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Abstract
This essay has two main claims about EPR’s Reality Criterion. First, we claim that the
application of the Reality Criterion makes an essential difference between the EPR
argument and Einstein’s later arguments against quantum mechanics. We show that
while the EPR argument, making use of the Reality Criterion, does derive that cer-
tain interpretations of quantum mechanics are incomplete, Einstein’s later arguments,
making no use of the Reality Criterion, do not prove incompleteness, but rather point
to the inadequacy of the Copenhagen interpretation. We take this fact as an indication
that the Reality Criterion is a crucial, indispensable component of the incompleteness
argument(s). The second claim ismore substantive.We argue that the Reality Criterion
is a special case of the Common Cause Principle. Finally, we relate this proposal to
Tim Maudlin’s recent assertion that the Reality Criterion is an analytic truth.

Keywords Reality Criterion · EPR argument · Common Cause Principle ·
Interpretations of quantum mechanics · Incompleteness

1 Introduction

Here is how EPR famously formulate in their 1935 paper on the incompleteness of
quantum mechanics (QM) what has come to be known as the Reality Criterion (RC):

If, without in any way disturbing a system, we can predict with certainty (i.e.
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity. (Einstein
et al. 1935, p. 777)
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Purely looking at its wording, it is striking how general and deeply philosophical this
criterion is. It is a principle of apparent epistemological character that provides a way,
as EPR put it, of “recognizing a physical reality” (Einstein et al. 1935, p. 777). When-
ever we are in a certain epistemic position, of predicting the result of a measurement
without infuencing it, we had better adopt a certain ontology. In other words, the RC
can be taken as a general inference pattern from the epistemic to the ontic. In this
respect it is on a par with Quine (1980)’s and Putnam (1979)’s ideas about ontologi-
cal commitment based on a successful scientifc theory (for one characteristic thing a
successful theory provides is a means of predicting measurements without infuencing
them).

On the other hand, it is remarkable that in the entire history and philosophy of
physics–to our knowledge at least–this general epistemological principle has been
articulated and applied only once, namely in the EPR argument. No mention of any-
thing like the RC outside of the specifc context of the EPR problem in quantum
mechanics. Moreover, it is worth observing that the RC is completely lacking from
Einstein’s later arguments on the incompleteness of quantum mechanics, most of
which were explicitly devoted to clarify what the EPR paper had actually been meant
to argue. As Fine (1996, p. 5) points out, while the RC plays a central role in the
original EPR text, these later arguments no longer make any reference to the criterion;
they simply eliminate it.

EPR regarded the RC as a “reasonable” principle which is “in agreement with
classical aswell as quantum-mechanical ideas of reality” (Einstein et al. 1935, pp. 777–
778). It is not entirely clear what Bohr’s position was towards the criterion itself, but
perhaps it is grounded in his positivistic views that he had doubts about its plausibility,
as expressed in his response to the EPR paper (Fine 1996, pp. 34–35). Refning Bohr’s
subjectivist conception of quantum theory, Quantum Bayesians have come to claim
that the RC is an unwarranted principle (Fuchs et al. 2014; Glick and Boge 2019).
Even without apparent philosophical commitments, though, most physicists today
would probably take it that the RC articulates the kind of “classical realism” that can
no longer be maintained in the quantum domain, as is conclusively demonstrated by
Bell’s theorem (Werner 2014).

Others object. TimMaudlin (2014) recently argued that the RC is not only a reason-
able principle but it is in fact an analytic truth; it is “just not the sort of thing that can
coherently be denied,” as he writes (Maudlin 2014, p. 7). If there is anything wrong
about the EPR argument, or with “classical realism” in general, it is certainly not the
RC to be blamed for it, Maudlin’s claim suggests, simply because the criterion lacks
any factual content.

Is then the RC a statement without any content? Might this be the reason for the
lack of attention to it in the general philosophy of science literature, as well as for
the absence of the criterion in later discussions of the EPR problem in Einstein’s own
writings? Or, rather, does the RC express a substantial philosophical commitment
that can be reconsidered and reevaluated–in particular, in light of the results of the
EPR–Bell-type experiments? If so, how can Einstein so easily dispense with it in his
later reformulations of the EPR idea, while it is a crucial component of the original
formulation?
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The aim of this paper is to answer these questions and clarify the meaning of
the Criterion of Reality. We believe that the RC articulates a general philosophical
principle far from being analytic that can be subject to reconsideration in light of the
EPR–Bell problem in quantum mechanics. We will support our view by the following
two claims.

First, we will claim that the application of the RC makes an essential difference
between the EPR argument and Einstein’s later arguments. We will show that while
the EPR argument, making use of the RC, does derive that certain interpretations of
QM are incomplete, Einstein’s later arguments, making no use of the RC, do not prove
incompleteness, but rather point to the inadequacy of the Copenhagen interpretation of
QM. This suggests that the RC is not eliminable from the incompleteness argument(s)–
at least from the one(s) we have so far laid out.

The second claim is more substantive. We will claim that the RC is a special case
of the Common Cause Principle.

We have to stress at the very outset that our discussion is not indented as a historical
analysis. Our primary interest is notwhat EPR andEinstein actually thought to argue or
what they themselves took the RC to be or what interpretation of QM they exactly had
in mind. Our analysis is meant to be a logical reconstruction of EPR’s and Einstein’s
arguments, providing a unitary conceptual framework–in terms of causally explaining
correlations–to think about these arguments, and to relate them to Bell’s treatment and
contemporary discussion. To set out such a reconstruction, we will need to sharpen,
and to an extent revise, some of our historically loaded terminology–such as what we
mean by the Copenhagen interpretation or completeness/incompleteness. In doing so,
historical faithfulness and textual details will only be relevant insofar as they provide
evidence for the validity of the reconstructed arguments.

In the paper we will proceed as follows. In Sect. 2 we make a distinction between
two interpretations of the quantum formalism that will be crucial for our frst claim. In
Sects. 3, 4 and 5 we address the frst claim, that is we compare the EPR argument with
Einstein’s later arguments. In Sect. 6 we turn to our second claim, namely that the RC
is a special case of the Common Cause Principle. In Sect. 7 we relate this proposal
to Maudlin’s assertion that the Reality Criterion is an analytic truth. We discuss the
broader context of our results in Sect. 8.

2 Two interpretations of the quantum formalism

Consider the quantum mechanical description of an EPR–Bohm-type scenario, where
a pair of spin- 12 particles is emitted by a source and detected at two remote places.
The spin state space of the two-particle system is Hilbert space C

2 ⊗ C
2. Suppose

that the system is in the singlet state �s = 1√
2

(�+v ⊗ �−v − �−v ⊗ �+v), where

�+v, �−v ∈ C
2 are the “up” and “down” eigenvectors of the spin-component operator

along an arbitrary direction v. Let a and b denote the directions in which the spin of the
left and right particle is considered, respectively. We will only be concerned with the
“spin up” events in these directions. Let Â and B̂ denote the corresponding projectors
on C

2,
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Â = |�+a〉 〈�+a| (1)

B̂ = |�+b〉 〈�+b| (2)

and Î denote the identity on C
2. The quantum mechanical description yields the

following values for quantum probabilities of single and joint spin outcome events in
the given directions:

�
�s, Â ⊗ Î�s

�
=

�
�s, Î ⊗ B̂�s

�
= 1

2
(3)

�
�s, Â ⊗ B̂�s

�
= 1

2
sin2

�
θ

2

�
(4)

with θ being the angle between directions a and b.
Without further physical interpretation the quantum mechanical description is just

a piece of mathematics. The reason is that terms like “state,” “event,” “quantum prob-
ability,” while having precise mathematical defnitions in the Hilbert space formalism,
have no clear physical meaning. For what we shall argue in the following, it will be
crucial to distinguish between two different physical interpretations of the formalism
of QM. We describe these interpretations on the example of the EPR–Bohm case.

The empirical content of QM is not a matter of interpretative choice. In testing the
quantum mechanical description of the EPR–Bohm scenario, quantum probabilities
(3)–(4) are compared with long run frequencies of outcomes of spin measurements,
performed in an EPR–Bohm-type experiment. If nothing more is assumed, we shall
speak about the minimal interpretation of QM.

Minimal interpretation Consider the scheme of an EPR–Bohm-type experi-
ment. A large ensemble of two-particle systems is prepared “in the singlet state”
by means of a physical procedure Ps . In each run of the experiment a member
of this ensemble is analyzed: a particle pair is emitted, one particle fying to the
left, the other one to the right, and at remote places we measure the spin of the
particles along chosen directions. Let a and b denote the events of measuring
spin along directions a and b in the left and right wings of the experiment respec-
tively. A and B denote the corresponding “spin up” outcomes in the detectors on
the two sides. Empirical data are the relative frequencies of measurements a and
b, and of the corresponding “spin up” outcomes A and B, over the ensemble of
runs–for varying measurement directions a and b. On the basis of this observed
statistics, one can calculate the conditional probabilities of sort p(A|a ∧ Ps),
p(B|b ∧ Ps), and p(A ∧ B|a ∧ b ∧ Ps), defned by Bayes’s rule.1 The minimal
interpretation consists in the identifcation of quantum probabilities (3)–(4) with
these conditional2 probabilities of macroscopic measurement events:

1 This is not the place to enter into the well-known problem of how probability is precisely related to actual
relative frequency. For an overview of the various approaches to probability, see e.g. (Gillies 2000). For a
subtle variant of actual frequentism, see (Hoefer 2019).
2 The idea that quantum probabilities are to be interpreted as classical conditional probabilities was frst
formulated by (Szabó 1995).
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�
�s, Â ⊗ Î�s

�
= p(A|a ∧ Ps) (5)

�
�s, Î ⊗ B̂�s

�
= p(B|b ∧ Ps) (6)

�
�s, Â ⊗ B̂�s

�
= p(A ∧ B|a ∧ b ∧ Ps) (7)

The minimal interpretation only talks about macroscopic measurement events and
procedures; in fact, any reference to “particles” or “quantum mechanical system” is
dispensable. The quantum mechanical state serves merely as an encryption of the
statistics of these visible, macroscopic events. It must be emphasized that since the
empirical confrmation of QM is based on the identifcation (5)–(7), all interpretations
of the quantum formalism has to recover it, as long as they are to restore the empirical
content of the quantummechanical description. This is the sense in which the minimal
interpretation is “minimal.” Different interpretations of the quantum formalism may
say different things about what lies behind the macroscopic measurement events; of
how “surface” statistics (5)–(7) actually come about.

Next we introduce such an interpretation and dub it Copenhagen interpretation.
Since the Copenhagen interpretation is not a monolitic doctrine but a reservoir of
various views, we will specify this interpretation by fve conditions. As we will see,
these conditions will characterize a �-ontic collapse theory. We are not concerned
here with the historical question whether such a theory can be faithfully attributed to
any of the members of the Copenhagen school. Bohr himself did not seem to believe
in the collapse since he attributed only a symbolic meaning to the wave function. Von
Neuman and Wigner, at the other end of the scale, thought that the reduction is due
to the human mind. Maybe the closest to the �-ontic collapse theory presented here
was Heisenberg who talked about the collapse as an objective physical process (Faye
2019, Sec. 7–8). Be that as it may, we claim that it is the �-ontic collapse theory
characterized by the following fve conditions that was the target of Einstein’s later
arguments against quantum mechanics. We will see in Sects. 4 and 5 how each of
the fve conditions below is necessary to derive the contradiction Einstein sets out to
establish.

Copenhagen interpretation

(i) The quantum state not only describes the statistical behavior of an ensemble
of systems–encoding, for example, probabilities (5)–(7)–, but is conceived as
an element of reality pertaining to the individual system, characterizing every
individual member of the ensemble. To distinguish between the quantum state
as amathematical object and the corresponding element of reality, we introduce
the following notations:

Mathematical object Element of reality
�s ψs

�±v ψ±v
�±a ⊗ �±b ψ±a ψ±b
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Accordingly, “big psi” � will denote the wave function, that is a vector of
an appropriate Hilbert space, whereas “small psi” ψ will stand for a physical
property of a physical system, the property that the wave function represents
on the Copenhagen interpretation. In the following we will reserve the term
“quantum state” for this physical property.3

(ii) Upon performing spin measurements on the particles their quantum state col-
lapses to eigenstates. For example, upon measuring the spin of the right particle
in direction b the singlet state ψs collapses either to ψ+b ψ−b or to ψ−b ψ+b.
Quantum probabilities (3)–(4) are interpreted as the probabilities of collapses
resulting in different collapsed states. More precisely:

�
�s, Â ⊗ Î�s

�
= p(ψ+a ψ−a|a ∧ ψs) (8)

�
�s, Î ⊗ B̂�s

�
= p(ψ−b ψ+b|b ∧ ψs) (9)

�
�s, Â ⊗ B̂�s

�
= p(ψ+a ψ+b|a ∧ b ∧ ψs) (10)

where on the right hand side we have the conditional probabilities of post-
collapse quantum states, given the singlet state as a pre-collapse quantum state
and spin measurements performed in certain directions.

(iii) If the quantum state of the two-particle system is of form ψ±a ψ±b (that is the
corresponding element ofC

2⊗C
2 has the form of a tensor product�±a⊗�±b)

then the left particle is thought to be in state ψ±a and the right particle in state
ψ±b.

(iv) A particle is attributed “spin up (down) property” along a given direction a if
its quantum state is the corresponding eigenstate ψ+a (ψ−a). The operational
meaning of this is that if the particle’s state collapses to, say, ψ+a in mea-
surement a, then, at the same time, the measurement is assumed to yield the
corresponding outcome A.

(v) The quantum state ψ±u not only endows the particle with spin property in
direction u but also determines how the particle is disposed to react to spin
measurements in directions a �= u, in the sense of predicting probabilities:

p(ψ+a|a ∧ ψ±u) =
�
�+a, Â�±u

�
(11)

Since in general p(ψ+a|a ∧ ψ±u) �= p(ψ+a|a ∧ ψ±v) for u �= v, different
quantum states will yield different, incompatible predictions for the probabil-
ities of measurement outcomes. Therefore, different quantum states pertain to
incompatible elements of reality. That is one can attribute only one quantum
state to an individual system at a time.4

3 This terminology is borrowed from (Maudlin 2019, Ch. 3).
4 The incompatibility of different quantum states is not to be confated with the incompatibility of noncom-
muting observables. Aswe shall see in Sect. 5, while the latter plays no role in Einstein’s own incompleteness
arguments–as opposed to EPR’s original formulation–, the former does play a crucial role in Einstein’s con-
siderations. Note that the incompatibility of different quantum states is also an essential ingredient of

123



Synthese (2021) 199:13441–13469 13447

Theminimal interpretation (5)–(7) is an obvious consequence of collapse probabilities
(8)–(10) in conjunction with the operational meaning of collapsed states incorporated
in (iii)–(iv). It must be emphasized, however, that the formalism of QM equipped with
the minimal interpretation and the formalism of QM equipped with the Copenhagen
interpretation are two different theories of the world. As we now turn to discuss, the
EPR argument only refers to QM à la the minimal interpretation, whereas Einstein’s
later arguments are essentially about QM à la the Copenhagen interpretation.

3 The EPR argument implies the existence of new elements of reality

Quantum probabilities (3)–(4) in conjunction with the minimal interpretation (5)–(7)
yield the following statistics observable in an EPR–Bohm experiment:

p(A|a ∧ Ps) = p(B|b ∧ Ps) = 1

2
(12)

p(A ∧ B|a ∧ b ∧ Ps) = 1

2
sin2

�
θ

2

�
(13)

When themeasurements in the twowings are performed in the same direction (θ = 0),
the outcomes are perfectly anticorrelated:

p(A ∧ B|a ∧ b ∧ Ps) = 0 (14)

That is, if the outcome in onewing is “spin up,” the outcome in the other wing is certain
to be “spin down,” and vice versa. Further, in an EPR–Bohm experiment, events in
the two wings–the tokens of a, A and b, B respectively–are spatially separated in
each run. Consequently, assuming relativistic causality, what happens in one wing
cannot have infuence on what happens in the other wing. Then, in a given run of the
experiment where parallel measurement directions have been chosen, the premises of
the RC fulfll: on the basis of performing spin measurement in the right wing, without
infuencing the outcome in the left wing, we can be sure about the outcome of spin
measurement in the left wing (and vice versa). That is to say, “without in any way
disturbing a system, we can predict with certainty (i.e. with probability equal to unity)
the value of a physical quantity.”5 If the RC is true, then “there exists an element of
physical reality corresponding to this physical quantity.”

What does it take to be an element of physical reality corresponding to a physical
quantity? More precisely, how does an element of reality corresponding to a physical
quantity relate to those elements of reality that correspond to the measurement of

Footnote 4 Continued
Harrigan and Spekkens (2010)(p. 125) defnition of a �-ontic theory: “We call a hidden variable model
�-ontic if every complete physical state or ontic state in the theory is consistent with only one pure quantum
state.”
5 In this context, we need not distinguish between the value of a physical quantity and the outcome of a
measurement (cf. Healey 2017, p. 101). In fact, as it will be clear from Sect. 6 where the RC will be proved
to be a special case of a much more general principle, the subject of our prediction in the formula of the
RC can be any physical event related to the system in question.
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this quantity, to the elements of reality the minimal interpretation refers to? Here is
Goldstein et al. (2011) pointing out what the “element of physical reality” in the RC
essentially does:

This criterion [the RC] simply refects the fact that if the outcome of some
experiment isn’t pre-determined by some element of physical reality (i.e., if it
is not a function of something that was an element of physical reality before the
experiment) then its outcome involves some randomness and hence cannot be
predicted with certainty. (Goldstein et al. 2011, Sec. 10.3)

That is, an element of reality corresponding to a physical quantity is something that
determines the outcome of measurement whenever the value of the quantity in ques-
tion is measured. Consequently, according to the RC, in each run of the EPR–Bohm
experiment where parallel measurement directions are chosen, the results of spin mea-
surements in both6 wings must be predetermined.

Notice that the above refection of Goldstein et al. does not make any reference to
the clause of the RC “without in any way disturbing a system.” Indeed, if I am able to
predictwith certainty the outcomeof ameasurement, even if bymeans of disturbing the
system, then this outcomemust in some way be predetermined, otherwise, the point of
Goldstein et al. being still valid, it could not be predicted with certainty. Nevertheless,
if the act of my “prediction” can infuence the outcome, then the element of reality that
determines this outcome may well be the very act of my “prediction.” That is, it may
be the performance of measurement in the right wing that determines the outcome
in the left wing.7 If, however, the events in the two wings are spatially separated,
and thereby the act of prediction can no longer infuence, and hence determine, the
predicted outcome, then this possibility is excluded. In this case the RC implies the
presence of new elements of reality that are not present according to the minimal
interpretation of the quantum mechanical description.8

The RC only guarantees the outcomes of spin measurements to be predetermined
when the measurements in the two wings are performed in the same direction. This
is because for θ �= 0 the probabilities (12)–(13) imply non-perfect correlation that
does not allow for predicting with certainty the outcome in one wing on the basis of
the outcome in the other wing; and hence the RC is not applicable. Moreover, even
when the same measurement directions are chosen in the two wings, the RC only
predicts the presence of those elements of reality that correspond to spin values in this
chosen direction, but not in any other direction. However, the element of reality idea
has another aspect, not refected in the above quote by Goldstein et al., ensuring that

6 On the face of it, the statement of the RC, as applied to the EPR–Bohm situation, is asymmetric with
respect to the outcomes in the two wings, in that we pick one of them to predict the other. But of course
nothing hings on which outcome is selected for which role, so the consequent of the RC, the fact that the
outcome in question is predetermined, must hold for both outcomes.
7 In connection with footnote 6, note that in this case the RC cannot be applied to infer that the right
outcome, used here as a means of “predicting” the left outcome, is also predetermined (in fact it can be fully
random). For if the right outcome is causally informed by the left measurement then the former cannot be
reasonably regarded as a prediction of the latter. See also the discussion in Sect. 6 on how the RC’s terms
translate to a causal-statistical language.
8 Nor they are present according to theCopenhagen interpretation. This is because none of the spin outcomes
are predetermined in the singlet state.
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in fact all spin outcomes in all directions must be predetermined in each run of the
experiment. Here is EPR considering this problem:

One could object to this conclusion [that the spin outcomes are predetermined
in all directions] on the grounds that our criterion of reality is not suffciently
restrictive. Indeed, one would not arrive at our conclusion if one insisted that
two or more physical quantities can be regarded as simultaneous elements of
reality only when they can be simultaneously measured or predicted. On this
point of view, since either one or the other, but not both simultaneously, of the
quantities [of the spin along directions v and v′] can be predicted, they are not
simultaneously real. This makes the reality of [the spin of the second system
along directions v and v′] depend upon the process of measurement carried out
on the frst system, which does not disturb the second system in any way. No
reasonable defnition of reality could be expected to permit this. (Einstein et al.
1935, p. 780)

EPR refer to the spatial separation of events in the two wings. They point out that
if the element of reality that determines the outcome in one wing is, in each run of
the experiment, assumed to be localized in the same wing, then the presence of this
element of reality cannot depend on the direction in which we choose to measure in
the other wing due to the causal separation of the wings. Note that the absence of direct
causal infuence between the measurement choice in one wing and the elements of
reality in the other wing does not itself mean that there can be no statistical dependence
(even maximal correlation) between the two, brought about by a “common cause.”
This possibility is excluded not by locality considerations but by an independent
assumption, as is emphasized by Goldstein et al.:

Even though, in each run of the experiment, either the z-axis or the x-axis is cho-
sen along which to perform the measurements, the elements of physical reality
that exist before the measurements cannot depend on choices that will be made
later by the experimenters! This, indeed, doesn’t follow from the assumption of
locality itself but it does follow from the so-called “no conspiracy” assumption
which states, roughly speaking, that the pair of particles prepared by the source
does not “know” in advance what experiments are going to be performed on
them later. (Goldstein et al. 2011, Sec. 10.3)

Of course not only it is assumed that the particles do not “know” what experiments
are going to be performed on them, but also that the experimenters do not “know”
what elements of reality, corresponding to the spin values of the particles along differ-
ent directions, are present, and hence their choice of the measurement setup does not
depend on these elements of reality. It is assumed that the presence of the elements of
reality that predetermine the outcomes and the choices ofmeasurements are infuenced
by different factors, and therefore there exists no common factor that could infuence
them both. The absence of common cause, in conjunction with the absence of direct
causal connection following from locality,9 together imply that there is nothing that

9 Some caution is in order here. Notice that the direction in which the spin outcome is guaranteed to be
determined, as a consequence of the RC, not only depends on the remote measurement choice but also on
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could serve to correlate the measurement choices and the elements of reality in ques-
tion, and hence their distributions over the runs of the experiment must be statistically
independent. This in turn will ensure EPR’s conclusion: there must exist elements of
reality corresponding to the spin values of the two particles in all directions in all runs
of the experiment.10

4 Einstein’s later arguments imply that the wave function cannot
represent an element of reality pertaining to the individual system

It must be emphasized that the EPR argument can be formulated merely in terms of
the minimal interpretation of QM. Therefore, the argument is independent of which
interpretation11 of QM one may favor. It is independent of any assumption expressed
in terms of what may lie behind the macroscopic measurement events.12

In contrast, EPR’s original formulation does employ a specifc interpretation,
namely the Copenhagen interpretation. Thus, one may not be surprised that Einstein
himself was dissatisfed with the EPR text, saying “the main point was, so to speak,
buried by the erudition” (Howard 1985, p. 175). However, what Einstein took to be
the main point of the EPR idea is rather different, much simpler, then what we have

Footnote 9 Continued
the local one; for the presence of the element of reality corresponding to the left spin in direction v only
follows if the measurements in both of the two wings are performed along v. If the element of reality
determining the spin outcome on the left is assumed to be localized in the left wing (one can identify the
“left wing”with the past light cone of the left outcome), without more specifc constraints on its localization,
then it seems possible that this element of reality is affected by the local measurement choice, through the
process of measurement performed in the left wing. Such an infuence could break down the independence
of the measurement choices and the elements of reality in question. That the element of reality must be fxed
before the local measurement choice is made, excluding the possibility of such infuence, as is suggested by
Goldstein et al. above, is something that is not implied by what has been said so far about the RC. We will
see how this condition follows in Sect. 6 (footnote 23) where we discuss the deeper meaning of the RC.
10 Indeed, let λ denote the element of reality that predetermines the outcomes of spin measurements along
an arbitrary given direction v in the two wings. The requirement that λ be statistically independent from
the choices of measurements just means

p(λ|c) = p(λ) (15)

where c denotes an arbitraryBoolean combination ofmeasurement eventsa andb. Consider the subensemble
of runs where the measurement direction is set to be v in both wings (a = b = v). In this subensemble the
outcomes must be predetermined and the element of reality λ is certain to be present:

p(λ|a ∧ b) = 1 (16)

Now apply (15) to c = a ∧ b to obtain

p(λ) = 1 (17)

which is to say that the outcomes of spin measurements along the arbitrary direction v are predetermined
in the whole ensemble, that is in all runs of the experiment.
11 One exception is the many-worlds interpretation which circumvents the conclusion of EPR by refuting
that correlation (14) is real. Cf. (Maudlin 2014, pp. 22–23).
12 For example, such an assumption is the “separability” of quantum systems (Howard 1985).
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outlined in the previous section, and is indeed strongly related to the Copenhagen
interpretation. The seed of this thought is there in the EPR paper:

[...] as a consequence of two different measurements performed upon the frst
system, the second systemmay be left in stateswith two differentwave functions.
On the other hand, since at the time of measurement the two systems no longer
interact, no real change can take place in the second system in consequence
of anything that may be done to the frst system. This is, of course, merely a
statement of what is meant by the absence of an interaction between the two
systems. Thus, it is possible to assign two different wave functions [...] to the
same reality (the second system after the interaction with the frst). (Einstein
et al. 1935, p. 779)

After the EPR paper Einstein formulated his worries about quantum mechanics in
various different versions–among them in a letter to Schrödinger (dated June 19,
1935); in a letter to Popper (dated September 11, 1935); in his 1936 “Physics and
Reality” paper (Einstein 1936); and in his “Autobiographical Notes” in 1948 (Einstein
1948).13 All these considerations are variations and elaborations of the same theme
voiced in the above passage by EPR.What these refections share is the adoption of the
quantum state collapse idea and, as Fine (1996, p. 5) stresses, the overall absence of
any reference to the RC that was so crucial to EPR. Here is Einstein’s 1936 argument:

Consider a mechanical system consisting of two partial systems A and B which
interact with each other only during a limited time. Let the � function before
their interaction be given. Then the Schrödinger equation will furnish the �

function after the interaction has taken place. Let us now determine the physical
state of the partial system A as completely as possible by measurements. Then
quantum mechanics allows us to determine the � function of the partial system
B from the measurements made, and from the � function of the total system.
This determination, however, gives a result which depends upon which of the
physical quantities (observables) of A have been measured (for instance, coor-
dinates or momenta). Since there can be only one physical state of B after the
interaction which cannot reasonably be considered to depend on the particular
measurement we perform on the system A separated from B it may be concluded
that the � function is not unambiguously coordinated to the physical state. This
coordination of several� functions to the same physical state of system B shows
again that the � function cannot be interpreted as a (complete) description of a
physical state of a single system. (Einstein 1936, [1936] 1954, p. 317)

The essence of Einstein’s observation is that the quantum state collapse idea involved
in theCopenhagen interpretation is in contradictionwith the physical/causal separation
of the partial systems (that is, with locality if causal separation is ensured by the spatial
separation of the two systems). For the sake of concreteness, let us reconstruct this
argument as applied to the EPR–Bohm scenario. On the Copenhagen interpretation,
in every run of the EPR–Bohm experiment where frst the right wing measurement b

13 For the various reconstructions of the EPR argument and Einstein’s later arguments and many related
topics see e.g. (Howard 1985), (Redhead 1987, Ch. 3), (Hájek and Bub 1992), (Fine 1996, Ch. 3), (Norton
2018), and (Harrigan and Spekkens 2010).
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is performed, the singlet state ψs collapses to ψ+b ψ−b or to ψ−b ψ+b (clause (ii) in
Sect. 2). According to the ontology of the Copenhagen interpretation, in these runs,
after the measurement on the right has been performed, the particle on the left comes
to be in stateψ±b; meaning that there is an element of reality localized in the left wing
that corresponds to the particle being in that state (clause (iii) in Sect. 2). Since ψ±b
is a function of b, this element of reality is dependent on which one of the measure-
ment directions has been selected in the other wing. How to interpret this functional
dependence? It is clear from Einstein’s words that what he has in mind is a sort of
counterfactual dependence. But if for any reason one wants to avoid reference to coun-
terfactuals, there is no need to employ these terms. For what functional dependence
certainly implies is statistical correlation over the runs of the experiment.14 Now, due
to locality, this correlation of the element of reality in one wing and the measurement
choice made in the other wing, cannot be a consequence of direct casual connection,
since the twowings are spatially separated. The absence of direct casual dependence, in
itself, does not mean that the two events in question cannot be dependent in a statistical
sense, for there may exist a “common cause” that brings about correlation. However,
this possibility is again excluded by no-conspiracy: if the measurement choice b is
assumed to be autonomous, for example due to its being governed by a local random
number generator, then b cannot be affected by anything that infuences the state of
affairs in the left wing, including the quantum state of the left particle. All in all, the
element of reality the Copenhagen interpretation assumes to exist in the left wing,
ψ±b, cannot be brought about by any conceivable causal means. Therefore, contrary
to what the Copenhagen interpretation postulates, the wave function �±b cannot rep-
resent an element of reality ψ±b characterizing the physical state of the individual
particles. In other words, “the � function cannot be interpreted as a [...] description
of a physical state of a single system.”

The conclusion of Einstein’s argument is that according to the Copenhagen inter-
pretation there ought to exist elements of reality, corresponding to the quantum state
of the individual particles after state collapse, that cannot exist under the assumptions
of locality and no-conspiracy.

5 The EPR argument is an incompleteness argument; Einstein’s later
arguments are not

The EPR argument and Einstein’s later arguments are different in their premises and
different in their conclusions. More precisely, they are different to the extent that:

14 The only way ψs can collapse to ψ±b ψ∓b is when the measurement choice in the right wing is b. This
implies correlation between the collapsed quantum state and the right wing measurement choice:

1

2
= p(ψ±b ψ∓b|b ∧ ψs ) > p(ψ±b ψ∓b|¬b ∧ ψs ) = 0 (18)

given that 0 < p(b), p (¬b) < 1, where ¬b denotes the “negation” of b, more precisely, the event of
choosing an arbitrary measurement direction in the right wing other than b.
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(a) The EPR argument can be formulated in terms of the minimal interpretation of
QM, whereas Einstein’s later arguments are essentially tied to the Copenhagen
interpretation.

(b) The crucial ingredients of the EPR argument are locality, no-conspiracy, the per-
fect correlation predicted by (the minimal interpretation of) QM, and the RC. In
contrast, Einstein’s later arguments make no reference to perfect correlation, nei-
ther to the RC; their essence is to point to the tension between the quantum state
collapse idea and locality (in conjunction with no-conspiracy).

(c) The EPR argument implies the existence of elements of reality not described by
QM, neither on the the minimal interpretation, nor on the Copenhagen interpre-
tation. Thus, QM, on either of these interpretations, is incomplete. According
to Einstein’s later argument, the Copenhagen interpretation is committed to the
existence of elements of reality that cannot be out there in the world–under the
assumptions of locality and no-conspiracy. Hence, given these assumptions, the
Copenhagen interpretation is unsound–as opposed to being incomplete.

Despite these substantial differences the EPR and Einstein’s later arguments are often
lumped together in the literature: both of them are labeled as “incompleteness argu-
ment.” This terminology also fnds support in Einstein’s writings. Einstein saw his
own refections on the subject as refnements of the EPR idea purporting to point to
the fundamental incompleteness of QM.15 As remark (c) indicates this terminology
is not quite apt nonetheless. Many commentators have noticed (Hájek and Bub 1992,
p. 327; 1985, pp. 180–181; 2014, pp. 334–336) that the condition Einstein establishes
in his 1936 argument (as well as in all of his similar arguments)–“the� function is not
unambiguously coordinated to the physical state”–is not identical with, but just the
converse of the condition of incompleteness. EPR (Einstein et al. 1935, p. 777) defne
completeness as “every element of the physical reality must have a counterpart in the
physical theory.”) Lehner (2014) even introduces a terminology to mark this differ-
ence: he saves “incompleteness” for EPR’s condition, while using “overcompleteness”
for Einstein’s condition. On the basis of this distinction, Lehrer (2014, p. 337) and
(Uffnk 2020, p. 559) point out that Einstein’s own reasoning provides a weaker argu-
ment for incompleteness than the EPR argument. However, this way of putting it still
obscures the essential difference between Einstein’s and EPR’s target. If a theory is
“overcomplete” in the sense Einstein argues Copenhagen QM must be, then it postu-
lates more elements of reality then what there is in the world. Consequently, some of
the theory’s ontological claims are plainly false. Such a description already has a name:
it is inadequate or unsound. Note that this latter terminology is in complete harmony
with the way (semantic) “completeness” and “soundness” is used in logic (though not
for the characterization of theories but of logical systems). “Completeness” is used
when everything that is true in the world (in the model) is also stated by the theory;
“soundness” is used when there is no statement of the theory that is not true in the
world. In accord with this standard terminology, Einstein’s later arguments are better
be characterized as unsoundness arguments, rather than incompleteness arguments.16

15 But there is also indication that Einstein’s view about the relation of his later arguments and the com-
pleteness question is subtler than this. See below in this section.
16 Note that drawing parallel between the problem of completeness in quantum mechanics and in logic is
not unprecedented in the literature. Howard and Giovanelli (2019) argue that the notion of completeness in
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Since many may fnd this conclusion controversial, it will be useful to compare our
discussion with other reconstructions of Einstein’s later arguments in the literature.
Howard (1985, p. 181) offers an interesting reasoning about the way to see Einstein’s
argument as pointing to incompleteness:

‘Completeness’ surely requires of the�-function that it describe all of the prop-
erties of a system in a given real state, so that different real states must be
described by different �-functions (which is all that the [...] EPR completeness
condition demands). But why require, conversely, that different �-functions
always be correlated with different real states? Might there not be situations in
which the differences between two�-functions (phase differences, for example)
are inessential from the point of view of the system whose real state they aim
to describe? Einstein’s completeness condition would, indeed, be too strong if it
required that literally every difference between �-functions mirror a difference
in the real state of the system in question; but such was not Einstein’s inten-
tion. The kind of difference with which Einstein was concerned is clear from
his argument: �B and �B̄ [two different wave functions of system B left behind
after performing one of two alternative measurements on system A] differ in the
predictions they yield for the results of certain objective, local measurements on
system B. This is not an inessential difference, and Einstein was right in holding
that it is excluded by the demand for completeness, for the only way to account
for such a difference (assuming that both �-functions provide ‘correct’ descrip-
tions) is by assuming that at least one of the two�-functions, or perhaps each of
them, gives an incomplete description. [...] Two different �-functions can give
correct descriptions of one and the same real state only if one of them, at least,
tells less than the whole truth about that real state.

Howard thinks there is a way to avoid concluding that the Copenhagen interpretation
is unsound, namely by assuming that it is incomplete. We believe, however, that there
is no such a way out. It is precisely because “�B and �B̄ differ in the predictions
they yield for the results of certain objective, local measurements on system B,” that
the two wave functions are incompatible, and so they cannot be assigned to the same
real state by any correct theory of the world, even if it only provides an incomplete
description.17

The incompatibility of different quantum states–we formulated it as an ingredi-
ent of the Copenhagen interpretation in clause (v) in Sect. 2–was in fact a crucial
assumption in our own reconstruction of Einstein’s argument too. For if one could
coherently assign more than one quantum state, the corresponding element of reality,
to an individual system, then one could also coherently imagine that the particle in
the left wing in fact occupies one of the spin eigenstates for every spatial direction
at the same time. In other words, one could imagine that the physical state of the

Footnote 16 Continued
Einstein’s own arguments is analogous to, and in fact originates in, the concept of categoricity as it is used
in model theory.
17 By analogy, suppose that a theory claims that a die is both fair and biased at the same time. Now, you
will not be able to avoid the conclusion that this theory is wrong by acknowledging that both “fair” and
“biased” are incomplete descriptions of the (rolling of the) die.
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left particle, after the right wing measurement has been carried out, simultaneously
incorporates ψ+v or ψ−v for all v, not only the one that results after collapsing ψs by
the measurement b actually performed. Then the physical state of the particle, incor-
porating all these ψ±v-s as partial descriptions, in fact would not be dependent on
the measurement choice in the other wing–the state collapse would not bring about a
correlation between the physical state of the left particle and the performance of the
right wing measurement.18 Thus, one would have no contradiction with the causal
separation of the two wings ensured by locality and no-conspiracy in Einstein’s argu-
ment. So if different quantum states were compatible elements of reality, then giving
up seeing them as complete descriptions would indeed provide a way out from con-
cluding that they must be incorrect descriptions–just as Howard suggests. But, again,
because different quantum states yield incompatible probability predictions, they can-
not simultaneously provide correct descriptions, even if each of them provides only an
incomplete description.19 Hence, incompleteness is not an antidote to the inadequacy
of the Copenhagen interpretation.

Harrigan and Spekkens (2010) recently argued for a thesis that resonates with our
conclusion. Here is how they summarize their result:

What is not typically recognized, and which we show explicitly here, is that the
latter argument was actually strong enough to also rule out locality for �-ontic
hidden variable theories. In other words, Einstein showed that not only is locality
inconsistent with� being a complete description of reality, it is also inconsistent
with � being ontic, that is, inconsistent with the notion that � represents reality
even in an incomplete sense. Einstein thus provided an argument for the epistemic
character of � based on locality. (Harrigan and Spekkens 2010, pp. 126–127)

Indeed, since the Copenhagen interpretation is �-ontic (that is it takes � to represent
an element of reality pertaining to the individual system), what Einstein must have
achieved, based on the locality assumption, is proving it unsound, rather than incom-
plete. However, Harrigan and Spekkens suggest that what Einstein actually showed is
stronger than incompleteness, hence his argument still entails incompleteness. This
suggestion is made explicit on p. 133 (Lemma 6) where they formulate the claim
that the non-ontic (“epistemic”) character of � entails its incompleteness. Notice,
however, the important difference between the notion that �, whether on an ontic or
epistemic interpretation, alone provides an incomplete description of reality, and the
notion that the theory which features�, QM under a certain interpretation, as a whole
is incomplete. Clearly, Harrigan and Spekkens’s notion of “�-incompleteness” (Def-
inition 2–3, p. 131) corresponds to the frst conception, while EPR’s incompleteness
refers to a theory and hence it corresponds to the second one. The non-ontic character
of � evidently implies �-incompleteness, for if � doesn’t represent an element of
reality (pertaining to the individual system) at all, then, a fortiori, it cannot represent all
elements of reality (pertaining to the individual system) either–as completeness would

18 The right hand side of (18) would no longer be forced to equal to 0.
19 Notice the difference here between the EPR and Einstein’s arguments. EPR infer, through the RC,
that the particles posses spin properties in all directions. By contrast, we are not entitled to ascribe to the
particles, through state collapse, all quantum states ψ+v or ψ−v for all directions v. This is because while
spin properties in different directions are logically compatible, quantum states are not.
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require. But �-incompleteness is entirely silent about whether the theory which fea-
tures �, as a whole, is complete or not. A case in point is the minimal interpretation
of QM. QM à la the minimal interpretation, as we defned it in Sect. 2, is certainly
a non-�-ontic theory, and hence it is also �-incomplete. But the mere fact of this
doesn’t entail that QM à la the minimal interpretation must be an incomplete theory.20

Indeed, to show that, we need the EPR argument. Thus, while Harrigan and Spekkens
are right to state that Einstein’s argument rules out the �-complete interpretations of
QM, this doesn’t make Einstein’s argument an incompleteness argument, in the sense
of EPR’s condition of completeness. For, there is no particular account of reality that is
shown to be incomplete by Einstein’s argument. What the argument shows is that the
�-ontic account of quantum phenomena provided by the Copenhagen interpretation
of QM is unsound.

Note, again, the sense in which Einstein’s conclusion entails �-incompleteness:
if � cannot be interpreted as the description of the physical state of a single sys-
tem, then it certainly cannot provide a complete description of such a state. This is
just what Einstein seems to imply, in the last quoted sentence of his 1936 argument
above, by putting the term “complete” in parenthesis. The almost off-hand manner
in which Einstein mentions completeness seems to be an indication that the focus of
his reasoning is not so much the incompleteness of the wave function, but the very
fact that it cannot be regarded as a description of individual systems at all. Einstein
seems to have been fully aware of the distinction between �-incompleteness, as it is
established by his own argument, and the notion that quantum theory is incomplete,
as it is defned and defended it in the EPR paper. A clear evidence of this is the way he
actually relates his fnding about the non-ontic character of the wave function to the
question of completeness in a later part of the 1936 paper–a way which is signifcantly
different from the off-handed reference to �-incompleteness in the quoted sentence.
To see this relation, let us follow the line of his 1936 reasoning. To the quoted passage
of the 1936 paper Einstein immediately adds: “Here also the coordination of the �

function to an ensemble of systems eliminates every diffculty. A measurement on A,
for example, thus involves a transition to a narrower ensemble of systems. The latter
(hence also its � function) depends upon the point of view according to which this
reduction of the ensemble of systems is carried out.” (Einstein 1936, [1936] 1954,
p. 317) Einstein suggests that the tension of locality and wave function collapse is
resolvable by abandoning the Copenhagen interpretation and adopting what might be
called an ensemble interpretation of the wave function. It is not completely clear what
exactly Einstein’s ensemble interpretation might have been (cf. Fine 1996, Ch. 4), but
what is certainly involved in it is the insistence that the wave function, rather than
pertaining to the ontology of the single system, merely serves as an encryption of
statistical features of an ensemble of systems. On the other hand, while adopting an
ensemble interpretation naturally resolves the problem raised by his later arguments,

20 Recall that the elements of reality posited by the minimal interpretation of QM are macroscopic mea-
surement events such as preparation and measurement procedures and outcomes of measurements. There
do exist approaches to quantum theory holding that QM expressed in these macroscopic terms should be
regarded as complete. An example of such an approach is the so-called operational QM advocated by
(Werner 2014).
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Einstein did not believe that a merely statistical account of quantum phenomena could
be regarded as a complete description. In his words:

What happens to the single system remains, it is true, entirely unclarifed by this
mode of consideration; this enigmatic happening is entirely eliminated from the
representation by the statistical manner of consideration.
But now I ask: Is there really any physicist who believes that we shall never
get any inside view of these important alterations in the single systems, in their
structure and their causal connections, and this regardless of the fact that these
single happenings have been brought so close to us, thanks to the marvelous
inventions of the Wilson chamber and the Geiger counter? To believe this is
logically possiblewithout contradiction; but, it is so very contrary tomy scientifc
instinct that I cannot forego the search for a more complete conception. (Einstein
1936, [1936] 1954, p. 318)

Thus, it is not Einstein’s later arguments themselves, directed against the Copenhagen
interpretation, that imply incompleteness (in EPR’s sense of the term); rather it is
the natural response to these arguments, the adoption of an ensemble interpretation,
that suggests, rather than implies, the EPR-incompleteness of QM (à la an ensemble
interpretation).

To conclude: Einstein’s later arguments are not incompleteness arguments. It is only
the EPR argument that implies the incompleteness ofQM. The EPR argument points to
a particular type of element of reality that is not described byQM, butwhich, according
to the premises of the argument, should nonetheless be out there in the physical world.
What makes it possible to infer the existence of elements of reality out there in the
world? It is the RC that renders it possible, without which no new elements of reality
are inferred. The RC is thus not eliminable from the incompleteness argument(s)–at
least from the one(s) we have so far laid out. This suggest that it must have a substantial
content. Now we turn to the question of the precise meaning of this principle.

6 The Reality Criterion is a special case of the Common Cause
Principle

Consider again how Goldstein et al. (2011) formulates the essence of the RC:

This criterion simply refects the fact that if the outcome of some experiment isn’t
pre-determined by some element of physical reality [...] then its outcome involves
some randomness and hence cannot be predicted with certainty. (Goldstein et al.
2011, Sec. 10.3)

What, exactly, is the source of the impossibility that the RC associates with the predic-
tion of a randomoutcome? Suppose you fip a coin a thousand times. Suppose that your
friend, every time you fip the coin, makes a guess about the result, before it is revealed.
Imagine that she always gets it right: whenever she predicts Heads, the coin comes up
Heads, whenever she predicts Tails, the coin comes up Tails. Such a coincidencewould
cry out for an explanation. Either your friend’s prediction must somehow infuence
the outcome, for example by you altering the coin’s position before revealing it so as

123



13458 Synthese (2021) 199:13441–13469

to match her guess; or her prediction must, in some way, be informed by the fip of
the coin, for example by her employing a computer that detects the mechanical initial
data of the coin fip and calculates the outcome on the basis of the laws of mechanics.
In either case, the outcome must be predetermined–by your friend’s guess or by the
initial conditions of the coin fip–, otherwise the perfect match of the guesses with
the outcomes would be a magical coincidence, a correlation without causal expla-
nation. Thus, the RC, we believe, is nothing but the expression of the intuition that
correlations–in particular, the correlation between the act of predicting something on
the one hand and the predicted phenomena on the other–require explanation in terms
of causal connections. That is, the RC is just a special case of the Common Cause
Principle (CCP). This claim is what we are going to expand on and argue for in the
following.

To make this claim precise, we need to have a translation between the RC’s terms
and the language of the CCP. First, let us make explicit the conceptual framework in
which both these principles will be formulated. Consider the statistical ensemble of
the runs of an experiment performed repeatedly for a large number of times. Each run
is a token event that may instantiate certain event types. For example, let a denote the
event type of performing a given measurement and let A denote the event type of one
of its outcome occurring. Consider the statistics of the different event types over the
ensemble of runs. Let p(a), p(A), p(A|a), etc. denote the corresponding probabilities.
In each individual run the token events can be causally related. Let a → A denote that
the tokens of a have, at least in some runs of the experiment, causal infuence on the
tokens of A (�will denote the absence of casual infuence). We will not be concerned
here about the meaning of this causal relation. We will see, however, that both the
RC’s and the CCP’s statements presuppose that we can meaningfully talk about such
a relation.

Let us now try to unpack the RC’s statement in the above terms. What do we
mean by “predicting with certainty (i.e. with probability equal to unity) the value of
a physical quantity”? Let a denote the measurement of the quantity in question and
A be the outcome event corresponding to the quantity having a certain value. The act
of predicting this quantity is an event (in the coin example, your friend uttering, say,
“Heads”). Let B denote this event: predicting that the quantity in question has a value
pertaining to outcome A. The prediction is certain if whenever B happens then, given
that a is performed, the measurement results in outcome A. That is:

p(A|a ∧ B) = 1 (19)

Event B only qualifes as a prediction if B happens before outcome A is revealed;
more precisely, if A doesn’t causally precede B, meaning that the act of prediction
is not infuenced by the outcome to be predicted. (If your friend sees the outcome of
the coin fip before “predicting” it, then it is no longer a prediction. In other words, B
cannot be such a retrodiction where the retrodicted event A infuences its retrospective
prediction B.) In symbols:

A � B (20)
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To this, the clause “without in any way disturbing a system” adds that, reversely, nor
does the act of prediction infuence the measurement outcome to be predicted. That
is:

B � A (21)

We have already seen what the consequent of the RC–“there exists an element of
physical reality corresponding to this physical quantity”–is supposed to mean. What
it means, as is clear from the explication of Goldstein et al. (2011), is that the outcome
of the measurement in question is predetermined. In other words, there exists an event
α determining that outcome A will occur upon performing measurement a. Now, what
exactly do we mean by “determine”?What we want to express is that α is a “suffcient
cause” of A, given that a is performed. In terms of our framework, this involves the
following ingredients. First,

α → A (22)

that is “determining” is a causal relation.21 Second,

p(A|a ∧ α) = 1 (23)

that is, whenever the “suffcient cause” α occurs, then the effect A also occurs, given
some background conditions provided here by the performance of a. Third, the cor-
relation (23) of the “cause” and the “effect” must be a consequence of their causal
connection (22), and not be brought about by any other causal means. Such an alterna-
tive causal means could in principle be a common causal connection of α and A (that
may exists besides their direct causal connection). So when we say that α determines
A, we will assume that there exists no event C such that both C → A and C → α

hold. For notational convenience, we introduce α � A for α → A in the absence of
common causal connection between α and A.22

Putting all this together, here is what the RC states:
Reality Criterion Suppose that A is an outcome of measurement a. Assume that there
is an event B such that

A � B and B � A (24)

p(A|a ∧ B) = 1 (25)

21 We do not want to claim that interpreting determination as a causal relation is the only possibility. In the
next section we will discuss an alternative interpretation, one formulated in nomological terms.
22 To illustrate the signifcance of this third condition, consider the following example. Two light bulbs and
a switch are connected in a series circuit. When the switch is closed, both lights are on; when the switch
is open, both lights are off. Since the operation of the bulbs are perfectly correlated, the state of one bulb
“determines” the state of the other bulb in a statistical sense. Further, as the light bulbs are connected in
series, the frst bulb in the circuit has direct causal infuence on the operation of the second one through
infuencing the charges that move towards the second bulb. (For example, were the frst bulb not present,
the second bulb would glow slightly brighter.) So, conditions analogous to (22) and (23) are satisfed by the
states of the two light bulbs. But it is certainly not the state of one bulb that causally determines whether
the other bulb is on or off; rather it is a common cause, the switch, that predetermines whether both lights
are on or off.
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Then there exists a further event α such that

α � A (26)

p(A|a ∧ α) = 1 (27)

Now, let’s go over to the Common Cause Principle. In its briefest formulation, the
CCP asserts that there is no correlation without causal explanation. More precisely,
whenever we observe correlation in the world, this must be either due to a direct causal
connection between the correlated events, or due to a third event, a common cause, that
infuences both of them. The principle was frst formulated by Reichenbach (1956)
who characterized the common cause as a screener-off. Since its frst formulation
many important improvements have beenmade on the CCP’smathematical expression
(Hofer-Szabó et al. 2013). For the sake of simplicity, here we provide a formulation
essentially identical to Reichenbach’s original one, with slight adjustments to the
present framework:

Let A and B denote two arbitrary events such that

A � B and B � A (28)

p(A ∧ B) �= p(A)p(B) (29)

Then there exists an event C , a “common cause,” such that

C,¬C � A, B (30)

p(A ∧ B|C) = p(A|C)p(B|C) (31)

p(A ∧ B|¬C) = p(A|¬C)p(B|¬C) (32)

A special case of this general principle is when A is an outcome of a measurement
a, and p(·) = p(·|a); that is, we consider a statistical subensemble of experimental
runs where a is always performed. This leads to the particular formulation of the CCP
that we will employ:
Common Cause Principle Suppose that A is an outcome of measurement a. Assume
that there is an event B such that

A � B and B � A (33)

p(A ∧ B|a) �= p(A|a)p(B|a) (34)

Then there exists a further event C such that

C,¬C � A, B (35)

p(A ∧ B|a ∧ C) = p(A|a ∧ C)p(B|a ∧ C) (36)

p(A ∧ B|a ∧ ¬C) = p(A|a ∧ ¬C)p(B|a ∧ ¬C) (37)

Proposition 1 The Reality Criterion follows from the Common Cause Principle.
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Proof Assuming that p(A|a) �= 1, (25) obviously implies (34). Thus, since (24) is
just identical with (33), the RC’s antecedent implies the CCP’s antecedent. We show
that given the RC’s antecedent, either C or ¬C in the CCP’s consequent satisfes
the conditions on α in the RC’s consequent. (26) trivially follows from (35) both for
α = C and α = ¬C ; hence we focus on condition (27).

(25) can be rewritten as p(B|a) = p(A ∧ B|a). Applying this and the law of total
probability for expressing p(A∧B|a) in terms of p(A∧B|a∧C) and p(A∧B|a∧¬C),
while making use of (36)–(37), we receive

p(B|a) = p(A|a∧C)p(B|a∧C)p(C |a)+ p(A|a∧¬C)p(B|a∧¬C)p(¬C |a) (38)

On the other hand, the law of total probability also implies

p(B|a) = p(B|a ∧ C)p(C |a) + p(B|a ∧ ¬C)p(¬C |a) (39)

Comparing the coeffcients of p(C |a) and p(¬C |a) in the two expressions for p(B|a),
we have the following options:

• If p(B|a ∧ C) �= 0, the equality of the coeffcients of p(C |a) in (38) vs. (39)
implies that p(A|a ∧ C) = 1.

• If p(B|a ∧ C) = 0 then p(B|a ∧ ¬C) �= 0, otherwise p(B|a) could not be
recovered in (39) (assuming that p(B|a) �= 0). In that case, the equality of the
coeffcients of p(¬C |a) in (38) vs. (39) implies that p(A|a ∧ ¬C) = 1.

Thus, either α = C or α = ¬C satisfes (27). Therefore, the existence of such an α,
under the conditions in the RC’s antecedent, follows from the CCP’s requirement.

The basic idea behind the proved entailment is simple. Predicting with certainty the
outcome of a measurement essentially means that there is perfect correlation between
the result of prediction and the predicted outcome. As is well known (Hofer-Szabó et
al. 2013, p. 15, Proposition 2.7), perfect correlation can only be explained, in accord
with the CCP’s requirement, by a deterministic common cause. Hence, the outcome
must be predetermined.23

Proposition 1 can easily be extended to more general formulations of the RC’s
and CCP’s requirements: one can have more than one pair of correlated events (for
instance, due to the predicted measurement having more than one outcome); one can
apply the notion of a common cause system instead of one single common cause

23 Not only the predicted outcome but also the result of prediction must therefore be predetermined by
the element of reality serving as a common cause of the two. In the EPR–Bohm context this means that
the element of reality in question must be localized within the intersection of the past light cones of the
measurement outcomes in the two wings. This is the explanation why the element of reality, implied by the
RC to determine the outcome in one wing, must be fxed before (or at least not be causally infuenced by) the
measurement choices in both wings–not only in the distant one but also in the local one. Indeed, given that
the events of measurement choices a and b fall outside of the past light cones of the corresponding remote
outcomes B and A, respectively (which is a fact of actual experimental design; see e.g. (Redhead 1987,
p. 111)), the common cause of the outcomes cannot be infuenced by either of the measurement choices.
See the problem raised in footnote 9.
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(Hofer-Szabó et al. 2013, Sec. 7), etc.24 The main message of the result, however, is
independent of these technical details. The point, we believe, is already there in the
example at the beginning of this section: the basic idea behind the RC’s requirement
is that a successful prediction cannot be accidental, it must be brought about by causal
connection. If the prediction is certain, and if the act of prediction does not disturb the
predicted phenomenon, this causal connection must take the form of predetermination
by a common cause.

7 The Reality Criterion is not analytic

It must be emphasized that even though both B and α are characterized by the same
statistical condition (25) and (27) in the RC’s formula above–expressing that both
B and α “determine” the predicted measurement outcome A in a statistical sense–,
they are different events as they bear different, incompatible causal relations–(24) vs.
(26)–to A. Thus, what the RC implies to exist, the element of reality predetermining
the predicted outcome, is not something that logically/analytically follows from its
antecedent, the possibility of predicting the outcomewith certainty, without disturbing
the measurement. Therefore the RC is not an analytic truth.

With this remark in mind it will be instructive to consider Tim Maudlin’s (2014)
claim to the contrary. Here is the crucial passage from his argument to the effect that
the RC is an analytic truth:

[...] suppose, as the criterion demands, that I can without in any way disturbing
a system predict with certainty the value of a physical quantity (for example,
predict with certainty how the system will react in some experiment). Then,
frst, there must be some physical fact about the system that determines it will
act that way. That is just to say that the physical behavior of a system depends on
its physical state: if a system is certain to do something physical, then something
in its physical state entails that it will do it. So determining that the system
is certain to behave in some way is determining that some such physical state
(element of reality) obtains. (Maudlin 2014, p. 7)

The point where this reasoning goes off course, we believe, is the confation of two
distinct notions of “determination”: frst, the notion that “a system is certain to do
something” in the sense that we can predict with certainty how the system will behave
(without disturbing it), and second, the notion that there is “something in its physi-
cal state entailing that it will do it” in the sense of there existing a suffcient cause

24 Note that Proposition 1 can also be extended to the slightly more general formulation of the RC, given
by Goldstein et al. (2011), in which the “without in any way disturbing a system” clause is absent. This
amounts to leaving out B � A from (24) in the RC’s antecedent. The RC thus construed can easily be
shown to follow from the following version of the CCP directly capturing the idea that any correlation must
be brought about either by direct causal link or by common causal connection:
Suppose that A is an outcome of measurement a. Assume that there is an event B such that p(A ∧ B|a) �=
p(A|a)p(B|a). Then A � B, or B � A, or there exists a further event C satisfying (35)–(37).
Indeed, applying this statement to the case stipulated by the RC’s antecedent without B � A, what follows
is that the predicted outcome must be predetermined either by the act of prediction itself or by a common
cause of the outcome and the result of prediction.
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predetermining its behavior. The difference here is precisely what corresponds to the
distinction between B and α in our formulation of the RC: prediction with certainty,
without disturbance, means perfect correlation in the absence of direct causal connec-
tion, while causal determination means perfect correlation on account of direct causal
connection. Once this crucial distinction is blurred, any statement about the relation
of these two notions may come out as analytic.

Some authors have already pointed out this slip in Maudlin’s argument (Lewis
2019; Glick and Boge 2019). What our analysis adds to this discussion is that we are
now in a position to explicitly specify where the RC’s factual content actually comes
from–something those authors were contemplating. Consider Lewis’s observation:

I doubt that Einstein’s criterion of reality is really analytic [...] It seems perfectly
conceivable that an event could be predicted with certainty even when there is
nothing physical that brings that event about. [...] Indeed, Maudlin is perfectly
sanguine about fundamentally probabilistic laws (e.g. in spontaneous collapse
theories), according to which there is in general no physical reason why this
result is obtained (as opposed to that result) when the probabilities differ from
zero and one. Why should things be different when the probabilities are zero
and one? (Lewis 2019, pp. 38–39)

The answer to this is now simple and clean: the reason why probability-1 predictions
are distinguished is because those predictions mean perfect correlation between the
act of prediction and the predicted outcome, and a perfect correlation can only be
explained, in accord with the CCP’s requirement, by a deterministic common cause;
hence the outcomemust be predetermined.By contrast, predictionwith an intermediate
probability value entails non-perfect correlation that, in line with the CCP, can be
accounted for by a stochastic common cause which increases the probability of the
outcome in question but does not determine it. Hence, in that case, we are not entitled
to infer the existence of an element of reality corresponding to that outcome.

A similar challenge to Maudlin’s claim is raised by Glick and Boge:

One could be justifably certain about a future event in an indeterministic uni-
verse, in which case there would be no prior determinant of the event [...]
Suppose, for instance, that there is an oracle who has direct access to a future
measurement event, the outcome of which is the result of a random, indetermin-
istic process. One could be justifably certain to fnd [the measurement outcome]
without the presence of a feature of the system now that determines the outcome
of this future measurement. (Glick and Boge 2019, pp. 4–5)

Indeed, the meanings of the terms “certain to fnd” or “determine” do not themselves
make the existence of such an oracle impossible, as Maudlin’s analyticity claim would
suggest. Rather, it is robust principles about the causal structure of the world to which
this possibility contradicts: if the oracle’s prediction is indeed certain in the sense
that she always gets it right, and at the same time the predicted outcome is indeed a
result of an indeterministic process, then the perfect correlation of the two can only be
either a consequence of some sort of retrocausal connection (contradicting that causes
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precede effects)25 or a magical coincendence without any sort of causal explanation
(contradicting the CCP).

Our argument againstMaudlin’s analyticity claim is based on a particular translation
of theRC’s terms to a causal-statistical language.One cangive a different interpretation
to those terms, however, that does seem to support Maudlin’s claim. Notice that in
the EPR–Bohm case the perfect correlation of spin outcomes is predicted by a theory,
quantummechanics. Onemight thus relate the notions of prediction and determination
to that of a theory and its laws: “predicting with certainty the value of a physical
quantity” means that given certain initial/boundary conditions (in the EPR–Bohm
case, the outcome of the local spin measurement), the equations of the physical theory
at hand imply that the quantity in question has a certain value. On the other hand, the
fact that this value is predetermined, as opposed to springing into existence by chance,
means that the laws of physics, given certain initial/boundary conditions, entail this
value. Now, if the laws of physics are just the equations of the physical theory at hand,
then clearly the notions of “prediction with certainty” and “determination” coincide
and the RC translates to an analytic truth.

The analyticity claim thus construed is not necessarily in contradiction with seeing
the RC as a special case of the CCP. Indeed, in an earlier writing Maudlin seems to
suggest, in line with the above interpretation of the RC, that the CCP is also analytic:

Our frst condition [the screening-off condition for conditionalizing on common
causes, (36)–(37)] just states that if we have taken into account every event
which could serve to correlate A and B by causally infuencing them both, then
there should be no further predictable correlation between them. This condition
is sometimes characterized as a demand for causal explanation for correlations,
although that characterization is not quite apt. The screening-off condition allows
that there be accidental correlations, due to pure chance, but requires that no
such correlations be predicted by a theory. This is nearly tautologous–if a theory
predicts a correlation, then that correlation cannot, according to the theory, be
accidental. A nomic correlation is indicative of a causal connection–immediate
or mediate–between the events, and is accounted for either by a direct causal
link between them, or by a common cause of both. (Maudlin 2011, p. 82)

The added footnote is more explicit:

[...] this “principle” [the CCP] is not really a demand for a particular type of
“causal” explanation, but rather a consequence of the notion of a cause. That is,
such reliable correlations will validate certain counterfactual claims, and those
counterfactual claims imply that there is some causal connection. (Maudlin 2011,
p. 125)

That is to say: (1) Only nomic correlations–ones entailed by laws of nature–have to
be brought about by causal connection, for there may exist accidental correlations.
(2) Nomic correlations, on the other hand, imply counterfactual dependence, and
this counterfactual dependence is what a causal connection actually consists in (on

25 Note that in this case the oracle’s action doesn’t actually qualify as a prediction in our causal terminology
for (20) doesn’t hold.
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the counterfactual analysis of causation). Therefore, nomic correlations, by the very
meaning of “causal connection,” always have a “causal explanation.”

This is not the place to enter into the longstanding discussion on laws of nature,
causation and their relation to scientifc explanation and theories. But to defend our
own view on the RC, let us close this section by raising a few diffculties thatMaudlin’s
interpretation of the RC and the CCP may encounter in the particular case of the EPR
problem:

• The EPR argument, as we formulated it in Sect. 3, can be rephrased without ever
mentioning quantum theory or the laws of QM. This is because the EPR argument
only refers to the minimal interpretation of QM, and hence it can be couched
merely in terms of what quantum theory entails about macroscopic, observable
phenomena. Indeed, imagine that someone who has never heard of QM is asked to
go in the lab and register the statistics in an EPR–Bohm-type experiment. Merely
on the basis of the observed statistics of macroscopic measurement events she
will be able to formulate the EPR argument and conclude that those measurement
outcomesmust be predetermined. Therefore, anything that fgures in that argument
must be expressible independently from the theoretical account and laws thought
to govern the observable phenomena. In particular, this must be true for the RC
and the CCP.

• No doubt, counterfactual dependence is analytically tied to nomic correlation,
for both of them are analytically related to laws of nature (posited by a theory).
However, not every counterfactual dependency is automatically interpretable as
causal connection, as the “causal explanation” of the nomic correlation in ques-
tion. A case in point is Einstein’s 1936 argument.26 The essence of the argument,
as we reconstructed it in Sect. 4, is this. The laws of QM à la the Copenhagen
interpretation–quantum state collapse–entail correlation between the choice of
measurement in one wing and the quantum state of the particle in the other wing.
The CCP requires casual explanation. Due to locality, there cannot be direct casual
connection. Due to no-conspiracy, there cannot be common causal connection
either. Thus, we have an example of a nomic correlation, entailed by the laws of
Copenhagen QM, without causal explanation. That is, even though the laws of
Copenhagen QM entail counterfactual dependence between the choice of mea-
surement in one wing and the quantum state of the particle in the other wing,27

this dependency cannot be interpreted as causal connection because it doesn’t sat-
isfy certain desiderata that we want (Einstein certainly wanted) to require from
causal connection on the basis of further causal principles such as locality and
no-conspiracy. Notice that it is not relevant whether those causal principles are
eventually maintainable or not (many believe that the main massage of the EPR–
Bell problem is that locality is not a maintainable physical principle). Nor it is
important whether the laws posited by the theory in question–the laws of QM à
la the Copenhagen interpretation–are actually true in the world (the conclusion of

26 For further examples and arguments see e.g. (Lange 2016).
27 In case of stochastic laws, such as the laws of Copenhagen QM, what we may mean by counterfactual
dependence is that the probability of an event counterfactually depends on the occurrence of another event.
See (Lewis 1986, pp. 174–183).
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Einstein’s argument is that they are not). The point is that the mere conceivability
of an argument like Einstein’s implies that it is possible to dispute whether the
counterfactual dependency analytically tied to a nomic correlation really quali-
fes as causal connection; which means that there cannot be analytic connection
between a nomic correlation and its causal explanation.

• Even if accepted that nomic correlations automatically entail causal connections
in terms of which we can explain those correlations, the claim that non-nomic
correlations don’t require such an explanation is particularly problematic. In fact,
in most cases where we apply the CCP we consider events that are not nomically
related. No-conspiracy is a perfect example. Why to demand that there be no cor-
relation between the measurement choices and the properties of the system being
measured, in an EPR–Bohm experiment? This is because we believe those two
things are causally independent–no direct, no common causal connection between
them (on the counterfactual analysis of causation, or on any other account one may
like). However, if Maudlin’s claim were correct, there could always be accidental
correlation, due to pure chance, between causally/nomically unrelated events, so
there would be no reason to suppose that those two causally independent factors–
the choices of measurements and the system’s properties–are uncorrelated. The
only reason to suppose that comes from the CCP regarded as a synthetic princi-
ple that excludes precisely the sort of thing Maudlin thinks possible: accidental
correlations, brought about by pure chance, not by causal connection.

8 Discussion

Let us now summarize the main points of our analysis from a somewhat different
angle. Here is the essence of the EPR argument and Einstein’s later arguments against
QM, adapted to the framework of an EPR–Bohm experiment:

• EPR argument: In accord with the CCP, causal explanation for perfect correlations
of spin outcomes respecting locality and no-conspiracy requires preexisting spin
values in all directions.

• Einstein’s later arguments: Quantum state collapse entails correlation between the
choice of measurement in one wing and the quantum state of the particle in the
other wing. The CCP requires casual explanation. Due to locality, there cannot be
direct casual connection; due to no-conspiracy, there cannot be common causal
connection either. Hence, the correlation entailed by the laws of Copenhagen QM
has no causal explanation.

Given the CCP, locality, no-conspiracy, and the perfect correlations predicted by QM
(à la the minimal interpretation), the EPR argument implies the existence of elements
of reality–the preexisting spin values–that are not described by QM (on either of
the two interpretations we considered). Hence, according the EPR argument, QM is
incomplete. By contrast, Einstein’s later argument shows that QM à la the Copen-
hagen interpretation delivers a correlation that contradicts to the CCP, locality and
no-conspiracy taken together. Hence, given the latter as premises, Einstein’s argument
implies that Copenhagen QM is unsound.
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From the perspective of the CCP, the structure of the two arguments is similar. The
role of QM in both arguments is delivering a set of correlations we seek to explain in
accord with the CCP’s requirement. Locality and no-conspiracy are causal principles
serve to constrain the circle of possible explanations. For the perfect correlation of
spin outcomes the only possible explanation is that the spin values are predetermined
in all directions. For the correlation of measurement settings and quantum states there
exists no conceivable explanation that is consistent with those casual principles.

Notice, however, that there is an important difference in what the CCP is meant
to require in the two cases. Einstein’s later argument only makes use of a weak ver-
sion of the CCP demanding that there be no correlation without some sort of causal
connection. This is suffcient for Einstein’s argument to work since locality and no-
conspiracy together ensure that there cannot be any kind of casual connection between
the measurement choice in one wing and the quantum state of the particle in the other
wing (hence the correlation of the two cannot possible have any sort of causal expla-
nation). But the EPR argument employs much more of the CCP than this. Its essential
ingredient is the requirement that perfect correlation, in the absence of direct causal
connection, can only be explained by a deterministic common cause–something that
Einstein’s argument never invokes.28 It is this crucial consequence of the CCP, with-
out which there is no incompleteness argument, that we came to call the Criterion of
Reality after EPR.

Since its very frst formulation, the issue of exactly what presuppositions go into
Bell’s no-go theorem has been subject to intense debate. Because the EPR argument
was part of Bell’s Bell (1964) reasoning, the same question has been asked with regard
to the presuppositions of the EPR argument itself. In particular, it has been suggested,
and intensely discussed recently, that some sort of “realism” is among the assumptions
of the EPR argument and Bell’s theorem.29 What advocates of such a view mean by
realism varies from the general epistemological doctrine of scientifc/metaphysical
realism tomore specifc notions such as counterfactual defniteness or hiddenvariables.
This is not the place to enter into this discussion. However, we would like to point
out one important consequence of our thesis for this debate: as long as the “realism”
assumption is meant to be related with the Reality Criterion, as EPR formulated it, this
assumption is just tantamount to the Principle of the Common Cause. In other words,
thosewhowant to get aroundBell’s theorem by giving up “realism,” as encapsulated in
the RC, those in fact deny a metaphysical principle that relates statistical regularities
with the underlying casual structure of the world. This principle, as we argued, is
synthetic and hence it can be subject to reevaluation.30 But it has to do with realism
only to the extent towhich talk about causation and causally–statistically related events
presupposes realism.

28 That is, the weaker version of the CCP only refers to (33)–(35), while the stronger version essentially
makes use of (36)–(37), the fact that the common cause is characterized as a screener-off.
29 See e.g. (Norsen 2007; Goldstein et al. 2011; Maudlin 2014;Werner 2014; Żukowski and Brukner 2014;
Tumulka 2016; Lewis 2019)
30 For possible modifcations of the CCP in light of the EPR–Bell problem see (Szabó 2000; Hofer-Szabó
and Vecsernyés 2012; Hofer-Szabó et al. 2013; Cavalcanti and Lal 2014).
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