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Abstract
An odd wheel graph is a graph formed by connecting a new vertex to all vertices of
an odd cycle. We answer a question of Rosenfeld and Le by showing that odd wheels
cannot be drawn in the plane so that the lengths of the edges are odd integers.
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1 Introduction

A geometric graph is a graph drawn in the plane so that the vertices are represented
by distinct points and the edges are represented by possibly intersecting straight line
segments connecting the corresponding points. A unit-distance graph is a geometric
graph where all edges are represented by segments of length 1. The study of the
chromatic number of unit-distance graphs started with the question of Edward Nelson,
who raised the problem of determining the minimum number of colors that are needed
to color the points of the plane so that no two points unit distance apart are assigned
the same color. This number is known as the chromatic number of the plane. Until
recently the best lower bound was 4, but it was improved by Aubrey de Grey [8], who
constructed a unit-distance graph that cannot be colored with four colors. The best
upper bound is 7. For more details on unit-distance graphs see for example [19].

Erdős [6] raised the problem of determining the maximal number of edges in a unit-
distancegraphonn vertices and this questionbecameknownas theErdősUnitDistance
Problem. Erdős and Rosenfeld [2] asked analogous questions for odd distances. An
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odd-distance graph is a geometric graph in which edges are represented by segments
whose length is an odd integer. Godd is the graph whose vertex set is the plane and
in which two vertices are connected if their distance is an odd integer. Note that
odd-distance graphs are subgraphs of Godd. In [2] the authors asked to determine the
chromatic number of Godd (denoted by χ(Godd)), and the maximum number of edges
of an odd-distance graph on n vertices.

Since there are odd-distance graphs whose chromatic number is 5 [2,8], we have
5 ≤ χ(Godd). However, unlike the case of unit distances, no fnite upper bound is
known for χ(Godd). If in addition we require the color classes to be measurable sets,
the chromatic number is infnite [4,20].

There do not exist four points in the plane with pairwise odd distances [13], hence
K4 is not an odd-distance graph. It follows from Turán’s theorem that the complete
tripartite graph Kn,n,n has the maximal number of edges among K4-free graphs. Piep-
meyer [17] showed that Kn,n,n , and therefore any 3-colorable graph, is an odd-distance
graph. This settles the second question of Erdős and Rosenfeld.

Let Wn be the wheel graph formed by connecting a new vertex to all vertices of a
cycle on n vertices.1 W2k is 3-colorable, hence it is an odd-distance graph. Rosenfeld
and Le [18] showed that having K4 (which is isomorphic to W3) as a subgraph is not
the only obstruction for being an odd-distance graph, since W5 is not an odd-distance
graph either. This motivated the following question from [18]. Is it true that W2k+1 is
not a subgraph of Godd for any k? We answer this affrmatively.

Theorem 1.1 If n is odd, then Wn is not an odd-distance graph.

This result is also connected to the chromatic number of Godd. Take any vertex v of
Godd and let G ′ be the graph that is induced by the neighborhood of v. Theorem 1.1
is equivalent to saying that G ′ is 2-colorable for any v.

We prove Theorem 1.1 by a careful analysis of the angles that appear around the
center of the wheel. In Sect. 2 we study drawings of wheel graphs in a more general
setting, without assuming that the edge lengths are odd numbers. In order to understand
which angles can appear around the center and how these angles behave when we sum
them up, we develop a number of useful lemmas. These tools might prove useful for
related questions. For example, there are a number of interesting results and questions
about geometric graphs where we allow the edges to be represented by segments of
arbitrary integer length [3,9,11,21]. One of these questions is Harborth’s conjecture
[10] stating that all planar graphs admit a planar drawing with integer edge lengths.
There are a number of constructions showing that any wheel graph admits such a
drawing, see for example [3, Sect. 5.11]. Since the maximal planar graphs are the
triangulations, they containmanywheels. Hence, understanding the possible drawings
of wheels is vital for solving the conjecture. In Sect. 3 we refne our tools by assuming
that the distances are odd integers. Finally, in Sect. 4, we prove Theorem 1.1.

1 There is some discrepancy in the literature, since some authors prefer to denote by Wn the wheel graph
on n vertices.
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Fig. 1 Two embeddings of the wheel graph W5

2 Wheels with Integer Edge Lengths

2.1 Embeddings ofWheel Graphs

Throughout this paperwewill assume that the center of thewheel is embedded atO and
the other points are A1, A2, . . . , An , following the order of the vertices in the defning
cycle of the wheel (see Fig. 1). In the following notations the indices are mod n. We
will call the n triangles OAi Ai+1 for i ∈ {1, . . . , n} the triangles of the embedding.
We will use the notations ri = |OAi |, ri,i+1 = |Ai Ai+1|, and θi,i+1 = ∠ Ai O Ai+1.

That is, the i-th triangle has sides of length ri , ri+1, and ri,i+1, and its inner angle
is θi,i+1. Note that θi,i+1 is a directed angle. We do not assume planarity or even
general position of the points. For example, crossings are allowed, and O does not
need to be in the interior of the cycle (see Fig. 1).

2.2 Geometry of a Triangle

Let us recall some classical results from elementary geometry. Let T (a, b, c) denote
a triangle with sides a, b, c and let α denote the angle opposite to a. By the law of
cosines we have

cosα = b2 + c2 − a2

2bc
, (1)

sin α =
�
1 − cos2α =

�
4b2c2 − (b2 + c2 − a2)2

2bc
. (2)

Let A denote the area of T (a, b, c). Then

A = bc sin α

2
=

�
4b2c2 − (b2 + c2 − a2)2

4
. (3)
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Fig. 2 Characteristics of the triangles in an embedding

Using these formulas we will introduce two notions, the characteristic of a triangle
and the residual of an angle. Strictly speaking wewill only need residuals for the proof
of Theorem 1.1, but there is a strong connection to the characteristics of triangles so
they are worth mentioning.

2.3 Characteristic of a Triangle

From (3) we can see that if a, b, and c are integers, then we can write the area of
T (a, b, c) as r

√
D for some rational number r and a square-free integer D. If the area

is 0, then r = 0 and D can be any square-free integer. If the area is non-zero, then D
must be the square-free part of 4b2c2 − (b2 + c2 − a2)2. In this case D is called the
characteristic of the triangle.

We say that a point set in the plane is integral if the pairwise distances between
its points are integers. The characteristic of triangles is a useful tool to study and
algorithmically generate integral point sets (see for example [11]). The following
statement is folklore, for a proof see [12].

Lemma 2.1 The triangles spanned by any three non-collinear points in a plane integral
point set have the same characteristic.

Consider an embedding of a wheel graph such that the edges have integer lengths. The
rest of the distances might be non-integer, thus the n triangles of the embedding can
have different characteristics. (See for example Fig. 2). At frst one might hope that
the number of different characteristics corresponding to a drawing of any wheel graph
is bounded. This turns out not to be true, however the characteristics still have some
useful properties. Later in this section we will show the following statement.

Lemma 2.2 Consider an embedding of a wheel graph with integer edge lengths. Then
for anyfixed characteristic D the sumof those angles θi,i+1 that correspond to triangles
with characteristic D is an integer multiple of π .
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2.4 Residual of an Angle

Considering (1) and (3) we obtain that the characteristic of a triangle is connected
to the sine values of the angles in the following sense. If a triangle with integer side
lengths has characteristic D, then the sine of its angles is of the form q

√
D for some

rational number q, and the cosine of its angles is rational. Hence we will say that an
angle θ has residual D if D is square-free, sin θ = q

√
D for some rational number q,

and cos θ is rational.
Most angles in general do not have any residual. Integermultiples ofπ have residual

D for any square-free integer D, but other angles have at most one residual. If the
residual is unique, it will be called the residual of the angle. For example, the residual
of π/2 is 1, the residual of π/3 is 3, but π/6 does not have any residual. As the
characteristic of triangles, the residual of the angles is a useful tool, in [7] it was used
to fnd trisectible angles in triangles with integer side lengths.

We can easily see from the trigonometric addition formulas that the set of angles
with residual D is closed under addition. Also, for any φ the following angles have
the same set of residuals: φ,−φ, π + φ, π − φ.

2.5 AnglesWhose Squared Trigonometric Functions Are Rational

Conway et al. [5] studied angles whose squared trigonometric functions are rational.
They called θ a pure geodetic angle if the square of its sine is rational, and showed
the following theorem.

Splitting Theorem 2.3 Let θ1, . . . , θn be pure geodetic angles, let r1, . . . , rn be ratio-
nal numbers, and let D be a positive integer. Let θi1 , . . . , θil be those angles whose
tangents are rational multiples of

√
D. If

�n
i=1 riθi is a rational multiple of π , then

�l
j=1 ri j θi j is also a rational multiple of π .

Clearly, angles with residual D are pure geodetic angles and have tangents that are
rational multiples of

√
D. (It is not hard to see that α is pure geodetic if and only if 2α

has a residual). Therefore, Theorem 2.3 applies to them, but we can even strengthen
it in some sense. Note that in the next theorem we consider simple sums instead of
rational linear combinations.

Splitting Theorem 2.4 (for angles that have residual) Let θ1, . . . , θn be angles that
have a residual and let D be a square-free positive integer. Let θi1 , . . . , θil be those
angles whose residual is D. If

�n
i=1 θi is a rational multiple of π , then

�l
j=1 θi j is

also a rational multiple of π . Furthermore,
�l

j=1 θi j is an integer multiple of π/3 or
π/2.

Proof The frst part is clear from Theorem 2.3. For the second part we recall Niven’s
Theorem [14]:

Theorem 2.5 Consider the angles in the range 0 ≤ θ ≤ π/2. The only values of θ

such that both θ/π and cos θ are rational are 0, π/3, and π/2.
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Since angles corresponding to a given residual are closed under addition, the sum�l
j=1 θi j gives us an angle that has residual D. But angles that have a residual have

rational cosine, so we can apply Theorem 2.5 to them. ��
Now we are ready to prove Lemma 2.2. Since triangles with characteristic D have

angles that have residual D, it is enough to show the following residual version.

Lemma 2.6 Consider an embedding of a wheel graph with integer edge lengths. Then
for any fixed residual D the sum of those angles θi,i+1 that have residual D is an
integer multiple of π .

Proof Clearly
�n

i=1 θi,i+1 is an integer multiple of 2π . Hence we can apply Theorem
2.4 for the angles θi,i+1. Suppose that the angles corresponding to residual D add up
to θ . From Theorem 2.4 it is clear that θ is either an integer multiple of π/2 or an
integer multiple of π/3. Let θ ′ = θ mod π . Then θ ′ = 0, π/3, 2π/3, or π/2. Note
that since θ is the sum of some angles that have residual D, it also has residual D.
Hence θ ′ also has residual D.

From sin(π/3) = sin(2π/3) = √
3/2 we can see that if θ ′ = π/3 or θ ′ = 2π/3,

then D = 3. Similarly, if θ ′ = π/2, then we have D = 1. Therefore, if we group the
terms of

�n
i=1 θi,i+1 based on the residuals, every group will sum up to an integer

multiple of π except maybe the ones corresponding to D = 1 and D = 3. (Some
θi,i+1 might not have a unique residual but those are themselves integer multiples
of π , thus we can pick an arbitrary residual for them). Since the whole sum should
be an integer multiple of π , the exceptional cases together must add up to an integer
multiple of π . This can only happen if both of them add up to an integer multiple of π ,
since π/3 + π/2 and 2π/3 + π/2 are not integer multiples of π . Hence, every sum
corresponding to a given residual is an integer multiple of π . ��

3 Wheels with Odd Edge Lengths

In the previous section we considered wheels with arbitrary integer edge lengths. Now
we are ready to turn our attention to drawings of odd wheels with odd integer edge
lengths.

Lemma 3.1 If a, b, and c are odd numbers and the characteristic of the triangle
T (a, b, c) is D, then D ≡ 3 mod 8.

Proof It follows from (3) that the characteristic of the triangle is the square-free part of
4a2b2−(a2+b2−c2)2. Since squares of odd numbers are congruent to 1modulo 8, we

have 4a2b2−(a2+b2−c2)2 ≡ 3mod8. Since the square part of 4a2b2−(a2+b2−c2)2

is the square of an odd number, it is congruent to 1 modulo 8. Hence D ≡ 3 mod 8. ��
This means that if we have an embedding of a wheel graph with odd edge lengths,
then each θi,i+1 has a unique residual that is congruent to 3 modulo 8. The next idea
is to classify the angles whose residual is congruent to 3 modulo 8.

Lemma 3.2 Suppose that D ≡ 3 mod 8 and φ is an angle that has residual D. Then
cosφ can be written as m/(2p), where p ≡ 1 mod 8 and m is an integer. Furthermore
the remainder of m modulo 8 is determined by the angle, and it is 1, 2, 3, 5, 6, or 7.
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We will call the remainder of m modulo 8 the class of φ.

Proof By the defnition of having a residual, cosφ is rational. Since D ≡ 3 mod 8 the
value of cosφ is non-zero. Hence cosφ = a/b for some non-zero integers a, b such
that gcd(a, b) = 1. There are two cases.

– First, suppose that a and b are odd. Odd numbers have an inverse in Z8. So, if b
is odd, then there is an odd number k such that bk ≡ 1 mod 8. Hence cosφ =
2ak/(2bk). Now ak is odd, therefore 2ak is not divisible by 4. Thus, we can choose
m = 2ak and p = bk.

– Second, suppose that a or b is even. Since gcd(a, b) = 1, one of them is even and

the other one is odd. Consider that sin φ = ±�
1 − a2/b2 = ±√

b2 − a2/b. The

square-free part of b2 − a2 is D, and b2 − a2 is odd, so b2 − a2 ≡ 3 mod 8. Since
the only quadratic residuals modulo 8 are 0, 1, and 4, the only possibility is that
b2 ≡ 4 mod 8 and a2 ≡ 1 mod 8. Since b2 ≡ 4 mod 8, b′ = b/2 is odd and,
similarly to the previous case, there is an odd k such that kb′ ≡ 1 mod 8. Since
a2 ≡ 1 mod 8, a must be odd. Thus, we can choose m = ak, p = b′k.

It is also easy to see that an angle cannot fall into two classes, notice that m1/(2p1) =
m2/(2p2) implies m1 p2 ≡ m2 p1 mod 8. ��
The aim of the next lemma is to answer the following question. Suppose that angle θ

is of class m1 and angle φ is of class m2. What is the class of θ + φ, assuming that it
exists?

Lemma 3.3 If cos θ = m1/(2p1), cosφ = m2/(2p2), and cos(θ+φ) = m3/(2p3) for
some integers p1, p2, p3 that are congruent to 1 modulo 8 and integers m1,m2,m3,
then

m2
1 + m2

2 + m2
3 − m1m2m3 − 4 ≡ 0 mod 8. (4)

Proof Using the cosine addition formula cos(θ + φ) = cos θ cosφ − sin θ sin φ, we
get

m3

2p3
= m1

2p1
· m2

2p2
−

�
±

�
4p21 − m2

1

2p1

�
·
�

±
�
4p22 − m2

2

2p2

�
,

(2m3 p1 p2 − m1m2 p3)
2 = p23(4p

2
1 − m2

1)(4p
2
2 − m2

2),

4m2
3 p

2
1 p

2
2 + m2

1m
2
2 p

2
3 − 4m1m2m3 p1 p2 p3

= 16 p21 p
2
2 p

2
3 − 4p21m

2
2 p

2
3 − 4m2

1 p
2
2 p

2
3 + m2

1m
2
2 p

2
3,

p21 p
2
2m

2
3 − p1 p2 p3m1m2m3 − 4p21 p

2
2 p

2
3 + p21m

2
2 p

2
3 + m2

1 p
2
2 p

2
3 = 0.

Since p1 ≡ p2 ≡ p3 ≡ 1 mod 8 we get (4). ��
Consider the solutions of (4) in Z8. Clearly, every triple (m1,m2,m3) that is not a
solution of this equation encodes a forbidden change in the class whenwe take the sum
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of two angles. For example, since (1, 2, 3) is not a solution, adding an angle of class 1
and an angle of class 2 cannot result in an angle of class 3. The equation is symmetric
in m1, m2, and m3. We will be later interested in solutions where one of the mi s is 1,
3, 5, or 7. Checking every triple we fnd that these solutions are the following ones
and the re-orderings of these: (1, 1, 2), (1, 1, 7), (1, 2, 5), (1, 3, 5), (1, 3, 6), (1, 6, 7),
(2, 3, 3), (2, 3, 7), (2, 5, 5), (2, 7, 7), (3, 3, 7), (3, 5, 6), (5, 5, 7), (5, 6, 7), (7, 7, 7).

4 Proof of theMain Theorem

The idea of the proof is simple, we aim to show that
�n

i=1 θi,i+1 is not a multiple of
2π using the fact that each θi,i+1 is an angle of a triangle whose sides have odd length.
Note that it is important that the triangles in a wheel embedding share sides with their
neighbors. The statement is not true for an an arbitrary set of triangles, as shown by
the following example. Both π/3 and 2π/3 appear in triangles with odd sides and
π/3 + π/3 + π/3 + π/3 + 2π/3 = 2π .

Proof of Theorem 1.1 Suppose that there is a counterexample toTheorem1.1. It follows
from Lemma 3.1 that each θi,i+1 has a unique residual. Let φ1, . . . , φn be a reordering
of the angles θ1,2, θ2,3, . . . , θn,1 in such a way that the angles of given residuals are
consecutive. In general an arbitrary angle might not have any residual. The advantage
of this ordering is that

��
i=1 φi has a residual for each � ∈ {0, 1, . . . , n}. To see this

suppose that the residual of φ� is D. From Lemma 2.6 we see that the φi s before φ�

whose residual is not D sum up to an integer multiple of π . Thus, they do not affect
the residual of

��
i=1 φi . Since angles with residual D are closed under addition, the

rest sums up to an angle that has residual D.
Further, it follows from Lemma 3.1 that D ≡ 3 mod 8. Hence by Lemma 3.2 we

obtain that
��

i=1 φi has a class for each � ∈ {0, 1, . . . , n}. Consider how the class
changes as � goes from 0 to n.

In each step we increase the angle by some θ j, j+1. We have

cos θ j, j+1 = r2j + r2j+1 − r2j, j+1

2r j r j+1
= (r2j + r2j+1 − r2j, j+1)r jr j+1

2r2j r
2
j+1

.

Since r j , r j+1, and r j, j+1 are odd numbers, r2j + r2j+1 − r2j, j+1 ≡ 1 mod 8 and

r2j r
2
j+1 ≡ 1 mod 8. Therefore the class of θ j, j+1 is the remainder of r jr j+1 modulo 8,

which is either 1, 3, 5, or 7. We will use this fact in the following form. If r jr j+1 ≡ 1
mod 4, then the class of θ j, j+1 is either 1 or 5, and if r jr j+1 ≡ 3 mod 4, then the class
of θ j, j+1 is either 3 or 7. Therefore, as we increase � the angle

��
i=1 φi changes either

by an angle whose class is 1 or 5, or by an angle whose class is 3 or 7, depending on
the remainder of r j r j+1 divided by 4.

Now we are ready to use Lemma 3.3. The solutions of (4) have an underlying
structure, which we can use. This is depicted in Fig. 3. We create a graph G whose
vertex set is {1, 2, 3, 5, 6, 7}. For solutions of the form (1, x, y) and (5, x, y) we
connect x and y by a dashed edge. For solutions of the form (3, x, y) and (7, x, y)
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Fig. 3 Possible changes in the class when adding an angle of class 1, 3, 5, or 7

we connect them by a solid edge, allowing loop edges. These two sets of edges are
disjoint. Note that the dashed edges form a bipartite graph such that the solid edges
connect vertices inside the two parts. This allows us to use a parity argument, as any
closed trail in this graph must use an even number of dashed edges.

Now we are ready to fnish the proof. Let T be the trail of length n + 1 in G whose
�-th vertex is the class of

��−1
i=1 φi . Since

�n
i=1 φi is an integer multiple of 2π , we

have cos
�n

i=1 φi = 2/(2 · 1). Hence the trail starts and ends at 2. By Lemma 3.3,
when the class of φi is 1 or 5, we follow one of the solid edges, if the class is 3 or 7,
we follow a dashed edge.

Finally, we show that we followed a dashed edge an odd number of times. Con-
sidering the equation (r1r2)(r2r3) · · · (rn−1rn)(rnr1) = (

�
ri )2 ≡ 1 mod 4 we have

riri+1 ≡ 3 mod 4 for an even number of is. Since n is odd, this implies that we
have an odd number of is when riri+1 ≡ 1 mod 4. Hence the trail contains an odd
number of dashed edges. Since the dashed edges form a bipartite graph and the solid
edges connect vertices inside the two parts, the trail cannot end where it started, a
contradiction. This shows that a counterexample to Theorem 1.1 cannot exists. ��

5 Final Remarks

We note that some parts of the proof can be replaced by other arguments. For example,
Lemma 3.3 also follows from the analysis of Cayley–Menger determinants.

The main goal of understanding odd-distance graphs is to determine the chromatic
number of Godd. Odd wheels are the simplest graphs that are not 3-colorable, yet they
are not odd-distance graphs. Our proof relies on the fact that a wheel graph contains
many triangles.An other interesting question ofRosenfeld andLe [18] is the following.
Are there triangle-free graphs that are not odd-distance graphs?

Piepmeyer’s construction which shows that Kn,n,n is an odd-distance graph comes
from an integral point set [17]. Recently Le Tien Nam and Nguyen Tho Tung showed
a similar construction [15]. Naturally, one might be tempted to look for odd-distance
graphs with high chromatic number in a similar way. Take an integral point set and
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then consider the odd-distance graph given by the edges of odd length. We note that
this method is not suffcient, the chromatic number of graphs constructed this way is
at most 3. We leave the proof of this statement to the interested readers.

We can also consider the following analog of Harborth’s conjecture. Which planar
graphs have a planar drawing with odd edge lengths? Take for example a maximal
planar graph, in other words a triangulation. If it contains an odd wheel, it is not an
odd-distance graph. On the other hand if it does not contain an odd wheel, it is 3-
colorable. Hence it is an odd distance graph, but this does not imply that we can fnd a
plane drawing. Is it true that all 3-colorable planar graphs have an embedding without
crossings with odd integer edge lengths?
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