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a b s t r a c t

A tensegrity graph is a graph with edges labeled as bars, cables and struts. A realization
of a tensegrity graph T is a pair (T , p), where p maps the vertices of T into Rd for
some d ≥ 1. The realization is globally rigid if any realization (T , q) in Rd in which the
bars have the same length and the cables and struts are not longer and not shorter,
respectively, is an isometric image of (T , p). A tensegrity graph is weakly globally rigid
in Rd if it has a generic globally rigid realization in Rd, and strongly globally rigid in Rd

if every generic realization in Rd is globally rigid.
In this paper we give a necessary condition for weak global rigidity in Rd and prove

that in the d = 1 case the same condition is also sufficient. In particular, our results
imply that a tensegrity graph has a generic globally rigid realization in R1 if and only
if it has a generic universally rigid realization in R1. We also show that recognizing
strongly globally rigid tensegrity graphs in Rd is co-NP-hard for all d ≥ 1.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A tensegrity graph T = (V , B, C, S) is a simple graph with vertex set V and labeled edge set E = B ∪ C ∪ S, where B,
C and S represent, respectively, rigid bars, inextensible cables and incompressible struts. We shall call the elements of E
the members of T . A tensegrity framework in Rd, or simply a tensegrity, is a pair (T , p), where T is a tensegrity graph and
p : V → Rd is an embedding of its vertices into Euclidean space. We also say that (T , p) is a (d-dimensional) realization of
T . Tensegrity frameworks can be used to model various physical and biological systems (see e.g. [6,9]).

Of particular interest is the study of the rigidity properties of tensegrities. Intuitively, we say that a tensegrity is rigid
if it cannot be continuously deformed so that the length of the bars remains constant and the length of the cables (struts,
respectively) does not increase (decrease, resp.). A tensegrity is globally rigid if the pairwise distances of the vertices are
uniquely determined under these length constraints. We shall give precise definitions in the next section. One approach
to the study of the rigidity and global rigidity of tensegrities is to focus on the underlying tensegrity graph and explore
the extent to which the combinatorial structure of the graph determines the rigidity of its realizations. This has been
especially successful in the case of bar frameworks, where every member is a bar.1 In this case it has been shown that for
any fixed dimension d, either all realizations in Rd in sufficiently general position are rigid (globally rigid, respectively),
or none of them are (see [1,2,7]). The most frequently used notion of general position in this setting is that of a generic
framework, one in which the set of all vertex coordinates is algebraically independent over the rational numbers. Thus
we can speak of (generically) rigid and (generically) globally rigid graphs in Rd, for which every generic realization in Rd

is rigid (globally rigid, respectively). A combinatorial characterization of these graphs is known in the case of d = 1, 2,
while finding such a characterization in the d ≥ 3 case is a major open problem.

E-mail address: daniel.garamvolgyi@ttk.elte.hu.
1 In the case of bar frameworks we shall view the underlying tensegrity graph simply as a graph without any edge labeling.

https://doi.org/10.1016/j.dam.2021.06.007
0166-218X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2021.06.007
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2021.06.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:daniel.garamvolgyi@ttk.elte.hu
https://doi.org/10.1016/j.dam.2021.06.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


D. Garamvölgyi Discrete Applied Mathematics 302 (2021) 114–122

For general tensegrity graphs, the situation is different: it may happen that some generic realizations are rigid, while
others are not. However, we can still explore the connection between the structure of the tensegrity graph and the rigidity
of its generic realizations. For example, we may ask which tensegrity graphs have a generic rigid realization in Rd; we
shall call these graphs weakly rigid in Rd. We may also require every generic realization in Rd to be rigid; in this case we
shall say that the tensegrity graph is strongly rigid in Rd. Weak and strong global rigidity may be defined analogously.

These notions are not very well understood. In fact, the only general results known are concerning weak and strong
rigidity in R1. Recski and Shai [13] gave a polynomial-time checkable combinatorial characterization of weak rigidity in
R1. In the case of strong rigidity in R1, Jackson, Jordán and Király gave a combinatorial characterization in terms of the
so-called alternating cycle property but showed that recognizing these tensegrity graphs is co-NP-complete [10].

In this paper we consider the analogous problems in the case of global rigidity. The situation turns out to be similar to
the case of weak and strong rigidity: we give a combinatorial characterization of weak global rigidity in R1 which can be
checked in polynomial time (Theorem 7), while we show that recognizing strongly globally rigid tensegrity graphs in Rd

is co-NP-hard (Corollary 12). For the latter result, we introduce the d-dimensional odd cycle property for tensegrity graphs
and show that it is a necessary condition for strong global rigidity in Rd that is also sufficient for some special families
of tensegrity graphs, though not in general.

The rest of the paper is laid out as follows. In Section 2 we recall the definitions and results that we use throughout the
paper. In Section 3 we give a necessary condition for weak global rigidity in Rd and show that it is also sufficient in R1.
Finally, in Section 4 we introduce and examine the d-dimensional odd cycle property and use it to show that recognizing
strongly globally rigid tensegrity graphs is co-NP-hard in Rd for all fixed d ≥ 1.

2. Preliminaries

Let (T , p) and (T , q) be two d-dimensional realizations of the tensegrity graph T = (V , B, C, S). We say that (T , p)
dominates (T , q) if we have

∥p(u) − p(v)∥ = ∥q(u) − q(v)∥ for all uv ∈ B,
∥p(u) − p(v)∥ ≥ ∥q(u) − q(v)∥ for all uv ∈ C,

∥p(u) − p(v)∥ ≤ ∥q(u) − q(v)∥ for all uv ∈ S.

In this case we also say that (T , q) satisfies the member constraints of (T , p), or, if every member of T is a bar, that (T , q)
and (T , p) are equivalent. Here ∥·∥ denotes the Euclidean norm in Rd. If we have

∥p(u) − p(v)∥ = ∥q(u) − q(v)∥ for all u, v ∈ V ,

then we say that (T , p) and (T , q) are congruent.
We say that a tensegrity (T , p) is rigid if there is some ε > 0 such that any other realization (T , q) with ∥p(v) − q(v)∥ <

ε for all v ∈ V that satisfies the member constraints of (T , p) is, in fact, congruent to it. It can be shown that a tensegrity
framework is not rigid if and only if it is flexible: there is a continuous motion (T , pt ), 0 ≤ t ≤ 1 of frameworks satisfying
the member constraints of (T , p) = (T , p0) such that (T , pt ) is not congruent to (T , p) for t > 0, see [14]. We say that
the d-dimensional tensegrity framework (T , p) is globally rigid if every d-dimensional realization (T , q) that satisfies the
member constraints of (T , p) is congruent to (T , p). We may also consider (T , p) as a framework in RD for some D > d by
embedding Rd into RD as the subspace defined by the equations xd+1 = 0, . . . , xD = 0. We say that (T , p) is universally
rigid if it is globally rigid as a framework in RD, for all D ≥ d.

Again, we say that a tensegrity graph is weakly rigid (weakly globally rigid, respectively) in Rd if it has a generic rigid
(globally rigid, resp.) realization in Rd. On the other hand, we say that a tensegrity graph is strongly rigid (strongly globally
rigid, respectively) in Rd if every generic realization of the graph in Rd is rigid (globally rigid, resp.). As we mentioned
before, for bar graphs, weak and strong rigidity are equivalent, as well as weak and strong global rigidity. In this case, we
simply say that the graph is rigid in Rd (globally rigid in Rd, respectively). Note that for any tensegrity graph T = (V , B, C, S),
if the bar graph G = (V , B) is globally rigid in Rd then T is strongly globally rigid in Rd. For a different example of a
tensegrity graph that is strongly (and thus weakly) globally rigid in R1, see Fig. 1.

Let E = B∪ C ∪ S denote the members of the tensegrity graph T . We shall use the notation T to denote the underlying
graph (V , E) of T . A strict proper stress of a tensegrity (T , p) is a mapping ω : E → R such that the value of ω is positive
on cables and negative on struts and for every vertex v ∈ V we have∑

u:uv∈E

ω(uv)(p(u) − p(v)) = 0.

We shall need the following result, which follows from Theorem 5.2 and Theorem 5.8 of [14].

Lemma 1. If a generic tensegrity framework is rigid, then it has a strict proper stress.

We shall also need some notions from graph theory. Let G = (V , E) be a graph. An open ear decomposition of G is a
partition of the edge set of G into l ≥ 0 subsets P0, P1, . . . , Pl, where P0 is a simple cycle and for 1 ≤ i ≤ l, Pi is a simple
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Fig. 1. An example of a tensegrity graph T that has the 1-dimensional odd cycle property. Bars, cables and struts are represented by solid,
dashed and doubled lines, respectively. The bar graph of T has a unique 1-separation given by X = {a, b, c}, Y = {c, e, f }, and the cycle
ae, eb, bf , fa ∈ ET (X − Y , Y − X) contains an odd number of cables. Lemma 9 implies that T is strongly globally rigid in R1 .

path such that V (∪j<iPj) ∩ V (Pi) consists of the two (distinct) endpoints of Pi. It is known that a graph is 2-connected if
and only if it has an open ear decomposition, see [15, Theorem 19].

For subsets X, Y ⊆ V we use EG(X, Y ) to denote the set of edges in G with one endpoint in X and the other in Y . For an
integer d ≥ 1 and subsets X, Y ⊆ V with |X |, |Y | ≥ d+ 1, we say that the pair (X, Y ) is a d-separation of G if |X ∩ Y | ≤ d,
X ∪ Y = V and EG(X − Y , Y − X) = ∅. We emphasize that, in contrast to some authors, we do not require |X ∩ Y | = d
in the preceding definition. For a tensegrity graph T = (V , B, C, S) and X, Y ⊆ V , we shall use the notation ET (X, Y ) to
denote the members of T with one endpoint in X and the other in Y .

If (G, p) is a bar framework in R1 and (X, Y ) is a 1-separation of G with X ∩Y = {v}, then we may obtain an equivalent,
non-congruent framework (G, p′) by reflecting Y through v, so that p′(y) = 2 · p(v) − p(y) for y ∈ Y and p′(x) = p(x) for
x ∈ X . It is folklore that if G is connected and (G, p) is generic, then, up to congruence, each realization equivalent to (G, p)
may be obtained via a series of such reflections. In particular, if G has at least 3 vertices, then it is globally rigid in R1 if
and only if it is 2-connected.

This can be generalized to higher dimensions as follows. Let (G, p) be a bar framework in Rd and (X, Y ) a d-separation
of G. Let H ⊆ Rd be an affine hyperplane containing the points p(v), v ∈ X ∩ Y . Then we may obtain an equivalent
framework (G, p′) by reflecting the points p(y), y ∈ Y through H . If neither {p(x), x ∈ X} nor {p(y), y ∈ Y } is contained in
H (for example, if (G, p) is generic), then (G, p′) and (G, p) are not congruent. In particular, we have the following theorem.

Theorem 2 ([8, Theorem 3.1]). Let d ≥ 1 and let G be a graph on at least d + 2 vertices. If G is globally rigid in Rd, then it is
(d + 1)-connected.

As a shorthand, we shall refer to the above construction of an equivalent framework as ‘‘reflecting Y through H ’’.

3. Existence of globally rigid realizations

In this section we examine the notion of weak global rigidity. We shall need the following observation regarding rigid
tensegrities in Rd. Recall that a point p of a convex set C ⊆ Rd is an extreme point of C if it cannot be written as a convex
combination of points in C − p.

Lemma 3. Let (T , p) be a generic rigid tensegrity in Rd. Then every vertex v for which p(v) is an extreme point of the convex
hull of {p(u), u ∈ V } is incident to at least one non-strut, as well as at least one non-cable member.

Proof. By Lemma 1, (T , p) has a strict proper stress ω. Rearranging the equilibrium condition gives∑
u:uv∈E

ω(uv)p(u) =

∑
u:uv∈E

ω(uv)p(v),

where E denotes the members of T . Now ω cannot be positive on all members incident to v, since then dividing this
equation by

∑
u:uv∈E ω(uv) would give that p(v) is a convex combination of p(u), uv ∈ E, contradicting the assumption

that p(v) is an extreme point. For the same reason, ω cannot be negative on all members incident to v. This means that
v is incident to at least one non-strut, as well as at least one non-cable member, as desired. □

We note that Lemma 3 remains true without the genericity assumption on (T , p) (provided that p is injective), but the
proof is slightly more involved in that case.

The following lemma gives simple necessary conditions for weak global rigidity in Rd.

Lemma 4. If a tensegrity graph T = (V , B, C, S) has a generic globally rigid realization in Rd, then either it is a complete
graph with only bar members, or it has at least d + 2 vertices and satisfies the following conditions:
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• The graph T = (V , B ∪ C ∪ S) obtained by replacing every member of T by bars is globally rigid in Rd,
• T contains at least (d + 1)/2 non-cable members,
• The graph (V , B ∪ C) is connected.

Proof. First, suppose that T has at most d+ 1 vertices and has a generic globally rigid realization (T , p) in Rd. By adding
cables to T if necessary, we may assume that its underlying graph is complete. A globally rigid realization of T must also
be rigid, so by Lemma 1 it has a strict proper stress ω. Now each vertex v ∈ V has at most d neighbors and by genericity
the vectors p(u) − p(v), uv ∈ B ∪ C ∪ S are linearly independent. But then the equilibrium condition for ω can only hold
if ω(uv) = 0 for all members uv, which implies that every member is a bar. This also means that the underlying graph of
T must have been complete to begin with, as required.

Now assume that T has at least d+ 2 vertices and that T has a generic globally rigid realization (T , p). The fact that T
must be globally rigid in Rd follows immediately from the definitions. The second condition follows from Lemma 3, since
in a generic realization the convex hull must contain at least d + 1 points from {p(u), u ∈ V }, all of which are extreme
points. Finally, if (V , B ∪ C) were not connected, then we could translate in (T , p) one of its connected components by a
sufficiently large amount to obtain a realization (T , q) satisfying the member constraints of (T , p) but not congruent to
(T , p), contradicting global rigidity. □

Our goal in the rest of the section is to show that in the d = 1 case, the necessary conditions of Lemma 4 are also
sufficient for weak global rigidity. The main ingredient in our proof is the following lemma. We note that this statement
can be extended to (and follows from) a result regarding ear decompositions of matroids, based on e.g. [5, Theorem 5.2.9].
For the sake of completeness, we give a self-contained proof.

Lemma 5. Let G = (V , E) be a 2-connected graph. Then for any edge e0 ∈ E and any partition E = E1 ∪ E2 of the edge set
of G, where (V , E1) is connected, there is an open ear decomposition P0, . . . , Pl of G such that e0 ∈ P0 and Pi contains at most
one edge from E2 for 0 ≤ i ≤ l.

Proof. We may assume that G1 = (V , E1) is a spanning tree by moving edges from E1 to E2. If e0 ∈ E2, then let the starting
cycle P0 of the ear decomposition be the unique cycle in the graph G1 + e0, and otherwise let P0 be the unique cycle in
G1 + e for any e ∈ E2 such that G1 − e0 + e is connected. In both cases e0 ∈ P0 and P0 contains exactly one edge from E2.

Suppose now that we have a suitable ear decomposition of some subgraph H of G. We shall show that if V (H) ̸= V ,
then we can find an open ear extending H , i.e. a simple path whose end vertices are in V (H) but its internal vertices are
not in V (H) and which contains exactly one edge from E2. Starting from the subgraph induced by P0 and applying this
statement repeatedly yields a suitable ear decomposition of G.

Suppose, then, that V (H) ̸= V . It follows from the connectedness of G1 that there is an edge uv ∈ E1 with
u ∈ V (H), v /∈ V (H). Observe that the existence of a suitable ear decomposition of H implies that V (H) induces a connected
subgraph of G1. In particular, u cannot be a leaf vertex of G1, so it is a cut-vertex of G1. Let A ⊆ V denote the set of vertices
that are unreachable from V (H)−u in G1 −u. Clearly, v ∈ A, so, in particular, A is nonempty. Now, since G is 2-connected,
there must be an edge u′v′, necessarily from E2, such that u′

∈ A and u ̸= v′ /∈ A. Let P be the unique path in G1 from u
to u′ and P ′ the path from v′ to u. Concatenating P , u′v′ and P ′ gives a cycle in G with precisely one edge from E2. This
cycle must contain at least one other vertex from V (H) besides u, since otherwise it would all lie in A, contradicting the
choice of u′v′. Thus the cycle contains a suitable open ear as a subgraph. □

We shall use the following construction in the next two proofs. Let T be a tensegrity graph whose underlying graph is
a cycle. We say that a realization (T , p) in R1 is a stretched cycle if there is some cyclic ordering v1, . . . , vn of the vertices
of T such that p(v1) < p(v2) < · · · < p(vn), v1vn is a strut or a bar, and vivi+1 is a cable or a bar for 1 ≤ i ≤ n − 1.
It is folklore that a stretched cycle is universally rigid: it is not difficult to see that it is globally rigid, and the triangle
inequality ensures that for any d ≥ 1 and any d-dimensional realization (T , q) that satisfies the member constraints of
(T , p), the vertices of T all lie on a line in (T , q).

Lemma 6. Let T be a tensegrity graph and (T , p) a generic universally rigid tensegrity in R1. Let T ′ be a tensegrity graph
obtained from T by adding a path P on vertices u = v1, v2, . . . , vk = v with u, v ∈ V (T ) and vi /∈ V (T ), i = 2, . . . , k− 1, and
such that P contains at most one strut. Then there is a generic universally rigid tensegrity (T ′, p′) extending (T , p).

Proof. We may assume that k ≥ 3 and p(u) < p(v). We construct p′ as follows. For every vertex w ∈ V (T ), let
p′(w) = p(w). If P consists only of cables and bars, then choose p′ such that p′(u) < p′(v2) < · · · < p′(vk−1) < p′(v)
holds. Otherwise, let vivi+1 denote the single strut in P for some 1 ≤ i < k and choose p′ such that p′(vi) < p′(vi−1) <

· · · < p′(u) < p′(v) < p′(vk−1) < · · · < p′(vi+1) holds. Since these give open conditions on p′(w), w /∈ V (T ), we may
choose p′ to be generic.2

2 Explicitly, this uses the fact that for any finite set S ⊆ R that is algebraically independent over the rational numbers, the numbers x ∈ R for
which S ∪ {x} is also algebraically independent form a dense subset of R.
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We claim that the tensegrity (T ′, p′) constructed in this way is universally rigid. Let (T ′, p′′) be another tensegrity in
Rd for some d ≥ 1 that satisfies the member constraints of (T ′, p′). Since (T , p) is universally rigid, (T , p′′

|V (T )) and (T , p)
must be congruent, so by applying a rigid motion to (T ′, p′′) we may assume that p′′(w) = p′(w) for all w ∈ V (T ). In
particular,

p′(u) − p′(v)
 =

p′′(u) − p′′(v)
 so we may as well assume that there is a bar connecting u and v in T ′. Then

(P + uv, p′
|V (P)) is a stretched cycle and its member constraints are satisfied by (P + uv, p′′

|V (P)). It follows that the two
tensegrity frameworks are congruent, and since p′(u) = p′′(u), p′(v) = p′′(v), this implies p′(w) = p′′(w) for all w = V (T ′),
as desired. □

Theorem 7. A tensegrity graph T = (V , B, C, S) has a generic globally rigid realization in R1 if and only if the underlying
graph T = (V , B ∪ C ∪ S) is 2-connected, not all members are cables and the graph (V , B ∪ C) is connected. In fact, if these
conditions hold, then T has a generic universally rigid realization in R1.

Proof. Necessity is given by Lemma 4 (recall that a bar graph is globally rigid in R1 if and only if it is 2-connected);
we prove sufficiency by constructing a generic universally rigid realization of T . By Lemma 5, there is an open ear
decomposition P0, P1, . . . , Pk of T such that each Pi, 0 ≤ i ≤ l contains at most one strut. Moreover, since T has a non-cable
member, we may choose P0 in such a way that it contains at least one bar or strut. We prove by induction on l that the
sub-tensegrity graph of T induced by ∪j≤lPj has a generic universally rigid realization. For l = 0, we can realize P0 as a
generic stretched cycle. The induction step is given by Lemma 6. □

Since each of the three conditions in Theorem 7 can be checked in linear time in the number of members and vertices
of T , this gives a polynomial-time checkable characterization of weak global rigidity in R1. We also note that it implies that
a tensegrity graph in R1 has a generic globally rigid realization if and only if it has a generic universally rigid realization
in R1. In the case of bar graphs this is known to hold in Rd for all d ≥ 1, see [4]. It would be interesting to see whether
this extends to tensegrity graphs in the d ≥ 2 case as well.

In fact, the inductive proof strategy of Theorem 7 can be used to show that under the hypotheses of Theorem 7, the
tensegrity graph has a generic realization in R1 that is super stable,3 a property that implies universal rigidity (for the
definition of super stability, see e.g. [3,11]). However, the existence of a generic super stable realization also follows from
Theorem 7 and a recent result of Oba and Tanigawa [12] who showed that for generic tensegrity frameworks, universal
rigidity is equivalent to super stability.

4. Strongly globally rigid tensegrity graphs

In this section we investigate strong global rigidity. As in the case of weak global rigidity, we first describe a necessary
condition. Then we shall show that the same condition is sufficient for certain families of tensegrity graphs (although not
in general), and use this result to prove that recognizing strongly globally rigid graphs in Rd is co-NP-hard.

Lemma 8. Let T = (V , B, C, S) be strongly globally rigid in Rd. Then for any d-separation (X, Y ) of the bar subgraph G = (V , B),
ET (X − Y , Y − X) contains a cycle with an odd number of cables.

Proof. For clarity, we first focus on the case when d = 1 and the bar subgraph is connected. Suppose that the condition
does not hold for some 1-separation (X, Y ) of G with X ∩ Y = {v}. We shall construct a realization (T , p) such that the
framework (T , p′) obtained by reflecting Y through v in (T , p) satisfies the member constraints of (T , p). Consider the
bipartite graph H obtained from (V , ET (X − v, Y − v)) by replacing each member with a bar. Let us choose an arbitrary
root vertex u1, . . . , uk for each connected component of H . We define (T , p) in the following way: first, set p(v) = 0. For
a vertex u ̸= v, if u can be reached in H from one of the root vertices using an even number of cables, then let p(u) < 0
be an arbitrary negative value. Otherwise let p(u) > 0 be an arbitrary positive value. This is well-defined, for if some
vertex u can be reached from some root vertex using both an even and an odd number of cables, then the concatenation
of these walks is a closed walk containing an odd number of cables, and this would necessarily contain a cycle with an
odd number of cables. Moreover, we may choose the position of the vertices so that (T , p) can be translated into a generic
framework.

Now, in (H, p) the edges corresponding to cables have endpoints with different signs, while the edges corresponding
to struts have endpoints with the same sign. It follows that by reflecting Y through v in (T , p), the length of each cable in
ET (X −v, Y −v) decreases and the length of each strut increases, while the lengths of the members not in ET (X −v, Y −v)
do not change. This means that the resulting tensegrity (T , p′) satisfies the member constraints of (T , p). Thus, T is not
strongly globally rigid, as needed.

The general case can be shown analogously, as follows. We say that a tensegrity is quasi-generic if it can be made
generic by applying a suitable rigid motion. Clearly, to show that a tensegrity graph is not strongly globally rigid in Rd, it
is enough to construct a quasi-generic realization in Rd that is not globally rigid.

3 We thank the anonymous reviewer for pointing this out.
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Fig. 2. An example of a tensegrity graph T which is strongly rigid in R1 and has the 1-dimensional odd cycle property, but is not strongly globally
rigid in R1 . In (b) and (c) the bars are not drawn. The tensegrity in (c) is obtained from the tensegrity in (b) by reflecting a and b through c , as
well as e and f through d. It satisfies the member constraints of the tensegrity in (b), but is not congruent to it.

Suppose now that the for some d-separation (X, Y ) of the bar subgraph G, ET (X − Y , Y − X) does not contain a cycle
with an odd number of cables. To define (T , p), we first choose the points p(v), v ∈ X ∩ Y such that they lie in the x1 = 0
hyperplane in a quasi-generic position. Then we choose the first coordinates of p(v), v /∈ X ∩ Y as in the d = 1 case, and
the rest of the coordinates arbitrarily, in such a way that the whole framework is in a quasi-generic position. Now the
framework (T , p′) obtained from (T , p) by reflecting Y through the x1 = 0 hyperplane satisfies the member constraints of
(T , p) but is not congruent to it, which shows that T is not strongly globally rigid in Rd. □

We shall say that a tensegrity graph T = (V , B, C, S) has the d-dimensional odd cycle property if it satisfies the condition
given in Lemma 8, that is, if for any d-separation (X, Y ) of the bar subgraph G = (V , B), ET (X − Y , Y − X) contains a cycle
with an odd number of cables. See Fig. 1 for an example in the d = 1 case. It follows from Lemma 8 that having the
d-dimensional odd cycle property is a necessary condition for strong global rigidity in Rd. Strong rigidity in Rd is also
clearly necessary. As Fig. 2 shows, these conditions taken together are not sufficient in general, even in the d = 1 case;
however, in the following lemmas we consider special cases where they do guarantee strong global rigidity.

Lemma 9. Let d ≥ 1 and let T = (V , B, C, S) be a tensegrity graph such that the bar subgraph G = (V , B) is obtained by
taking some graphs G1, . . . ,Gk, each on at least d+2 vertices and globally rigid in Rd, along with a sequence vi

1, . . . , v
i
d ∈ V (Gi)

of d distinct vertices from each graph and identifying the vertices v1
j , . . . , v

k
j for each j = 1, . . . , d. Then T is strongly globally

rigid in Rd if and only if it has the d-dimensional odd cycle property.

Proof. Necessity follows from Lemma 8, so we only need to show sufficiency. Let (T , p) be a generic realization of T in
Rd and for 1 ≤ j ≤ d, let vj ∈ V denote the vertex in T corresponding to the vertices v1

j , . . . , v
k
j . First, note that since

each Gi is (d + 1)-connected by Theorem 2, in any d-separation (X, Y ) of G, X ∩ Y must be {v1, . . . , vd} and X must be
the union of the vertex sets of some of G1, . . . ,Gk. Moreover, the frameworks equivalent to (G, p) are (up to congruence)
precisely those frameworks that arise via taking a d-separation (X, Y ) of G and reflecting Y through the affine hyperplane
H spanned by {p(v), v ∈ X ∩Y }. This is because in an equivalent realization (G, p′), the sub-realization (Gi, p′

|V (Gi)) of each
globally rigid subgraph Gi is determined up to reflection through H by the position of the d identified vertices.

We shall show that none of the tensegrities obtained in this way satisfy the member constraints of (T , p). Indeed,
let (X, Y ) be a d-separation of G, with H denoting, again, the affine hyperplane spanned by {p(v), v ∈ X ∩ Y }. Then
ET (X − Y , Y − X) contains a cycle with an odd number of cables. It follows that there is either a cable u1u2 ∈ C in this
cycle such that p(u1) and p(u2) lie on the same side of H , or a strut u′

1u
′

2 ∈ S such that p(u′

1) and p(u′

2) lie on different
sides of H . The length of this cable (strut, respectively) increases (decreases, resp.) if we reflect Y through H , so that the
resulting tensegrity does not satisfy the member constraints of (T , p), which is what we wanted to show. □

The following lemma describes a different situation where the 1-dimensional odd cycle property and strong rigidity
in R1 together characterize strong global rigidity in R1. As this lemma is not needed for our result on the hardness of
recognizing strongly globally rigid tensegrity graphs, its proof, along with some discussion, is given in Appendix A.1.

Lemma 10. Let T = (V , B, C, S) be a tensegrity graph such that the bar subgraph G = (V , B) has two connected components,
each being globally rigid in R1. Then T is strongly globally rigid in R1 if and only if it is strongly rigid in R1 and it has the
1-dimensional odd cycle property.
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Finally, we consider the decision problem d-OCP in which, given a tensegrity graph T = (V , B, C, S) we want to decide
whether T has the d-dimensional odd cycle property.

Theorem 11. d-OCP is co-NP-complete for every d ≥ 1, even for tensegrity graphs T = (V , B, C, S) in which the bar subgraph
G = (V , B) is obtained by taking some graphs G1, . . . ,Gk that are globally rigid in Rd along with a sequence vi

1, . . . , v
i
d ∈ V (Gi)

of d distinct vertices from each graph and identifying the vertices v1
j , . . . , v

k
j for each j = 1, . . . , d.

Proof. The d-OCP problem is indeed in co-NP, since given a d-separation (X, Y ) of G we can check whether the tensegrity
graph H induced by the members ET (X − Y , Y − X) contains a cycle with an odd number of cables by subdividing each
strut with a vertex and checking whether the resulting tensegrity graph T ′ contains a cycle of odd length, that is, whether
the underlying graph of T ′ is bipartite.

In the following, let us call a d-separation (X, Y ) of the bar graph of a tensegrity T pure if ET (X − Y , Y − X) does not
contain a cycle with an odd number of cables. As a shorthand, we shall refer to cycles with an odd number of cables
simply as odd cycles; this will not cause confusion, since for any d-separation (X, Y ), ET (X − Y , Y − X) does not contain
cycles that are odd in the usual sense (i.e. have odd length).

The hardness proof is along the same lines as [10, Theorem 3.1]. We shall show that there is a polynomial-time
reduction from the complement of 3-SAT to d-OCP. Consider an instance of 3-SAT given by the formula ϕ containing
n variables x1, . . . , xn. For a variable xi, we shall use the notation x1i = xi, x−1

i = xi, where xi denotes the negation of xi.
Our aim is to construct a tensegrity graph T = (V , B, C, S) whose pure separations are in a bijective correspondence

with truth assignments satisfying ϕ. The bar subgraph G = (V , B) will consist of 2n + 2 sufficiently large vertex-disjoint
complete graphs, glued along a sequence of d vertices from each graph, with the sizes of these complete graphs to be
fixed later. This construction ensures that every d-separation of the bar subgraph has the set Z of glued vertices as the
separating vertex set. We shall refer to the connected components of G− Z as T ,F, P1, . . . , Pn, P1, . . . , Pn. Here, T and F
correspond to ‘‘true’’ and ’’false’’, while Pi and P i correspond to the variable xi and its negation xi. As with the variables,
we shall use the notation P1

i = Pi, P−1
i = P i.

Next, we add cables and struts between these components in such a way that the following will be true for the pure
separations of G.

• In every pure d-separation (X, Y ) of G, X contains exactly one of T and F and exactly one of Pi and P i for each
i = 1, . . . , n.

• For every pure d-separation of G, the truth assignment in which each variable xi is true if Pi and T are on the same
side of the separation, and false otherwise, satisfies ϕ.

• Conversely, if a truth assignment satisfies ϕ and {xi, i ∈ I} denotes the set of true variables in this assignment, then
(X, Y ) is a pure d-separation of G, where X = Z ∪ V (T ) ∪i∈I V (Pi) ∪i/∈I V (P i) and Y = Z ∪ (V − X).

Thus we shall have a correspondence between pure d-separations of T and truth assignments satisfying ϕ. This can
be done as follows. First, for each i = 1, . . . , n and ε ∈ {−1, 1}, take unused vertices (i.e. ones which have no incident
cables and struts) t ∈ T , f ∈ F, u1, u2 ∈ Pε

i and add the odd cycle u1t, tu2, u2f ∈ C , fu1 ∈ S, see Fig. 3(a). This ensures
that T and F must belong to different sides of a pure d-separation. Next, for each i = 1, . . . , n, take unused vertices
u1, u2 ∈ Pi, u1, u2 ∈ P i, t1, t2 ∈ T , f1, f2 ∈ F , and add the odd cycles u1t1, t1u1, u1t2 ∈ C , t2u1 ∈ S and u2f1, f1u2, u2f2 ∈ C ,
f2u2 ∈ S, see Fig. 3(b). These odd cycles make sure that Pi and Pi cannot belong to the same side of a pure d-separation.
Finally, for each clause {xεi

i , x
εj
j , xεk

k } of ϕ, where 1 ≤ i ≤ j ≤ k ≤ n and εi, εj, εk ∈ {−1, 1}, take unused vertices
t1, t2, t3 ∈ T , u1 ∈ Pεi

i , u2 ∈ P
εj
j , u3 ∈ Pεk

k , and add the odd cycle t1u1, u1t2, t2u2, u2t3, t3u3 ∈ C , u3t3 ∈ S to T , see Fig. 3(c).
Then in a pure d-separation at least one of the components corresponding to the literals in this clause must belong to the
same side as T . Note that since we always put the odd cycles onto previously unused vertices, the only odd cycles in the
resulting tensegrity are the ones that we specified. It is not difficult to verify that the pure separations of the tensegrity
constructed in this way have the three properties described above.

It follows that ϕ can be satisfied if and only if there exists a pure d-separation, which is the same as T not having odd
cycle property. We only used linearly many vertices in the number of clauses and variables, so the size of T is polynomial
in the size of the 3-SAT instance. □

Combining Lemma 9 and Theorem 11 yields the following hardness result regarding strong global rigidity.

Corollary 12. For any d ≥ 1, recognizing strongly globally rigid tensegrity graphs in Rd is co-NP-hard. □
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Fig. 3. The various types of odd cycles used in the proof of Theorem 11.

Appendix

A.1. Proof of Lemma 10

We recall the characterization of strong rigidity in R1 from [10]. We say that a tensegrity graph T = (V , B, C, S) has
the alternating cycle property if every bipartition (U, V − U) of V is such that ET (U, V − U) contains either a bar or an
alternating cycle, that is, a cycle in which cables and struts alternate.

Theorem A.1 ([10]). A tensegrity graph is strongly rigid in R1 if and only if it has the alternating cycle property.

The next lemma asserts that strong rigidity in R1 actually implies ‘‘orientation-preserving’’ global rigidity for all
realizations.

Lemma A.2. Suppose that T = (V , B, C, S) is a strongly rigid tensegrity graph in R1 and let (T , p) be a realization in R1.
Suppose that (T , p′) is a realization satisfying the member constraints of (T , p) such that (T , p′) can be obtained from (T , p) by
translating each of the connected components of the bar subgraph G = (V , B) by some amount. Then (T , p′) is congruent to
(T , p).
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Proof. By applying a translation to all of (T , p′) we may suppose that each component of G is translated in the non-negative
direction and that some component remains stationary. Let ∅ ̸= U ⊆ V be the set of vertices that remain stationary. If
U = V , then we are done, so suppose for contradiction that U ⊊ V . Since T is strongly rigid, ET (U, V − U) contains an
alternating cycle C . Let H denote the tensegrity graph on V with members ET (U, V −U) and for convenience, let us orient
the cables in H from U to V − U , and the struts from V − U to U , so that C becomes a directed cycle.

Let ls(p) and ls(p′) denote the total length of the struts in C in (T , p) and (T , p′), respectively. Similarly, let lc(p) and
lc(p′) denote the total length of the cables in C in the respective realizations. Now each cable in (H, p) must point in the
negative direction, since otherwise the length of the cable would increase as we apply the (positive) translations to (T , p),
contradicting the fact that (T , p′) satisfies the member constraints of (T , p). It follows that ls(p) ≥ lc(p). Similarly, each
strut in (H, p′) must point in the negative direction (since otherwise the translations would have shortened the strut) so
that lc(p′) ≥ ls(p′). We also trivially have lc(p) ≥ lc(p′) and ls(p) ≤ ls(p′). Thus we have the following chain of inequalities:

lc(p′) ≤ lc(p) ≤ ls(p) ≤ ls(p′) ≤ lc(p′).

This implies that each member in C has the same length in (H, p) and (H, p′). But it is not difficult to see that either
there is a strut in C which is longer in (H, p′) than in (H, p), or a cable in C that is shorter in (H, p′) than in (H, p), a
contradiction. □

Proof of Lemma 10. Necessity follows from Lemma 8 and, in the case of strong rigidity, the definitions, so we only need
to show sufficiency. Let us denote the connected components of G by X and Y and let (T , p) be a generic realization in R1.
It is not difficult to see that the equivalent realizations of (G, p) arise, up to congruence, by either translating Y by some
amount, or by reflecting Y through a point x ∈ R1. In the first case, proper translations are ruled out by Lemma A.2. In the
second case, if there is a cable in ET (X, Y ) with both endpoints on the same side of x (and different from x), then reflecting
Y through x would lengthen this cable, thus the resulting tensegrity does not satisfy the member constraints of (T , p).
Similarly, if there is a strut in ET (X, Y ) with endpoints on different sides of x (and different from x), then the reflected
image of this strut would be shorter. Now suppose that neither of these cases hold, so that each cable has endpoints on
different sides of x and each strut has both endpoints on the same side of x, where in both cases x is allowed to be an
endpoint of the given member. Then the same holds for a nearest vertex p(v) instead of x. But the 1-dimensional odd
cycle property applied to the 1-separation (X + v, Y + v) implies that either there is cable in ET (X − v, Y − v) with both
endpoints on one side of p(v) and different from p(v), or a strut with endpoints on different sides of p(v) and different
from p(v), a contradiction. □

Lemmas 9 and 10 show that the 1-dimensional odd cycle property ensures, in effect, that if we start from a generic
tensegrity in R1 and apply a reflection through some point in R1 to some of the 2-connected components of the bar
subgraph, the resulting tensegrity does not satisfy the member constraints of the original one, except in the cases when
we reflected all or none of the 2-connected components. Fig. 2 shows that if two or more reflections are involved then this
is not true in general, i.e. the resulting tensegrity may satisfy the member constraints of the original one. This leaves open
the case when the bar subgraph consists of three or more disjoint graphs that are globally rigid in R1. It is not difficult to
see that in this case, given a generic realization of the tensegrity graph, the frameworks equivalent to the bar subgraph
arise (up to congruence) by applying a translation to some of its connected components, and then reflecting some of
the connected components through a point in R1. Note that, by Lemma A.2, if the tensegrity graph is strongly rigid in
R1, then applying a proper translation to some of the connected components of the bar subgraph does not preserve the
member constraints; still, it is unclear whether the composition of a translation and a reflection can yield a non-congruent
tensegrity that satisfies the member constraints of the original one.
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