repetitions and the cardinality is understood as
the sum of the multiplicities, so P = {p1, . . . , ptk}. We will treat all points of P as if
they were different even if they coincide in X , e.g., when taking subsets.

We need to show that if t ≥ c(r), then we can partition P into k sets whose convex
hulls intersect. For a fxed constant s, defne F to be the family of convex sets that are
the convex hulls of some s-element subset of P , i.e., F = {conv S | S ⊂ P, |S| = s}.
Since we treat all points of P as different, F will be a multifamily with |F | = �tk

s

�
.

We will refer to the point set S whose convex hull gave some F = conv S ∈ F as
the vertices of F . Some of the points might be in the convex hull of the remaining
ones; here vertices is meant in a graph theoretical sense. Note that for some I , J ⊂
{1, . . . , tk} if we defne PI = {pi | i ∈ I } and PJ = {p j | j ∈ J }, then we might have
conv PI = conv PJ even if I 	= J , but the vertices of conv PI and conv PJ will still
be PI and PJ ; since P is a multiset, this is even possible if I ∩ J = ∅.

The constants t and s will be set to be large enough compared to some parameters
that we get from Theorem 1.2 when we apply it to a fxed α. (Our arguments work for
any 0 < α < 1.) First we set s to be large enough depending on α and r f (where f is
the fractional Helly number from Theorem 1.2; recall that r f ≤ r �log f � is a constant
[17]), then we set t to be large enough depending on s and β (which depends on our
chosen α). In particular, we can set

s = r f f
f r f log

1

1 − α1
and t = max

�
s2

β
; ( f s)2

k(1 − α2)

�

,
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where 0 < α1, α2 < 1 are any two numbers such that α1 · α2 = α. Also, we note that
the proof from [15,16] gives f ≤ rr

log r
and β = �(αr f

) for Theorem 1.2. Combining

all these to get the best bound, note that R = max (r f , f r f ) � rr
r log r

. Setα = 1−1/R
with, e.g., α1 = α2 ≈ 1− 1/(2R). This keeps β constant, and both s and t around R,

so we get an upper bound of approximately rr
r log r

for t . (The simpler α1 = α2 = 1/2

would give approximately 2r
rr
log r

.)
Theorem 1.1 will be implied by the following lemma and Theorem 1.2. The proof

is based on the observation that if a large point set is partitioned randomly into k parts,
then the convex hulls of the parts will intersect with high probability, because when
we partition any rk points, there is a non-zero probability that their convex hulls will
intersect. For related statements, see [5,19,25].

Lemma 2.1 An α fraction of the f -tuples of F are intersecting.

Proof Since t is large enough, almost all f -tuples will be vertex-disjoint, thus it will
be enough to deal with such f -tuples. More precisely, the probability of an f -tuple
being vertex-disjoint is at least (1− f s/(tk)) f s ≥ 1− ( f s)2/(tk) ≥ α2 by the choice
of t , using Bernoulli’s inequality. We need to prove that at least an α1 fraction of these
vertex-disjoint f -tuples will be intersecting.

Partition the vertex-disjoint f -tuples into groups depending onwhich ( f s)-element
subset of P is the union of their vertices.Wewill show that for each group anα1 fraction
of them are intersecting. We do this by generating the f -tuples of a group uniformly
at random and show that such a random f -tuple will be intersecting with probability
at least α1. For technical reasons, suppose that m = s/r f is an integer and partition
the f s supporting points of the group randomly into m subsets of size f r f , denoted
by V1, . . . , Vm . Call an f -tuple type (V1, . . . , Vm) if each set of the f -tuple intersects
each Vi in r f points. Since these Vi were picked randomly, it is enough to show that
the probability that a (V1, . . . , Vm)-type f -tuple is intersecting is at least α1.

The (V1, . . . , Vm)-type f -tuples can be uniformly generated by partitioning each
Vi into f equal parts of size r f , because sampling an f -tuple of vertex-disjoint sets
uniformly at random is the same as frst sampling a type uniformly at random and
then sampling an f -tuple of that type uniformly at random. Therefore, it is enough
to show that such a random f -tuple will be intersecting with probability at least α1.
Since |Vi | ≥ r f , there is at least one partition of the frst r f points of Vi into f
parts whose convex hulls intersect. Since we can distribute the remaining ( f − 1)r f
points of Vi to make all f parts equal, we get that when we partition Vi into f equal
parts of size r f , the convex hulls of these parts will intersect with probability at least
� f r f
r f ,r f ,...,r f

�−1 ≥ f − f r f , using that each of the f r f points can go to one of the f
parts. Since these events are independent for each i , we get that the fnal f -tuple will

be intersecting with probability at least 1 − (1 − f − f r f )m ≥ 1 − e−m f − f r f ≥ α1 by
the choice of s, using 1 − x ≥ e−x . �

Therefore, if s is large enough, the conditions of Theorem 1.2 are met, so at least
β
�tk
s

�
members ofF intersect in a common point. In otherwords, these intersecting sets

form an s-uniform hypergraphH on tk vertices that is β-dense. We need to show that
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H has k disjoint edges to obtain the desired partition of P into k parts with intersecting
convex hulls. For a contradiction, suppose thatH has only k − 1 disjoint edges. Then
every other edge meets one of their (k − 1)s vertices. There are at most (k − 1)s

� tk
s−1

�

such edges, which is less than β
�tk
s

�
if (k − 1)s < β(tk − s + 1)/s, but this holds by

the choice of t . This fnishes the proof of Theorem 1.1.

3 Concluding Remarks

It is an interesting question to study how big f can be compared to r and the Helly
number h of (X , C). The current bound [16] gives f ≤ hrh ≤ rr

log r
. We would like

to point out that the frst inequality, f ≤ hrh , can be (almost) strict, as shown by the
following example, similar to [22, Example 3] (cylinders). Let X = {1, . . . , q}d be the
points of a d-dimensional grid, and let C consist of the intersections of the axis-parallel
affne subspaceswith X . (Note that for q = 2, X will be the vertices of a d-dimensional
cube, and C its faces.) It is easy to check that h = 2, r = �log(d + 1) + 2�, and
f = d + 1: we have h = 2 because a family F is (pairwise) intersecting if and only if
there are no F1, F2 ∈ F that are contained in different parallel hyperplanes H1 ⊃ F1
and H2 ⊃ F2; we have r = �log(d + 1) + 2� because the number of ways r points
can be partitioned into two non-empty parts is 2r−1 − 1 > d, so in some partition
no coordinate will be a different constant on the two parts, thus the convex hulls will
intersect; we have f = d+1 because in Theorem 1.2 for α = d!/dd we need β = 1/q
when F consists of all qd axis-parallel affne hyperplanes (if q is large enough).

It is tempting to assume that Theorem 1.1 would improve the second inequality,
hrh ≤ rr

log r
, as instead of rh ≤ r log h we can use rh = O(h). Unfortunately, recall

that the hidden constant depended on r , in particular, it is around rr
r log r

. We have a
suspicion that this might not be entirely sharp, so a natural question is whether this

dependence could be removed to improve rk ≤ rr
r log r · k to rk ≤ c · r · k. This would

truly lead to an improvement of the upper bound on f in Theorem 1.2 and would lead
to further applications [6].
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