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Abstract
We say that a triangle T tiles a polygon A, if A can be dissected into finitely many
nonoverlapping triangles similar to T . We show that if N > 42, then there are at most
three nonsimilar triangles T such that the angles of T are rational multiples of π and
T tiles the regular N -gon. A tiling into similar triangles is called regular, if the pieces
have two angles, α and β, such that at each vertex of the tiling the number of angles
α is the same as that of β. Otherwise the tiling is irregular. It is known that for every
regular polygon A there are infinitely many triangles that tile A regularly. We show
that if N > 10, then a triangle T tiles the regular N -gon irregularly only if the angles
of T are rational multiples of π . Therefore, the number of triangles tiling the regular
N -gon irregularly is at most three for every N > 42.

Keywords Tilings with triangles · Regular polygons · Regular and irregular tilings

Mathematical Subject Classification 52C20

1 Introduction

Dissections of regular polygons appear in several popular puzzles (see [1]). Some of
these dissections, such as Langford’s dissections of the regular pentagon [7], Freese’s
dissection of the regular octagon [1, Fig. 17.1], or Kürschák’s dissection of the regular
12-gon [2, Fig. 2.6.4], consist of triangles of two different shapes.
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In this paper we consider dissections of the regular polygons using triangles of
one single shape but not necessarily of the same size. What we are interested in is
the existence of tilings, independently of the rearrangement of the pieces (which is
the usual motivation for the puzzles mentioned). We confine our attention to triangles
having angles that are rational multiples of π . Our aim is to show that if N is large
enough, then there are at most three nonsimilar triangles T in this class such that the
regular N -gon can be dissected into similar copies of T .

1.1 Main Results

By a dissection (or tiling) of a polygon A we mean a decomposition of A into finitely
many nonoverlapping polygons. No other conditions are imposed on the tilings. In
particular, it is allowed that two pieces have a common boundary point, but do not have
a common side. We say that a triangle T tiles a polygon A, if A can be dissected into
finitely many nonoverlapping triangles similar to T . Our main result is the following.

Theorem 1.1 Suppose that a triangle with angles α, β, γ tiles the regular N-gon,
where N ≥ 25 and N �= 30, 42. If α, β, γ are rational multiples of π , then, after a
suitable permutation of α, β, γ , one of the following statements is true:

(i) α = (N − 2)π/N and β = γ = π/N,
(ii) α = β = (N − 2)π/(2N ) and γ = 2π/N, or
(iii) α = (N − 2)π/(2N ), β = π/N, and γ = π/2.

Let RN and δN denote the regular N -gon and its angle; that is, let δN = (N − 2)π/N .
Connecting the center of RN with the vertices of RN we obtain a dissection of RN

into N congruent isosceles triangles with angles listed in (ii). Bisecting each of these
triangles into two right angled triangles, we get a dissection of RN into 2N congruent
triangles with angles listed in (iii).

Thus the triangles with angles listed in (ii) and (iii) tile RN , even with congruent
copies. This is also true for the triangle with angles listed in (i) if N = 3, 4, or 6.
(As for N = 6, see Fig. 1.) If N is different from 3, 4, or 6, then dissections of RN

with congruent copies of a triangle with angles α = δN and β = γ = π/N do not
exist (see [5, Lem. 3.5]). It is not clear, however, if RN can be dissected into similar
triangles of angles α = δN and β = γ = π/N for every N . If N = 5, 8, 10, or 12,
then such tilings exist (see [6]).

Suppose there is a tiling of RN with triangles of angles α, β, γ , and let V1, . . . , VM

be an enumeration of the vertices of the tiles such that V1, . . . , VN are the vertices
of RN . Let p j , q j , r j denote the number of anglesα,β, resp.γ meeting at the vertexVj .
Then p j , q j , r j , j = 1, . . . , M , are nonnegative integers such that

p jα + q jβ + r jγ = σ j , j = 1, . . . , M, (1)

where σ j = δN if 1 ≤ j ≤ N , and σ j = π or 2π depending on whether Vj is on the
boundary or in the interior of RN if N < j ≤ M . The integers p j , q j , r j must also
satisfy
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Fig. 1 A (regular) tiling of R6

M∑

j=1

p j =
M∑

j=1

q j =
M∑

j=1

r j , (2)

since each sum must be equal to the number of tiles. We call (1) the equation at the
vertex Vj . Theorem 1.1 will be proved through the following results.

Theorem 1.2 Suppose a tiling of RN with triangles of angles α, β, γ is given, where
α, β, γ are rational multiples of π . If N �= 6, then each angle of RN is packed with at
most two tiles.

Theorem 1.3 Suppose a tiling of RN with triangles of angles α, β, γ is given, where
α, β, γ are rational multiples of π and N > 6. Then the equations at the vertices
V1, . . . , VN are the same. More precisely, after a suitable permutation of α, β, γ , one
of the following is true:

(i) The equation at every vertex of RN is α = δN .
(ii) The equation at every vertex of RN is α + β = δN .
(iii) The equation at every vertex of RN is 2α = δN .

Theorem 1.4 Suppose a tiling of RN with triangles of angles α, β, γ is given, where
α, β, γ are rational multiples of π and N > 5. If the equation at every vertex of RN

is α = δN , then we have β = γ = π/N.

Theorem 1.5 Suppose a tiling of RN with triangles of angles α, β, γ is given, where
α, β, γ are rational multiples of π and N > 10. If the equations at the vertices of RN

are α + β = δN , then we have α = β = δN/2 and γ = 2π/N.
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Fig. 2 A tiling of the square with α = δ4

Theorem 1.6 Suppose a tiling of RN with triangles of angles α, β, γ is given, where
α, β, γ are rational multiples of π and N ≥ 25 with N �= 30, 42. If the equations at
the vertices of RN are 2α = δN , then we have either α = γ = δN/2 and β = 2π/N,
or α = δN/2, β = π/N, and γ = π/2.

It is clear that Theorem 1.1 follows from Theorems 1.3–1.6.

Remark 1.7 As Fig. 1 shows, the statements of Theorems 1.2 and 1.3 are not true for
N = 6.

The lower bound in Theorem 1.4 is also sharp, moreover, the statement of the
theorem is false for every N ≤ 5. One can show, using the ideas of [6] that the triangle
with angles α = 6π/10, β = π/10, and γ = 3π/10 tiles R5 so that the equation at
each vertex of R5 is α = δ5 (but β �= γ ).

As for N = 4, Fig. 2 shows a tiling of the square ABCD with 12 right triangles
of angles α = π/2, β = π/12, and γ = 5π/12. If the side length of the square is 4
then we have AE = FC = 2−√

3 and EB = DF = 2+√
3. Note that in this tiling

α = δ4 at each vertex of the square, but β �= γ .
It is easy to see that the regular triangle can be decomposed into eight congruent

triangles with angles α = π/3, β = π/6, and γ = π/2 such that the equation at each
vertex of R3 is α = δ3.

As for the sharpness of the bounds appearing in Theorems 1.5 and 1.6 we refer to
Remark 1.11 below.
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1.2 Regular and Irregular Tilings

A tiling into similar triangles is called regular, if the pieces have two angles, α and β,
such that at each vertex V of any of the tiles, the number of tiles having angle α at V is
the same as the number of tiles having angle β at V . Otherwise the tiling is irregular.
It is known that the number of triangles that tile a given polygon irregularly is always
finite (see [4, Thm. 4]). On the other hand, for every N ≥ 3 there are infinitely many
triangles that tile the regular N -gon regularly (see [4, Thm. 2]).

The problem of listing all triangles that tile a given polygon is difficult; it is unsolved
even for the regular triangle. In fact, the problem is solved only for the square; see
[3,8]. (See also [5], where the tilings of convex polygons with congruent triangles are
considered.) As for irregular tilings of RN , N > 10, we have the following corollary
of Theorems 1.3–1.5.

Theorem 1.8 Suppose a triangle T with angles α, β, γ tiles RN , where N > 10. Then
there is an irregular tiling of RN with pieces similar to T if and only if α, β, γ are
rational multiples of π .

Proof Suppose there is an irregular tiling of RN with pieces similar to T . Let
V1, . . . , VM denote the vertices of the tiles, where M ≥ N and V1, . . . , VN are the
vertices of RN . If the number of angles α, β, γ meeting at Vj is p j , q j , r j , respec-
tively, then (1) and (2) are satisfied. The irregularity of the tiling means that there are
indices i, j, k such that pi �= qi , p j �= r j , and qk �= rk .

Consider all systems of nonnegative integers s j , t j , u j , j = 1, . . . ,m, m ≥ N ,
such that

(i) s jα+ t jβ +u jγ = σ j , j = 1, . . . ,m, where σ j = δN if 1 ≤ j ≤ N and σ j = π

or 2π if N < j ≤ m,

(ii)
m∑
j=1

s j =
m∑
j=1

t j =
m∑
j=1

u j , and

(iii) there are indices i, j, k such that si �= ti , s j �= u j , and tk �= uk .

Fix a systemwith these properties such that the value from (ii) is minimal. By [4, Lem.
10], these conditions imply that there are indices i < j such that the determinant

Di j =
∣∣∣∣∣∣

1 1 1
si ti ui
s j t j u j

∣∣∣∣∣∣

is nonzero. Then the corresponding system of equations

α + β + γ = π,

siα + tiβ + uiγ = σi

s jα + t jβ + u jγ = σ j

determines α, β, γ . Applying Cramer’s rule, we find that α, β, γ are rational multiples
of π .
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Next let α, β, γ be rational multiples of π . Since N > 10, one of (i)–(iii) of
Theorem 1.3 holds. If (i) or (ii) holds, then it follows from Theorems 1.4 and 1.5 that
T is isosceles. Suppose α = β, and consider a tiling of RN with pieces similar to T . If
the tiling is irregular, we are done. If, however, it is regular, then changing the labels
α and β in one of the pieces we obtain an irregular tiling.

Now suppose that (iii) of Theorem 1.3 holds. We prove that in this case every tiling
with similar copies of T must be irregular. Suppose this is not true, and consider
a regular tiling. Let (1) be the equation at the vertex Vj , j = 1, . . . , M . We put
v j = σ j/π , then v j = 1 or 2 for every N < j ≤ M . Since the equation at each vertex
of RN is 2α = δN , it follows that q j = r j for every j . Then there must be an equation
with p j < q j = r j , since in the equations at the vertices of RN we have p j > q j = 0.
For this equation we have

(q j − p j )(β + γ ) = (p jα + q jβ + r jγ ) − p j (α + β + γ )

= v jπ − p jπ = (v j − p j )π,

hence (q j − p j )(1/2+1/N ) = v j − p j and (N +2)(q j − p j ) = 2N (v j − p j ). Since
q j − p j is a positive integer, we have (N +2) | 2N (v j − p j ) and (N +2) | 4(v j − p j ).
Now v j − p j is positive, since (N + 2)(q j − p j ) > 0. Then 0 < v j − p j ≤ 2,
0 < 4(v j − p j ) ≤ 8, and thus (N + 2) | 4(v j − p j ) implies N ≤ 6, which is
impossible. ��
Comparing Theorem 1.8 with Theorem 1.1 we obtain the following.

Corollary 1.9 If N > 42, then there are at most three triangles that tile the regular
N-gon irregularly.

1.3 Conditions (K) and (E)

The main tool in the proof of Theorems 1.2–1.6 is the next result.

Lemma 1.10 Suppose RN can be dissected into finitely many triangles with angles
α = (a/n)π , β = (b/n)π , γ = (c/n)π , where a, b, c, n are positive integers with
a + b + c = n. Let the equation at the vertices of RN be p jα + q jβ + r jγ = δN ,
j = 1, . . . , N. If k is prime to nN and {k/N } < 1/2, then we have

{
ka

n

}
+

{
kb

n

}
+

{
kc

n

}
= 1, (3)

p j

{
ka

n

}
+ q j

{
kb

n

}
+ r j

{
kc

n

}
= 1 − 2

{
k

N

}
(4)

for every j = 1, . . . , N.

We say that the angles α = (a/n)π , β = (b/n)π , γ = (c/n)π satisfy condition (K),
if the conclusion of the lemma above holds; that is, if (3) and (4) hold true for every
k such that gcd (k, nN ) = 1 and {k/N } < 1/2. As we shall see in the next section,
condition (K) is deduced from the properties of conjugate tilings.
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If a tiling exists with triangles of angles α, β, γ , then the angles have to satisfy
another necessary condition: there must exist nonnegative integers p j , q j , r j , j =
1, . . . , M , M ≥ N , such that (1) and (2) hold. We say that the angles α, β, γ satisfy
condition (E), if there are nonnegative integers p j , q j , r j satisfying (1) and (2).

In the proof of Theorems 1.2–1.6 we only use conditions (K) and (E) on the angles
α, β, γ . In fact, we are not aware of any other necessary condition thatmust be satisfied
by the angles of a tiling, if they are rational multiples of π . Perhaps it would be hasty
to conjecture that whenever the angles of a triangle satisfy conditions (K) and (E),
then a tiling must exist. Still, it should be remarked that tilings of RN with triangles
of angles α = δN and β = γ = π/N were found for N = 5, 8, 10, and 12 in [6].
In this context we also mention Szegedy’s remarkable tilings of the square with right
triangles, found ten years after the necessary conditions were established [8].

Remark 1.11 We do not know if the lower bounds in Theorems 1.5 and 1.6 are sharp or
not. We show, however, that if we only use conditions (K) and (E), then these bounds
cannot be improved. As for Theorem 1.5, consider the triangle T with angles

(α, β, γ ) =
(
7π

10
,

π

10
,
2π

10

)
.

Then the existence of a tiling of R10 with similar copies of T cannot be disproved by
only using conditions (K) and (E). Suppose that the equation at each vertex of R10 is
α + β = δ10. Then condition (K) is satisfied. Indeed, the only k with 1 < k < 10,
gcd (k, 10) = 1, and {k/10} < 1/2 is k = 3, and it is easy to check that both (3) and
(4) are satisfied if (a/n, b/n, c/n) = (7/10, 1/10, 2/10) and k = 3. Condition (E) is
also satisfied: take 10 equations α + β = δ10 and an equation 10γ = 2π .

In the case of Theorem 1.6, consider the triangle with angles

(α, β, γ ) =
(
20π

42
,
10π

42
,
12π

42

)
,

and let the equation at each vertex of R42 be 2α = δ42. Then condition (K) is
satisfied. Indeed, if 1 < k < 42, gcd (k, 42) = 1, and {k/42} < 1/2, then k
is one of 5, 11, 13, 17, 19. It is easy to check that both (3) and (4) are satisfied if
(a/n, b/n, c/n) = (20/42, 10/42, 12/42) and if k is any of these values. Condi-
tion (E) is also satisfied: take 42 equations 2α = δ42, 8 equations 7γ = 2π , and 28
equations 3β + γ = π .

Similarly, if N = 30, then the triple

(
14π

30
,
6π

30
,
10π

30

)

satisfies both conditions (K) and (E). As for the latter, take 30 equations 2α = δ30, 20
equations 3γ = π , and 12 equations 5β = π .
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1.4 Further Lemmas

Since condition (K) is of arithmetical nature, it can be expected that in the arguments
involving condition (K) we need some facts from elementary number theory. These
facts are collected in the next lemmas. Their proofs, being independent of the rest of
the paper, are postponed to the last three sections.

Lemma 1.12 Let a, n, N , N ′ be positive integers such that gcd (a, n) = 1 and
gcd (N , N ′) = 1. Then one of the following statements is true.

(i) There exists an integer k such that gcd (k, nN ) = 1, k ≡ N ′ (mod N), and
{ka/n} ≥ 1/3.

(ii) N is odd and n | 2N.
(iii) N is even and n | N.

Lemma 1.13 Let a, b, n, N be positive integers and p, q be nonnegative integers such
that a + b < n, N ≥ 3, N �= 6, and

p

{
ka

n

}
+ q

{
kb

n

}
= 1 − 2

{
k

N

}
(5)

for every integer k satisfying gcd (k, nN ) = 1 and {k/N } < 1/2. Then we have
p + q ≤ 2.

Note that Theorem 1.2 is a consequence of Lemmas 1.10 and 1.13. Indeed, suppose
a tiling of RN with triangles of angles α, β, γ is given, where α, β, γ are rational
multiples of π . Then α = (a/n)π , β = (b/n)π , and γ = (c/n)π , where a, b, c, n
are positive integers with a + b + c = n. Let (1) be the equation at the vertex Vj ,
j = 1, . . . , M . By Lemma 1.10, we have (4) for every j = 1, . . . , N , whenever k is
prime to nN and {k/N } < 1/2.

Let j ≤ N be fixed. Then min(p j , q j , r j ) = 0, since σ j = δN < π . By symmetry
we may assume r j = 0. Then (5) holds with p = p j and q = q j for every k such that
gcd (k, nN ) = 1 and {k/N } < 1/2. If N �= 6 then, by Lemma 1.13, we obtain that
p j +q j ≤ 2. Therefore, the number of angles meeting at the vertex Vj is p j +q j ≤ 2;
that is, the angle of RN at the vertex Vj is packed with at most two tiles.

Lemma 1.14 (i) For every even integer N ≥ 26 there are integers k, k′ such that
N/4 < k, k′ < N/2, gcd (k, N ) = gcd (k′, N ) = 1, k ≡ 1 (mod 4), and k′ ≡ 3
(mod 4).

(ii) For every N ≥ 43 there exists an integer k such that N/6 < k < N/4 and
gcd (k, 2N ) = 1.

The following simple observation will be used frequently.

Proposition 1.15 Let u, v, n be nonzero integers. If gcd (u, v) = 1, then there exists
an integer j such that u + jv is prime to n.

Proof Let j be the product of those primes that divide n but do not divide u. (We put
j = 1 if there is no such prime.) Then every prime divisor of n divides exactly one of
u and jv, and thus gcd (u + jv, n) = 1. ��
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The paper is organised as follows. In the next five sections we prove Lemma 1.10 and
Theorems 1.3–1.6, in this order. Then we prove Lemmas 1.12–1.14 in Sects. 7–9.

2 Proof of Lemma 1.10

Suppose RN is tiled with the triangles �1, . . . ,�t with angles α = (a/n)π , β =
(b/n)π , γ = (c/n)π , where a, b, c, n are positive integers with a + b + c = n. Let
the vertices of RN be the N th roots of unity; that is, let Vj = e2π j i/N for every j =
0, . . . , N−1. First we assume that 4N | n. Let ζ denote the first nth root of unity, and let
F denote the field of real elements of the cyclotomic fieldQ(ζ ). Then the coordinates
of the vertices of RN belong to F , since cos 2 jπ/N = (ζ nj/N + ζ−nj/N )/2 and
sin 2 jπ/N = (ζ nj/N − ζ−nj/N )/(2ζ n/4) for every integer j . Also, cot α, cot β, cot γ
belong to F , since

cot
jπ

n
= e( j/n)π i + e−( j/n)π i

e( j/n)π i − e−( j/n)π i
· ζ n/4 = ζ j + 1

ζ j − 1
· ζ n/4

for every j . In [3, Thm. 1] it is proved that if a polygon P is decomposed into the
non-overlapping triangles �1, . . . , �t , then the coordinates of the vertices of each� j

belong to the field generated by the coordinates of the vertices of P and the cotangents
of the angles of the triangles � j . In our case this implies that the coordinates of the
vertices of the triangles � j belong to F .

Let k be an integer prime to n, and let φ : Q(ζ ) → C be the isomorphism of
Q(ζ ) satisfying φ(ζ ) = ζ k . Then φ commutes with complex conjugation, and thus φ

restricted to F is also an isomorphism. It is easy to check that

φ

(
cot

jπ

n

)
= (−1)(k−1)/2 cot

k jπ

n

for every integer j . We define �(x, y) = (φ(x), φ(y)) for every x, y ∈ F . Then
� is a collineation defined on F × F . In particular, � is defined on the set of
vertices of the tiles � j , j = 1, . . . , t . We denote by �′

j the triangle with vertices
�(Vj,1),�(Vj,2),�(Vj,3), where Vj,1, Vj,2, Vj,3 are the vertices of � j .

Let the points xi = (ai , bi ), i = 1, 2, 3, be the vertices of a triangle �, where
ai , bi ∈ F , i = 1, 2, 3, and let �′ denote the triangle with vertices �(xi ), i = 1, 2, 3.
Let αi and α′

i , i = 1, 2, 3, denote the angles of � and of �′, respectively. A simple
computation shows that cot α′

i = εφ(cot αi ) holds for i = 1, 2, 3, where ε = 1 if the
map � does not change the orientation of �, and ε = −1 otherwise (see [3, Lem. 6]).

Put ε j = 1 if � does not change the orientation of � j and ε j = −1 otherwise. If
the angles of �′

j are α′
j , β

′
j , γ

′
j , then, by the result above, we have

cot α′
j = ε j · φ(cot α) = ε j · (−1)(k−1)/2 · cot kaπ

n
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and, similarly,

cot β ′
j = ε j · (−1)(k−1)/2 · cot kbπ

n
, cot γ ′

j = ε j · (−1)(k−1)/2 · cot kcπ
n

.

Note that at least two of the numbers cot α′
j , cot β

′
j , cot γ

′
j are positive for every j .

Since the integers a, b, c, n, k are fixed, this implies that the value of ε j is the same
for every j = 1, . . . , t . Therefore, the orientation of the triangles �′

j is the same, and
the angles of each �′

j are

α′ =
{
ka

n

}
π, β ′ =

{
kb

n

}
π, γ ′ =

{
kc

n

}
π (6)

if ε · (−1)(k−1)/2 = 1, and

α′ =
(
1 −

{
ka

n

})
π, β ′ =

(
1 −

{
kb

n

})
π, γ ′ =

(
1 −

{
kc

n

})
π

if ε · (−1)(k−1)/2 = −1, where ε is the common value of ε j , j = 1, . . . , t .
Note that by 4 | n we have i = ζ n/4 ∈ Q(ζ ) and φ(i) = ζ kn/4 = (−1)(k−1)/2i .

If we identify R2 with C then we find that for every z = x + iy ∈ Q(ζ ), �(z) =
φ(x) + iφ(y) = φ(z) if (−1)(k−1)/2 = 1, and �(z) = φ(z) if (−1)(k−1)/2 = −1.

Clearly, �(V1), . . . , �(VN ) are the vertices of a star polygon R′
N . By the pre-

vious observation, the order of the vertices of R′
N is 1, ζ kn/N , . . . , ζ (N−1)kn/N or

1, ζ−kn/N , . . . , ζ−(N−1)kn/N , depending on the sign of (−1)(k−1)/2.
Suppose {k/N } < 1/2. Then the angles of R′

N at the vertices equal (1−2{k/N })π ,
and the orientation of R′

N is positive or negative according to the sign of (−1)(k−1)/2.
Let w(x; P) denote the winding number of a closed polygon P at a point x /∈ P;

that is, w(x; P) = (1/(2π i))
∫
P dz/(z − x). Since the boundary ∂R′

N of R′
N as an

oriented cycle equals the sum of the boundaries ∂�′
j , we have

w(x; ∂R′
N ) =

t∑

j=1

w(x; ∂�′
j ).

If x does not belong to the boundaries of �′
j , then we have either w(x; ∂�′

j ) = ε or
w(x; ∂�′

j ) = 0 for every j . Therefore, if w(x; R′
N ) = ±1, then x belongs to exactly

one of the triangles �′
j . Now, for each vertex V ′

j , j = 1, . . . , N , there is an angular
domain Dj of angle (1− 2{k/N })π , and there is a neighbourhoodUj of V ′

j such that

w(x; R′
N ) = (−1)(k−1)/2 if x ∈ Uj ∩ Dj and w(x; R′

N ) = 0 if x ∈ Uj \ Dj . This
implies that ε = (−1)(k−1)/2, the triangles having a vertex at V ′

j are nonoverlapping,
and their union in Uj equals Uj ∩ Dj . Therefore, the angles α′, β ′, γ ′ are given by
(6), and thus (3) and (4) hold. This proves the theorem in the case when 4N | n.

In the general case we put m = 4Nn. Then we have α = (4Na/m)π , β =
(4Nb/m)π , γ = (4Nc/m)π .
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Let k be prime to nN , and suppose {k/N } < 1/2. Then k + snN is prime to m
for a suitable s by Proposition 1.15. Since {(k + snN )/N } = {k/N } < 1/2, and
{(k + snN ) · 4Na/m} = {ka/n}, etc., we obtain (3) and (4).

3 Proof of Theorem 1.3

In the next two sections we write δ for δN . By Theorem 1.2, the equation at each vertex
of RN equals one of α = δ, β = δ, γ = δ, α +β = δ, α +γ = δ, β +γ = δ, 2α = δ,
2β = δ, 2γ = δ.

First suppose that α = δ is one of the equations. If β = δ is another, then α+β < π

gives 2δ < π , 2(N − 2)/N < 1, and N < 4, which is impossible. We have the same
conclusion if γ = δ. It is clear that α+β = δ or α+γ = δ is impossible. If β+γ = δ,
then 2δ = α+β +γ = π , δ = π/2, and N = 4, which is impossible. Clearly, 2α = δ

is impossible. If 2β = δ, then α + β < π gives α + β = 3δ/2 = 3π/2− 3π/N < π

and, N < 6, which is impossible. We have the same conclusion if 2γ = δ. We find
that if α = δ is one of the equations, then each of the equations is α = δ, and we
have (i). Therefore, we may assume that the equation at each vertex Vj equals one of
α + β = δ, etc., 2α = δ, etc.

Suppose that α + β = δ is one of the equations. If α + γ = δ is another, then
β = γ , α = π − 2β, δ = π − β, β = γ = 2π/N , α = (N − 4)π/N . Let

k =

⎧
⎪⎨

⎪⎩

(N − 1)/2 if N is odd,

N/2 − 1 if 4 | N ,

N/2 − 2 if N ≡ 2 (mod 4).

Then gcd (k, N ) = 1 and 0 < k < N/2. By Lemma 1.10, this implies that (3)
holds, hence 4k/N = {2k/N } + {2k/N } < 1 and k < N/4. If N is odd, then this
implies (N − 1)/2 < N/4, which is impossible. If 4 | N , then N/2− 1 < N/4 is also
impossible. If N ≡ 2 (mod 4), then we get N/2− 2 < N/4, N < 8, N = 6, which is
excluded. We have the same conclusion if β + γ = δ. If 2γ = δ is another equation,
then π = α + β + γ = 3δ/2, 3(N − 2)/(2N ) = 1, and N = 6, which is impossible.

We find that if α + β = δ is one of the equations, then either each of the equations
is α + β = δ, that is, (ii) holds, or each of the other equations is one of α + β = δ,
2α = δ and 2β = δ, and at least one of 2α = δ and 2β = δ must occur. Then we have
α = β = δ/2, and the tiles are isosceles. It is easy to check that in this case we can
exchange the labels of the angles α and β in some of the tiles so that each equation
at the vertices becomes α + β = δ, and thus (ii) holds. Therefore, we may assume
that the equation at each vertex Vj equals one of 2α = δ, 2β = δ, and 2γ = δ. If all
of these equations occur, then α = β = γ = π/3, δ = 2π/3, and N = 6, which is
excluded. If two of them, say 2α = δ and, 2β = δ occur, then we have α = β = δ/2,
and the tiles are isosceles. Then, as above, we can exchange the labels of the angles
α and β in some of the tiles so that each equation at the vertices becomes α + β = δ,
and thus (ii) holds. Finally, if only 2α = δ occurs, then we have (iii).
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4 Proof of Theorem 1.4

We have α = δ and β + γ = 2π/N . If β = γ , then we have β = γ = π/N , and we
are done. Therefore, we may assume γ > β by symmetry.

Let α = (a/n)π , β = (b/n)π , γ = (c/n)π , where a, b, c, n are positive integers
such that a + b + c = n. Let b/n = b2/n2 and c/n = c3/n3, where gcd (b2, n2) =
gcd (c3, n3) = 1. Then

b2
n2

= 1 − α

π
− γ

π
= 1 − N − 2

N
− c3

n3
= 2

N
− c3

n3
. (7)

We apply Lemma 1.12 with c3 in place of a, n3 in place of n and with N ′ = 1. Then
we find that one of the following statements is true.

(i) There is a k prime to n3N and such that k ≡ 1 (mod N ) and {kc3/n3} ≥ 1/3;
(ii) N is odd and n3 | 2N ;
(iii) N is even and n3 | N .

Suppose (i). Replacing k by k + jn3N with a suitable j , we may assume that
k is prime to nN . By Lemma 1.10 we have (3) and {ka/n} + {kc/n} < 1. Since
{ka/n} = {k(N − 2)/N } = {(N − 2)/N } = (N − 2)/N and {kc/n} ≥ 1/3, we have
(N − 2)/N < 2/3 and N < 6, which is impossible.

Next suppose (ii). Then (7) givesn2 | 2N .Nowwehave (b2/n2)+(c3/n3) = 2/N =
4/(2N ), and thus we have c3/n3 = 3/(2N ) and b2/n2 = 1/(2N ) by c3/n3 > b2/n2.
Since k = N + 2 is prime to 2N and {k/N } = 2/N < 1/2, it follows from (3) that

{
3(N + 2)

2N

}
+

{
N + 2

2N

}
< 1,

which is absurd.
Finally, suppose (iii). Then (7) gives n2 | N . Thus b2/n2 ≥ 1/N and c3/n3 ≥ 1/N .

Since b2/n2 + c3/n3 = 2/N and c3/n3 > b2/n2, this is impossible.

5 Proof of Theorem 1.5

We put

N ′ =

⎧
⎪⎨

⎪⎩

(N − 1)/2 if N is odd,

N/2 − 1 if 4 | N ,

N/2 − 2 if N ≡ 2 (mod 4).

Then gcd (N , N ′) = 1 and {N ′/N } < 1/2.
Let α = a1π/n1, where gcd (a1, n1) = 1. By Lemma 1.12, at least one of the

following statements is true:

(i) there exists a k such that k ≡ N ′ (mod N ), gcd (k, n1N ) = 1, and {ka1/n1} ≥
1/3;
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(ii) N is odd and n1 | 2N ; and
(iii) N is even and n1 | N .

If (i) holds then we may assume that k also satisfies gcd (k, nN ) = 1. Indeed, if
k satisfies the conditions of (i), then so does k + jn1N for every j . Replacing k by
k + jn1N with a suitable j , we find that gcd (k, nN ) = 1 will also hold. Therefore,
by (4) of Lemma 1.10, we obtain

1

3
≤

{
ka1
n1

}
=

{
ka

n

}
< 1 − 2 ·

{
k

N

}
= 1 − 2 · N

′

N

and N ′ < N/3, which is impossible by N > 10.
Next suppose that N is odd and n1 | 2N (case (ii)). Let b/n = b2/n2, where

gcd (b2, n2) = 1. Since β = (α + β) − α = (N − 2)π/N − α, we have

b2
n2

= N − 2

N
− a1

n1
, (8)

and thus n2 | 2N . Then c3/n3 = 1− a1/n2 − b2/n2 gives n3 | 2N . Therefore, we may
assume n = 2N . We put k = N ′ if N ′ is odd and k = N ′ + N if N ′ is even. Then
gcd (k, 2N ) = 1 and {k/N } < 1/2, and thus (4) of Lemma 1.10 gives

{
ka

2N

}
+

{
kb

2N

}
= 1 − 2

{
k

N

}
= 1 − 2

{
N ′

N

}

= 1 − 2 · N
′

N
= 1 − 2 · (N − 1)/2

N
= 1

N
.

(9)

Since {ka/(2N )} and {kb/(2N )} are positive integer multiples of 1/(2N ), (9) gives
{ka/(2N )} = {kb/(2N )} = 1/(2N ). Then ka ≡ kb ≡ 1 (mod 2N ). By gcd (k, 2N )

= 1 this implies a ≡ b (mod 2N ), a = b, and α = β = (1/2 − 1/N )π . That is, the
statement of the theorem is true in this case.

Finally, suppose that 2 | N and n1 | N (case (iii)). Then we may assume n = N
by (8). Then (4) of Lemma 1.10 gives

{
N ′a
N

}
+

{
N ′b
N

}
= 1 − 2

{
N ′

N

}
= 1 − 2 · N

′

N
. (10)

The value of N ′/N is 1/2 − 1/N if 4 | N , and 1/2 − 2/N if N ≡ 2 (mod 4). Thus
1−2N ′/N equals either 2/N or 4/N . Since {N ′a/N } and {N ′b/N } are positive integer
multiples of 1/N , we have the following possibilities: {N ′a/N } = {N ′b/N } = 1/N ,
{N ′a/N } = {N ′b/N } = 2/N , or {{N ′a/N }, {N ′b/N }} = {1/N , 3/N }. In the third
case we may assume, by symmetry, that {N ′a/N } = 1/N .

In the first two cases we have N ′a ≡ N ′b (mod N ), a ≡ b (mod N ), a = b,
α = β = (1/2 − 1/N )π , and we are done. Therefore, we may assume that N ≡ 2
(mod 4) and {N ′a/N } = 1/N ; that is, N ′a ≡ 1 (mod N ). Since N is even, a must be
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odd. Now N/2 is odd either, and thus Na/2 ≡ N/2 (mod N ). Then, by N ′ = N/2−2
we obtain

1 ≡ N ′a =
(
N

2
− 2

)
a ≡ N

2
− 2a (mod N )

and 2a + 1 ≡ N/2 (mod N ). Since 0 < a < N , we have either 2a + 1 = N/2, that
is, a = N/4 − 1/2, or 2a + 1 = 3N/2, that is, a = 3N/4 − 1/2. We consider these
two cases separately.

Case 1: a = N/4 − 1/2. By (i) of Lemma 1.14, if N ≥ 26, then there is a k such
that N/4 < k < N/2, gcd (k, N ) = 1, and k ≡ 3 (mod 4). Then

{
ka

N

}
=

{
k

4
− k

2N

}
=

{
3

4
− k

2N

}
= 3

4
− k

2N
>

1

2
.

On the other hand, (4) of Lemma 1.10 gives

{
ka

N

}
< 1 − 2

{
k

N

}
<

1

2
,

a contradiction. If N = 14, then a = N/4− 1/2 = 3 and b = N − 2− a = 9. In this
case k = 3 is prime to 14, 3/14 < 1/2, but

{
ka

N

}
+

{
kb

N

}
=

{
9

14

}
+

{
27

14

}
= 22

14
> 1,

a contradiction. If N = 18, then a = 4 and b = 12. Then k = 7 is prime to 18,
7/18 < 1/2, but

{
ka

N

}
+

{
kb

N

}
=

{
28

18

}
+

{
84

18

}
= 22

18
> 1,

a contradiction. If N = 22, then a = 5 and b = 15. Then k = 7 is prime to 22,
7/22 < 1/2, but

{
ka

N

}
+

{
kb

N

}
=

{
35

22

}
+

{
105

22

}
= 30

22
> 1,

a contradiction. Therefore, the case a = N/4 − 1/2 is impossible if N > 10.

Case 2: a = 3N/4 − 1/2. By (i) of Lemma 1.14, if N ≥ 26, then there is a k such
that N/4 < k < N/2, gcd (k, N ) = 1, and k ≡ 1 (mod 4). Then

{
ka

N

}
=

{
3k

4
− k

2N

}
=

{
3

4
− k

2N

}
= 3

4
− k

2N
>

1

2
> 1 − 2 · k

N
,
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a contradiction. If N = 14, then a = 3N/4 − 1/2 = 10 and b = N − 2 − a = 2. In
this case k = 5 is prime to 14, 5/14 < 1/2, but

{
ka

N

}
+

{
kb

N

}
=

{
50

14

}
+

{
10

14

}
= 18

14
> 1,

a contradiction. If N = 18, then a = 13 and b = 3. Then k = 5 is prime to 18,
5/18 < 1/2, but

{
ka

N

}
+

{
kb

N

}
=

{
65

18

}
+

{
15

18

}
= 26

18
> 1,

a contradiction. If N = 22, then a = 16 and b = 4. Then k = 5 is prime to 22,
5/22 < 1/2, but

{
ka

N

}
+

{
kb

N

}
=

{
80

22

}
+

{
20

22

}
= 34

22
> 1,

a contradiction. Therefore, the case a = 3N/4 − 1/2 is also impossible if N > 10.
This completes the proof of the theorem.

Note that in the proof of Theorem 1.8 we only used Theorems 1.3–1.5. Therefore,
as the proofs of Theorems 1.3–1.5 are completed, Theorem 1.8 is also proved (subject
to the number theoretic Lemmas 1.12–1.14).

6 Proof of Theorem 1.6

By Theorem 1.8, we may assume that the tiling is irregular. By symmetry, we may
assume β ≤ γ . Then, by α/π = (N − 2)/(2N ) we have

γ

π
≥ β + γ

2π
= π − α

2π
= 1

2
−

(
1

4
− 1

2N

)
= 1

4
+ 1

2N
>

1

4
.

It follows that in every equation pα + qβ + rγ = vπ we have r ≤ 7. Note that in
every equation we have p ≤ 4, as α > 2π/5 by N > 10.

By the irregularity of the tiling, there exists an equation p0α + q0β + r0γ = v0π

such that v0 = 1 or 2 and q0 < r0. We may assume min(p0, q0) = 0, since otherwise
we turn to the equation (p0 − m)α + (q0 − m)β + (r0 − m)γ = (v0 − m)π , where
m = min(p0, q0). We have

(p0 − q0)α + (r0 − q0)γ = (v0 − q0)π.

We put

u = p0 − q0, s = r0 − q0, t = 2v0 − p0 − q0. (11)
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Note that −6 ≤ u ≤ 4 and 1 ≤ s ≤ 7 by p0 ≤ 4 and q0 < r0 ≤ 7. It is clear that
t ≤ 4. By uα + sγ = (v0 − q0)π we obtain

γ = 1

s
·
[
v0 − q0 − u

(
1

2
− 1

N

)]
π =

[
t

2s
+ u

sN

]
π, (12)

β = π − α − γ =
[(

1

2
− t

2s

)
+ 1

N
− u

sN

]
π =

[
s − t

2s
− u − s

sN

]
π. (13)

Since β > 0, we get (s − t)N > 2(u − s) = 2(p0 − r0) ≥ −14. Thus s ≥ t , as
s − t < 0 would imply N < 14. Next we show s ≤ 2t . Suppose s > 2t . Then

0 ≤ γ − β

π
= 2t − s

2s
+ 2u − s

sN
≤ − 1

2s
+ 2u − s

sN
,

hence 1 ≤ 2(2u − s)/N , N ≤ 2(2u − s) ≤ 14, which is impossible. Thus s ≤ 2t ,
which also implies t ≥ 1.

Summing up: we have

− 6 ≤ u ≤ 4, 1 ≤ s ≤ 7, 1 ≤ t ≤ 4, and t ≤ s ≤ 2t . (14)

So the angles β and γ can only have a finite number (more precisely, at most 11·7 ·4 =
308) of possible values for every N . We show that if N ≥ 25 and N �= 30, 42, then
only γ = π/2 and γ = (1/2 − 1/N )π are possible, as the other cases do not satisfy
conditions (K) and (E). We distinguish between two cases.

Case I: t = s. By (11), this implies 2v0 = p0 + r0. Then (12) and (13) give

β = s − u

sN
· π and γ =

(
1

2
+ u

sN

)
· π.

Then β > 0 gives s > u; that is, r0 > p0. Thus the nonnegative integers p0, q0, r0, v0
satisfy the following conditions: v0 = 1 or 2, min(p0, q0) = 0, 2v0 = p0 + r0,
p0 < r0, and q0 < r0. It is easy to check that the quadruples (p0, q0, r0, v0) satisfying
these conditions are the following:

(0, 0, 2, 1), (0, 1, 2, 1), (0, 0, 4, 2), (0, 1, 4, 2),

(0, 2, 4, 2), (0, 3, 4, 2), and (1, 0, 3, 2).

The values of (s − u)/s = (r0 − p0)/(r0 − q0) obtained in these cases are 1, 2, 4,
2/3, and 4/3. That is, the possible values of β are π/N , 2π/N , 4π/N , 2π/(3N ), and
4π/(3N ). The first two cases give the triples listed in the theorem.

Suppose β = 4π/N . Then γ = (1/2 − 3/N )π . If N ≥ 43, (ii) of Lemma 1.14
gives an integer k such that N/6 < k < N/4 and gcd (k, 2N ) = 1. Then {kb/n} =
{4k/N } > 2/3 and

{
kc

n

}
=

{
k

2
− 3k

N

}
=

{
1

2
− 3k

N

}
>

3

4
,
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since 1/2 < 3k/N < 3/4. Thus the triple (α, β, γ ) does not satisfy condition (K).
It is easy to check that for every 25 ≤ N < 42 the triple (α, β, γ ) = ((1/2 −
1/N )π, 4π/N , (1/2 − 3/N )π) does not satisfy condition (K).1 Therefore, the case
β = 4π/N is impossible if N ≥ 25 and N �= 42.

Next suppose β = 2π/(3N ). Then γ = (1/2 + 1/(3N ))π . Let

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N + 1 if N ≡ 0 or 4 (mod 6),

N + 2 if N ≡ 3 or 5 (mod 6),

N + 3 if N ≡ 2 (mod 6),

N + 4 if N ≡ 1 (mod 6).

Then gcd (k, 6N ) = 1, and {k/N } < 1/2. We have {kb/n} = {2k/(3N )} > 2/3 and

{
kc

n

}
=

{
k

2
+ k

3N

}
=

{
1

2
+ k

3N

}
>

5

6
,

since 1/3 < {k/(3N )} < 1/2. Thus (α, β, γ ) does not satisfy condition (K), and the
case β = 2π/(3N ) is impossible.

Finally, suppose β = 4π/(3N ). Then γ = 1/2 − 1/(3N ). We put k = 2N + 1
if N �≡ 1 (mod 3), and k = 2N + 3 if N ≡ 1 (mod 3). Then gcd (k, 6N ) = 1 and
{k/N } < 1/2. We have {kb/n} = {4k/(3N )} > 2/3, since 8/3 < 4k/(3N ) < 3. On
the other hand,

{
kc

n

}
=

{
k

2
− k

3N

}
>

3

4
, (15)

since 2/3 < k/(3N ) < 3/4. Thus (α, β, γ ) does not satisfy condition (K). Therefore,
the case β = 4π/(3N ) is also impossible.

Case II: t < s. First suppose N > 500. Then, by (13) we have

β

π
= s − t

2s
− u − s

sN
≥ 1

2s
− 3

sN
= N − 6

2sN
≥ N − 6

14N
>

1

15
.

This implies that q < 30 holds in every equation pα + qβ + rγ = vπ . Consider any
of these equations. Substituting (12) and (13) into pα + qβ + rγ = vπ we obtain

p · 1
2

+ q

(
1

2
− t

2s

)
+ r · t

2s
+ 1

N
·
[
−p + q

(
1 − u

s

)
+ r · u

s

]
= v

and A · N = 2 · (−ps + q (s − u) + ru), where A = 2sv − (ps + q (s − t) + r t). If
A �= 0, then

1 In this computation and also in the computer search needed in the proof of the next theorem I applied
GNU Octave (https://www.gnu.org/software/octave/).
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N ≤ 2 · |−ps + q (s − u) + ru| ≤ 2 · max (qs + ru, ps + qu)

≤ 2 · (30 · 7 + 7 · 4) < 500,

which is impossible. Therefore, we have A = 0, hence −ps + q (s − u) + ru = 0.
We proved that −ps + q (s − u) + ru = 0 holds for every equation pα + qβ +

rγ = vπ . Let K denote the number of the tiles. Taking the sum of the equations
−ps + q (s − u) + ru = 0 we obtain 0 = −(K − 2N )s + K (s − u) + Ku = 2Ns, a
contradiction. Therefore, case II is impossible if N > 500.

If N ≤ 500, then we check for every possible triple (α, β, γ ) whether or not it
satisfies conditions (K) and (E). If N is given, then β and γ are determined by (13)
and (12). As these formulae show, we may take n = 2sN . We check, for every choice
of u, s, t satisfying (14) and also t < s, whether or not (3) holds for every k such that
gcd (k, nN ) = 1 and {k/N } < 1/2.

A computer search shows that in the range 60 < N ≤ 500 only N = 78 produces
triples (α, β, γ ) satisfying condition (K). More precisely, for N = 78 there is just one
such triple, namely

(
38π

78
,
17π

78
,
23π

78

)
.

However, the only equations pα +qβ + rγ = vπ in this case are α +β + γ = π and
2α + 2β + 2γ = 2π . Thus (2) of condition (E) is not satisfied, since we have p > q
in the equations at the vertices of RN . Thus the case N = 78 cannot occur.

In the range 42 < N ≤ 60 only N = 60 produces triples (α, β, γ ) satisfying
condition (K). For N = 60 there are two such triples, namely

(
29π

60
,
12π

60
,
19π

60

)
and

(
29π

60
,
11π

60
,
20π

60

)
. (16)

In the first case the only equations pα + qβ + rγ = vπ are 5β = π , 10β = 2π ,
α+β+γ = π , 2α+2β+2γ = 2π , andα+6β+γ = 2π .We can see that q ≥ r holds
in each of these equations. Then (2) of condition (E) can hold only if the equations
with q > r do not occur in the tiling. The remaining equations are α + β + γ = π

and 2α + 2β + 2γ = 2π . Thus condition (E) is not satisfied, since we have p > q in
the equations at the vertices of RN . So this case is impossible.

If (α, β, γ ) equals the second triple of (16), then the equations pα+qβ +rγ = vπ

are the following: 3γ = π , 6γ = 2π , α + β + γ = π , 2α + 2β + 2γ = 2π ,
α + β + 4γ = 2π , and 3α + 3β = 2π . We can see that p = q holds in each of these
equations. Since p > q holds in the equations at the vertices of RN , condition (E) is
not satisfied, and this case is also impossible.

In the range 24 < N ≤ 42 only N = 30 and N = 42 produce triples (α, β, γ )

satisfying condition (K). This completes the proof of the theorem.
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7 Proof of Lemma 1.12

We may assume gcd (N ′, 2nN ) = 1, since otherwise we replace N ′ by N ′ + j N with
a suitable j . Suppose there is an odd prime p such that p | n and p � | N . Let P denote
the product of primes dividing n and different from p. (Put P = 1 if there is no such
prime.) Let N Pa/n = M/m, where gcd (M,m) = 1. Since p � | N Pa and p | n, we
have p |m, and thus m ≥ p ≥ 3.

Let s be such that sM ≡ 1 (modm). Then p � | s, as p |m. Put ki = N ′ + isN P for
every integer i . Then ki is not divisible by any prime divisor of nN except perhaps p.
But if p | ki , then p � | ki−1, ki+1, since p � | sN P . Thus either ki is prime to nN or
both of ki−1, ki+1 are prime to nN . Now

kia

n
= N ′a

n
+ i

sN Pa

n
= N ′a

n
+ i

sM

m
≡ N ′a

n
+ i

m
(mod 1).

This implies, by m ≥ 3, that there are two consecutive i’s with {kia/n} ≥ 1/3. For at
least one of them, ki is prime to nN . We find that (i) holds.

Next suppose that every odd prime divisor of n divides N . Suppose N is odd. Then
ki = N ′ + 2i N is prime to nN for every i . Now kia/n = N ′a/n + 2i N/n and thus,
if n � | 2N , then for a suitable i we have {kia/n} ≥ 1/2. That is, we have either (i) or
(ii) in this case.

If N is even, then ki = N ′ + i N is prime to nN for every i . Since kia/n =
N ′a/n + i N/n, we find that if n � | N , then for a suitable i we have {kia/n} ≥ 1/2.
That is, we have either (i) or (iii) in this case. This completes the proof.

8 Proof of Lemma 1.13

By symmetry, we may assume p ≥ q. Let a/n = a1/n1 and b/n = b2/n2, where
gcd (a1, n1) = gcd (b2, n2) = 1. Applying (5) with k = 1 we obtain

pa + qb

n
= N − 2

N
. (17)

We consider three cases.

Case I: N is odd. Then N ′ = (N − 1)/2 is prime to N . Suppose n1 | 2N . For a
suitable j , k1 = (N − 1)/2 + j N is prime to nN . By (5) we obtain

p

2N
+ ε ≤ p

n1
+ ε ≤ p

{
k1a1
n1

}
+ ε = p

{
k1a

n

}
+ ε = 1 − 2

{
k1
N

}
= 1

N
,

where ε = q · {k1b/n}. Therefore, we have p ≤ 2. If p = 2, then ε = 0 and q = 0. If
p ≤ 1, then q ≤ 1, and we have p + q ≤ 2 in both cases.

Therefore, wemay assume that n1 does not divide 2N . Then, applying Lemma 1.12,
we find that (i) of Lemma 1.12 holds with a1 and n1 in place of a and n. That is, there
is a k prime to n1N such that k ≡ (N − 1)/2 (mod N ) and {ka1/n1} ≥ 1/3. For a
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suitable j , k2 = k + jn1N will be prime to nN . Then (5) gives

p

3
≤ p

{
k2a1
n1

}
= p

{
k2a

n

}
≤ 1 − 2

{
k2
N

}
= 1

N
≤ 1

3
,

p ≤ 1, and we are done.

Case II: 4 | N . Then N ′ = N/2− 1 is prime to N . Suppose n1 | N . For a suitable j ,
k3 = N/2 − 1 + j N is prime to nN . By (5) we obtain

p

N
+ ε ≤ p

n1
+ ε ≤ p

{
k3a1
n1

}
+ ε = 1 − 2

{
k3
N

}
= 2

N
,

where ε = q · {k3b/n}. From this we obtain p + q ≤ 2 as in case I. If n1 � | N , then
applying Lemma 1.12, we find that (i) of Lemma 1.12 holds with a1 and n1 in place
of a and n. That is, there is a k prime to n1N such that k ≡ N/2 − 1 (mod N ) and
{ka1/n1} ≥ 1/3. For a suitable j , k4 = k+ jn1N will be prime to nN . Then (5) gives

p

N
+ ε ≤ p

3
+ ε ≤ p

{
k4a1
n1

}
+ ε = 1 − 2

{
k4
N

}
= 2

N
,

where ε = q · {k4b/n}. From this inequality we obtain p + q ≤ 2 as above.

Case III: N is even and N/2 is odd. Then N ′ = N/2 − 2 is prime to N . Note that
the first possible value of N is 10, as N = 6 is excluded.

Case IIIa: n1 | N . Then a/n = u/N , where 0 < u < N is an integer. Suppose
p ≥ 2. For a suitable j , k5 = N/2 − 2 + j N is prime to nN . By (5) we obtain

p

{
k5u

N

}
+ q

{
k5b

n

}
= 1 − 2

{
k5
N

}
= 4

N
. (18)

Since {k5u/N } is a positive integer multiple of 1/N and p ≥ 2, we have {k5u/N } =
1/N or 2/N . If {k5u/N } = 2/N , then (18) gives p = 2, q = 0, and we are done.
If {k5u/N } = 1/N , then k5u ≡ 1 (mod N ), u is odd, uN/2 ≡ N/2 (mod N ),
k5u ≡ (N/2 − 2)u ≡ N/2 − 2u ≡ 1 (mod N ), and u ≡ (N/2 − 1)/2 (mod N/2).
Now 2u/N = 2a/n < 1 by (17), and thus u = (N/2 − 1)/2 = (N − 2)/4.

Since N ≥ 10, N/2 − 4 is also prime to N . For a suitable j , k6 = N/2 − 4 + j N
is prime to nN . Then we have

p

{
k6u

N

}
+ q

{
k6b

n

}
= 1 − 2

{
k6
N

}
= 8

N
,

and thus {k6u/N } ≤ 4/N . However, we have

k6u ≡ k5u − 2u ≡ 1 − 2u = 1 − N − 2

2
≡ N + 4

2
(mod N )
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and {k6u/N } = (N + 4)/(2N ) > 1/2 > 4/N , a contradiction. Therefore, we have
p ≤ 1 and p + q ≤ 2.
Case IIIb: n1 � | N . By Lemma 1.12, there is a k prime to n1N with k ≡ N/2 − 2
(mod N ) and {ka1/n1} ≥ 1/3. For a suitable j , k7 = k + jn1N will be prime to nN .
Then (5) gives

p

3
≤ p

{
k7a1
n1

}
+ q

{
k7b2
n2

}
= 1 − 2

{
k7
N

}
= 4

N
≤ 4

10
<

2

3
.

Thus p ≤ 1, p + q ≤ 2, and the proof is complete.

9 Proof of Lemma 1.14

Lemma 9.1 Let u,m, N be integers such that m, N > 0 and gcd (u,m) = 1. Let
p1, . . . , ps be those primes that divide N but not m. If c > 0 and

cN

m

(
1 − 1

p1

)
. . .

(
1 − 1

ps

)
≥ 2s, (19)

then for every real number a there is an integer k such that a ≤ k < a + cN,
k ≡ u (mod m), and gcd (k, N ) = 1.

Proof Let Ad denote the set of integers k such that a ≤ k < a + cN , k ≡ u (mod m),
and d | k. If gcd (d,m) = 1, then there is a j0 such that j0m ≡ −u (mod d), and then Ad

equals the set of numbers u + j0m + jmd such that a ≤ u + j0m + jmd < a + cN .
Thus |Ad | equals the number of integers j with b ≤ j < b + cN/(md), where
b = (a−u− j0m)/(md). Therefore, we have |Ad | = cN/(md)+εd , where |εd | < 1.

If S denotes the number of integers k such that a ≤ k < a + cN , k ≡ u (mod m),
and gcd (k, N ) = 1, then

S =
∑

d | p1···ps
μ(d)|Ad | =

∑

d | p1···ps
μ(d)

cN

md
+

∑

d | p1···ps
μ(d) · εd

>
cN

m

(
1 − 1

p1

)
. . .

(
1 − 1

ps

)
− 2s .

If (19) is true, then S > 0, which proves the lemma. ��
Proof of (i) of Lemma 1.14 Let p1, . . . , ps be the oddprimedivisors of the even number
N . By Lemma 9.1, statement (i) of Lemma 1.14 is true, if

N

16

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
≥ 2s .

If s ≥ 4, then

N

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
≥ 2(p1 − 1) · · · (ps − 1) ≥ 2 · 2 · 4 · 6 · 10s−3 > 16 · 2s,

123



1260 Discrete & Computational Geometry (2021) 66:1239–1261

and thus the statement is true. Therefore, we may assume s ≤ 3. If N > 480, then

N

16

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
>

480

16
· 1
2

· 2
3

· 4
5

= 23,

and then the statement is true again. Finally, it is easy to check that for every even
integer N ∈ [26, 480] there are integers k, k′ with the required properties. ��
Proof of (ii) of Lemma 1.14 Let p1, . . . , ps be the odd prime divisors of N . Applying
Lemma 9.1 with m = 2 and u = 1 we obtain that statement (ii) of Lemma 1.14 is
true, if

N

24

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
≥ 2s .

If s ≥ 4, then

N

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
≥ (p1 − 1) · · · (ps − 1)

≥ 2 · 4 · 6 · 10s−3 > 24 · 2s,

and thus the statement is true. Therefore, we may assume s ≤ 3. If N > 720, then

N

24

(
1 − 1

p1

)
· · ·

(
1 − 1

ps

)
>

720

24
· 1
2

· 2
3

· 4
5

= 23,

and then the statement is true again. Finally, it is easy to check that for every integer
N ∈ [43, 720] there is an integer k with the required properties.
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