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ABSTRACT 

Due to individual differences in the brain’s reward system, some individuals are more vulnerable 

than others to maladaptive, reward-seeking behaviors, such as substance use or compulsive eating. A 

body of research has demonstrated that individuals who attribute higher levels of incentive salience to 

reward-associated cues than to pleasant images (termed “C>P group” throughout) are more vulnerable 

to compulsive eating than those who attribute higher incentive salience to pleasant images than reward-

associated cues (P>C group). Meanwhile, a separate body of research has demonstrated that cognitive 

control also regulates eating by enabling top-down attentional control. This dissertation aims to identify 

how both cognitive control and incentive salience act in tandem to regulate cue-induced eating. A 

central question of this research is: do individuals in the C>P group also show attenuated cognitive 

control?  

Because the animal literature indicates that individuals who attribute high incentive salience to 

reward-associated cues also show attenuated top-down attentional control, I hypothesized that C>P 

individuals would also show attenuated cognitive control relative to P>C individuals. To test this 

hypothesis, I analyzed electroencephalogram (EEG) data collected during a controlled cued food 

delivery task, in which participants viewed images and were dispensed food rewards (candy) that they 

could choose to eat or discard, and non-food objects (beads, control condition). From the EEG 

recordings, I calculated the amplitude of the late positive potential (LPP) and power (µV2) in the theta 

(θ, 4-8 Hz) frequency band as metrics of affective and cognitive processing, respectively. To identify 

individual differences in both affective and cognitive processing, I then conducted two separate K-
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means (k = 2) cluster analyses using LPP and theta power data. 

The LPP-based cluster analysis replicated previous findings: C>P individuals ate significantly more 

candies during the experiment than P>C individuals. However, I found no significant differences in 

theta power between the P>C and C>P groups. Meanwhile, the theta-based cluster analysis found that 

some individuals show higher theta during the candy condition than the bead condition (θCA>θBE), 

while others show higher theta power during the bead condition than the candy condition (θBE>θCA). 

Furthermore, the θCA>θBE group ate significantly more during the experiment than the θBE>θCA 

group. Finally, I crossed group assignments from both the LPP- and theta-based cluster analyses to 

create four groups based on LPP- and theta-based risk factors: those with no risk factors (P>C & 

θBE>θCA group), those with only an LPP risk factor (C>P & θCA>θBE), those with only a theta risk 

factor (P>C & θCA>θBE), and finally those with both risk factors (C>P & θCA>θBE). I found that 

individuals with no risk factors ate the least of all four groups, and the other three groups showed 

significantly higher levels of eating behavior on average.  

 From these results, I can conclude that both cognitive and affective brain systems are involved in 

regulating cue-induced eating. However, the finding that P>C and C>P individuals do not show 

significant differences in theta power suggests that cognitive and affective mechanisms may act 

independently in humans. Because an individual with an affective vulnerability to cue-induced eating 

may not also have a cognitive vulnerability, this underscores the need for targeted, individualized 

treatments for maladaptive behaviors. For example, these research findings could be applied to the use 

of transcranial magnetic stimulation (TMS) to ameliorate addictive disorders: individuals with higher 

theta power during food-related decision-making may be selected for excitatory stimulation of brain 

regions associated with cognitive control, such as dorsolateral prefrontal cortex (dlPFC), whereas 

individuals who attribute high incentive salience to reward-related cues may benefit from inhibitory 

stimulation of reward-associated areas, such as medial prefrontal cortex (mPFC). 
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CHAPTER 1: Introduction 

1.1 Public health burden of overeating and excess body weight 

Excess body weight exerts an enormous public health burden both in the United States and 

globally. Body weight in the overweight and obese range, defined as a body mass index (BMI) 

≥ 25 and ≥ 30 kg/m2 respectively (Prospective Studies Collaboration, 2009), are major risk 

factors for a multitude of preventable illnesses, including diabetes, heart disease, and several 

cancers (Bozkurt et al., 2016; Islami et al., 2018). Not only does excess body weight confer 

adverse health outcomes, but it also creates a tremendous financial burden: obesity costs the 

U.S. healthcare system an estimated $149.4 billion per year (Kim and Basu, 2016), and is 

projected to affect 1.35 billion individuals globally by 2030 (Kelly et al., 2008).  

Considering the substantial hardship attributable to obesity, it is critical that clinical 

researchers develop effective treatments to mitigate the sequelae related to excess body weight. 

Although numerous weight-loss interventions have been developed, current treatment 

programs for obesity rarely yield substantial, long-lasting results (Jeffery et al., 2000; Turk et 

al., 2009). A body of evidence suggests that, despite the many genetic and metabolic factors 

related to weight, the ultimate cause of obesity is excessive eating (Sharma and Padwal, 2010). 

A study identifying candidate genes attributed to BMI found that the majority are expressed in 

the nervous system (The LifeLines Cohort Study et al., 2015), suggesting that the genetic 

vulnerabilities leading to obesity are primarily related to the brain mechanisms that regulate 

eating behavior. However, obesity interventions aimed at reducing eating have not been 

optimally successful (Dombrowski et al., 2014; Wing et al., 2006), suggesting that 

interventions focused on reducing eating behavior alone are missing some critical aspects of 

obesity vulnerability. Thus, to develop more effective strategies aimed at ameliorating the 
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obesity epidemic, it is necessary to characterize the underlying mechanisms that regulate eating 

behavior.  

1.2 The dopamine motive system & reward-seeking behaviors 

Eating behavior and substance use share common neurobiological mechanisms. These 

overlapping mechanisms originally evolved for survival: specifically, to promote eating 

behavior and reproduction (Robinson and Berridge, 2003). Therefore, the reward systems of 

the brain can act as a double-edged sword: they can promote survival by incentivizing adaptive 

behaviors such as homeostatic eating and reproduction or undermine survival by incentivizing 

maladaptive behaviors such as compulsive eating or substance use (Dill and Holton, 2014). In 

light of these shared mechanisms, studying the brain systems involved in eating behavior may 

also shed light on those that confer vulnerability to substance use disorders.  

Both the consumption of hyper-palatable, high-calorie foods and the consumption of drugs 

of abuse are known to increase striatal dopamine levels (Filbey et al., 2008; Volkow et al., 

2017): in fact, this dopaminergic response is responsible for the appetitive nature of both food 

and drugs (Avena et al., 2008). As environmental cues signaling food or drug availability 

become associated with the food or drug, the cues themselves become rewarding, leading to 

dopaminergic activity in the presence of these cues. In so doing, the brain attributes incentive 

salience to these cues, thereby allocating attention to them in an automatic fashion (Berridge, 

2018). 

Often these highly salient cues can trigger reward-seeking behaviors, such as eating in the 

presence of cues: a behavior known as cue-induced eating (Figure 1.1). This process by which 

cues become increasingly salient, known as incentive sensitization, relies on the sensitization 

of mesolimbic dopaminergic neurons in response to stimulation from drugs or hyper-palatable 
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foods (Stice and Yokum, 2016). These 

“wanting” pathways of the brain involved in 

incentive sensitization are hypothesized to be 

a key regulator of hedonic overeating and 

“food addiction” which often lead to obesity 

(Avena et al., 2009; Blumenthal and Gold, 

2010; Davis et al., 2014; Finlayson, 2017; 

Fletcher and Kenny, 2018; Lee and Dixon, 

2017).  

1.3 Opposing brain systems can maintain 

or undermine energy balance during eating 

Many neurobiological models posit that reward-seeking behaviors are regulated by two 

opposing brain systems: a top-down cognitive system that allocates attention in a goal-oriented 

fashion, and a bottom-up affective system that imbues cues with incentive salience in an 

automatic fashion, driven by choline and dopamine, respectively (Figure 1.2; Pitchers et al., 

2018). These opponent systems have been demonstrated as key regulators of reward-seeking 

Figure 1.1: A model of cue-induced behavior. In 
this model, an individual sees a sign for “Le 
Donut” while driving to work. This individual 
knows that Le Donut has fantastic cronuts (a 
hybrid of a donut and a croissant) and is 
motivated by the food when they see the sign. 
This then prompts them to eat while attending 
the talk. In this example of cue-induced 
behavior, the sign is the cue, the cronut is the 
reward, and the cue-induced behavior is getting 
cronuts on the way to work. 

 
Figure 1.2: Theoretical models posit that reward-seeking behaviors are regulated by two opponent 
systems: a “hot” dopaminergic system that attributes excessive incentive salience to cues, and a 
“cold” cholinergic system that enables top-down attentional control. Sign-trackers show enhanced 
activity of their “hot” dopaminergic system, while goal trackers have a strong “cold” cognitive 
system. Figure adapted from Pitchers et al., 2018 
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behaviors such as eating (Appelhans, 2009; van den Bos and de Ridder, 2006) and substance 

use (Tanabe et al., 2019; Zilverstand, 2018). Thus, it is not only affective, reward-related 

systems of the brain but also cognitive control mechanisms that are involved in regulating 

eating.  

Much like the “double-edged sword” described above, these opponent systems can 

promote or undermine survival. Feeding can be a homeostatic process when the brain’s 

cholinergic control system and dopaminergic reward system are in balance, leading an 

individual to consume and expend energy at approximately equivalent rates. Meanwhile, the 

brain’s bottom-up system can also override those top-down signals that maintain energy 

balance, thereby driving hedonic overeating. 

Substantial evidence from both human subjects’ 

research and animal models has demonstrated that 

individuals will vary in their ability to engage these top-

down cognitive systems and bottom-up affective 

systems, leading to these observed differences in eating 

behavior and excess body weight between individuals. 

1.4 Sign- and Goal- trackers show individual 
differences in the engagement of top-down and 
bottom-up brain systems 

To investigate these individual differences in 

animal models, investigators use a Pavlovian 

conditioned approach paradigm, in which an 

environmental cue is presented before a reward, such 

as a food pellet, is dispensed (Figure 1.3; Colaizzi et 

 
Figure 1.3: In the Pavlovian 
conditioned approach paradigm, a 
food pellet (reward) is dispensed in a 
magazine after a cue (lever) is 
illuminated, signaling the impending 
delivery of the reward. In this 
behavioral paradigm, some 
animals—termed “sign-trackers”—
will approach the lever cue, while 
others (“goal-trackers”) will 
approach the magazine containing a 
food reward. (Colaizzi et al., 2020) 
Wiley has granted the author 
permission to republish this figure as 
a part of the author’s dissertation. 
See Appendix 3a for full license 
information. 
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al, 2020). Some individuals, known as goal-trackers, will approach the reward; whereas others, 

called sign-trackers, will approach the cue that signals the availability of the reward. These two 

behavioral styles have meaningful consequences: sign-trackers are more vulnerable to 

maladaptive, reward-seeking behaviors. Studies have shown that sign-trackers tend to eat and 

self-administer drugs more than goal trackers (Kruzich et al., 2001; Tunstall and Kearns, 2015) 

and show other maladaptive, addiction-like behaviors (Colaizzi et al., 2020; Tomie et al., 

2008).  

These behavioral differences between sign-trackers and goal-trackers are driven by 

differences in their underlying neurobiology: for example, sign-trackers show attenuated 

cholinergic control and enhanced dopaminergic reward processing relative to goal trackers. 

When presented with reward-associated cues, goal-trackers show an increase in prefrontal 

cholinergic transmission, whereas sign-tackers show enhanced prefrontal dopaminergic 

transmission (Pitchers et al., 2017a). Sign-trackers also have a reduced choline transport and 

reuptake system (Koshy Cherian et al., 2017) and show lower levels of cholinergic 

transmission during a sustained attention task relative to goal-trackers (Paolone et al., 2013). 

Furthermore, sign-tracking behavior does not readily extinguish, even when sign-trackers are 

administered cognitive enhancing drugs (Fitzpatrick et al., 2019). Stimulation of the pathway 

between the prelimbic cortex and the paraventricular thalamus in sign-trackers decreases the 

incentive value of cues; meanwhile, inhibition of this same pathway in goal-trackers increases 

incentive value and dopamine levels in the nucleus accumbens shell (Campus et al., 2019). 

Evidence from optogenetics has shown that activity in the central amygdala appears to mediate 

many of the motivational aspects of cues in rodents (Warlow and Berridge, 2021).  

Furthermore, some research groups have found that contextual cues signaling drug 
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availability reinstate drug-seeking behavior more effectively in goal-trackers than in sign-

trackers. Notably, this reinstatement disappears when the basal forebrain is lesioned in goal-

trackers, indicating that cholinergic transmission in the forebrain is necessary for goal-trackers 

to effectively respond to higher-order contextual cues (Pitchers et al., 2017b). In another study, 

obese rats showed downregulation of striatal dopamine D2 receptors and were predisposed to 

compulsive eating behavior (Johnson and Kenny, 2010). Based on these findings, it seems that 

both dopaminergic and cholinergic transmission are implicated in sign- and goal-tracking, and 

these behaviors likely rely on distinct neural pathways of the brain. 

1.5 Humans show individual differences in the engagement of top-down and bottom-up 
brain systems  

The interplay between these top-down and bottom-up systems described using preclinical 

models has also been demonstrated in humans. Sign-tracking and goal-tracking behaviors as 

defined in rodents do not currently have a direct analog in humans (Colaizzi et al., 2020; 

Stephens et al., 2011); rather, many studies look at upstream neural correlates and how these 

correlates contribute to downstream behavioral outcomes, such as substance use or eating 

behavior (Carbine et al., 2018; Smeets et al., 2019). From this work, there exists a similar 

dynamic to what has been shown in rodents: that humans will vary in the engagement of their 

executive control systems and incentive valuation of reward-related cues. Furthermore, these 

differences in underlying brain mechanisms also lead to differences in maladaptive, reward-

seeking behaviors (Hofmann et al., 2009). 

In humans, the top-down cognitive control system enables self-regulation of eating (Dohle 

et al., 2018; Hall, 2016), and activity in these cognitive control networks has been associated 

with long-term dietary treatment success (Weygandt et al., 2019). Inhibitory control, a specific 

executive function in which a prepotent response is inhibited, has been identified as a key 
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mechanism that enables individuals to resist overeating behaviors (Hofmann et al., 2009; 

Houben et al., 2014). Individuals with deficits in inhibitory control are more vulnerable to 

overeating behavior and often show higher rates of obesity (Stice and Yokum, 2016). 

Furthermore, individuals with attention deficit hyperactivity disorder (ADHD), a 

psychological disorder affecting executive functioning, are vulnerable to overeating and 

subsequent obesity (Davis et al., 2006; Dempsey et al., 2011).  

Mechanistically, these differences in food-related inhibitory control are often associated 

with the cholinergic control mechanisms of the prefrontal cortex, as well as relay between 

prefrontal and reward & limbic areas. For example, overweight adolescents tend to show 

attenuated activity in frontal inhibitory brain regions in addition to enhanced activity in 

dopaminergic reward areas of the brain, such as the insula (Batterink et al., 2010). Furthermore, 

high BMI has been associated with increased activity among cognitive and limbic brain 

regions, such as the prefrontal cortex, insula, and striatum (He et al., 2019). 

The role of the bottom-up dopaminergic incentive valuation system in humans has been 

demonstrated using a variety of paradigms, leveraging methodologies such as neuroimaging, 

eye-tracking, and behavioral assays. Many recent neuroimaging studies have found that a 

hyper-reactive dopamine response in the brain tends to result in compulsive reward-seeking 

behaviors, such as gambling, sex, and shopping (Olney et al., 2018). In one study, “sign-

tracker” and “goal-tracker” analogs were identified in humans using eye-tracking, finding that 

human “sign-trackers” showed greater reward-prediction error-related blood oxygen level-

dependent (BOLD) responses in dopaminergic reward and limbic areas, such as the nucleus 

accumbens, ventral tegmental area, ventromedial prefrontal cortex, caudate, putamen, and 

amygdala (Schad et al., 2019).  
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1.6 Individual differences in LPP responses to cues predict cue-induced eating 

Our lab has previously used psychophysiology to demonstrate that humans will differ in 

their tendency to attribute incentive salience to cues. In these studies, participants are presented 

with emotional and neutral images while EEG is recorded from the scalp. From these EEG 

recordings, many have found that the amplitude of the late positive potential (LPP), an event-

related potential (ERP) component which increases in amplitude for motivationally relevant 

images (Cuthbert et al., 2000), will vary between individuals. Some individuals will have 

higher LPP amplitudes in response to pleasant, high-arousing images than reward cues 

(referred to herein as the P>C group), whereas others will have higher LPP amplitudes in 

response to the reward cues than pleasant images (referred to herein as the C>P group). There 

are many downstream behavioral outcomes related to these individual differences in LPP 

responses: C>P individuals tend to eat more and are more likely to be obese (Figure 1.4; 

Versace et al., 2016, 2018).  

Because the LPP is a reliable index of the engagement of the brain’s motivational systems 

(Bradley, 2009; Lang and Bradley, 2010), these previous findings using the LPP are consistent 

 
Figure 1.4: Individuals with higher LPP amplitudes in response to food cues than pleasant images 
(C>P group) eat significantly more than individuals with the opposite response pattern (P>C group). 
(Versace et al., 2018) Wiley has granted the author permission to republish this figure as a part of 
the author’s dissertation. See Appendix 3b for full license information.  
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with the literature demonstrating the role of the bottom-up motivational system in rodents. 

However, our lab has yet to characterize the role of the top-down cognitive control system in 

regulating eating behavior using the cue reactivity paradigm. Are some humans more 

vulnerable to maladaptive behaviors than others due simply to their affective responses to cues, 

or do these vulnerable individuals also show impaired cognitive control systems? And how do 

these processes act in tandem to simultaneously regulate eating? The cue reactivity paradigm 

presents an ideal means of probing the engagement of both the cognitive and affective brain 

systems involved in eating behavior. 

1.7 The present study: overview, aims, and hypotheses 

The present study is aimed at ascertaining how both cognitive and affective brain 

mechanisms act in tandem to regulate cue-induced eating in humans. A central question of this 

work is: are C>P individuals more vulnerable to maladaptive behaviors than others only due 

to their enhanced affective processing of cues, or is their cognitive control system impaired as 

well? Although findings from the animal literature show that sign-trackers show both enhanced 

dopaminergic responses to cues and attenuated cholinergic control, these mechanisms may act 

independently in humans.  

To assess how cognitive control systems regulate cue-induced eating, I chose to monitor 

power in the theta frequency band. Theta power increases when there is a demand for cognitive 

control (Cavanagh and Frank, 2014): for example, when participants complete cognitively 

demanding tasks (Nigbur et al., 2011; Pinner and Cavanagh, 2017), or when they need to 

inhibit prepotent responses (Dippel et al., 2017). These findings suggest that theta can be used 

as a metric of cognitive processing. For this reason, I chose to monitor theta in an exploratory 

fashion as a metric of cognitive control. 
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In summary, my dissertation research aims to ascertain how both individual differences in 

the tendency to attribute incentive salience to cues and cognitive control act in tandem to 

regulate cue-induced eating behavior. To do so, I used a modified version of the cued food 

delivery task described in previous studies (Deweese et al., 2015). In this task, participants 

passively viewed emotional, neutral, and food-related images while EEG was recorded from 

the scalp. After the presentation of a food-related image, the participant was dispensed either 

a food (candy) or non-food (bead) object, which they could choose to eat (candy) or discard 

(Figure 1.5).  

To ascertain individual differences in affective 

processing of cues, I measured the amplitude of the 

LPP in response to emotional and food-related 

images as described in previous studies (Versace et 

al., 2016, 2012, 2018). Meanwhile, to assess 

individual differences in the engagement of 

cognitive control, I monitored power in the theta 

frequency band after the candy or bead was 

dispensed to the participant. Finally, I compared 

these measures with the number of candies the 

participants ate during the task. 

In Chapter 2, I summarized the theory, methodological concerns, and underlying physics 

related to the EEG signal. The information outlined in this chapter provides a theoretical and 

methodological framework for understanding the experimental content of subsequent chapters. 

I also outlined an experiment in which I used Monte Carlo simulations to calculate statistical 

 
Figure 1.5: In the controlled cued food 
delivery task, participants view 
emotional, neutral, and food-related 
images while EEG is recorded from the 
scalp. After the presentation of a food-
related image, either a candy or bead was 
dispensed to the participant. The 
participant could then choose to eat or 
discard the dispensed candies. 
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power for ERP studies investigating the LPP. This project aimed to ascertain the 

methodological specifications, such as the number of trials per condition or number of subjects 

per group, necessary to obtain sufficient statistical power at varying effect sizes. This project 

was not hypothesis-driven, but rather methods-based; however, I was able to successfully 

outline a useful reference material for the design of ERP experiments investigating the LPP. 

In Chapter 3, I addressed how individual differences in both affective processing of cues 

and the engagement of cognitive control systems influence cue-induced eating using the 

controlled cued food delivery task described above (Figure 1.5). To ascertain individual 

differences in affective processing of cues, I calculated the amplitude of the LPP in response 

to cues and emotional images, much like our lab has in previous studies (Versace et al., 2012, 

2016, 2018; see also Figure 1.4). This experiment included a control condition in which non-

food objects were dispensed to the participant in addition to food rewards. This modification 

was intended to ascertain whether the observed effects in the LPP are related to food cues 

specifically, or if any cue signaling the delivery of a food- or non-food object is intrinsically 

motivationally relevant. I hypothesized that I would successfully reproduce previous findings 

from our lab: that even when including a control condition in the cued food delivery task, the 

C>P individuals will still eat more on average than individuals in the P>C group.  

Meanwhile, to monitor the engagement of cognitive control systems during food-related 

decision-making, I measured theta power while the participant decides to eat or discard the 

candies dispensed during the task. My hypothesis was twofold: First, I hypothesized that theta 

power would increase when participants are deciding what to do with the objects dispensed 

during the task. Second, I hypothesized that individuals for whom theta power increases to 

high levels during the candy condition would eat less on average than the remaining 
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participants. 

Next, I considered how both cognitive control and incentive salience simultaneously 

regulate cue-induced eating by comparing the LPP responses, theta power responses, and 

subsequent eating behavior of each participant. By crossing the results from both the LPP and 

theta, I aimed to determine the extent to which these two metrics predict cue-induced eating in 

tandem. I hypothesized that individuals in the P>C group who also had high levels of theta 

power during the candy condition would eat the least on average and that those in the C>P 

group who had low levels of theta power during the candy condition would eat the most. 

Finally, in Chapter 4 I discuss theoretical explanations for my findings and compare them 

against the existing literature, while also addressing the public health impact of these findings 

and how they may translate into weight-loss interventions in the clinic.  
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CHAPTER 2: Estimating statistical power for event‐related potential 
studies using the late positive potential 

This chapter is based upon the following original manuscript written by the author… 

Gibney, K. D., Kypriotakis, G., Cinciripini, P. M., Robinson, J. D., Minnix, J. A., & Versace, 

F. (2020). Estimating statistical power for event‐related potential studies using the late 

positive potential. Psychophysiology, 57(2). https://doi.org/10.1111/psyp.13482 

Wiley allows its authors the right to reuse the full text of their published article as part of their 

thesis or dissertation  

2.1 BACKGROUND 

Many research groups have leveraged psychophysiology, the use of physiological 

measures to study psychological processes, to characterize the mechanistic underpinnings of 

various psychological disorders, behaviors, or phenomena. EEG is a powerful physiological 

tool that measures the electrical activity of the brain by placing electrodes on the scalp, 

amplifying the signal recorded from those electrodes, then plotting the changes in voltage over 

time. Therefore, EEG provides a direct measure of brain activity, and its exquisite time 

resolution allows researchers to precisely pinpoint underlying brain activity associated with 

certain behaviors or modes of processing (Handy, 2005; S. Luck, 2014). 

The EEG signal is generated by synchronized populations of cortical pyramidal neurons. 

When postsynaptic neurons are excited, this creates an extracellular voltage near the neuronal 

dendrites, which in turn creates a dipole, a region of positive charge that is separated over a 

distance from a region of negative charge. The electrodes used in EEG detect the sum of 

positive and negative charges in their vicinity; however, the dipole of a single neuron is too 

weak of a signal to be measured by an EEG electrode. Thus, it takes large populations of 

neurons acting as current dipoles to generate a detectable EEG signal. This phenomenon in 

https://doi.org/10.1111/psyp.13482
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which the signal from many current dipoles in 

the brain sum to create a measurable EEG 

signal is known as volume conduction 

(Buzsáki et al., 2012; Jackson & Bolger, 

2014; Figure 2.1)  

EEG is a powerful tool for understanding 

the underlying neural activity related to a 

specific mode of processing. 

Psychophysiologists can extract several 

informative metrics of brain activity from 

EEG recordings, such as event-related 

potentials (ERPs). ERPs are 

calculated by time-locking a 

stimulus or event to a specific 

time point in the EEG recording, 

such as the presentation of a 

picture or the execution of a task. 

Then by averaging these time-

locked segments of EEG together, 

researchers can create an 

averaged ERP waveform that 

characterizes brain activity 

associated with this event (Liu et al., 2012; S. Luck, 2014; Figure 2.2). 

 
Figure 2.2 (above): In this example, human research 
participants look at images while an EEG is recorded 
from their scalp. Researchers may then time-lock the 
voltage deflections in their EEG associated with a 
particular image. These event-related voltage deflections 
in the EEG recording are known as event-related 
potentials (ERPs). This figure was adapted with 
permission from Liu et al., 2012. Wiley has granted the 
author permission to republish this figure as a part of the 
author’s dissertation. See Appendix 3d for full license 
information.  
 

 
Figure 2.1 (above): The electrical 
potentials measured by the EEG signal are 
the result of large populations of pyramidal 
neurons acting as current dipoles (Jackson 
& Bolger, 2014). Wiley has granted the 
author permission to republish this figure as 
a part of the author’s dissertation. See 
Appendix 3c for full license information.  
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The late positive potential, or LPP, is an ERP component with a positive deflection that 

takes place from 400-800 msec after the presentation of a stimulus (Keil et al., 2002; Weinberg 

and Hajcak, 2010). Emotional stimuli reliably elicit LPP responses, and more salient stimuli 

elicit LPP responses that are higher in amplitude than neutral or otherwise less emotionally 

arousing stimuli (Cuthbert et al., 2000; Schupp et al., 2004). For example, erotic scenes and 

mutilations commonly elicit larger LPPs than neutral pictures, such as household objects. It 

has also been found that drug-associated images, such as cigarette or cocaine pictures, can 

reliably elicit an LPP response in some individuals (Robinson et al., 2015; Webber et al., 2021). 

Thus, the LPP is a useful tool for the study of addiction, maladaptive behaviors, and other 

psychiatric disorders because it can be used to characterize the underlying affective processing 

associated with these pathologies (Culbreth et al., 2018; Fitzgerald et al., 2018).  

Because images with higher levels of incentive salience evoke larger LPP responses, the 

LPP is a reliable metric of affective picture processing (De Cesarei and Codispoti, 2011; 

Olofsson et al., 2008). This incentive salience that is measured by the LPP is the result of 

dopaminergic activity in the brain’s reward system that takes place in response to emotional 

contents (Bradley et al., 2001; Hickey and Peelen, 2015; Olney et al., 2018). Furthermore, 

concurrent EEG-fMRI studies have found that the BOLD activity associated with the LPP is 

comprised of re-entrant projections between the limbic system and visual association areas of 

the brain (Keil et al., 2009; Liu et al., 2012; Sabatinelli et al., 2013). Despite its utility in the 

study of brain activity, the EEG signal is plagued by a problem of signal-to-noise ratio (SNR). 

EEG data are often quite noisy, due to factors such as motion artifacts, blinks, or electrical 

noise. Furthermore, other factors such as the type of EEG net or the temperature of the 

recording environment can also contribute to the level of noise in the data (Kappenman and 
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Luck, 2010). Therefore, to obtain a reliable ERP signal, it is necessary to average together 

large numbers of trials among large participant samples. Accordingly, by averaging 

together many trials and subjects, researchers average out the noise and may characterize 

the true signal in these data (Handy, 2005; S. Luck, 2014). Such thoughtful experimental 

designs are critical in light of the finding that many published research findings are false 

(Ioannidis, 2005; Luck and Gaspelin, 2017), and there is a pervasive issue of 

reproducibility and reliability in research science, especially in the psychological domain 

(Munafò et al., 2017). 

However, the more trials researchers include in an experiment, the longer the EEG 

recording session will take, which is often uncomfortable for the participant and expensive 

for the lab running such studies. Meanwhile, enrolling more research participants also has 

its downfalls: participants can be difficult to recruit, and labs may have limited funds for 

participant incentives. Considering this trade-off between the number of trials, number of 

subjects, and overall recording session time in addressing SNR issues, it is often difficult 

for researchers using ERPs to design sufficiently powered studies. However, because 

research findings using ERPs often direct translational applications for psychiatric 

disorders, it is critical to design reproducible, sufficiently powered ERP studies (Button et 

al., 2013; Munafò et al., 2017). How then, can research groups design reproducible 

experiments that reliably translate into effective, evidence-based treatments? 

Previous work has used Monte Carlo simulations to calculate statistical power for 

within- and between-subjects experiments investigating ERPs components such as the 

error-related negativity (ERN) and lateral readiness potential (LRP; Boudewyn et al., 

2018). However, these are only two ERP components that may differ substantially from 
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other ERP components in factors such as how they are calculated (stimulus-locked vs response-

locked), the typical effect size of these components, or the SNR associated with a component. 

For those interested in the LPP specifically, it is necessary to conduct power analyses that  

better apply to LPP data. 

 To address this gap in knowledge, I followed a similar procedure as outlined by 

Boudewyn’s group. Using Monte Carlo simulations, I simulated within- and between-subjects 

experiments investigating differences in the LPP at varying numbers of subjects per group, 

trials per condition, and effect sizes. This project was largely methods-based and exploratory, 

and as such, I had no a-priori hypothesis regarding 

these findings. 

 2.2 METHODS 

2.2.1 Study participants  

For the analyses presented here, I used data from 

314 community participants whom our lab had 

previously recruited for clinical studies of smoking 

cessation (Stevens et al., 2019). The data included 

here were recorded at baseline, before the beginning 

of any treatment. All participants were recruited 

from the Houston metro area through newspaper 

and radio advertisements. Inclusion criteria for the 

studies were: age 18–65 years, fluent English 

speaker, not taking psychotropic medication, not 

diagnosed with a psychiatric disorder, and not having an uncontrolled medical illness. One 

Table 2.1: Baseline Demographic 
Information 
Variable % N = 314 
Sex   

Male  48.73 153 
Female 50.32 158 
No data 0.960 3 

Race   
North American 
Indian/ Alaska Native 

0.320 1 

Asian 2.230 7 
Black/ African 
American/ African 
Caribbean 

61.15 192 

Native Hawaiian/ 
Pacific Islander 

0.640 2 

White 30.57 96 
Unknown/ prefer not 
to answer 

2.870 9 

Other/ more than one 
race 

2.230 7 

Ethnicity   
Hispanic 4.140 13 
Not Hispanic 92.68 291 
Unknown/ prefer not 
to answer 

3.180 10 

Smoking status   
Smoker 69.75 219 
Never Smoker 30.25 95 
 Mean SD 

Age 45.60 11.40 
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participant was later excluded from the analyses because of incomplete data, leaving 313 

participants who were included in my analysis. Demographic information for the 

participants is provided in Table 2.1. Each participant provided informed consent, and the 

study was approved by The University of Texas MD Anderson Cancer Center's 

Institutional Review Board. 

2.2.2 Picture‐viewing task  

The picture‐viewing task used in this study included 192 images selected from the 

International Affective Picture System (IAPS; Lang et al., 2008) and other picture 

collections previously used by our lab (Carter et al., 2006; Versace et al., 2011). The set 

included four picture categories: pleasant, unpleasant, cigarette‐related, and neutral. Each 

category included 48 images (pleasant: 16 erotic scenes, 16 romantic couples, and 16 food 

images; unpleasant: 16 mutilations, 16 sad contents, and 16 disgusting objects, pollution, 

and accidents; cigarette‐related: 32 of people smoking and 16 of smoking paraphernalia; 

neutral: 32 of people engaged in mundane activities and 16 household objects; see the IAPS 

pictures used in this study1). 

During the task, images were presented in pseudorandom order with no more than two 

pictures of the same category presented consecutively. Each picture was presented for 4 sec 

and was followed by an intertrial interval varying between 3-5 sec, during which the 

 
1 The IAPS pictures used in this study are: Neutral people: 2102, 2191, 2210, 2215, 2220, 2305, 2383, 2393, 
2435, 2500, 2579, 2595, 2630, 2850, 7550, 2107, 2200, 2214, 2221, 2235, 2312, 2372, 2396, 2441, 2493, 2515, 
2575, 2593, 2597, 9070; Neutral objects: 7000, 7002, 7004, 7006, 7009, 7010, 7030, 7034, 7040, 7041, 7052, 
7053, 7054, 7055, 7056, 7059; Erotic scenes: 4611, 4658, 4659, 4669, 4677, 4680, 4687, 4690, 4691, 4693, 4695, 
4696, 4698, 4783, 4800; Romantic couples: 4624, 4625, 4628, 4640, 4641, 4643, 4700; Food: 7330, 7340, 7350, 
7410, 7430, 7460, 7470; Sad scenes: 2205, 2455, 2490, 2520, 2590, 2700, 2703, 2800, 2810, 2900, 3280, 9421, 
9429, 9520, 9530, 9926; Unpleasant Objects: 6020, 6230, 6260, 9090, 9110, 9290, 9300, 9301, 9320, 9373, 9560, 
9600, 9621, 9901, 9911, 9912; Mutilations: 3000, 3030, 3051, 3053, 3060, 3068, 3069, 3080, 3100, 3110, 3120, 
3130, 3170, 3261, 9420, 9433. When less than 16 IAPS pictures were available in a category, we integrated the 
set using pictures with similar contents. 
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subjects saw a black background with a white fixation cross. The entire picture presentation 

and recording session lasted approximately 30 min. Sessions were divided into three 10 

min blocks separated by a 30‐sec break between blocks. Stimuli were presented using E‐

Prime 1 (PST Inc., Pittsburgh, PA) stimulus presentation software (Schneider et al., 2002) 

on a 42" plasma screen placed approximately 1.5 m from the participants' eyes. Images 

were subtended horizontally at a horizontal visual angle of approximately 24°.  

2.2.3 Data collection procedures  

During the picture presentation, ERPs were recorded using a 129‐channel geodesic sensor 

net amplified with an AC-coupled 200‐MΩ impedance amplifier (EGI Geodesic EEG System 

200; Electrical Geodesics, Inc., Eugene, OR) and referenced to Cz. Data were sampled at a rate 

of 250 Hz and were filtered online using a 0.1‐Hz high‐pass filter and a 100‐Hz low‐pass filter. 

As per the manufacturer's instructions, scalp impedance was below 50 KΩ at the beginning of 

the recording.  

2.2.4 Data reduction procedures  

Even though I used only data from neutral trials in the Monte Carlo simulations of 

experiments with synthetic effect sizes (see Section 2.2.6), I reduced the data and plotted the 

results of all picture categories to ensure that the data used in these analyses belonged to a 

standard LPP experiment. First, I corrected eyeblink artifacts using a spatial filtering method 

as implemented in BESA software (BESA GmbH, Gräfelfing, Germany) and transformed the 

data to the average reference. Then, I imported the data into BrainVision Analyzer 2.1 (Brain 

Products GmbH, Gilching, Germany) and filtered them with a high‐pass filter of 0.1 Hz (12 

dB/ octave), a low‐pass filter of 30 Hz (12 dB/octave), and a notch filter of 60 Hz. The data 

were then segmented into 900‐msec segments, starting 100 msec before stimulus presentation. 
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The 100‐msec interval before 

stimulus presentation was 

defined as the baseline and 

subtracted from every data point 

in the segments.  

Artifacts were identified in 

the segmented data and were 

defined by (a) an amplitude of 

above 100 μV or below −100 μV, 

(b) an absolute difference of 

greater than 100 μV between any 

two data points in a segment, and (c) a maximum gradient of 25 μV/msec voltage step 

between two contiguous data points in a segment. Channels contaminated by artifacts in 

more than 40% of the segments were interpolated using six neighboring channels. We 

averaged the voltage from 10 centroparietal sensors (EGI electrodes 7, 31, 37, 54, 55, 79, 

80, 87, 106, 129; Figure 2.3 inset shows their topographic location) because, in previous 

studies, these channels had shown the highest LPP differences between experimental 

conditions (Versace et al., 2011). I checked for the presence of artifacts in the averaged 

data using the same criteria mentioned above and discarded the segments contaminated by 

artifacts.  

Then, data from subjects with fewer than 40 artifact‐free neutral trials were removed, 

leaving data from 313 subjects with no artifacts. For each of the 313 subjects, I calculated 

a mean ERP for each picture category that I subsequently averaged into grand means and 

 
Figure 2.3: Grand mean ERPs (colored lines) and 95% 
confidence intervals (shaded) by picture category. ERPs 
evoked by each category are consistent with previous 
studies: more emotionally relevant picture categories 
evoke larger LPPs. ERP: event-related potential; CI: 
confidence interval; LPP, late positive potential; ROI, 
region of interest 

LPP ROI
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95% confidence intervals shown in Figure 2.3. 

For each subject, I calculated the LPP as the 

average voltages between 400 and 800 msec 

after stimulus onset for each picture 

subcategory within the pooled sensors. As 

expected, images with high motivational 

relevance, such as erotic or mutilation images, 

prompted higher LPPs than images with low 

motivational relevance, such as neutral images 

(Figure 2.4).  

2.2.5 Noise visualization  

Before proceeding with the Monte Carlo 

simulations, I assessed the level of noise in the 

neutral trials that I used in the Monte Carlo 

simulations of experiments with synthetic 

effect sizes. To visualize the noise in the 

segmented data, I followed the plus‐minus averaging procedure outlined by Boudewyn and 

colleagues (2018; Schimmel, 1967). The goal of the procedure is to cancel the ERP signal and 

leave only the noise in the data.  

First, for each subject, I separated the time series data from all odd and even neutral trials 

into unique vectors and averaged them individually. Then, for each subject, I subtracted the 

 
Figure 2.4: Bar charts depicting average 
LPPs and 95% confidence intervals by picture 
category. The LPPs evoked by our stimuli 
were consistent with previous findings 
regarding the LPP: Emotionally relevant 
images evoke greater LPPs than less salient 
images. LPP: late positive potential; CIG: 
cigarettes; ERO: erotica; ROM: romance; 
FOOD: food images; NEU: neutral; POL: 
pollution; SAD: sad images; MUT: 
mutilations 
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mean of the odd trials from each even 

trial and vice versa. I tested the 

success of the procedure by 

averaging the time series data for all 

the trials (N = 12,520; 313 subjects * 

40 neutral pictures) after the 

subtraction. The average (shown in 

Figure 2.5) ranged from 1.5 × 10−15 

to −1.5 × 10−15 μV and thus remained 

at approximately zero, indicating that 

all the signal had been subtracted 

from the data, leaving only noise in 

the traces. To provide a more readable 

quantitative estimation of the variability 

around the mean, I calculated the percentage 

of trials at each time point that fell into each 

of four voltage bins: ±1 μV, ±5 μV, ±10 μV, 

and ±20 μV (Figure 2.6). At any given 

point, approximately 98% of the trials fell 

into the ±20 μV range, leaving 2% beyond 

that range. I decided to keep these outliers 

in the analysis to model the degree of noise typical in data collected in a clinical setting.  

2.2.6 Monte Carlo simulation of experiments with synthetic effects of known magnitude  

 
Figure 2.5 (above): ERP traces (N = 12,520, 40 trials 
per neutral category * 313 subjects) after plus‐minus 
averaging reflect noise (colors). A black line reflecting 
average noise is overlaid. The average of the noise was 
approximately zero, indicating that the plus‐minus 
averaging procedure subtracted out the signal and that 
only noise remained in the data. 

 

 
 

Figure 2.6 (above): Line plot showing the 
percentage of experimental trials within the 
voltage bins of ±20 μV, ±10 μV, ±5 μV, and 
±1 μV. Approximately only 2% of trials 
exceeded the ±20 μV threshold at any given 
point. 
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To simulate ERP experiments using either within‐subject or between‐subjects designs, I 

randomly sampled subsets of subjects from the larger data set described above. For each 

subject, I randomly sampled subsets of neutral trials to which I added known effects to simulate 

LPP responses to different conditions, such as neutral and emotional stimuli. Each simulated 

experiment included a specific effect size, number of trials, and number of subjects. For within‐

subject designs, I selected twice the number of trials from each randomly sampled subject to 

simulate two experimental conditions.  

 For the between‐subjects simulations, I sampled twice the number of subjects to simulate 

two experimental groups. For the within‐subject analysis, I modeled each effect size by adding 

one-half of the simulated effect size to the LPP of one condition and subtracting one-half of 

the simulated effect size from the other. Similarly, between-subjects effect sizes were modeled 

by adding one-half the simulated effect size to the LPP of one group and subtracting one-half 

the simulated effect size from the LPP of the second group. The size of the synthetic effects 

that I added to the data ranged from 0 to 3 μV in increments of 0.1 μV, the number of trials 

ranged from 5 to 40 trials per condition in increments of five trials, and the number of subjects 

in each experiment ranged from 10 to 100 in 10‐

subject increments from 10 to 50 and a further 

increment of 50 to reach 100. Combining all 

parameters led to a total of 1,488 simulated 

experiments. Each simulated experiment was 

repeated 1,000 times. All Monte Carlo simulations 

were performed using MATLAB R2018b (The 

MathWorks, Inc., Natick, MA).  

Table 2.2: Average LPP responses by 
picture category and differences from 
neutral 
Picture 
Category 

Average 
LPP (µV) 

Average LPP 
difference 
from NEU 
(µV) 

NEU 0.854131 0 
SAD 0.731923 -0.12221 
FOOD 1.120279 0.266148 
CIG 1.478345 0.624214 
POL 1.567271 0.71314 
ROM 1.741594 0.887464 
MUT 2.922355 2.068224 
ERO 3.256931 2.4028 
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2.2.7 Monte Carlo simulation of experiments with real effects of estimated magnitude  

In addition to simulating ERP experiments with synthetic effects of known magnitude, 

I also conducted simulations that are modeled on real experiments; that is, I simulated 

experiments aimed at testing a difference between conditions by selecting emotional and 

neutral trials without adding any effect. I estimated the magnitude of the effects that I was 

testing based on the differences observed between conditions in the grand averages 

computed across the 313 participants (see Figure 2.4 and Table 2.2). For example, if the 

2.1 μV difference observed between mutilations and neutral conditions reflects a real 

difference, how many times would I have obtained a statistically significant difference in 

an experiment that included, for instance, 10 participants and 15 trials per condition?  

For the within‐subject simulations, I randomly sampled subsets of subjects from the 

main data set as described for the within‐subjects simulations described above. Then, from 

each subject, I randomly sampled subsets of trials from one emotional picture subcategory 

and the neutral picture category. Because the emotional picture subcategories contained 

only 16 pictures each, my real data simulations included only trials taken in sets of 5, 10, 

and 15 per category. Thus, a within‐subject simulation, in this case, would include a 

specific number of subjects (10–100), a specific number of trials per condition (5–15), and 

a contrast between two specific conditions (e.g., erotica vs. neutral).  

For the between‐subjects simulations, I randomly sampled subjects as described for the 

between‐subjects simulations described above. Then, within each subject I sampled two 

times the number of trials (5–15) from the neutral category and one times the number of 

trials (5–15) from each emotional picture subcategory. To model between‐subjects 

differences, I computed the difference between the two sets of neutral trials for the subjects 



25 
 

in one group and the difference between neutral and emotional trials for subjects in the other 

group. Then I computed a between‐subjects analysis of variance (ANOVA) on the two 

difference scores, effectively testing the interaction Group × Picture category. Thus, a between‐

subjects experiment modeled on a real experiment would include a specific number of subjects 

per group (10–100), a specific number of trials per emotional picture category (5–15), and a 

contrast between two specific conditions (e.g., erotica vs. neutral). All possible combinations 

of parameters led to 144 total experiments for both the within‐ and between‐subjects analysis. 

Each experiment was repeated 1,000 times.  

2.2.8 Statistical analysis  

For each simulated experiment, I tested for statistically significant effects (p < .05) using 

one‐way repeated measures ANOVAs for experiments simulating within‐subject effects and 

one‐way ANOVAs for experiments simulating between‐subjects effects. It is important to note 

that these between‐subjects ANOVAs essentially model the interaction effect of Group × 

Condition with two groups and two conditions. The synthetic effects added to the trials of the 

participants in each group can be thought of as the voltage difference between images 

belonging to two different categories. Similarly, in the simulations of experiments using real 

data, a contrast between two conditions was compared between two groups, effectively testing 

for the interaction Group × Picture category. This procedure allowed us to estimate the 

probability of obtaining a statistically significant outcome (α = .05) for each combination of 

parameters. All ANOVAs were performed in R 3.5.0 (R Core Team, 2018). For each 

experimental condition, the percentage of F-values at or above the critical F-value was 

calculated to represent statistical power.  
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2.3 RESULTS 

2.3.1 Monte Carlo simulation of experiments with synthetic effects of known magnitude  

2.3.1.1 Within‐subject analyses  

As shown in Figure 2.7, within‐subject analyses of synthetic effect sizes revealed that, 

when only 10 subjects were included in the experiment, 80% power was achieved only for 

differences in effect sizes larger than 1 μV, even when a large number of trials (40) was 

included for each experimental condition. With smaller numbers of trials and smaller 

differences in effect sizes, sufficient statistical power to detect the differences could not be 

 
Figure 2.7: Within‐subject analysis of statistical power by synthetic effect sizes of known 
magnitude at 5–40 trials per condition and for 10–100 subjects. 
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achieved. I found that, as the number of subjects increased, statistical power reached an 

asymptote at 100% at 1.5 μV for the experiments with a higher number of trials. This 

asymptote became apparent for experiments with smaller numbers of trials as the number of 

subjects increased and became evident for effect sizes as small as 1 μV with greater numbers 

of trials.  

2.3.1.2 Between‐subjects analyses  

Overall, statistical significance is harder to achieve in between-subjects experimental 

designs than within‐subject designs, and this was reflected in my results. Figure 2.8 shows 

 
Figure 2.8: Between‐subjects analysis of statistical power by synthetic effect sizes of known 
magnitude size at 5–40 trials and 10–100 subjects per group. 
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that statistical power was achieved only at higher effect sizes, greater numbers of trials, 

and relatively large sample sizes compared with what was observed in my within‐subject 

analyses.  

The slopes shown in Figure 2.8 were generally less steep than the slopes shown in 

Figure 2.7, indicating that an increase in the size of the difference between conditions did 

not affect statistical power as dramatically in between‐subjects designs as it did in within‐

subject designs. However, the overall trend of slopes increasing with increasing sample 

sizes was conserved.  

At lower numbers of subjects per group, 80% statistical power was much harder to achieve 

between subjects than within subjects and was achieved only with greater numbers of trials. 

Starting at 40 subjects per group, statistical power reached an asymptote of 100% at 20 or more 

trials for effect sizes greater than 1.5 μV. This asymptote shifted to include smaller effect sizes 

and lower numbers of trials as subjects were added to the experiment, with 100 subjects per 

group reaching an asymptote at effect sizes as low as 1 μV. At 100 subjects per group, slopes 

were steepest, with 80% power achieved at effect sizes as low as 0.5 μV for experiments with 

40 trials per condition.  

2.3.2 Monte Carlo simulation of experiments with real effects of estimated magnitude  

2.3.2.1 Within‐subject analyses 

Within‐subject analyses of experiments with real effects of estimated magnitude closely 

replicated the results observed in the simulations using synthetic effects (Figure 2.9): at lower 

effect sizes (<1 μV), the power is quite low, and it reached levels greater than 80% only at the 

highest numbers of subjects (>50) and number of trials (10 or more per condition). When larger 

differences (>2 μV) were tested, I observed levels of power greater than 80% even with lower 
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number of trials or subjects. Similar to the results from within‐subject simulations of synthetic 

effects, an asymptote was visible in the within-subject simulations of contrasting picture 

categories but only at the highest effect sizes (>2 μV), trials per condition (10 or more), and 

numbers of subjects (40 or more).  

  

 
Figure 2.9: Within‐subject analysis of statistical power by real effect size of estimated magnitude 
at 5–15 trials per condition (dotted, dashed, dash‐dot; gray) and for 10–100 subjects. The difference 
between power calculations resulting from simulations of synthetic effect sizes of known magnitude 
and simulations of real effect sizes of estimated magnitude are depicted in colors, with positive 
differences (overestimations) depicted in red and negative differences (underestimations) depicted 
in blue for 5–15 trials per condition (dotted, dashed, dash‐dot; colors). Included in these figures are 
effect sizes resulting from contrasting neutral vs. neutral (0 μV), neutral vs. food (0.2 μV), neutral 
vs. cigarettes (0.6 μV), neutral vs. romance (0.9 μV), neutral vs. mutilations (2.1 μV), neutral vs. 
erotica (2.4 μV) 
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2.3.2.2 Between‐subjects analyses  

Consistent with my findings from between‐subjects analyses using synthetic effect 

sizes, Figure 2.10 shows that, at the same numbers of subjects, trials, and effect sizes, the 

statistical power between subjects was lower than it was within subjects. Also, the 

asymptotic relationship between power and effect size in these analyses was apparent only 

 
Figure 2.10: Between‐subjects analysis of statistical power by real effect size of estimated 
magnitude at 5–15 trials per condition (dotted, dashed, dash‐dot; gray) and for 10–100 subjects 
per group. The difference between power calculations resulting from simulations of synthetic 
effect sizes of known magnitude and simulations of real effect sizes of estimated magnitude are 
depicted in colors, with positive differences (overestimations) depicted in red and negative 
differences (underestimations) depicted in blue for 5–15 trials per condition (dotted, dashed, 
dash-dot; colors). Included in these figures are effect sizes resulting from contrasting neutral 
vs. neutral (0 μV), neutral vs. food (0.2 μV), neutral vs. cigarettes (0.6 μV), neutral vs. romance 
(0.9 μV), neutral vs. mutilations (2.1 μV), neutral vs. erotica (2.4 μV). 
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at the highest effect sizes (>2 μV) and subjects per group (50 or more).  

2.3.3 Summary  

Predictably, my results showed that increasing the number of trials and subjects increased 

statistical power and that statistical power was greater for larger effect sizes. Also, as expected, 

statistical power of at least 80% could be achieved at lower effect sizes, sample sizes, and trial 

numbers in within‐subject as compared with between‐subjects experiments. Furthermore, I 

found that, in both within‐subject and between‐subjects experiments of synthetic effect sizes, 

an increase in subjects more rapidly increased the statistical power at the lower range of effect 

sizes (<1 μV) until the power later reached an asymptote at the higher range of effect sizes 

(>1.5 μV). This asymptotic effect was visible in the simulations with effect sizes resulting from 

a difference between conditions, but only at effect sizes greater than 2 μV and at the highest 

numbers of subjects and trials. The results from the simulations of experiments using real data 

closely reflected those obtained using synthetic data for similar effect sizes.  

2.4.1 DISCUSSION 

The present study was concerned with how best to optimize the parameters that affect 

statistical power in ERP experiments that use the amplitude of the LPP to assess affective 

processes in within‐ and between‐subjects designs. I adopted the simulation approach used by 

Boudewyn and colleagues (2018), but, I investigated the LPP, an ERP component that is 

heavily studied in the domain of affective neuroscience and has more modest effect sizes when 

compared with the ERN. Detecting differences in the amplitude of the LPP evoked by 

emotional versus neutral stimuli between groups often means investigating modest differences; 

accordingly, achieving sufficient statistical power under such conditions requires increasing 

the number of subjects and/or including a greater number of trials in the experiment. Here, I 
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provide a useful tool that researchers can use to evaluate the trade‐offs and achieve their 

research objectives.  

2.4.2 Different ERP components have different dynamics with respect to power  

In a previous study that investigated statistical power for the ERN and LRP components 

(Boudewyn et al., 2018), the slope of the relationship between the statistical power and the 

number of trials was steepest at the middle range of the effect sizes (3–5 μV) and numbers 

of trials (10–12) investigated. In contrast, the present study found steeper slopes at the 

higher range of the numbers of subjects (50+) and trials (20+) but at lower effect sizes (0.4–

1 μV). Therefore, the dynamics of study parameters as they relate to statistical power are 

different among ERP components. These dynamics are likely related to the properties of 

the ERP components themselves and the noise present in the data. As such, experiments 

that assess the LPP may benefit more from increasing numbers of trials and subjects than 

would experiments that focus on larger amplitude components such as the ERN. Thus, the 

SNR for the LPP may increase more with increased numbers of trials and subjects, as the 

variability between individuals and the noise within the component itself is averaged out.  

2.4.3 Comparison of simulations based on experiments with synthetic effects of known 
magnitude and experiments with real effects of estimated magnitude  

In addition to conducting simulations of experiments with known synthetic effects 

added to the data, I also conducted simulations of experiments aimed at detecting real 

effects for which I estimated the magnitude on a large sample of participants (N = 313). 

Even though the simulations based on real data allowed me to test only a smaller range of 

effects than those based on synthetic data, the results from the two sets of simulations were 

remarkably similar (Figures 2.7 and 2.8). The small differences between simulation results 

may relate to the uncertainty of the “true” effect size that exists within each simulated 
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experiment that uses real data when the magnitude of the effect can be only statistically 

estimated and is not actually known. The high similarity observed in the two sets of simulations 

also indicates that the noise in the EEG data is independent of the response evoked by the 

pictures: higher LPPs are not associated with higher levels of noise.  

2.4.4 Impact on affective neuroscience  

My results provide guidelines that neuroscientists can employ when designing experiments 

that use the LPP to investigate affective processes or when evaluating the results of these 

experiments. My findings indicate that between-subjects comparisons that include, for 

example, 10 subjects per group are extremely unlikely to produce meaningful results. As 

pointed out by Ioannidis and colleagues (Ioannidis, 2005), when experiments are grossly 

underpowered, a statistically significant result is likely to be artifactual. Even with 20 or 30 

subjects per group, sufficient statistical power can be achieved only for effect sizes larger than 

1 μV, which is larger than the LPP difference I found when comparing low arousing and 

neutral stimuli (Table 2.2). For investigators studying more modest differences, such as those 

often observed in interaction effects in both within‐ and between‐subjects designs, my results 

indicate that, at a minimum, 40 trials and 50 subjects per group are needed to achieve sufficient 

statistical power.  

These findings related to the SNR of the LPP signal also inform the field of affective 

neuroscience regarding the trade‐off between adding subjects versus adding trials to an 

experiment. As shown in Figure 2.8, five trials per condition and 10 subjects per group 

achieves a statistical power of approximately 20% at an effect size of 1.5 μV. However, an 

experiment with the same parameters that includes 20 subjects per group achieves nearly 40% 

statistical power: by doubling the subjects per group, the power increases approximately 
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twofold in this example. Meanwhile, if the number of trials per condition is doubled to 10 

trials per condition while still using 10 subjects per group and looking at a 1.5 μV effect 

size, statistical power is approximately 30%. Thus, my results indicate that adding subjects 

to an experiment has a greater effect on the statistical power than increasing the number of 

trials would.  

However, due to the difficulties that come with the recruitment of human subjects, 

doubling the sample size may not be feasible, and some labs may favor adding trials to 

their experiments instead. Conversely, depending on the number of conditions used in the 

experiment, adding trials may not be feasible, as this could excessively increase the 

duration of the experiment. The results that I presented here offer researchers the 

opportunity to more precisely estimate the impact that decisions about important 

parameters in an experiment have on statistical power.  

One objective of this study was to simulate data with a higher degree of noise and with 

modest effect sizes, as many investigators may be interested in how to sufficiently power 

studies investigating small LPP amplitude differences or may work with noisy data. Hence, 

my results might be less informative when very robust effects (e.g., those greater than 3 

μV) are under investigation or when the noise in the data is minimal. Furthermore, different 

ERP components might show different dynamics with respect to power, and as such future 

studies should specifically investigate statistical power for more components.  

2.4.5 Conclusions  

By sufficiently powering clinical affective neuroscience studies, investigators will 

collect more reliable results, thereby improving the reproducibility of their research 

findings. My findings may help researchers to plan and evaluate the results of experiments 
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that use the LPP as an index of motivational relevance and may ultimately foster the translation 

of results from basic science experiments to evidence‐based treatments of disorders 

characterized by altered affective processing. Careful consideration of statistical power 

furthers the ultimate goal of translational affective neuroscience research: to bolster innovation 

in the psychiatric domain.   
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CHAPTER 3: Individual differences in late positive potential amplitude and 
theta power predict cue-induced eating 

This chapter is based upon the following preprint written by the author… 

Gibney, K. D., Kypriotakis, G., & Versace, F. (2022). Individual differences in late positive 

potential amplitude and theta power predict cue-induced eating. BioRxIv. 

https://doi.org/DOI: 10.1101/2022.03.28.485549 

The copyright holder for this preprint is the author/funder. 

3.1 BACKGROUND  

Overweight and obesity, characterized by a BMI of at least 25 kg/m2 and at least 30 kg/m2, 

respectively, increase the risk of cardiovascular disease, diabetes, and several types of cancer 

(Prospective Studies Collaboration, 2009). Losing even a modest amount of weight can have 

substantial health benefits, but most weight-loss interventions yield short-lived, suboptimal 

results (Jeffery et al., 2000; Turk et al., 2009). Identifying the neurobiological mechanisms 

underlying excessive eating—the ultimate cause of weight gain (Davis et al., 2014; de Lauzon-

Guillain et al., 2017)—can help clinicians target the root causes of overeating, personalize 

interventions for weight loss, and improve weight loss treatment outcomes. 

Neurobiological models of obesity have demonstrated that the brain’s reward and cognitive 

control systems both play a major role in regulating food intake (Appelhans, 2009; van den 

Bos and de Ridder, 2006). The reward system guides eating behavior with bottom-up signals 

that dynamically assign motivational salience to food rewards and the cues associated with 

them (Pitchers et al., 2017a, 2017b). In contrast, cognitive control systems exert top-down 

control over eating behavior by enabling the implementation of intentional, goal-directed 

behavior (Hall, 2016). Failure of either mechanism can lead to maladaptive eating patterns, 

overeating of hyper-palatable foods, and weight gain (Stice and Yokum, 2016). 
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Preclinical findings demonstrated that animals differ in their tendency to engage bottom-

up versus top-down driven behaviors in the presence of cues signaling the impending delivery 

of food rewards (i.e., food-related cues) (Sarter and Phillips, 2018). Individuals who attribute 

high motivational salience to food-related cues are prone to cue-induced compulsive reward-

seeking behaviors (Flagel et al., 2011). On the other hand, those who do not attribute high 

levels of motivational salience to reward-related cues are less prone to cue-induced compulsive 

behaviors and are likely to implement goal-directed behaviors when faced with these cues 

(Pitchers et al., 2018). 

Our lab has previously demonstrated that humans are also characterized by individual 

differences in the tendency to attribute motivational salience to food-related cues (Versace et 

al., 2016) and that these differences underlie vulnerability to cue-induced eating (Versace et 

al., 2018). In these experiments, we recorded event-related potentials (ERPs), a direct measure 

of brain activity (Hajcak et al., 2019), during a cued food delivery task. In this task, participants 

viewed emotional, neutral, and food-related images while we recorded electroencephalogram 

(EEG) from the scalp. After the presentation of some food-related images, we dispensed 

chocolate candies to the participants, which they could eat or discard (Deweese et al., 2015). 

To estimate the motivational salience of these images, we measured the amplitude of the late 

positive potential (LPP) in response to each image. The LPP is an ERP component that is 

reliably modulated by motivational salience: highly salient images such as erotica and 

mutilations prompt larger LPP responses than do images with lower salience, such as romantic 

or sad images (Cuthbert et al., 2000; Minnix et al., 2013; Weinberg and Hajcak, 2010). We 

found that individuals with larger LPP responses to food-related cues than to pleasant images 

(C>P group) ate significantly more during the experiment than did those with larger LPP 
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responses to pleasant images than to food-related cues (P>C group) (Versace et al., 2018). 

These findings support the hypothesis that attributing higher motivational salience to food-

related cues than to pleasant non-food-related stimuli increases vulnerability to cue-induced 

eating, but they are silent about the role of individual differences in the engagement of 

cognitive control systems in regulating cue-induced eating. Because results from animal 

models suggest that individuals who attribute high levels of motivational salience to food-

related cues might also have poor top-down control over cue-induced behaviors (Pitchers et 

al., 2018; Robinson and Berridge, 2003; Sarter and Phillips, 2018; Tunstall and Kearns, 2015), 

the present study aimed to elucidate how both cognitive and affective mechanisms act in 

tandem to regulate cue-induced eating.  

Activity in the theta frequency band has been proposed as a reliable correlate of the 

engagement of higher cognitive functions (Cavanagh et al., 2012; Cavanagh and Frank, 2014). 

Theta (θ; 4-8 Hz) power (µV2) over midfrontal scalp sites increases when participants engage 

cognitive control mechanisms to inhibit prepotent responses (Haciahmet et al., 2021; Nigbur 

et al., 2011) or perform difficult tasks (Wang et al., 2018). In light of these findings, I used 

theta power in an exploratory fashion to approximate the engagement of cognitive control 

systems in food-related decision-making during a cued food delivery task. 

This research is aimed at investigating the role that individual differences in both the 

attribution of motivational salience to food-related cues and the engagement of cognitive 

control systems have in regulating cue-induced eating during the cued food delivery task. I 

expected to replicate our lab’s previous findings: namely, that individual differences in 

affective processing of cues predict cue-induced eating. I also aimed to elucidate whether the 

engagement of cognitive control systems, as indexed by theta power, differs between P>C and 
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C>P individuals, or if cognitive control mechanisms contribute to cue-induced eating behavior 

irrespective of C>P and P>C status. Results demonstrating that midfrontal theta power differs 

between the C>P and P>C groups would suggest that individuals attributing higher 

motivational salience to food-related cues might also have difficulty engaging cognitive 

control mechanisms when making food-related decisions, in a manner similar to what has been 

observed in animal models. Meanwhile, results demonstrating that individual differences in 

midfrontal theta power predict eating behavior regardless of C>P vs and P>C status would 

suggest that the engagement of cognitive control systems regulates cue-induced eating 

independently from the tendency to attribute motivational salience to food-related cues. By 

elucidating whether motivational salience and cognitive control mechanisms converge to 

regulate cue-induced eating or do so independently, I hope to inform clinical researchers of 

effective mechanistic targets for weight loss and other clinical interventions aimed at reducing 

maladaptive, reward-seeking behaviors. 

3.2 METHODS 

3.2.1 Participants 

Our lab recruited sixty research participants from the Houston, Texas, metro area using 

flyers and magazine and newspaper advertisements. Participants were eligible if they were 18 

to 65 years of age, were neither pregnant nor breastfeeding, and did not have a history of 

psychiatric disorders, seizures, head injuries with loss of consciousness, uncorrected visual 

impairments, eating disorders, or allergies, or any other illnesses that would prevent them from 

eating chocolate candy. Participants received monetary compensation for their time and travel 

totaling up to $60 each. One participant was excluded from the final analysis due to incomplete 

data. Tables 3.1 and 3.2 show the demographic information for the participant sample.  
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Table 3.1: Demographic, biometric, and self-reported data for all subjects and for the LPP and theta-
based participant groups 

 Mean (SD) 

Characteristic 

All 
subjects 
(n = 59) 

C>P 
(n = 28) 

P>C 
(n = 31) 

p 
(C>P 

vs. 
P>C) 

θCA>θBE 
(n = 22) 

θBE>θCA 
(n = 37) 

p 
(θCA>θBE 

vs. 
θBE>θCA) 

Age, years 45 
(11.67) 

43 
(14.09) 

48 (8.52) 0.10 43 (11.61) 47 (11.62) 0.21 

Women, % 46 39 52 0.34 82 24 0.56 
Race, %        

Black/African 
American 

64 75 55  73 59  

White/Caucasian 24 14 32  18 27  
Asian 7 11 3  5 14  
More than one 
race 

3 0 6  5 3  

I prefer not to say 2 0 3  0 3  
BMI, kg/m2 31 (7.75) 30 (8.19) 31 (7.43) 0.69 31 (0.92) 31 (7.42) 0.85 
Hispanic or Latino 
ethnicity, % 

12 18 6  14 11  

BIS attention 15.57 
(3.63) 

15.52 
(4.10) 

15.61 
(3.23) 

0.92 15.62 
(2.40) 

15.54 
(4.20) 

0.94 

BIS motor 21.26 
(3.96) 

21.33 
(4.27) 

21.19 
(3.74) 

0.89 21.62 
(4.20) 

21.05 
(3.86) 

0.61 

BIS Non-planning 13.22 
(2.63) 

13.04 
(2.68) 

13.39 
(2.62) 

0.62 12.57 
(2.20) 

13.59 
(2.80) 

0.16 

CESD 8.53 
(4.76) 

8.85 
(5.44) 

8.26 
(4.15) 

0.64 7.81 (3.76) 8.95 (5.24) 0.39 

SHAPS 1.14 
(2.54) 

1.33 
(2.99) 

0.97 
(2.12) 

0.59 1.05 (3.04) 1.19 (2.26) 0.84 

PANAS (+) 33.28 
(9.59) 

31.15 
(10.08) 

35.13 
(8.89) 

0.12 33.90 
(8.74) 

32.92 
(10.14) 

0.71 

PANAS (-) 17.62 
(7.64) 

18.19 
(7.24) 

17.13 
(8.05) 

0.60 16.95 
(8.37) 

18.00 
(7.28) 

0.62 

PFS 51.88 
(19.22) 

48.70 
(19.88) 

54.65 
(18.50) 

0.24 50.00 
(21.7) 

52.95 
(17.87) 

0.58 

FCQ 101.69 
(36.56) 

99.07 
(37.65) 

103.97 
(36.05) 

0.62 96.62 
(37.19) 

104.57 
(36.40) 

0.43 

WREQ routine 
restraint 

1.64 
(0.87) 

1.43 
(0.58) 

1.83 
(1.04) 

0.08 1.46 (0.69) 1.75 (0.95) 0.23 

WREQ 
compensatory 
restraint 

2.17 
(0.84) 

2.05 
(0.81) 

2.27 
(0.85) 

0.32 2.17 (0.92) 2.16 (0.80) 0.96 

WREQ 
susceptibility to 
external cues 

2.30 
(1.00) 

2.21 
(1.06) 

2.37 
(0.96) 

0.57 2.41 (1.15) 2.23 (0.92) 0.52 

WREQ emotional 
eating 

2.09 
(1.02) 

1.95 
(1.18) 

2.21 
(0.86) 

0.34 2.13 (1.15) 2.06 (0.95) 0.79 

SLIM 0.72 
(39.15) 

-3.24 
(33.45) 

4.30 
(43.92) 

0.46 -11.70 
(36.43) 

8.11 
(39.31) 

0.06 

Number of candies 
eaten 

11 
(17.19) 

14 
(20.02) 

8 (13.94) 0.21 14 (19.66) 9 (15.42) 0.22 
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3.2.2 Study procedures 

 The study included an eligibility screening of potential participants via telephone followed 

by an in-person laboratory visit. A research assistant met with the participant at each laboratory 

visit to explain the study and obtain informed consent. The research assistant then collected 

the participant’s biometric information, including height and weight, and then administered a 

series of computerized questionnaires. After completing the questionnaires, the research 

assistant placed an EEG net on the participant’s head and instructed the participant on how to 

complete the cued food delivery task. The research assistant then left the room and began both 

the EEG recording and the cued food delivery task. After completion of the EEG session and 

task, the participant was debriefed and given financial compensation. All study procedures 

were approved by The University of Texas MD Anderson Cancer Center Institutional Review 

Board. 

3.2.3 Questionnaires 

The computerized questionnaires used in this experiment consisted of those assessing 

hunger and satiety, eating habits, impulsivity, mood, affect, and hedonic tone. To assess hunger 

and satiety, we administered the Satiety Labeled Intensity Magnitude (SLIM) scale (Cardello 

et al., 2005) to each participant before and after completion of the cued food delivery task. To 

ascertain eating habits, we used the weight-related eating questionnaire (WREQ) (Schembre 

et al., 2009; Schembre and Geller, 2011), the Power of Food Scale (Lowe et al., 2009), and the 

Food Cravings Questionnaire (Nijs et al., 2007), which measure variables such as susceptibility 

to external cues, the influence of a food-abundant environment on eating, and food cravings, 

respectively. To measure impulsivity, we administered the Barratt Impulsiveness Scale (BIS) 

(Patton et al., 1995; Stanford et al., 2009). Finally, to identify variables relating to affect, mood, 
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and hedonic tone, we administered the Positive 

and Negative Affect Schedule (PANAS) (Watson 

et al., 1988), the Center for Epidemiologic Studies 

Depression Scale (Radloff, 1977), and the Snaith-

Hamilton Pleasure Scale (Nakonezny et al., 2010; 

Snaith et al., 1995), respectively. 

3.2.4 Controlled cued food delivery task 

Participants completed the cued food delivery 

task depicted in Figure 3.1 (Deweese et al., 2015) 

with the addition of a control condition in which 

they were also dispensed plastic beads. During the 

task, participants viewed emotional, neutral, and food-related images presented on a 17-inch 

computer screen using E-Prime software (version 2.0.8.74; Psychology Software Tools, Inc., 

Pittsburgh, PA) while EEG was recorded from the scalp. After viewing a food-related image, 

each participant was dispensed either a chocolate candy, which they had the option to eat or 

discard, or a bead. Food-related images consisted salty or sweet contents (for example: pizza 

[salty], cake [sweet]). One of these two categories of food images (counterbalanced across 

participants) preceded the delivery of the candy, whereas the other preceded the delivery of the 

bead. Each participant was told at the beginning of the EEG session which category of food 

image would precede the candies and which would precede the beads. The pictures used in this 

task were selected from the International Affective Picture System (IAPS; Lang et al., 2008) 

and a set of pictures used in our previous studies (Versace et al., 2016, 2018)2.  

 
2 The IAPS pictures used in this study are the following IAPS codes: 4604, 4611, 4647, 4650, 4653, 
4658, 4659, 4660, 4666, 4668, 4669, 4677, 4680, 4687, 4690, 4691, 4693, 4694, 4695, 4696, 4698, 

 
Figure 3.1: In the controlled cued food 
delivery task, participants view 
emotional, neutral, and food-related 
images while EEG is recorded from the 
scalp. After the presentation of a food-
related image, either a candy or bead was 
dispensed to the participant. The 
participant could then choose to eat or 
discard the dispensed candies. ITI: inter-
trial interval 
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The cued food delivery task consisted of six experimental blocks that lasted about 5 min 

each. In each block, 55 images were presented pseudorandomly (no more than two images 

belonging to the same picture category were presented consecutively): 10 neutral (people and 

objects), 10 pleasant (erotica and romance), 15 unpleasant (mutilations, violence, and 

pollution), and 20 food-related (savory or sweet) images. 

No images were repeated during the task. For the food images, the candy or bead was 

dispensed 1000 msec after the food cue appeared on the screen through a tube into a receptacle. 

The participant then could either pick up and eat the candy or discard it in a box. Each food 

image remained visible until the participant either deposited the candy or bead into the box or 

pressed a button indicating that they had finished eating the candy. All non-food images were 

presented for 2.2 sec, and a random intertrial interval (ITI) of 3-5 sec separated each trial. To 

familiarize the participants with the task, we ran 11 practice trials, two of which were followed 

by a candy or bead. 

3.2.5 EEG recording procedures 

We continuously recorded EEG during the task using a 129-channel Geodesic Sensor Net 

that was amplified with an AC-coupled high-input-impedance (200 MΩ) amplifier (Geodesic 

EEG System 200; EGI, Eugene, OR) and referenced to electrode Cz. EEG data were collected 

at a sampling rate of 250 Hz and filtered online using a 0.1-Hz high-pass and 100-Hz low-pass 

 
4800, 2501, 2550, 4597, 4600, 4612, 4616, 4619, 2208, 4599, 4610, 4624, 4625, 4640, 4641, 4643, 
4700, 2037, 2039, 2102, 2107, 2190, 2191, 2210, 2273, 2305, 2359, 2374, 2377, 2383, 2393, 2396, 
2397, 2411, 2435, 2441, 2500, 2511, 2512, 2575, 2594, 2595, 2620, 2630, 2635, 7550, 9070, 5390, 
7000, 7001, 7002, 7006, 7009, 7010, 7011, 7012, 7018, 7020, 7021, 7026, 7030, 7034, 7040, 7041, 
7050, 7052, 7053, 7054, 7055, 7056, 7059, 7061, 7062, 7081, 7090, 7150, 7233, 9322, 9902, 9941, 
6020, 7079, 7521, 9010, 9090, 9110, 9290, 9291, 9295, 9300, 9301, 9320, 9373, 9560, 9600, 9621, 
9911, 9912, 2703, 6211, 6312, 9429, 9520, 9530, 2811, 3500, 3530, 6210, 6230, 6231, 6242, 6260, 
6313, 6315, 6350, 6360, 6510, 6540, 6550, 6560, 6571, 6832, 9414, 3000, 3030, 3051, 3053, 3060, 
3064, 3068, 3069, 3071, 3080, 3100, 3103, 3110, 3120, 3130, 3140, 3150, 3170, 3180, 3181, 3211, 
3213, 3225, 3261, 3400, 6021, 9253, 9265 
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filter. The scalp impedance was kept under 50 KΩ as per the manufacturer’s instructions. 

3.2.6 Data reduction 

After collecting the EEG, the EEG data were filtered using a 30-Hz low-pass filter and 

visually inspected to identify broken channels, which were defined as any channels 

contaminated by artifacts in more than 50% of the recording. Any broken channels were 

interpolated using spherical splines. Next, the EEG recordings were corrected for blinks and 

horizontal eye movements using a spatial filtering method implemented in the BESA software 

program (version 5.1.8.10; MEGIS Software GmbH, Gräfelfing, Germany). The data were 

then transformed to the average reference and segmented as outlined below.  

For the analysis of ERPs, each segment of EEG was time-locked to the onset of each picture 

in segments that started 1500 msec before the onset of the picture and lasted until 1500 msec 

afterward. For the time-frequency analyses, each segment of EEG was time-locked to the 

delivery of a candy or bead in segments that started 1500 msec before the dispensation of the 

candy or bead and lasted until 1500 msec afterward. The data were baseline-corrected using a 

100-msec time bin before the onset of the pictures (ERPs) or the onset of the candy or bead 

dispensation (time-frequency) as the baseline. Artifacts in the -1000 to +1000-msec time 

window for each segment were then detected based on the following criteria: EEG amplitude 

above 100 or below -100 µV, an absolute voltage difference between any two points in a 

segment no greater than 100 µV, maximum voltage step between two contiguous data points 

of 20 µV, and less than 0.5 µV of variation in activity for more than 100 msec. Channels that 

were marked bad in more than 40% of the segments were interpolated, and any segment that 

included more than 12 bad channels after interpolation was discarded.  
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3.2.7 LPP 

I used the amplitude of 

the LPP as a measure of 

cues’ motivational 

salience. To calculate the 

LPP for each subject and 

picture category, I 

averaged the EEG 

responses that were time-

locked to the onset of each 

picture during the 400- to 

800-msec time window 

using a pooled set of centroparietal sensors (EGI HydroCel Geodesic Sensor Net sensors 7, 31, 

37, 54, 55, 79, 80, 87, 106, 129; see Figure 3.2 inset for a depiction of the sensors). This is the 

same spatiotemporal region of interest (ROI) used in our previous studies investigating the 

LPP (Versace et al., 2016, 2012, 2017).  

3.2.8 Theta power 

To calculate theta power, the EEG data time-locked to the delivery of the candy or bead 

was transformed into the time-frequency domain using a continuous wavelet transform. The 

wavelet transform was based on a complex Morlet wavelet function with a Morlet parameter 

of 5 using 40 linear frequency steps from 1 to 40 Hz. The data were normalized using Gabor 

normalization and were baseline-corrected using a reference interval from -875 to -625 msec. 

To calculate theta power, the 4- to 8-Hz frequency bands were averaged. 

Figure 3.2: ERPs for centroparietal scalp sites (see inset for EEG 
electrode locations) showing that, on average, the LPP amplitude 
was higher for motivationally relevant pictures, such as mutilations 
or erotic images, than for other types of pictures. The box outlines 
the temporal ROI used to calculate the LPP for each picture 
category. Each picture was presented on the screen at 0 msec. 
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3.2.9 Classification of participants 

To classify the participants based on their LPP responses to cues, I followed a procedure 

used in our previous studies (Versace et al., 2016, 2018). Specifically, I z-transformed each 

participant’s LPP data for each picture category, then I applied a k-means (k = 2) clustering 

algorithm to these z-transformed LPP values for each participant. The number of clusters (k = 

2) was decided a priori based on previous findings (Versace et al., 2012, 2018). 

To classify the participants based on their theta power amplitudes, I followed a similar 

strategy. Specifically, each participant’s theta power values were z-transformed for the candy, 

bead, and neutral conditions during a 0- to 200-msec time bin using a pooled set of mid-frontal 

sensors. I then applied a k-means (k = 2) clustering algorithm to these z-transformed theta 

power values, with the a priori hypothesis that two distinct patterns of theta activity would be 

observed, much like our previous findings using the LPP. 

3.2.10 Eating behavior 

Because the number of candies the participants ate during the experiment is a count 

variable, I tested differences in eating behavior between groups using Poisson regression 

analysis. First, I compared the number of candies eaten during the experiment between the two 

LPP-derived groups. Second, I conducted another Poisson analysis to compare the number of 

candies eaten between the two theta power-derived groups. Third, I compared the number of 

candies eaten by the four groups formed by crossing the LPP and theta power-based groups 

using Poisson regression. 

3.2.11 Demographics & questionnaires 

To identify whether any demographic or psychological factors had confounding effects on 

the trends in eating behavior observed in the participant groups, I conducted Poisson regression 
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modeling the effect of group assignment on eating behavior. The demographic, biometric, and 

self-reported data outlined in Table 3.1 were included in the model as covariates.  

3.3 RESULTS  

3.3.1 Event-related potentials 

Figure 3.2 shows the grand averaged ERPs for each picture category. As expected, the 

amplitude of the LPP increased as a function of motivational salience irrespective of hedonic 

content. I formally tested this effect using LPP amplitude as a dependent variable in a repeated-

measures analysis of variance (ANOVA) with the picture category as an eight-level factor 

(candy cues, bead cues, erotica, romance, neutral, pollution, violence, and mutilations; F[7, 

399] = 22.1, p < 0.001). I also tested the quadratic trend of increasing LPP as a function of 

motivational salience under both pleasant and unpleasant conditions (F[5, 290] = 46.3, p < 

0.001). Furthermore, I found that on average, food images preceding dispensation of the candy 

elicited larger LPPs than did food images preceding dispensation of the bead (F[1, 58] = 5.02, 

p = 0.029).  

3.3.2 Classification of participants: LPP 

Cluster analysis of the LPP responses identified the two hypothesized reactivity profiles: 

one group (C>P) had larger LPP responses to food cues than to pleasant images, and the other 

group (P>C) had larger LPP responses to pleasant images than to food cues. Both groups 

exhibited the canonical pattern of progressively larger LPP responses for both pleasant and 

unpleasant images as a function of their motivational salience (C>P group: F = 87.5, p < 0.001; 

P>C group: F = 77, p < 0.001) (Figure 3.3A). The P>C group had significantly larger LPP 

responses to pleasant images than to food cues (F = 6.51, p = 0.013), whereas the C>P group 

had significantly larger LPP responses to food cues than to pleasant images (F = 59, p < 0.001). 
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See Figure 3.4 for the averaged LPP 

amplitudes across all pleasant picture 

contents by group assignment. After 

determining the group assignment for 

each participant, I then compared the 

number of candies eaten by the C>P and 

P>C groups (Figure 3.3B). Poisson 

regression analysis demonstrated that 

individuals in the C>P group ate 

significantly more during the experiment 

than did individuals in the P>C group 

 
Figure 3.3 (above): I replicated the finding that individual differences in LPP responses to food 
cues & non-food-related pleasant images are predictive of cue-induced eating. (A) K-means 
clustering of the LPP responses identified two groups: one with higher LPP amplitudes for food 
cues than for pleasant images and one with higher LPP amplitudes for pleasant images than for 
food cues. Error bars: 95% CI. (B) The C>P group ate significantly more candies during the cued 
food delivery task than did the P>C group (Wald X²[1] = 43.1, p<0.001). SE: standard error. 
Error bars: 95% CIs. 

 
Figure 3.4 (above): Average LPP responses for 
each parent picture category (Pleasant, 
Unpleasant, etc.) by LPP group. After averaging 
LPP amplitudes for the emotional image 
subcategories (pleasant: erotica and romance; 
unpleasant: mutilations, violence, and pollution) 
together, I found that the C>P group had higher 
LPP amplitudes for food cues than for pleasant 
images, whereas the P>C group had higher LPP 
amplitudes for pleasant images than for food 
cues. Error bars: 95% CIs. 
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(Wald X²[1] = 43.1, p<0.001). Demographic, biometric, and self-reported questionnaire data 

for the C>P and P>C groups are reported in Table 3.1. 

3.3.3 Time-frequency power  

To identify a set of EEG sensors to pool together in my analysis of theta power, I used the 

following procedure: using theta power as a dependent variable, I performed a repeated-

measures ANOVA with condition (candy, bead, and neutral) as a factor for each time point 

and each EEG sensor. To identify the sensors and time points at which theta power exhibited 

statistically significant differences across conditions, I determined thresholds for the F-values 

resulting from these ANOVAs using Bonferroni correction. I then selected the sensors that 

showed statistically significant differences between conditions (candy, bead & neutral) during 

the 0- to 200-msec time bin (see Figure 3.5 inset for this set of sensors), during which cognitive 

control-related effects in theta power are 

typically greatest (Cavanagh and Frank, 

2014). See Figure A1 of the Appendix 

for the topography of these F-values 

during this time bin.  

I then averaged theta power in the 0- 

to 200-msec time bin from this pooled 

set of sensors to obtain a single theta 

power value for each participant under 

the candy, bead, and neutral conditions. 

Figure 3.5 shows the time course of 

 
Figure 3.5: Time series data showing average theta 
power over mid-frontal scalp sites during the candy, 
bead & neutral experimental conditions. Theta power 
over midfrontal scalp sites (see inset for EEG 
electrode locations) increased during the candy and 
bead conditions but not when the participant was 
passively viewing neutral pictures. The box indicates 
the temporal ROI used to calculate theta power. The 
candies and beads were delivered at 0 msec. ROI: 
region of interest 
 

Theta ROI
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theta power in the Candy, Bead & Neutral conditions. 

I found that, on average, power increased when either 

candies or beads were dispensed to the participant, 

but not when they passively viewed neutral pictures.  

Next, to determine whether theta power differed 

between the C>P and P>C groups, I averaged the 

pooled and binned theta power values for these two 

groups. I found that the groups had similar dynamics 

in theta power under the candy, bead, and neutral 

conditions. A repeated-measures ANOVA 

demonstrated no significant interaction effect of 

group assignment (C>P and P>C) and condition 

(candy, bead, and neutral) (F[2, 

114] = 0.667, p = 0.515) on theta 

power. These data are shown in 

Figure 3.6.  

3.3.4 Classification of 

participants: theta power  

Cluster analysis of theta power 

identified two participant groups 

(Figure 3.7A): one with higher 

theta power for the candy 

condition than for the bead 

 
Figure 3.6 (above): Average theta 
power from the pooled midfrontal 
sensors in the 0-200 msec time bin 
under the candy, bead, and neutral 
conditions by C>P and P>C groups. I 
compared theta power for the candy, 
bead, and neutral conditions in the 
participant groups formed using k-
means clustering with LPP data. A 
repeated measured ANOVA found no 
significant difference between groups. 
(F[2, 114] = 0.667, p = 0.515) 

 
Figure 3.7 (above): I found that individual differences in 
theta power during food-related decision-making were 
predictive of cue-induced eating. (A) K-means clustering 
of theta power data identified two groups: one with higher 
theta power for the candy condition than for the bead 
condition (θCA>θBE group) and one with higher theta 
power for the bead condition than for the candy condition 
(θBE>θCA group). Error bars: 95% CIs. (B) The 
θCA>θBE group ate significantly more candies during the 
cued food delivery task than did the θBE>θCA group 
(Wald X²[1] = 41.5, p < 0.001). SE: standard error. Error 
bars: 95% CI. 

A B
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condition (θCA>θBE group) and the other with higher theta power for the bead condition than 

for the candy condition (θBE>θCA group). I then compared the number of candies eaten by 

these two groups during the experiment (Fig. 3.7B). Poisson regression analysis demonstrated 

that the θCA>θBE group ate significantly more candies than did the θBE>θCA group (Wald 

X²[1] = 41.5, p < 0.001). Demographic, biometric, and self-reported questionnaire data for the 

θCA>θBE and θBE>θCA groups are reported in Table 3.1.  

3.3.5. Classification of participants: LPP and theta power 

Next, to determine how both individual differences in the attribution of motivational 

salience to food cues and the engagement of cognitive control confer vulnerability to cue-

induced eating, I created four participant groups by crossing the results of the LPP and theta 

power classification procedures. I labeled these four groups 00 (the P>C and θBE>θCA 

groups), 01 (the P>C and θCA>θBE groups), 10 (the C>P and θBE>θCA groups), and 11 (the 

C>P and θCA>θBE groups). Demographic, biometric, and self-reported questionnaire data for 

these four crossed groups are reported in Table 3.2.  

After crossing the group assignments for both the LPP and theta power cluster analyses, 

Poisson regression analysis demonstrated a significant effect of group assignment on the 

number of candies eaten during the experiment (Wald X²[3] = 106.2, p < 0.001). Notably, 

although the individuals in group 00 ate the least, those in the three remaining groups had 

similar levels of eating behavior on average (Wald X²[2] = 0.825, p = 0.662) (Figure 3.8).  
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Table 3.2: Demographic, biometric, and self-reported data for crossed participant groups 
 Mean (SD) 

Characteristic 

Group 
00 

(n = 20) 

Group 
01 

(n = 11) 
p  

(00 vs. 01) 

Group 
10 

(n = 17) 
p  

(00 vs. 10) 

Group 
11 

(n = 11) 
p  

(00 vs. 11) 
Age, years 47 (9.15) 48 (7.62) 0.77 46 

(14.26) 
0.76 37 

(12.63) 
0.02 

Women, % 50 55 0.81 47 0.86 27 0.22 
Race, %        

Black/African 
American 

50 64  71  82  

White/Caucasian 35 27  18  9  
Asian 5 0  12  9  
More than one 
race 

5 9  0  0  

I prefer not to say 5 0  0  0%  
BMI, kg/m2 30 (5.73) 33 (9.83) 0.28 32 

(9.11) 
0.46 28 

(6.15) 
0.34 

Hispanic or Latino 
ethnicity, % 

10 27  12  0  

BIS attention 15.20 
(3.38) 

16.36 
(2.94) 

0.35 15.94 
(5.08) 

0.60 14.80 
(1.32) 

0.72 

BIS motor 21.20 
(3.07) 

21.18 
(4.90) 

0.99 20.88 
(4.72) 

0.81 22.10 
(3.48) 

0.47 

BIS Non-planning 13.65 
(2.85) 

12.91 
(2.17) 

0.46 13.53 
(2.83) 

0.90 12.20 
(2.30) 

0.17 

CESD 8.05 
(4.02) 

8.64 
(4.54) 

0.71 10.00 
(6.36) 

0.27 6.90 
(2.60) 

0.42 

SHAPS 1.45 
(2.52) 

0.09 
(0.30) 

0.09 0.88 
(1.93) 

0.45 2.10 
(4.25) 

0.60 

PANAS (+) 34.95 
(9.60) 

35.45 
(7.85) 

0.88 30.53 
(10.52) 

0.19 32.20 
(9.75) 

0.47 

PANAS (-) 16.25 
(6.26) 

18.73 
(10.75) 

0.42 20.06 
(8.02) 

0.11 15.00 
(4.37) 

0.58 

PFS 54.45 
(17.61) 

55.00 
(20.90) 

0.94 51.18 
(18.56) 

0.59 44.50 
(22.32) 

0.19 

FCQ 105.05 
(37.51) 

102.00 
(34.93) 

0.83 104.00 
(36.19) 

0.93 90.70 
(40.54) 

0.34 

WREQ routine 
restraint 

1.98 
(1.13) 

1.55 
(0.82) 

0.27 1.47 
(0.61) 

0.10 1.37 
(0.53) 

0.12 

WREQ 
compensatory 
restraint 

2.28 
(0.81) 

2.24 
(0.97) 

0.90 2.02 
(0.79) 

0.32 2.10 
(0.90) 

0.58 

WREQ 
susceptibility to 
external cues 

2.25 
(0.83) 

2.58 
(1.18) 

0.37 2.21 
(1.05) 

0.90 2.22 
(1.14) 

0.94 

WREQ emotional 
eating 

2.12 
(0.73) 

2.36 
(1.07) 

0.46 1.99 
(1.18) 

0.68 1.88 
(1.24) 

0.51 

SLIM 17.95 
(39.16) 

-20.50 
(42.70) 

0.02 -3.45 
(37.31) 

0.10 -2.91 
(28.17) 

0.13 

Number of candies 
eaten 

4 (8.89) 15 
(18.76) 

0.04 14 
(19.74) 

0.06 14 
(21.42) 

0.09 
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3.3.6 Demographics & covariates 

I conducted Poisson regression 

analysis modeling the effect of crossed 

group assignment on eating behavior 

which included the demographic, 

biometric, and questionnaire data 

outlined in Table 3.2 as covariates. I 

found a significant main effect of 

group assignment on eating behavior 

for all groups except for those with 

both LPP and theta risk factors (group 

01 AKA the P>C and θCA>θBE 

group) after controlling for factors 

such as hunger and satiety (Cardello et 

al., 2005), eating behavior (Lowe et al., 2009; Nijs et al., 2007), sensitivity to reward and 

punishment (Torrubia et al., 2001), mood (Watson et al., 1988), and impulsivity (Stanford et 

al., 2009).  

3.4 DISCUSSION 

This study was aimed at determining the role that individual differences in affective and 

cognitive brain systems have in regulating cue-induced eating. This work is informed by results 

from animal models demonstrating that individual differences in top-down attentional control 

and bottom-up attribution of motivational salience to food-related cues influence reward-

seeking behaviors. By investigating both food-related decision-making and the motivational 

 
Figure 3.8: I found that individuals with neither LPP 
nor theta-based “risk factors” (P>C & θBE>θCA 
[group 00]) ate the least of all four groups, but the three 
remaining groups exhibited similar levels of eating 
behavior on average. Poisson regression found a 
significant effect of group on eating behavior (Wald 
X²[3] = 106.2, p < 0.001) when comparing all four 
groups; however when group 00 was left out of the 
model, the difference between the three remaining 
groups was non-significant (Wald X²[2] = 0.825, p = 
0.662). SE: standard error. CI: confidence interval. 
Error bars: 95% CIs. 
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salience of cues, I aimed to elucidate how these mechanisms contribute to cue-induced eating 

behavior in humans. Because I found that both LPP and theta power-based groups showed 

statistically significant differences in eating behavior, it is likely that these mechanisms act 

independently to regulate eating behavior during the cued food delivery task. 

By applying cluster analysis to the LPP responses evoked by food-related and non-food-

related motivationally salient images, I identified two reactivity profiles associated with 

vulnerability to cue-induced eating: individuals with larger LPP responses to food-related cues 

than to pleasant images (C>P group) ate significantly more than did individuals with larger 

LPP responses to pleasant stimuli than to food-related cues (P>C group). These results 

replicate those from previous studies (Versace et al., 2016, 2018) and support the hypothesis 

that individual differences in the tendency to attribute motivational salience to food-related 

cues compared to other pleasant stimuli underlie vulnerability to cue-induced eating (Colaizzi 

et al., 2020; Flagel et al., 2011; Sarter and Phillips, 2018; Versace et al., 2017).  

Furthermore, I found that midfrontal theta power increased after the delivery of candies 

and beads, and individual differences in midfrontal theta power were associated with 

vulnerability to cue-induced eating. Specifically, individuals with higher phasic theta power 

following the delivery of candies than of beads (θCA>θBE) ate more during the cued food 

delivery task than did individuals with the opposite theta response pattern (θBE>θCA). 

Authors have proposed that changes in theta power over midfrontal scalp sites represent an 

index of the engagement of cognitive control mechanisms (Cavanagh and Frank, 2014) 

because midfrontal theta tends to increase when an individual is executing a task that requires 

increased attentional demands, such as inhibiting prepotent responses (Haciahmet et al., 2021; 

Nigbur et al., 2011) and performing otherwise cognitively demanding tasks (Wang et al., 
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2018). In light of these findings, the results of the present study suggest that some individuals 

struggle with food-related decision-making and that these individuals are more likely to engage 

in cue-induced eating when a palatable food option is available (Hall, 2016; Stice et al., 2019).  

In addition, I found that the LPP-based and θ-based reactivity profiles likely reflect 

affective and cognitive mechanisms that independently contribute to cue-induced eating. This 

is evidenced by the finding that the C>P and P>C groups had similar theta power dynamics 

during food-related decision-making. Furthermore, after crossing the group assignments for 

the LPP and theta-based cluster analyses, I found that the group with neither the LPP nor the 

theta risk factor (P>C and θBE>θCA group) ate the least of all four groups, and that the three 

remaining groups exhibited similar levels of eating behavior on average. These results imply 

that individuals at risk for cue-induced behaviors due to the presence of both LPP and theta-

based risk factors are no more vulnerable to cue-induced behaviors than are those who have 

only one of these two risk factors. Further studies are needed to determine if this finding is 

consistent across populations and paradigms.  

Whereas the validity of the LPP in predicting cue-induced behavior has been well 

replicated (Versace et al., 2012, 2018; Versace and Kypriotakis, 2022) and is consistent with 

theoretical models concerning the motivational salience of cues (Pitchers et al., 2018; Sarter 

and Phillips, 2018), the predictive validity of a theta-based correlate described in the present 

study is novel and should be considered preliminary until replicated.  

Although in previous studies researchers have used theta power to index the engagement 

of higher cognitive functions during the execution of cognitively demanding tasks (Cavanagh 

and Frank, 2014), in the present study, I did not explicitly manipulate cognitive load during 

food-related decision-making. Because I did not explicitly manipulate cognitive control via a 
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cognitively demanding task, inferring from these results that the observed dynamics in theta 

power are in fact due to the engagement of higher cognitive functions remains speculative.  

Also, although my results suggest that individual differences in the ability to exert 

cognitive control are independent from the tendency to attribute motivational salience to cues, 

studies using preclinical models suggested that these two cognitive-motivational styles are 

coupled: animals with high motivational salience attributed to food-related cues are also more 

impulsive and less able to implement top-down attentional control in the presence of cues than 

are those who do not attribute high motivational silence to food-related cues (Koshy Cherian 

et al., 2017; Paolone et al., 2013; Pitchers et al., 2017c; Sarter and Phillips, 2018).  

Considering these incongruous findings, theta power analysis as implemented in the 

present study may not capture the same aspects of cognitive control that are captured using 

animal models, which may be more related to impulsivity specifically than to top-down 

attentional control in general (see Chapter 4, section 4, pages 60-62 for a further discussion of 

impulsivity and top-down attentional control). The self-reported data did not demonstrate 

significant differences in impulsivity scores between groups, which may explain the divergent 

findings of the present study and those in the animal literature.  

Meanwhile, results from human and animal studies of cue-induced behavior may be 

inconsistent because of the inherent differences between humans and animal models (Colaizzi 

et al., 2020): complex human behaviors result from a more evolved cognitive control system 

(Hall, 2016) than that of animal models and thus might not be probed as effectively using 

animal behavioral approaches. Further studies leveraging the paradigm that we used here will 

facilitate the bidirectional translation and improvement of both animal models and human 

subjects research investigating cue-induced behavior.  
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My findings are consistent with those for neurobiological models suggesting that both high 

reactivity to food-related cues and deficits in cognitive control can lead to excessive eating 

(Stice and Yokum, 2016). Moreover, because my results suggest that cognitive control and 

reward networks independently contribute to cue-induced eating, these findings further 

emphasize the need for individualized treatments of maladaptive, reward-seeking behaviors.  

These findings have worthwhile clinical implications: by separating the roles of both 

affective and cognitive psychophysiological correlates in predicting cue-included eating, it is 

possible to identify potential biomarkers of vulnerability to overeating and obesity that could 

guide treatment decisions. For example, using repetitive transcranial magnetic stimulation 

(rTMS), a non-invasive neuromodulation technique (Klomjai et al., 2015), a clinician can 

upregulate brain activity in cognitive control networks (George et al., 2010) or downregulate 

brain activity in reward networks (Hanlon et al., 2018).  

Thus, a patient identified to have high affective vulnerability may be selected for inhibitory 

rTMS of the ventromedial prefrontal cortex, which is commonly implicated in reward 

processing (Kearney-Ramos et al., 2018). Also, a patient with cognitive vulnerability may be 

more effectively treated with excitatory rTMS of the dorsolateral prefrontal cortex, which is 

commonly implicated in executive control (Niendam et al., 2012). 

In conclusion, my results demonstrated that both the amplitude of the LPP and theta power 

are predictive of cue-induced eating behavior, suggesting that both affective and cognitive 

mechanisms are implicated in the regulation of cue-induced eating. By simultaneously 

measuring both the amplitude of the LPP and theta power while participants were in the 

presence of food-related cues and actual food rewards, I clarified the mechanisms underlying 

cue-induced eating behaviors. Continuing this line of investigation may inform clinicians of 
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mechanisms underlying maladaptive eating and may foster the development of personalized 

clinical interventions for excessive eating.   
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CHAPTER 4: Discussion 

4.1 Overview 

Previous work has investigated the role of individual differences in affective processing of 

cues, finding that individuals who attribute high levels of incentive salience to food cues are 

more likely to engage in maladaptive behaviors such as cue-induced eating (Versace et al., 

2018). Furthermore, there is a body of research demonstrating that cognitive control enables 

top-down attentional control over cues (Campus et al., 2019), thereby allowing an individual 

to resist maladaptive behaviors in a goal-oriented fashion (Pitchers et al., 2018, 2017a). 

Although substantial evidence implicates both cognitive and affective mechanisms 

independently, there is a need for research characterizing how both cognitive control and 

incentive salience act in tandem to regulate cue-induced eating.  

In light of this gap in knowledge, my dissertation is aimed at answering the following 

question: are individuals with heightened incentive responses to cues also impaired in their 

top-down attentional control, or do they possess an otherwise typical cognitive control system? 

I hypothesized that individuals with heightened incentive responses to cues would also show 

impaired top-down attentional control over cues, which is in line with the animal literature 

concerning sign- and goal-trackers (Koshy Cherian et al., 2017; Paolone et al., 2013). To test 

this hypothesis, I monitored psychophysiological measures of affective processing of cues 

(LPP amplitude) and cognitive control (theta power) during a controlled cued food delivery 

task (see Figure 3.1). I then used k-means clustering to identify individual differences in both 

metrics.  

Although I did find the expected LPP groups (P>C and C>P; see also Figure 3.2), I did 

not find significant differences in theta between these two groups (Figure 3.5). I did, however, 
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find that there are individual differences in theta power during food-related decision-making 

and that these differences are predictive of cue-induced eating (see Figure 3.6). I then crossed 

group assignment from both cluster analyses, creating four groups with varying “risk factors” 

(neither LPP nor theta, LPP only, theta only, both risk) based on their LPP and theta responses. 

I found that individuals with neither risk factor at the least of all four groups, but the remaining 

three groups showed similar levels of eating behavior on average (see Figure 3.7).  

4.2 Controlling for the incentive salience of cues preceding non-food objects 

In this experiment, participants completed a controlled version of the cued food delivery 

task used in previous studies (Deweese et al., 2015), in which participants are dispensed 

candies after one category of food cue (sweet or savory, counterbalanced across participants) 

and beads after the other (see Figure 3.1). The bead condition was added to the experiment to 

determine whether the observed effects are related to the incentive salience of cues preceding 

food rewards, or if rather the receipt of any non-food object may also elicit the same effects. I 

found that, despite the addition of the candy condition, I was still able to reproduce previous 

findings: the P>C and C>P groups persisted in my data, and the addition of the bead condition 

did not appear to substantially change the overall pattern of LPP responses (Figure 3.2). From 

these findings, I can conclude that the patterns of LPP responses observed during a cued food 

delivery task are related to the incentive salience of food cues, rather than the receipt of any 

non-food object. 

4.3 Stimulus-locked ERPs and time-frequency power 

I elected to use time-frequency analysis rather than event-related potentials to characterize 

cognitive control during the cued food delivery task to compensate for uncertainty in the timing 

of the decision-making process. To calculate an ERP, it is necessary to precisely time-lock to 
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the exact event of interest and then average together many time-

locked segments from multiple different trials (Handy, 2005; S. 

Luck, 2014). Because I am interested in the engagement of 

cognitive control during food-related decision-making, I would 

need to time-lock to the exact moment that the participant 

decides to eat or discard the candies to calculate an ERP. 

However, because the participant makes a spontaneous choice 

in this experiment, it is uncertain exactly what time each 

participant makes this decision (Cosme et al., 2020). In the case 

of ERPs, out-of-phase signals will cancel out when averaged 

together (S. J. Luck, 2014a), making it difficult to determine if 

any observed ERP effects are truly related to cognitive 

processing or rather due to out-of-phase signals nullifying any true brain activity (Figure 4.1). 

I addressed these concerns in two ways: first, by focusing on the analysis of time-frequency 

power, and second by time-locking to the delivery of the candy, rather than the presentation of 

the picture. 

By analyzing time-frequency power, I may visualize brain activity without nullifying out-

of-phase signals during the averaging process. When using wavelet-based techniques to 

conduct time-frequency analysis, power can be thought of as the coefficient of the wavelet 

transform. The output of a wavelet transform is always positive, and where there is higher 

power, there is higher activity in that frequency band (Hermann et al., 2005; Samar et al., 

1999). Power does not cancel out when averaging together out-of-phase signals (S. J. Luck, 

2014b), which allows me to visualize brain activity associated with an event that may take 

 
Figure 4.1: Out-of-phase ERP 
waveforms will cancel out 
during the averaging process. 
(A) Two out-of-phase 
waveforms (red and blue) 
overlaid on top of each other. (B) 
After averaging, these two out-
of-phase waveforms (dash-dot, 
red and blue), will result in a null 
waveform (purple) 

A 

B 
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place at a variety of latencies. In this case, by focusing on theta power, I may visualize brain 

activity likely associated with cognitive control that takes place during the uncertain period in 

which the participant is deciding to eat or discard candies dispensed during the task. 

However, despite the aforementioned concerns, a preliminary analysis of phase 

information from this experiment suggests that time-locking to the delivery of the candy or 

bead adequately addressed these uncertainties in latency. After analyzing phase information 

from EEG segments that were time-locked to the delivery of the candy or bead, I primarily 

found in-phase signals, suggesting that the brain activity visualized here is likely evoked (See 

Figure A2). A summary of these analyses is outlined in Section 2 of the Appendix. 

4.4 Theta power does not differ between P>C and C>P groups  

Based on the findings from the animal literature that sign-trackers show impaired top-down 

attentional control relative to goal-trackers, I hypothesized that C>P individuals, my analog to 

sign-trackers in humans, would show attenuated theta power during food-related decision-

making relative to P>C individuals, my analog for goal-trackers in humans. However, I found 

no significant differences in theta power between groups (Figure 3.5). Because individuals in 

the C>P group did not also show attenuated theta relative to the P>C group, this suggests that 

humans with enhanced incentive responses to cues do not also possess an impaired cognitive 

control system. Furthermore, this finding suggests that affective and cognitive mechanisms as 

measured by the LPP and theta in this experiment independently contribute to cue-induced 

behaviors. 

These findings are limited by some confounding factors. First, it is important to clarify that 

sign- and goal-tracking as described using animal models are behaviors (Brown and Jenkins, 

1968; Sarter and Phillips, 2018); meanwhile, the present study outlines the underlying brain 
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mechanisms that lead to outcomes resembling sign- and goal-tracking in humans. Many studies 

investigating human analogs of sign-tracking have used other behavioral measures, such as 

eye-tracking, to model the sign- and goal-tracking styles seen in Pavlovian conditioned 

approach paradigms, while others may also focus on underlying neurobiology (Anselme and 

Robinson, 2020; Schad et al., 2019; Tomie et al., 2008). Because the present study investigates 

underlying brain activity related to these cognitive-motivational styles rather than the sign- and 

goal-tracking behaviors themselves, it may not be appropriate to make direct comparisons 

between my results and those from animal models (Stephens et al., 2011). 

Moreover, this inconsistency between the animal literature and my results may relate to the 

inherent differences between animals and humans, especially in the cognitive domain. Humans 

have evolved much more sophisticated cognitive control systems than most animal models and 

as a consequence have a more developed prefrontal cortex than rodents (Laubach et al., 2018). 

These differences in underlying brain mechanisms lead to profound differences in cognitive 

faculties, thereby enabling much more complex behaviors and self-regulation abilities in 

humans (Hall, 2016). For these reasons, I hesitate to draw direct comparisons between human 

and rodent neurobiology based on the results of my dissertation research. 

Finally, it may be that the observed differences in top-down attentional control that are 

commonly found in animal models may be more reflective of impulsivity than true cognitive 

control (Colaizzi et al., 2020; Spoelder et al., 2017). Cognitive control encompasses a family 

of various executive functions, each of which have separate roles and characteristics, and when 

exerting cognitive control, and individual is using one or more of these executive functions 

toward some goal or outcome (Hogarth et al., 2012; Niendam et al., 2012). One executive 

function included in cognitive control is response inhibition, or inhibitory control, which 
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allows an individual to inhibit a prepotent response. For example, if someone is predisposed 

to compulsive eating, inhibitory control enables that individual to stop themselves from eating 

(Kohl et al., 2018).  

Although attenuated top-down cognitive control is often associated with impulsivity, these 

constructs are not identical. Impulsivity is a trait in which an individual tends to act prematurely 

without foresight (Leshem, 2016). Much like the various executive functions that are a part of 

cognitive control, there are various domains of impulsivity, including sensory or reflection 

impulsivity, motor impulsivity or impulsive action, reward sensitivity or impulsive choice 

impulsivity, and risky decision making. Thus, these are a set of behavioral characteristics that 

can vary between individuals. Also, these behaviors described by impulsivity are dependent 

on an individual’s ability to engage executive function in various contexts, such as motor 

control, sensory gating, or decision-making (Dalley et al., 2011). 

Of note, attenuated top-down cognitive control is associated with both impulsivity and 

compulsivity (Robbins et al., 2012). In rodent models, sign-trackers show enhanced affective 

processing of cues as well as attenuated cognitive control compared to goal-trackers (Pitchers 

et al., 2017a), which often manifests as impulsivity (Spoelder et al., 2017). Meanwhile, in our 

human analog of sign- and goal-tracking (P>C and θCA>θBE groups, etc), I found that our 

metrics of affective processing of cues and cognitive control were independent of one another. 

While many behavioral assays in animals are able to effectively probe response inhibition,  

Because we did not explicitly instruct participants not to eat the candies dispensed during 

the task, the present study demonstrated brain activity associated with response selection rather 

than directly measuring response inhibition, which is commonly implicated in impulsivity. For 

the aforementioned reasons, it appears that the impulsivity that differs between sign- and goal-
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trackers in animal models is not being directly manipulated in the present study. In this case, I 

would not be comparing analogous brain mechanisms. In fact, my self-report data for the 

participant groups show no significant differences in impulsivity as measured by the Barratt 

Impulsiveness Scale (Patton et al., 1995; Stanford et al., 2009; see Tables 3.1 and 3.2). 

4.5 Increases in theta power predict cue-induced eating 

 I found that theta increases during the candy and bead conditions of the controlled cued 

food delivery task, but not during other conditions (Figure 3.4). This finding indicates that 

theta increases when the participant needs to make a behavioral response, which is consistent 

with the literature indicating that theta is involved in response monitoring and internal attention 

(Cavanagh et al., 2012; Cooper et al., 2015; Eschmann and Mecklinger, 2022; Janowich and 

Cavanagh, 2019; Kam et al., 2019; Sandre and Weinberg, 2019). I also found that individual 

differences in theta power responses to the Candy and Bead conditions were predictive of cue-

induced eating.  

Because cognitive control enables self-regulation of eating, I expected that individuals with 

higher theta, my exploratory metric of cognitive control, during the candy condition would eat 

less than those with lower theta power during the candy condition. However, I found the 

opposite result: the θCA>θBE group ate significantly more than the θBE>θCA group (Figure 

3.6). This counterintuitive finding may mean that individuals in the θCA>θBE group must 

engage cognitive control mechanisms to higher levels than θBE>θCA individuals to resist 

eating. These individuals may struggle with food-related decision-making, making them more 

likely to engage in cue-induced eating when a palatable food reward is available (Berthoud, 

2012; Hall, 2016; Stice et al., 2019). 
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4.6 Theta power as a metric of cognitive control during food-related decision making 

Based on the literature indicating that power in the theta frequency band increases when 

participants complete cognitively demanding tasks (Cavanagh and Frank, 2014; Haciahmet et 

al., 2021; Janowich and Cavanagh, 2019; Sandre and Weinberg, 2019), I aimed to use theta 

power in an exploratory fashion as a metric of the engagement of cognitive brain systems 

during food-related decision making. However, most studies investigating theta as a metric of 

cognitive control use canonically cognitive tasks such as the Go/No-Go or Stroop tasks 

(Eschmann and Mecklinger, 2022; McDermott et al., 2017; Nigbur et al., 2011).  

Because the cued food delivery task is not a validated task for the study of cognitive 

control, it is speculative to conclude that the brain activity seen during the candy and bead 

conditions is reflective of cognitive processing. It is possible that my findings concerning theta 

power during the cued food delivery task are not reflective of the engagement of cognitive 

control, but perhaps another mechanism that remains to be identified. 

4.7 Individuals with only one risk factor are just as vulnerable as those with both 

After obtaining the groups from both cluster analyses (LPP and theta), I crossed group 

assignments to create a total of four groups: those who are not at risk of cue-induced eating 

based on their LPP or theta responses (P>C & θBE>θCA group), those who are at risk based 

on their LPP responses only (C>P & θBE<θCA group), those who are at risk based on their 

theta responses only (P>C & θCA>θBE group), and finally those who are at risk based on both 

measures (C>P & θCA>θBE group). I found that individuals with neither risk factor (LPP or 

theta) ate the least of all four groups, but the three remaining groups show similar levels of 

eating on average (Figure 3.7).  

Although my findings confirm my prediction that individuals with no risk factors would 
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eat the least of all four groups, I did not expect to find that individuals with both risk factors 

eat similarly to those with only one risk factor. If each risk factor contributes equally to an 

individual’s propensity for cue-induced eating, then why would individuals with both risk 

factors eat as many candies as those with only one? This finding suggests that having only one 

risk factor is just as deleterious as having two, which further supports the hypothesis that 

cognitive and affective mechanisms as indexed in the present study independently contribute 

to reward-seeking behaviors.  

4.8 Future directions 

 Because the cued food delivery task is not yet a validated probe of cognitive control, future 

studies may build upon this research by employing validated tasks for the study of cognitive 

control in addition to the cued food delivery task. By collecting data using both a validated 

cognitive task, such as a Stroop, Flanker, or Go/No-Go tasks (Imburgio et al., 2020; Raud et 

al., 2020; Reyes et al., 2015), and a cued food delivery task, it is possible to compare one 

subject’s brain activity during a canonically cognitive task against their activity during the cued 

food delivery task, thereby corroborating whether cognitive control is indeed manipulated 

during the cued food delivery task.  

For example, should researchers observe increases in theta power during a canonically 

cognitive task that are comparable to those theta power increases found during a cued food 

delivery task in the same individual, it would support the conclusion that increases in theta 

during the cued food delivery task are in fact related to cognitive control.  

Additionally, because we did not explicitly instruct the participants not to eat the candies 

dispensed during the cued food delivery task, I can’t decisively conclude that the brain activity 

recorded during the present study is related to response inhibition specifically, but rather to 
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response selection in general. The next version of this study should include a condition in 

which the participant is explicitly instructed not to eat, so that food-related inhibitory control 

can be directly manipulated and measured.  

 Furthermore, it may be worthwhile for future studies to employ imaging modalities 

beyond merely EEG in order to further elucidate the underlying brain mechanisms involved in 

the cued food delivery task. EEG alone lacks the spatial resolution to infer which underlying 

neuroanatomical structures are implicated in a given experiment; however, modalities 

leveraging magnetic resonance can effectively address such limitations. Thus, an experiment 

employing concurrent EEG-fMRI could identify the specific neuroanatomical locus associated 

with the cognitive and affective processing probec in the present study.  

In addition to collecting EEG, future studies could also collect diffusion imaging data from 

those same participants, which would allow investigators to compare structural connectivity 

between the P>C, θBE>θCA, etc groups identified using EEG. A similar approach could be 

implemented using resting state fMRI to identify if there are differences in functional 

connectivity between groups as well. Finally, magnetic resonance spectroscopy (MRS) 

approaches could allow future investigators to identify neurotransmitter systems implicated in 

these individual differences in LPP and theta power found in the present study. 

It may also be worthwhile to manipulate the cued food delivery task itself, such that the 

participant must directly engage top-down cognitive systems. For example, if experimenters 

explicitly instruct the participant not to eat the candies dispensed during the task, they may 

visualize the brain activity associated with a top-down control aimed at resisting eating. Thus, 

we may more concretely observe the brain activity involved in food-related response inhibition 

(Houben et al., 2014), rather than the brain activity responsible for general food-related action 
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planning (Cavanagh et al., 2012; Houben et al., 2014; Wang et al., 2018; Zilverstand, 2018). 

Finally, future studies should attempt to replicate these findings using a different 

participant sample to determine if these results are consistent across populations. It is possible 

that many extraneous factors not directly manipulated or measured in the present study could 

influence our findings: for example, various personality traits could lead to differences in 

executive functioning, and cultural factors could influence an individual’s eating behavior 

(Sharma and Padwal, 2010; Simon et al., 2010). Furthermore, because individuals with 

psychiatric or other disorders were excluded from the present study, the effects observed in the 

present study may not generalize well to patient populations. 

4.9 Clinical applications 

 My dissertation research demonstrates that both incentive salience and top-down 

attentional control mechanisms contribute to cue-induced behaviors. Furthermore, my results 

also suggest that these mechanisms act independently. Because these individual differences in 

incentive salience and top-down cognitive control independently contribute to reward-seeking 

behaviors, treatments directed at reducing emotional responses may not ameliorate 

maladaptive behaviors in individuals with cognitive vulnerabilities and vice versa. This in turn 

emphasizes the need for individualized treatments aimed at reducing maladaptive, reward-

seeking behaviors (Frank et al., 2019). 

By characterizing the underlying brain activity associated with cue-induced eating, this 

research may inform the development of future treatments aimed at reducing maladaptive, cue-

induced behaviors such as compulsive eating or substance use. The underlying neural 

correlates associated with these vulnerabilities, namely, incentive salience and top-down 

attentional control, could become targets for the development of treatments aimed at reducing 
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maladaptive behaviors.  

For example, if an individual is identified via EEG to have heightened LPP responses to 

food cues, clinical researchers may identify that individual as having affective vulnerabilities 

to cue-induced eating. This person could then be selected to receive inhibitory repetitive 

transcranial magnetic stimulation (rTMS) treatment stimulating reward-related areas of the 

brain, such as the medial prefrontal cortex (mPFC) (Hanlon et al., 2018; Kearney-Ramos et 

al., 2018). In so doing, this may reduce the attribution of incentive salience to food cues, 

thereby limiting cue-induced eating.  

Similarly, an individual with theta power responses that are greater during the candy 

condition may be selected for excitatory rTMS stimulation of the dorsolateral prefrontal cortex 

(dlPFC). Hypothetically, this would enable top-down control or reduce the activity of the 

brain’s reward system (Li et al., 2017; Notzon et al., 2018). Furthermore, including an rTMS 

component to such work would further help to elucidate the underlying brain mechanism of 

interest. For example, if we were to find that rTMS stimulation of dlPFC increases theta 

responses, we may conclude that theta as measured in this experiment is indeed reflective of 

cognitive processing. 

 In addition to brain stimulation treatment modalities, this work could also be used to 

determine which patients to allocate to various treatments. For example, by using the P>C and 

C>P group assignments, collaborators from the Versace lab were able to develop an algorithm 

for determining which individuals are at risk for smoking relapse (Frank et al., 2019) . Similar 

work using the LPP has also identified who was a better candidate for particular medications: 

one study found that the C>P group responded better to varenicline than to bupropion as a 

smoking cessation treatment (Cinciripini et al., 2017). Future research integrating theta into 
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these predictions may be better able to identify ideal candidates for particular medications, or 

who to monitor for relapse risk. 

4.10 Conclusions 

My dissertation provides multiple impactful contributions to both the fields of 

psychophysiology and the translational neuroscience of addiction. Specifically, this research 

addresses multiple important gaps in the literature: statistical methods for psychophysiology 

experiments investigating the LPP, theta power as an exploratory metric of cognitive control 

during food-related decision making, and the interaction between emotion & cognition in 

regulating cue-induced eating, to name a few. By characterizing brain activity during affective 

processing of cues and food-related decision-making, this work may identify how both 

mechanisms act in concert to regulate cue-induced eating. Ultimately, this allows clinical 

investigators to elucidate not only the affective mechanisms that make some individuals 

vulnerable to cue-induced eating, but also the cognitive mechanisms that make others resilient. 

In Chapter 2, I reported the results from statistical power calculations of ERP studies 

investigating the LPP, thereby providing a key resource allowing psychophysiologists to 

design sufficiently powered ERP experiments. This work outlines the estimated statistical 

power of both within-subject and between-subjects experiments investigating the LPP at 

varying combinations of numbers of subjects, numbers of trials, and effect sizes. By making 

this reference material available, this work enables other researchers to design sufficiently-

powered ERP studies investigating the LPP, which therefor ensures more reliable and 

reproducible results. This bolstered reproducibility may in turn foster the development of more 

effective treatments for psychological disorders.  

Next, in Chapter 3, I outlined how psychophysiological metrics of cognitive control 
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(theta) and incentive salience (LPP) are predictive of subsequent cue-induced eating behavior. 

Because theta power has not yet been employed as a metric of cognitive control during a cued 

food delivery task, I was able to identify in an exploratory fashion whether the theta power 

dynamics as observed in this experiment were consistent with the literature. I found that theta 

power increased during conditions that required the participant to make a decision or response, 

meanwhile there were no changes in theta when the participant was passively viewing images. 

This is consistent with previous findings demonstrating that power in the theta frequency band 

increases when the participant must engage higher cognitive functions. Thus, in this research 

I demonstrated a novel use of time-frequency analysis in monitoring higher cognitive functions 

during food-related decision making. 

The experiment outlined in Chapter 3 is also novel: as compared to previous versions of 

the cued food delivery task, this task includes a control condition, during which the participant 

is dispensed a bead rather than a candy reward. By analyzing data collected during the 

controlled version of the cued food delivery task, I was able to identify how, if at all, the brain 

reacts to the receipt of any non-food object during this task. Thus, this experimental 

manipulation allowed me to address the following question: are the observed effects due only 

to the incentive salience of receiving any object, or are these findings specific to food rewards?  

I found that including the bead condition did not change the overall pattern of LPP 

responses observed previously: some individuals were more reactive to food cues than pleasant 

images, and vice versa. From these findings I can conclude that the individual differences in 

LPP responses and the differences in eating behavior between groups are likely due to the 

brain’s reactivity to cues predicting food rewards, and not to any non-food object. 

Finally, as a part of the research outlined in Chapter 3, I used both theta power and the 



73 
 

LPP to successfully predict cue-induced eating behavior. Previous studies using the cued food 

delivery task have focused primarily on the LPP, and as such the use of theta power in this way 

provides novel information regarding the role of higher cognitive functions during a cued food 

delivery task. I found that by leveraging k-means clustering, I was able to identify groups with 

two distinct patterns of both LPP and theta power responses, and these groups identified using 

k-means showed significant differences in eating behavior as well.  

Next, by crossing group assignment for both of the two cluster analyses, I found that 

individuals with neither the LPP or theta-based “risk factor” ate the least of all four groups, but 

the three remaining groups showed similar levels of eating behavior on average. While our 

findings for the “no risk” group were consistent with my expectations, the finding that 

individuals with both risk factors ate as much as those individuals with only one risk factor 

was not in keeping with my predictions. These findings suggest that, while both metrics are 

predictive of cue-induced eating, they likely are related to underlying cognitive and affective 

mechanisms that confer risk for cue-induced eating independently of one another.  

From these findings, I can conclude that while both cognitive control and incentive salience 

are responsible for regulating cue-induced eating, they likely do so independently. Ultimately, 

this work allows us to identify not only the mechanisms that make some individuals vulnerable 

to maladaptive behaviors, but also the mechanisms that make others resilient. This research is 

likely to translate into more effective evidence-based treatments for mitigating maladaptive 

behaviors, thereby furthering the development of precision medicine approaches for 

ameliorating addictive disorders.  
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APPENDIX 

1. Choosing the set of sensors for the analysis of mid-frontal theta power 

 To analyze theta power information depicted in 

Figures 3.5-3.7, I pooled power (µV2) in the theta (4-8 

Hz) frequency band from the set of sensors depicted in 

Figure 3.5. This choice of sensors was based both on 

the literature and on my exploratory findings. Previous 

work has found that changes in theta related to cognitive 

control are highest at mid-frontal scalp sites during the 

0-200msec time bin. To determine exactly which mid-

frontal sensors to use in this analysis, I conducted a 

repeated measures ANOVA comparing theta power for 

the candy, bead, and neutral conditions for each 

timepoint and sensor. After conducting Bonferroni correction for multiple comparisons, I then 

visualized the topography of these F-values on the scalp surface, focusing on statistically 

significant sensors during the 0-200 msec time bin (Figure A1). The analysis of theta power 

presented in Chapter 3 was conducted using the sensors depicted in Figure A1. 

2. Phase information from Candy & Bead trials suggest that brain responses are 
primarily evoked 

As mentioned in Section 4.3, I focused on the analysis of time-frequency power rather than 

ERPs to ascertain brain activity related to the decision-making process. This was intended to 

accommodate the fact that, because I do not know exactly when the participant decides to eat 

or discard the candies dispensed during the task, it is possible that out-of-phase signals would 

cancel out when averaged together (Figure 4.1). Furthermore, unlike the analysis of the LPP, 

 
Figure A1: EEG sensors showing 
statistically significant differences 
between Candy, Bead, and Neutral 
conditions during the 0-200msec 
time bin after Bonferroni correction. 
Critical F ≈ 9.6 (α = 0.05) 
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I also time-locked my EEG segments for this analysis to the delivery of the candy rather than 

the presentation of the picture.  

 Although the analysis of time-frequency power was fruitful in allowing me to predict cue-

induced eating behavior, it appears that time-locking to the delivery of the candy was sufficient 

to accommodate the confounds mentioned above. To ascertain if the time-frequency data 

shown in Chapter 3 were related to a true brain oscillation, I conducted a preliminary analysis 

of phase information from EEG segments that were time-locked to the delivery of the candy. 

I then conducted a continuous wavelet transform based on a Morlet complex wavelet function 

with linear frequency steps from 1 to 40 Hz. These data were normalized using a Gabor 

normalization and were calculated with a Morlet parameter of 5. The phase data were output 

as complex values, and I then averaged these complex values to calculate phase-locking factor.  

Spectrograms visualizing phase information for the Candy, Bead, and Neutral conditions 

are depicted in Figure A2. I found phase locking at 0 msec (candy/bead delivery) for the candy 

and bead conditions, but not for the neutral condition during which no reward was dispensed. 

Because we see phase-locking at 0 msec during trials in which the participant needs to make a 

decision, but not during trials in which the participant is passively viewing neutral pictures, it 

is likely that the brain responses to the candy and bead are evoked, rather than induced. 
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Figure A2: Spectrograms from 1-40 Hz depicting phase information for the Candy (A), Bead (B), 
and Neutral (C) conditions of the cued food delivery task. The candy or bead was dispensed at 0 
msec. I found phase-locking at 0 msec in the candy and bead conditions, but no phase-locking at 
0 msec in the neutral condition. This suggests that brain activity associated with the decision-
making process during this task is evoked, rather than induced.  

-1500 -1000 -500 0 500 1000          1500

40

35

30

25

20

15

10

5

0

Time after candy delivery (msec)

Fr
eq

ue
nc

y 
(H

z)

Phase-locking factor

A

-1500 -1000 -500 0 500 1000          1500

40

35

30

25

20

15

10

5

0

Time after candy delivery (msec)

Fr
eq

ue
nc

y 
(H

z)

Phase-locking factor

B

-1500 -1000 -500 0 500 1000          1500

40

35

30

25

20

15

10

5

0

Time after candy delivery (msec)

Fr
eq

ue
nc

y 
(H

z)

Phase-locking factor

C



77 
 

3. Copyright information 

 a. Colaizzi et al 

 

    
 

 

Order Date 02-Jun-
2022 
Order License ID 1228384-1 
ISSN 1873-7528 

Type of Use Republish in a 
thesis/dissertati
on 

Publisher Elsevier Science 
Portion Image/photo/illustration 

 

LICENSED CONTENT 
 

Publication Title Neuroscience and 
biobehavioral 
reviews 

Article Title Mapping sign-tracking 
and goal-tracking onto 
human behaviors. 

Author/Editor International 
Behavioral 
Neuroscience 
Society. 

Date 12/31/1977 
Language English 
Country United Kingdom of 

Great Britain and 
Northern Ireland 

Rightsholder Elsevier Science 
& Technology 
Journals 

Publication Type e-Journal 
Start Page 84 
End Page 94 
Volume 111 
URL

 http://www.scie
ncedirect.c 
om/science/journal/01
497 634 

REQUEST DETAILS    

Portion Type Image/photo/illustration Distribution Worldwide 
Number of images / 
photos / illustrations 
Format (select all 
that apply) 
Who will republish 
the content? 

1 
 

Electronic 
 

Academic 
institution 

Translation Original 
language of 
publication 

Copies for the disabled?
 N
o Minor editing privileges?
 N
o 
Incidental promotional
 N
o use? 

Duration of Use Life of current 
edition 
Lifetime Unit Quantity Up to 499 

Rights Requested Main product 

This is a License Agreement between Kyla Gibney ("User") and Copyright Clearance Center, Inc. ("CCC") on behalf 
of the Rightsholder identified in the order details below. The license consists of the order details, the CCC Terms 
and Conditions below, and any Rightsholder Terms and Conditions which are included below. 
All payments must be made in full to CCC in accordance with the CCC Terms and Conditions below. 



78 
 

  

b. Versace et al 2018 

 

    
 

 

Order Date 02-Jun-
2022 
Order License ID 1228389-1 
ISSN 1469-8986 

Type of Use Republish in a 
thesis/dissertati
on 

Publisher BLACKWELL 
PUBLISHING 
Portion
 Chart/graph/table/figu
re 

 

LICENSED CONTENT 
 

Publication Title Psychophysiology 

Article Title The reality of "food 
porn": Larger brain 
responses to food-
related cues than to 
erotic images predict 
cue- induced eating. 

Author/Editor Society for 
Psychophysiologi
cal Research 
(U.S.) 

Date 12/31/1998 

Language English 

Country United Kingdom of 
Great Britain and 
Northern Ireland 

Rightsholder John Wiley & Sons - 
Books 

Publication Type e-Journal 

Issue 4 

Volume 56 

URL
 http://www.jour
nals.cup.o 
rg/bin/bladerunner? 
REQUNIQ=980779405
&RE 
QSESS=9556842&1160
00R 
EQEVENT=&REQINT2=
0&R 
EQSTR1=PGY&REQAUT
H= 0 

REQUEST DETAILS 

Portion Type Chart/graph/table/figure Distribution Worldwide 

Number of charts / 
graphs / tables / 
figures requested 
Format (select all 
that apply) 
Who will republish 
the content? 

1 
 
 
 

Electronic 
 

Academic 
institution 

Translation Original language 
of publication 

Copies for the disabled?
 N

o Minor editing privileges?
 N
o 

Incidental promotional
 N
o use? 

This is a License Agreement between Kyla Gibney ("User") and Copyright Clearance Center, Inc. ("CCC") on behalf 
of the Rightsholder identified in the order details below. The license consists of the order details, the CCC Terms 
and Conditions below, and any Rightsholder Terms and Conditions which are included below. 

All payments must be made in full to CCC in accordance with the CCC Terms and Conditions below. 



79 
 

 c. Jackson & Bolger, 2014 

 

    
 

 

Order Date 02-Jun-
2022 
Order License ID 1228390-1 
ISSN 0048-5772 

Type of Use Republish in a 
thesis/dissertati
on 

Publisher BLACKWELL 
PUBLISHING, INC. 

Portion Image/photo/illustration 
 

LICENSED CONTENT 
 

Publication Title Psychophysiology 
Article Title The 

neurophysiological 
bases of EEG and 
EEG measurement: 
a review for the rest 
of us. 

Author/Editor SOCIETY FOR 
PSYCHOPHYSIOLOGI
CAL RESEARCH (U.S.) 

Date 12/31/1963 
Language English 
Country United States of 
America 

Rightsholder John Wiley & Sons - 
Books 
Publication Type Journal 
Start Page 1061 
End Page 1071 
Issue 11 
Volume 51 

REQUEST DETAILS    

Portion Type Image/photo/illustration Distribution Worldwide 
Number of images / 
photos / illustrations 
Format (select all 
that apply) 
Who will republish 
the content? 

1 
 

Electronic 
 

Academic 
institution 

Translation Original 
language of 
publication 

Copies for the disabled?
 N
o Minor editing privileges?
 N
o 
Incidental promotional
 N
o use? 

Duration of Use Life of current 
edition 
Lifetime Unit Quantity Up to 499 

Rights Requested Main product 

This is a License Agreement between Kyla Gibney ("User") and Copyright Clearance Center, Inc. ("CCC") on behalf 
of the Rightsholder identified in the order details below. The license consists of the order details, the CCC Terms 
and Conditions below, and any Rightsholder Terms and Conditions which are included below. 
All payments must be made in full to CCC in accordance with the CCC Terms and Conditions below. 



80 
 

 d. Liu et al 2012 

  

    
 

 

Order Date 02-Jun-
2022 
Order License ID 1228391-1 
ISSN 0270-6474 

Type of Use Republish in a 
thesis/dissertati
on 

Publisher SOCIETY FOR 
NEUROSCIEN
CE 

Portion Chart/graph/table/figure 
 

LICENSED CONTENT 
 

Publication Title journal of 
neuroscience 
Article Title Neural substrate of 

the late positive 
potential in 
emotional 
processing. 

Author/Editor SOCIETY FOR 
NEUROSCIEN
CE. 

Date 12/31/1980 
Language English, English 
Country United States of 
America 

Rightsholder Society for Neuroscience 
Publication Type Journal 
Start Page 14563 
End Page 14572 
Issue 42 
Volume 32 

REQUEST DETAILS    

Portion Type Chart/graph/table/figure Distribution Worldwide 
Number of charts / 
graphs / tables / 
figures requested 
Format (select all 
that apply) 
Who will republish 
the content? 

1 
 
 
 
Electronic 

 

Academic 
institution 

Translation Original 
language of 
publication 

Copies for the disabled?
 N
o Minor editing privileges?
 N
o 
Incidental promotional
 N
o use? 

Duration of Use Life of current edition 

This is a License Agreement between Kyla Gibney ("User") and Copyright Clearance Center, Inc. ("CCC") on behalf 
of the Rightsholder identified in the order details below. The license consists of the order details, the CCC Terms 
and Conditions below, and any Rightsholder Terms and Conditions which are included below. 
All payments must be made in full to CCC in accordance with the CCC Terms and Conditions below. 



81 
 

BIBLIOGRAPHY 

Anselme, P., Robinson, M.J.F., 2020. From sign-tracking to attentional bias: Implications for 

gambling and substance use disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 

109861. https://doi.org/10.1016/j.pnpbp.2020.109861 

Appelhans, B.M., 2009. Neurobehavioral Inhibition of Reward-driven Feeding: Implications 

for Dieting and Obesity. Obesity 17, 640–647. https://doi.org/10.1038/oby.2008.638 

Avena, N.M., Rada, P., Hoebel, B.G., 2009. Sugar and Fat Bingeing Have Notable Differences 

in Addictive-like Behavior. J. Nutr. 139, 623–628. 

https://doi.org/10.3945/jn.108.097584 

Avena, N.M., Rada, P., Hoebel, B.G., 2008. Evidence for sugar addiction: Behavioral and 

neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 

32, 20–39. https://doi.org/10.1016/j.neubiorev.2007.04.019 

Batterink, L., Yokum, S., Stice, E., 2010. Body mass correlates inversely with inhibitory 

control in response to food among adolescent girls: An fMRI study. NeuroImage 52, 

1696–1703. https://doi.org/10.1016/j.neuroimage.2010.05.059 

Berridge, K.C., 2018. Evolving Concepts of Emotion and Motivation. Front. Psychol. 9. 

https://doi.org/10.3389/fpsyg.2018.01647 

Berthoud, H.-R., 2012. The neurobiology of food intake in an obesogenic environment. Proc. 

Nutr. Soc. 71, 478–487. https://doi.org/10.1017/S0029665112000602 

Blumenthal, D.M., Gold, M.S., 2010. Neurobiology of food addiction: Curr. Opin. Clin. Nutr. 

Metab. Care 13, 359–365. https://doi.org/10.1097/MCO.0b013e32833ad4d4 



82 
 

Boudewyn, M.A., Luck, S.J., Farrens, J.L., Kappenman, E.S., 2018. How many trials does it 

take to get a significant ERP effect? It depends. Psychophysiology 55, e13049. 

https://doi.org/10.1111/psyp.13049 

Bozkurt, B., Aguilar, D., Deswal, A., Dunbar, S.B., Francis, G.S., Horwich, T., Jessup, M., 

Kosiborod, M., Pritchett, A.M., Ramasubbu, K., Rosendorff, C., Yancy, C., 2016. 

Contributory Risk and Management of Comorbidities of Hypertension, Obesity, 

Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: 

A Scientific Statement From the American Heart Association. Circulation 134. 

https://doi.org/10.1161/CIR.0000000000000450 

Bradley, M.M., 2009. Natural selective attention: Orienting and emotion. Psychophysiology 

46, 1–11. https://doi.org/10.1111/j.1469-8986.2008.00702.x 

Bradley, M.M., Codispoti, M., Cuthbert, B.N., Lang, P.J., 2001. Emotion and motivation I: 

Defensive and appetitive reactions in picture processing. Emotion 1, 276–298. 

https://doi.org/10.1037//1528-3542.1.3.276 

Brown, P.L., Jenkins, H.M., 1968. Auto-shaping of the pigeon’s key-peck. J. Exp. Anal. 

Behav. 11, 1–8. 

Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., Munafò, 

M.R., 2013. Power failure: why small sample size undermines the reliability of 

neuroscience. Nat. Rev. Neurosci. 14, 365–376. https://doi.org/10.1038/nrn3475 

Buzsáki, G., Anastassiou, C.A., Koch, C., 2012. The origin of extracellular fields and currents 

— EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420. 

https://doi.org/10.1038/nrn3241 



83 
 

Campus, P., Covelo, I.R., Kim, Y., Parsegian, A., Kuhn, B.N., Lopez, S.A., Neumaier, J.F., 

Ferguson, S.M., Woods, L.C.S., Sarter, M., Flagel, S.B., 2019. The paraventricular 

thalamus is a critical mediator of top-down control of cue- motivated behavior in rats 

25. 

Carbine, K.A., Duraccio, K.M., Kirwan, C.B., Muncy, N.M., LeCheminant, J.D., Larson, M.J., 

2018. A direct comparison between ERP and fMRI measurements of food-related 

inhibitory control: Implications for BMI status and dietary intake. NeuroImage 166, 

335–348. https://doi.org/10.1016/j.neuroimage.2017.11.008 

Cardello, A.V., Schutz, H.G., Lesher, L.L., Merrill, E., 2005. Development and testing of a 

labeled magnitude scale of perceived satiety. Appetite 44, 1–13. 

https://doi.org/10.1016/j.appet.2004.05.007 

Carter, B., Robinson, J., Lam, C., Wetter, D., Tsan, J., Day, S., Cinciripini, P., 2006. A 

psychometric evaluation of cigarette stimuli used in a cue reactivity study. Nicotine 

Tob. Res. 8, 361–369. https://doi.org/10.1080/14622200600670215 

Cavanagh, J.F., Frank, M.J., 2014. Frontal theta as a mechanism for cognitive control. Trends 

Cogn. Sci. 18, 414–421. https://doi.org/10.1016/j.tics.2014.04.012 

Cavanagh, Zambrano-Vazquez, L., Allen, J.J.B., 2012. Theta lingua franca: A common mid-

frontal substrate for action monitoring processes: Omnipresent theta. 

Psychophysiology 49, 220–238. https://doi.org/10.1111/j.1469-8986.2011.01293.x 

Cinciripini, P.M., Green, C.E., Robinson, J.D., Karam-Hage, M., Engelmann, J.M., Minnix, 

J.A., Wetter, D.W., Versace, F., 2017. Benefits of varenicline vs. bupropion for 

smoking cessation: a Bayesian analysis of the interaction of reward sensitivity and 



84 
 

treatment. Psychopharmacology (Berl.) 234, 1769–1779. 

https://doi.org/10.1007/s00213-017-4580-2 

Colaizzi, J.M., Flagel, S.B., Joyner, M.A., Gearhardt, A.N., Stewart, J.L., Paulus, M.P., 2020. 

Mapping sign-tracking and goal-tracking onto human behaviors. Neurosci. Biobehav. 

Rev. 111, 84–94. https://doi.org/10.1016/j.neubiorev.2020.01.018 

Cooper, P.S., Wong, A.S.W., Fulham, W.R., Thienel, R., Mansfield, E., Michie, P.T., 

Karayanidis, F., 2015. Theta frontoparietal connectivity associated with proactive and 

reactive cognitive control processes. NeuroImage 108, 354–363. 

https://doi.org/10.1016/j.neuroimage.2014.12.028 

Cosme, D., Zeithamova, D., Stice, E., Berkman, E.T., 2020. Multivariate neural signatures for 

health neuroscience: assessing spontaneous regulation during food choice. Soc. Cogn. 

Affect. Neurosci. 15, 1120–1134. https://doi.org/10.1093/scan/nsaa002 

Culbreth, A.J., Foti, D., Barch, D.M., Hajcak, G., Kotov, R., 2018. Electrocortical Responses 

to Emotional Stimuli in Psychotic Disorders: Comparing Schizophrenia Spectrum 

Disorders and Affective Psychosis. Front. Psychiatry 9, 1–9. 

https://doi.org/10.3389/fpsyt.2018.00586 

Cuthbert, B.N., Schupp, H.T., Bradley, M.M., Birbaumer, N., Lang, P.J., 2000. Brain 

potentials in affective picture processing: covariation with autonomic arousal and 

affective report. Biol. Psychol. 52, 95–111. https://doi.org/10.1016/S0301-

0511(99)00044-7 

Dalley, J.W., Everitt, B.J., Robbins, T.W., 2011. Impulsivity, Compulsivity, and Top-Down 

Cognitive Control. Neuron 69, 680–694. https://doi.org/10.1016/j.neuron.2011.01.020 



85 
 

Davis, A.A., Edge, P.J., Gold, M.S., 2014. New Directions in the Pharmacological Treatment 

of Food Addiction, Overeating, and Obesity, in: Behavioral Addictions. Elsevier, pp. 

185–213. https://doi.org/10.1016/B978-0-12-407724-9.00008-2 

Davis, C., Levitan, R.D., Smith, M., Tweed, S., Curtis, C., 2006. Associations among 

overeating, overweight, and attention deficit/hyperactivity disorder: A structural 

equation modelling approach. Eat. Behav. 7, 266–274. 

https://doi.org/10.1016/j.eatbeh.2005.09.006 

De Cesarei, A., Codispoti, M., 2011. Affective modulation of the LPP and α-ERD during 

picture viewing: Affective modulation of ERPs and EEG oscillations. 

Psychophysiology 48, 1397–1404. https://doi.org/10.1111/j.1469-8986.2011.01204.x 

de Lauzon-Guillain, B., Clifton, E.A., Day, F.R., Clément, K., Brage, S., Forouhi, N.G., 

Griffin, S.J., Koudou, Y.A., Pelloux, V., Wareham, N.J., Charles, M.-A., Heude, B., 

Ong, K.K., 2017. Mediation and modification of genetic susceptibility to obesity by 

eating behaviors. Am. J. Clin. Nutr. 106, 996–1004. 

https://doi.org/10.3945/ajcn.117.157396 

Dempsey, A., Dyehouse, J., Schafer, J., 2011. The Relationship Between Executive Function, 

AD/HD, Overeating, and Obesity. West. J. Nurs. Res. 33, 609–629. 

https://doi.org/10.1177/0193945910382533 

Deweese, M.M., Claiborne, K.N., Ng, J., Dirba, D.D., Stewart, H.L., Schembre, S.M., Versace, 

F., 2015. Dispensing apparatus for use in a cued food delivery task. MethodsX 2, 446–

457. https://doi.org/10.1016/j.mex.2015.11.002 



86 
 

Dill, B., Holton, R., 2014. The Addict in Us all. Front. Psychiatry 5. 

https://doi.org/10.3389/fpsyt.2014.00139 

Dippel, G., Mückschel, M., Ziemssen, T., Beste, C., 2017. Demands on response inhibition 

processes determine modulations of theta band activity in superior frontal areas and 

correlations with pupillometry – Implications for the norepinephrine system during 

inhibitory control. NeuroImage 157, 575–585. 

https://doi.org/10.1016/j.neuroimage.2017.06.037 

Dohle, S., Diel, K., Hofmann, W., 2018. Executive functions and the self-regulation of eating 

behavior: A review. Appetite 124, 4–9. https://doi.org/10.1016/j.appet.2017.05.041 

Dombrowski, S.U., Knittle, K., Avenell, A., Araujo-Soares, V., Sniehotta, F.F., 2014. Long 

term maintenance of weight loss with non-surgical interventions in obese adults: 

systematic review and meta-analyses of randomised controlled trials. BMJ 348, g2646–

g2646. https://doi.org/10.1136/bmj.g2646 

Eschmann, K.C.J., Mecklinger, A., 2022. Improving cognitive control: Is theta neurofeedback 

training associated with proactive rather than reactive control enhancement? 

Psychophysiology 59. https://doi.org/10.1111/psyp.13873 

Filbey, F.M., Claus, E., Audette, A.R., Niculescu, M., Banich, M.T., Tanabe, J., Du, Y.P., 

Hutchison, K.E., 2008. Exposure to the Taste of Alcohol Elicits Activation of the 

Mesocorticolimbic Neurocircuitry. Neuropsychopharmacology 33, 1391–1401. 

https://doi.org/10.1038/sj.npp.1301513 



87 
 

Finlayson, G., 2017. Food addiction and obesity: unnecessary medicalization of hedonic 

overeating. Nat. Rev. Endocrinol. 13, 493–498. 

https://doi.org/10.1038/nrendo.2017.61 

Fitzgerald, J.M., Gorka, S.M., Kujawa, A., DiGangi, J.A., Proescher, E., Greenstein, J.E., 

Aase, D.M., Schroth, C., Afshar, K., Kennedy, A.E., Hajcak, G., Phan, K.L., 2018. 

Neural indices of emotional reactivity and regulation predict course of PTSD symptoms 

in combat-exposed veterans. Prog. Neuropsychopharmacol. Biol. Psychiatry 82, 255–

262. https://doi.org/10.1016/j.pnpbp.2017.11.005 

Fitzpatrick, C.J., Geary, T., Creeden, J.F., Morrow, J.D., 2019. Sign-tracking behavior is 

difficult to extinguish and resistant to multiple cognitive enhancers. Neurobiol. Learn. 

Mem. 163, 107045. https://doi.org/10.1016/j.nlm.2019.107045 

Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C.A., Clinton, 

S.M., Phillips, P.E.M., Akil, H., 2011. A selective role for dopamine in stimulus–

reward learning. Nature 469, 53–57. https://doi.org/10.1038/nature09588 

Fletcher, P.C., Kenny, P.J., 2018. Food addiction: a valid concept? Neuropsychopharmacology 

43, 2506–2513. https://doi.org/10.1038/s41386-018-0203-9 

Frank, D.W., Cinciripini, P.M., Deweese, M.M., Karam-Hage, M., Kypriotakis, G., Lerman, 

C., Robinson, J.D., Tyndale, R.F., Vidrine, D.J., Versace, F., 2019. Toward Precision 

Medicine for Smoking Cessation: Developing a Neuroimaging-Based Classification 

Algorithm to Identify Smokers at Higher Risk for Relapse. Nicotine Tob. Res. 

https://doi.org/10.1093/ntr/ntz211 



88 
 

George, M.S., Lisanby, S.H., Avery, D., McDonald, W.M., Durkalski, V., Pavlicova, M., 

Anderson, B., Nahas, Z., Bulow, P., Zarkowski, P., Holtzheimer, P.E., Schwartz, T., 

Sackeim, H.A., 2010. Daily Left Prefrontal Transcranial Magnetic Stimulation Therapy 

for Major Depressive Disorder: A Sham-Controlled Randomized Trial. Arch. Gen. 

Psychiatry 67, 507. https://doi.org/10.1001/archgenpsychiatry.2010.46 

Haciahmet, C.C., Frings, C., Pastötter, B., 2021. Target Amplification and Distractor 

Inhibition: Theta Oscillatory Dynamics of Selective Attention in a Flanker Task. Cogn. 

Affect. Behav. Neurosci. 21, 355–371. https://doi.org/10.3758/s13415-021-00876-y 

Hajcak, G., Klawohn, J., Meyer, A., 2019. The Utility of Event-Related Potentials in Clinical 

Psychology. Annu. Rev. Clin. Psychol. 15, 71–95. https://doi.org/10.1146/annurev-

clinpsy-050718-095457 

Hall, P.A., 2016. Executive-Control Processes in High-Calorie Food Consumption. Curr. Dir. 

Psychol. Sci. 25, 91–98. https://doi.org/10.1177/0963721415625049 

Handy, T.C., 2005. Event-Related Potentials: A Methods Handbook. MIT Press, Cambridge, 

Massachusets. 

Hanlon, C.A., Dowdle, L.T., Gibson, N.B., Li, X., Hamilton, S., Canterberry, M., Hoffman, 

M., 2018. Cortical substrates of cue-reactivity in multiple substance dependent 

populations: transdiagnostic relevance of the medial prefrontal cortex. Transl. 

Psychiatry 8. https://doi.org/10.1038/s41398-018-0220-9 

He, Q., Huang, X., Zhang, S., Turel, O., Ma, L., Bechara, A., 2019. Dynamic Causal Modeling 

of Insular, Striatal, and Prefrontal Cortex Activities During a Food-Specific Go/NoGo 



89 
 

Task. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 

https://doi.org/10.1016/j.bpsc.2018.12.005 

Hermann, C.S., Grigutsch, M., Busch, N.A., 2005. EEG Oscillations and Wavelet Analysis, 

in: Event-Related Potentials: A Methods Handbook. MIT Press, Cambridge, 

Massachusets. 

Hickey, C., Peelen, M.V., 2015. Neural Mechanisms of Incentive Salience in Naturalistic 

Human Vision. Neuron 85, 512–518. https://doi.org/10.1016/j.neuron.2014.12.049 

Hofmann, W., Friese, M., Roefs, A., 2009. Three ways to resist temptation: The independent 

contributions of executive attention, inhibitory control, and affect regulation to the 

impulse control of eating behavior. J. Exp. Soc. Psychol. 45, 431–435. 

https://doi.org/10.1016/j.jesp.2008.09.013 

Hogarth, L., Chase, H.W., Baess, K., 2012. Impaired goal-directed behavioural control in 

human impulsivity. Q. J. Exp. Psychol. 65, 305–316. 

https://doi.org/10.1080/17470218.2010.518242 

Houben, K., Nederkoorn, C., Jansen, A., 2014. Eating on impulse: The relation between 

overweight and food-specific inhibitory control: Food-Specific Inhibition and 

Overweight. Obesity 22, E6–E8. https://doi.org/10.1002/oby.20670 

Imburgio, M.J., Banica, I., Hill, K.E., Weinberg, A., Foti, D., MacNamara, A., 2020. 

Establishing norms for error-related brain activity during the arrow Flanker task among 

young adults. NeuroImage 116694. https://doi.org/10.1016/j.neuroimage.2020.116694 

Ioannidis, J.P.A., 2005. Why Most Published Research Findings Are False. PLoS Med. 2, 

e124. https://doi.org/10.1371/journal.pmed.0020124 



90 
 

Islami, F., Goding Sauer, A., Miller, K.D., Siegel, R.L., Fedewa, S.A., Jacobs, E.J., 

McCullough, M.L., Patel, A.V., Ma, J., Soerjomataram, I., Flanders, W.D., Brawley, 

O.W., Gapstur, S.M., Jemal, A., 2018. Proportion and number of cancer cases and 

deaths attributable to potentially modifiable risk factors in the United States: Potentially 

Preventable Cancers in US. CA. Cancer J. Clin. 68, 31–54. 

https://doi.org/10.3322/caac.21440 

Jackson, A.F., Bolger, D.J., 2014. The neurophysiological bases of EEG and EEG 

measurement: A review for the rest of us: Neurophysiological bases of EEG. 

Psychophysiology 51, 1061–1071. https://doi.org/10.1111/psyp.12283 

Janowich, J.R., Cavanagh, J.F., 2019. Immediate versus delayed control demands elicit distinct 

mechanisms for instantiating proactive control. Cogn. Affect. Behav. Neurosci. 19, 

910–926. https://doi.org/10.3758/s13415-018-00684-x 

Jeffery, R.W., Drenowski, A., Epstein, L.H., Stunkard, A.J., Wilson, T.G., Wing, R.R., 2000. 

Long-Term Maintenance of Weight Loss: Current Status. Health Psychol. 19, 5–16. 

https://doi.org/10.1037//0278-6133.19.1 

Johnson, P.M., Kenny, P.J., 2010. Dopamine D2 receptors in addiction-like reward 

dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641. 

https://doi.org/10.1038/nn.2519 

Kam, J.W.Y., Lin, J.J., Solbakk, A.-K., Endestad, T., Larsson, P.G., Knight, R.T., 2019. 

Default network and frontoparietal control network theta connectivity supports internal 

attention. Nat. Hum. Behav. 3, 1263–1270. https://doi.org/10.1038/s41562-019-0717-

0 



91 
 

Kappenman, E.S., Luck, S.J., 2010. The effects of electrode impedance on data quality and 

statistical significance in ERP recordings. Psychophysiology. 

https://doi.org/10.1111/j.1469-8986.2010.01009.x 

Kearney-Ramos, T.E., Dowdle, L.T., Lench, D.H., Mithoefer, O.J., Devries, W.H., George, 

M.S., Anton, R.F., Hanlon, C.A., 2018. Transdiagnostic Effects of Ventromedial 

Prefrontal Cortex Transcranial Magnetic Stimulation on Cue Reactivity. Biol. 

Psychiatry Cogn. Neurosci. Neuroimaging 3, 599–609. 

https://doi.org/10.1016/j.bpsc.2018.03.016 

Keil, A., Bradley, M.M., Hauk, O., Rockstroh, B., Elbert, T., Lang, P.J., 2002. Large-scale 

neural correlates of affective picture processing. Psychophysiology 39, 641–649. 

https://doi.org/10.1017/S0048577202394162 

Keil, A., Sabatinelli, D., Ding, M., Lang, P.J., Ihssen, N., Heim, S., 2009. Re-entrant 

projections modulate visual cortex in affective perception: Evidence from Granger 

causality analysis. Hum. Brain Mapp. 30, 532–540. https://doi.org/10.1002/hbm.20521 

Kelly, T., Yang, W., Chen, C.-S., Reynolds, K., He, J., 2008. Global burden of obesity in 2005 

and projections to 2030. Int. J. Obes. 32, 1431–1437. 

https://doi.org/10.1038/ijo.2008.102 

Kim, D.D., Basu, A., 2016. Estimating the Medical Care Costs of Obesity in the United States: 

Systematic Review, Meta-Analysis, and Empirical Analysis. Value Health 19, 602–

613. https://doi.org/10.1016/j.jval.2016.02.008 



92 
 

Klomjai, W., Katz, R., Lackmy-Vallée, A., 2015. Basic principles of transcranial magnetic 

stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 58, 208–

213. https://doi.org/10.1016/j.rehab.2015.05.005 

Kohl, S., Hannah, R., Rocchi, L., Nord, C.L., Rothwell, J., Voon, V., 2018. Cortical Paired 

Associative Stimulation Influences Response Inhibition: Cortico-cortical and Cortico-

subcortical Networks. Biol. Psychiatry. 

https://doi.org/10.1016/j.biopsych.2018.03.009 

Koshy Cherian, A., Kucinski, A., Pitchers, K., Yegla, B., Parikh, V., Kim, Y., Valuskova, P., 

Gurnani, S., Lindsley, C.W., Blakely, R.D., Sarter, M., 2017. Unresponsive Choline 

Transporter as a Trait Neuromarker and a Causal Mediator of Bottom-Up Attentional 

Biases. J. Neurosci. 37, 2947–2959. https://doi.org/10.1523/JNEUROSCI.3499-

16.2017 

Kruzich, P.L., Congleton, K.M., See, R.E., 2001. Conditioned Reinstatement of Drug-Seeking 

Behavior With a Discrete Compound Stimulus Classically Conditioned With 

Intravenous Cocaine. 

Lang, P.J., Bradley, M.M., 2010. Emotion and the motivational brain. Biol. Psychol. 84, 437–

450. https://doi.org/10.1016/j.biopsycho.2009.10.007 

Lang, P.J., Bradley, M.M., Cuthbert, B.N., 2008. International Affective Picture System 

(IAPS): Affective Ratings of Pictures and Instruction Manual. (Technical Report No. 

A-8). University of Florida, Gainesville, FL. 



93 
 

Laubach, M., Amarante, L.M., Swanson, K., White, S.R., 2018. What, If Anything, Is Rodent 

Prefrontal Cortex? eneuro 5, ENEURO.0315-18.2018. 

https://doi.org/10.1523/ENEURO.0315-18.2018 

Lee, P.C., Dixon, J.B., 2017. Food for Thought: Reward Mechanisms and Hedonic Overeating 

in Obesity. Curr. Obes. Rep. 6, 353–361. https://doi.org/10.1007/s13679-017-0280-9 

Leshem, R., 2016. Relationships between trait impulsivity and cognitive control: the effect of 

attention switching on response inhibition and conflict resolution. Cogn. Process. 17, 

89–103. https://doi.org/10.1007/s10339-015-0733-6 

Li, X., Sahlem, G.L., Badran, B.W., McTeague, L.M., Hanlon, C.A., Hartwell, Karen.J., 

Henderson, S., George, M.S., 2017. Transcranial magnetic stimulation of the dorsal 

lateral prefrontal cortex inhibits medial orbitofrontal activity in smokers: rTMS Effects 

on Brain Circuity in Smokers. Am. J. Addict. 26, 788–794. 

https://doi.org/10.1111/ajad.12621 

Liu, Y., Huang, H., McGinnis-Deweese, M., Keil, A., Ding, M., 2012. Neural Substrate of the 

Late Positive Potential in Emotional Processing. J. Neurosci. 32, 14563–14572. 

https://doi.org/10.1523/JNEUROSCI.3109-12.2012 

Lowe, M.R., Butryn, M.L., Didie, E.R., Annunziato, R.A., Thomas, J.G., Crerand, C.E., 

Ochner, C.N., Coletta, M.C., Bellace, D., Wallaert, M., Halford, J., 2009. The Power 

of Food Scale. A new measure of the psychological influence of the food environment. 

Appetite 53, 114–118. https://doi.org/10.1016/j.appet.2009.05.016 

Luck, S., 2014. An Introduction to the Event-Related Potential Technique, 2nd ed. MIT Press, 

Cambridge, Massachusets. 



94 
 

Luck, S.J., 2014a. A Closer Look at Averaging: Convolution, Latency Variability, and 

Overlap, in: An Introduction to the Event-Related Potential Technique. MIT Press. 

Luck, S.J., 2014b. Time and Frequency: A Closer Look at Filtering and Time-Frequency 

Analysis, in: An Introduction to the Event-Related Potential Technique. MIT Press. 

Luck, S.J., Gaspelin, N., 2017. How to get statistically significant effects in any ERP 

experiment (and why you shouldn’t): How to get significant effects. Psychophysiology 

54, 146–157. https://doi.org/10.1111/psyp.12639 

McDermott, T.J., Wiesman, A.I., Proskovec, A.L., Heinrichs-Graham, E., Wilson, T.W., 2017. 

Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task. 

NeuroImage 156, 277–285. https://doi.org/10.1016/j.neuroimage.2017.05.014 

Minnix, J.A., Versace, F., Robinson, J.D., Lam, C.Y., Engelmann, J.M., Cui, Y., Brown, V.L., 

Cinciripini, P.M., 2013. The late positive potential (LPP) in response to varying types 

of emotional and cigarette stimuli in smokers: A content comparison. Int. J. 

Psychophysiol. 89, 18–25. https://doi.org/10.1016/j.ijpsycho.2013.04.019 

Munafò, M.R., Nosek, B.A., Bishop, D.V.M., Button, K.S., Chambers, C.D., Percie du Sert, 

N., Simonsohn, U., Wagenmakers, E.-J., Ware, J.J., Ioannidis, J.P.A., 2017. A 

manifesto for reproducible science. Nat. Hum. Behav. 1, 0021. 

https://doi.org/10.1038/s41562-016-0021 

Nakonezny, P.A., Carmody, T.J., Morris, D.W., Kurian, B.T., Trivedi, M.H., 2010. 

Psychometric evaluation of the Snaith–Hamilton pleasure scale in adult outpatients 

with major depressive disorder: Int. Clin. Psychopharmacol. 25, 328–333. 

https://doi.org/10.1097/YIC.0b013e32833eb5ee 



95 
 

Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., Carter, C.S., 2012. Meta-

analytic evidence for a superordinate cognitive control network subserving diverse 

executive functions. Cogn. Affect. Behav. Neurosci. 12, 241–268. 

https://doi.org/10.3758/s13415-011-0083-5 

Nigbur, R., Ivanova, G., Stürmer, B., 2011. Theta power as a marker for cognitive interference. 

Clin. Neurophysiol. 122, 2185–2194. https://doi.org/10.1016/j.clinph.2011.03.030 

Nijs, I.M.T., Franken, I.H.A., Muris, P., 2007. The modified Trait and State Food-Cravings 

Questionnaires: Development and validation of a general index of food craving. 

Appetite 49, 38–46. https://doi.org/10.1016/j.appet.2006.11.001 

Notzon, S., Steinberg, C., Zwanzger, P., Junghöfer, M., 2018. Modulating Emotion Perception: 

Opposing Effects of Inhibitory and Excitatory Prefrontal Cortex Stimulation. Biol. 

Psychiatry Cogn. Neurosci. Neuroimaging 3, 329–336. 

https://doi.org/10.1016/j.bpsc.2017.12.007 

Olney, J.J., Warlow, S.M., Naffziger, E.E., Berridge, K.C., 2018. Current perspectives on 

incentive salience and applications to clinical disorders. Curr. Opin. Behav. Sci. 22, 

59–69. https://doi.org/10.1016/j.cobeha.2018.01.007 

Olofsson, J.K., Nordin, S., Sequeira, H., Polich, J., 2008. Affective picture processing: An 

integrative review of ERP findings. Biol. Psychol. 77, 247–265. 

https://doi.org/10.1016/j.biopsycho.2007.11.006 

Paolone, G., Angelakos, C.C., Meyer, P.J., Robinson, T.E., Sarter, M., 2013. Cholinergic 

Control over Attention in Rats Prone to Attribute Incentive Salience to Reward Cues. 

J. Neurosci. 33, 8321–8335. https://doi.org/10.1523/jneurosci.0709-13.2013 



96 
 

Patton, J.H., Stanford, M.S., Barratt, E.S., 1995. Factor structure of the Barratt impulsiveness 

scale. J Clin Psychol 51, 768–774. 

Pinner, J.F.L., Cavanagh, J.F., 2017. Frontal theta accounts for individual differences in the 

cost of conflict on decision making. Brain Res. 1672, 73–80. 

https://doi.org/10.1016/j.brainres.2017.07.026 

Pitchers, K.K., Kane, L.F., Kim, Y., Robinson, T.E., Sarter, M., 2017a. ‘Hot’ vs. ‘cold’ 

behavioural-cognitive styles: motivational-dopaminergic vs. cognitive-cholinergic 

processing of a Pavlovian cocaine cue in sign- and goal-tracking rats. Eur. J. Neurosci. 

46, 2768–2781. https://doi.org/10.1111/ejn.13741 

Pitchers, K.K., Phillips, K.B., Jones, J.L., Robinson, T.E., Sarter, M., 2017b. Diverse Roads to 

Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in 

Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on 

Basal Forebrain Cholinergic Activity. J. Neurosci. 37, 7198–7208. 

https://doi.org/10.1523/JNEUROSCI.0990-17.2017 

Pitchers, K.K., Sarter, M., Robinson, T.E., 2018. The hot ‘n’ cold of cue-induced drug relapse. 

Learn. Mem. 25, 474–480. https://doi.org/10.1101/lm.046995.117 

Pitchers, K.K., Wood, T.R., Skrzynski, C.J., Robinson, T.E., Sarter, M., 2017c. The ability for 

cocaine and cocaine-associated cues to compete for attention. Behav. Brain Res. 320, 

302–315. https://doi.org/10.1016/j.bbr.2016.11.024 

Prospective Studies Collaboration, 2009. Body-mass index and cause-specific mortality in 

900 000 adults: collaborative analyses of 57 prospective studies. The Lancet 373, 14. 

https://doi.org/10.1016/SO140-6736(09)60318-4 



97 
 

Radloff, L.S., 1977. The CES-D Scale: A Self-Report Depression Scale for Research in the 

General Population. Appl. Psychol. Assesment 1, 385–401. 

Raud, L., Westerhausen, R., Dooley, N., Huster, R.J., 2020. Differences in unity: The go/no-

go and stop signal tasks rely on different mechanisms. NeuroImage 210, 116582. 

https://doi.org/10.1016/j.neuroimage.2020.116582 

Reyes, S., Peirano, P., Peigneux, P., Lozoff, B., Algarin, C., 2015. Inhibitory control in 

otherwise healthy overweight 10-year-old children. Int. J. Obes. 39, 1230–1235. 

https://doi.org/10.1038/ijo.2015.49 

Robbins, T.W., Gillan, C.M., Smith, D.G., de Wit, S., Ersche, K.D., 2012. Neurocognitive 

endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. 

Trends Cogn. Sci. 16, 81–91. https://doi.org/10.1016/j.tics.2011.11.009 

Robinson, J.D., Versace, F., Engelmann, J.M., Cui, Y., Slapin, A., Oum, R., Cinciripini, P.M., 

2015. The motivational salience of cigarette-related stimuli among former, never, and 

current smokers. Exp. Clin. Psychopharmacol. 23, 37–48. 

https://doi.org/10.1037/a0038467 

Robinson, T.E., Berridge, K.C., 2003. Addiction. Annu. Rev. Psychol. 54, 25–53. 

https://doi.org/10.1146/annurev.psych.54.101601.145237 

Sabatinelli, D., Keil, A., Frank, D.W., Lang, P.J., 2013. Emotional perception: Correspondence 

of early and late event-related potentials with cortical and subcortical functional MRI. 

Biol. Psychol. 92, 513–519. https://doi.org/10.1016/j.biopsycho.2012.04.005 



98 
 

Samar, V.J., Bopardikar, A., Rao, R., Swartz, K., 1999. Wavelet Analysis of Neuroelectric 

Waveforms: A Conceptual Tutorial. Brain Lang. 66, 7–60. 

https://doi.org/10.1006/brln.1998.2024 

Sandre, A., Weinberg, A., 2019. Neither wrong nor right: Theta and delta power increase 

during performance monitoring under conditions of uncertainty. Int. J. Psychophysiol. 

146, 225–239. https://doi.org/10.1016/j.ijpsycho.2019.09.015 

Sarter, M., Phillips, K.B., 2018. The neuroscience of cognitive-motivational styles: Sign- and 

goal-trackers as animal models. Behav. Neurosci. 132, 1–12. 

https://doi.org/10.1037/bne0000226 

Schad, D.J., Rapp, M.A., Garbusow, M., Nebe, S., Sebold, M., Obst, E., Sommer, C., Deserno, 

L., Rabovsky, M., Friedel, E., Romanczuk-Seiferth, N., Wittchen, H.-U., 

Zimmermann, U.S., Walter, H., Sterzer, P., Smolka, M.N., Schlagenhauf, F., Heinz, 

A., Dayan, P., Huys, Q.J.M., 2019. Dissociating neural learning signals in human sign- 

and goal-trackers. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0765-5 

Schembre, S., Greene, G., Melanson, K., 2009. Development and validation of a weight-related 

eating questionnaire. Eat. Behav. 10, 119–124. 

https://doi.org/10.1016/j.eatbeh.2009.03.006 

Schembre, S.M., Geller, K.S., 2011. Psychometric Properties and Construct Validity of the 

Weight-Related Eating Questionnaire in a Diverse Population. Obesity 19, 2336–2344. 

https://doi.org/10.1038/oby.2011.96 

Schimmel, H., 1967. The (+-) reference: accuracy of estimated mean components in average 

evoked response studies. Science 157, 92–94. 



99 
 

Schneider, W., Eschman, A., Zuccolotto, A., 2002. E-Prime User’s Guide. Psychol. Softw. 

Tools Inc 250. 

Schupp, H., Cuthbert, B., Bradley, M., Hillman, C., Hamm, A., Lang, P., 2004. Brain processes 

in emotional perception: Motivated attention. Cogn. Emot. 18, 593–611. 

https://doi.org/10.1080/02699930341000239 

Sharma, A.M., Padwal, R., 2010. Obesity is a sign - over-eating is a symptom: an aetiological 

framework for the assessment and management of obesity. Obes. Rev. 11, 362–370. 

https://doi.org/10.1111/j.1467-789X.2009.00689.x 

Simon, J.J., Walther, S., Fiebach, C.J., Friederich, H.-C., Stippich, C., Weisbrod, M., Kaiser, 

S., 2010. Neural reward processing is modulated by approach- and avoidance-related 

personality traits. NeuroImage 49, 1868–1874. 

https://doi.org/10.1016/j.neuroimage.2009.09.016 

Smeets, P.A.M., Dagher, A., Hare, T.A., Kullmann, S., van der Laan, L.N., Poldrack, R.A., 

Preissl, H., Small, D., Stice, E., Veldhuizen, M.G., 2019. Good practice in food-related 

neuroimaging. Am. J. Clin. Nutr. 109, 491–503. https://doi.org/10.1093/ajcn/nqy344 

Snaith, R.P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., Trigwell, P., 1995. A 

Scale for the Assessment of Hedonic Tone the Snaith–Hamilton Pleasure Scale. Br. J. 

Psychiatry 167, 99–103. https://doi.org/10.1192/bjp.167.1.99 

Spoelder, M., Flores Dourojeanni, J.P., de Git, K.C.G., Baars, A.M., Lesscher, H.M.B., 

Vanderschuren, L.J.M.J., 2017. Individual differences in voluntary alcohol intake in 

rats: relationship with impulsivity, decision making and Pavlovian conditioned 



100 
 

approach. Psychopharmacology (Berl.) 234, 2177–2196. 

https://doi.org/10.1007/s00213-017-4617-6 

Stanford, M.S., Mathias, C.W., Dougherty, D.M., Lake, S.L., Anderson, N.E., Patton, J.H., 

2009. Fifty years of the Barratt Impulsiveness Scale: An update and review. Personal. 

Individ. Differ. 47, 385–395. https://doi.org/10.1016/j.paid.2009.04.008 

Stephens, D.N., Crombag, H.S., Duka, T., 2011. The Challenge of Studying Parallel Behaviors 

in Humans and Animal Models, in: Sommer, W.H., Spanagel, R. (Eds.), Behavioral 

Neurobiology of Alcohol Addiction, Current Topics in Behavioral Neurosciences. 

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 611–645. 

https://doi.org/10.1007/978-3-642-28720-6_133 

Stevens, E.M., Frank, D., Codispoti, M., Kypriotakis, G., Cinciripini, P.M., Claiborne, K., 

Deweese, M.M., Engelmann, J.M., Green, C.E., Karam-Hage, M., Minnix, J.A., Ng, 

J., Robinson, J.D., Tyndale, R.F., Vidrine, D.J., Versace, F., 2019. The Late Positive 

Potentials Evoked by Cigarette-Related and Emotional Images Show no Gender 

Differences in Smokers. Sci. Rep. 9. https://doi.org/10.1038/s41598-019-39954-0 

Stice, E., Yokum, S., 2016. Neural vulnerability factors that increase risk for future weight 

gain. Psychol. Bull. 142, 447–471. https://doi.org/10.1037/bul0000044 

Stice, E., Yokum, S., Voelker, P., 2019. Relation of FTO to BOLD response to receipt and 

anticipated receipt of food and monetary reward, food images, and weight gain in 

healthy weight adolescents. Soc. Cogn. Affect. Neurosci. 

https://doi.org/10.1093/scan/nsz081 



101 
 

Tanabe, J., Regner, M., Sakai, J., Martinez, D., Gowin, J., 2019. Neuroimaging reward, 

craving, learning, and cognitive control in substance use disorders: review and 

implications for treatment. Br. J. Radiol. 92, 20180942. 

https://doi.org/10.1259/bjr.20180942 

The LifeLines Cohort Study, The ADIPOGen Consortium, The AGEN-BMI Working Group, 

The CARDIOGRAMplusC4D Consortium, The CKDGen Consortium, The GLGC, 

The ICBP, The MAGIC Investigators, The MuTHER Consortium, The MIGen 

Consortium, The PAGE Consortium, The ReproGen Consortium, The GENIE 

Consortium, The International Endogene Consortium, Locke, A.E., Kahali, B., Berndt, 

S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., 

Yang, J., Croteau-Chonka, D.C., Esko, T., Fall, T., Ferreira, T., Gustafsson, S., Kutalik, 

Z., Luan, J., Mägi, R., Randall, J.C., Winkler, T.W., Wood, A.R., Workalemahu, T., 

Faul, J.D., Smith, J.A., Hua Zhao, J., Zhao, W., Chen, J., Fehrmann, R., Hedman, Å.K., 

Karjalainen, J., Schmidt, E.M., Absher, D., Amin, N., Anderson, D., Beekman, M., 

Bolton, J.L., Bragg-Gresham, J.L., Buyske, S., Demirkan, A., Deng, G., Ehret, G.B., 

Feenstra, B., Feitosa, M.F., Fischer, K., Goel, A., Gong, J., Jackson, A.U., Kanoni, S., 

Kleber, M.E., Kristiansson, K., Lim, U., Lotay, V., Mangino, M., Mateo Leach, I., 

Medina-Gomez, C., Medland, S.E., Nalls, M.A., Palmer, C.D., Pasko, D., Pechlivanis, 

S., Peters, M.J., Prokopenko, I., Shungin, D., Stančáková, A., Strawbridge, R.J., Ju 

Sung, Y., Tanaka, Toshiko, Teumer, A., Trompet, S., van der Laan, S.W., van Setten, 

J., Van Vliet-Ostaptchouk, J.V., Wang, Z., Yengo, L., Zhang, W., Isaacs, A., Albrecht, 

E., Ärnlöv, J., Arscott, G.M., Attwood, A.P., Bandinelli, S., Barrett, A., Bas, I.N., 

Bellis, C., Bennett, A.J., Berne, C., Blagieva, R., Blüher, M., Böhringer, S., 



102 
 

Bonnycastle, L.L., Böttcher, Y., Boyd, H.A., Bruinenberg, M., Caspersen, I.H., Ida 

Chen, Y.-D., Clarke, R., Warwick Daw, E., de Craen, A.J.M., Delgado, G., Dimitriou, 

M., Doney, A.S.F., Eklund, N., Estrada, K., Eury, E., Folkersen, L., Fraser, R.M., 

Garcia, M.E., Geller, F., Giedraitis, V., Gigante, B., Go, A.S., Golay, A., Goodall, A.H., 

Gordon, S.D., Gorski, M., Grabe, H.-J., Grallert, H., Grammer, T.B., Gräßler, J., 

Grönberg, H., Groves, C.J., Gusto, G., Haessler, J., Hall, P., Haller, T., Hallmans, G., 

Hartman, C.A., Hassinen, M., Hayward, C., Heard-Costa, N.L., Helmer, Q., 

Hengstenberg, C., Holmen, O., Hottenga, J.-J., James, A.L., Jeff, J.M., Johansson, Å., 

Jolley, J., Juliusdottir, T., Kinnunen, L., Koenig, W., Koskenvuo, M., Kratzer, W., 

Laitinen, J., Lamina, C., Leander, K., Lee, N.R., Lichtner, P., Lind, L., Lindström, J., 

Sin Lo, K., Lobbens, S., Lorbeer, R., Lu, Y., Mach, F., Magnusson, P.K.E., Mahajan, 

A., McArdle, W.L., McLachlan, S., Menni, C., Merger, S., Mihailov, E., Milani, L., 

Moayyeri, A., Monda, K.L., Morken, M.A., Mulas, A., Müller, G., Müller-Nurasyid, 

M., Musk, A.W., Nagaraja, R., Nöthen, M.M., Nolte, I.M., Pilz, S., Rayner, N.W., 

Renstrom, F., Rettig, R., Ried, J.S., Ripke, S., Robertson, N.R., Rose, L.M., Sanna, S., 

Scharnagl, H., Scholtens, S., Schumacher, F.R., Scott, W.R., Seufferlein, T., Shi, J., 

Vernon Smith, A., Smolonska, J., Stanton, A.V., Steinthorsdottir, V., Stirrups, K., 

Stringham, H.M., Sundström, J., Swertz, M.A., Swift, A.J., Syvänen, A.-C., Tan, S.-

T., Tayo, B.O., Thorand, B., Thorleifsson, G., Tyrer, J.P., Uh, H.-W., Vandenput, L., 

Verhulst, F.C., Vermeulen, S.H., Verweij, N., Vonk, J.M., Waite, L.L., Warren, H.R., 

Waterworth, D., Weedon, M.N., Wilkens, L.R., Willenborg, C., Wilsgaard, T., 

Wojczynski, M.K., Wong, A., Wright, A.F., Zhang, Q., Brennan, E.P., Choi, M., 

Dastani, Z., Drong, A.W., Eriksson, P., Franco-Cereceda, A., Gådin, J.R., Gharavi, 



103 
 

A.G., Goddard, M.E., Handsaker, R.E., Huang, J., Karpe, F., Kathiresan, S., Keildson, 

S., Kiryluk, K., Kubo, M., Lee, J.-Y., Liang, L., Lifton, R.P., Ma, B., McCarroll, S.A., 

McKnight, A.J., Min, J.L., Moffatt, M.F., Montgomery, G.W., Murabito, J.M., 

Nicholson, G., Nyholt, D.R., Okada, Y., Perry, J.R.B., Dorajoo, R., Reinmaa, E., 

Salem, R.M., Sandholm, N., Scott, R.A., Stolk, L., Takahashi, A., Tanaka, Toshihiro, 

van’t Hooft, F.M., Vinkhuyzen, A.A.E., Westra, H.-J., Zheng, W., Zondervan, K.T., 

Heath, A.C., Arveiler, D., Bakker, S.J.L., Beilby, J., Bergman, R.N., Blangero, J., 

Bovet, P., Campbell, H., Caulfield, M.J., Cesana, G., Chakravarti, A., Chasman, D.I., 

Chines, P.S., Collins, F.S., Crawford, D.C., Adrienne Cupples, L., Cusi, D., Danesh, 

J., de Faire, U., den Ruijter, H.M., Dominiczak, A.F., Erbel, R., Erdmann, J., Eriksson, 

J.G., Farrall, M., Felix, S.B., Ferrannini, E., Ferrières, J., Ford, I., Forouhi, N.G., 

Forrester, T., Franco, O.H., Gansevoort, R.T., Gejman, P.V., Gieger, C., Gottesman, 

O., Gudnason, V., Gyllensten, U., Hall, A.S., Harris, T.B., Hattersley, A.T., Hicks, 

A.A., Hindorff, L.A., Hingorani, A.D., Hofman, A., Homuth, G., Kees Hovingh, G., 

Humphries, S.E., Hunt, S.C., Hyppönen, E., Illig, T., Jacobs, K.B., Jarvelin, M.-R., 

Jöckel, K.-H., Johansen, B., Jousilahti, P., Wouter Jukema, J., Jula, A.M., Kaprio, J., 

Kastelein, J.J.P., Keinanen-Kiukaanniemi, S.M., Kiemeney, L.A., Knekt, P., Kooner, 

J.S., Kooperberg, C., Kovacs, P., Kraja, A.T., Kumari, M., Kuusisto, J., Lakka, T.A., 

Langenberg, C., Le Marchand, L., Lehtimäki, T., Lyssenko, V., Männistö, S., Marette, 

A., Matise, T.C., McKenzie, C.A., McKnight, B., Moll, F.L., Morris, A.D., Morris, 

A.P., Murray, J.C., Nelis, M., Ohlsson, C., Oldehinkel, A.J., Ong, K.K., Madden, 

P.A.F., Pasterkamp, G., Peden, J.F., Peters, A., Postma, D.S., Pramstaller, P.P., Price, 

J.F., Qi, L., Raitakari, O.T., Rankinen, T., Rao, D.C., Rice, T.K., Ridker, P.M., Rioux, 



104 
 

J.D., Ritchie, M.D., Rudan, I., Salomaa, V., Samani, N.J., Saramies, J., Sarzynski, 

M.A., Schunkert, H., Schwarz, P.E.H., Sever, P., Shuldiner, A.R., Sinisalo, J., Stolk, 

R.P., Strauch, K., Tönjes, A., Trégouët, D.-A., Tremblay, A., Tremoli, E., Virtamo, J., 

Vohl, M.-C., Völker, U., Waeber, G., Willemsen, G., Witteman, J.C., Carola Zillikens, 

M., Adair, L.S., Amouyel, P., Asselbergs, F.W., Assimes, T.L., Bochud, M., Boehm, 

B.O., Boerwinkle, E., Bornstein, S.R., Bottinger, E.P., Bouchard, C., Cauchi, S., 

Chambers, J.C., Chanock, S.J., Cooper, R.S., de Bakker, P.I.W., Dedoussis, G., 

Ferrucci, L., Franks, P.W., Froguel, P., Groop, L.C., Haiman, C.A., Hamsten, A., Hui, 

J., Hunter, D.J., Hveem, K., Kaplan, R.C., Kivimaki, M., Kuh, D., Laakso, M., Liu, Y., 

Martin, N.G., März, W., Melbye, M., Metspalu, A., Moebus, S., Munroe, P.B., 

Njølstad, I., Oostra, B.A., Palmer, C.N.A., Pedersen, N.L., Perola, M., Pérusse, L., 

Peters, U., Power, C., Quertermous, T., Rauramaa, R., Rivadeneira, F., Saaristo, T.E., 

Saleheen, D., Sattar, N., Schadt, E.E., Schlessinger, D., Eline Slagboom, P., Snieder, 

H., Spector, T.D., Thorsteinsdottir, U., Stumvoll, M., Tuomilehto, J., Uitterlinden, 

A.G., Uusitupa, M., van der Harst, P., Walker, M., Wallaschofski, H., Wareham, N.J., 

Watkins, H., Weir, D.R., Wichmann, H.-E., Wilson, J.F., Zanen, P., Borecki, I.B., 

Deloukas, P., Fox, C.S., Heid, I.M., O’Connell, J.R., Strachan, D.P., Stefansson, K., 

van Duijn, C.M., Abecasis, G.R., Franke, L., Frayling, T.M., McCarthy, M.I., Visscher, 

P.M., Scherag, A., Willer, C.J., Boehnke, M., Mohlke, K.L., Lindgren, C.M., 

Beckmann, J.S., Barroso, I., North, K.E., Ingelsson, E., Hirschhorn, J.N., Loos, R.J.F., 

Speliotes, E.K., 2015. Genetic studies of body mass index yield new insights for obesity 

biology. Nature 518, 197–206. https://doi.org/10.1038/nature14177 



105 
 

Tomie, A., Grimes, K.L., Pohorecky, L.A., 2008. Behavioral characteristics and 

neurobiological substrates shared by Pavlovian sign-tracking and drug abuse. Brain 

Res. Rev. 58, 121–135. https://doi.org/10.1016/j.brainresrev.2007.12.003 

Torrubia, R., Ávila, C., Moltó, J., Caseras, X., 2001. The Sensitivity to Punishment and 

Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and 

impulsivity dimensions. Personal. Individ. Differ. 31, 837–862. 

https://doi.org/10.1016/S0191-8869(00)00183-5 

Tunstall, B.J., Kearns, D.N., 2015. Sign-tracking predicts increased choice of cocaine over 

food in rats. Behav. Brain Res. 281, 222–228. 

https://doi.org/10.1016/j.bbr.2014.12.034 

Turk, M.W., Yang, K., Hravnak, M., Sereika, S.M., Ewing, L.J., Burke, L.E., 2009. 

Randomized Clinical Trials of Weight Loss Maintenance: A Review. J. Cardiovasc. 

Nurs. 24, 58–80. https://doi.org/10.1097/01.JCN.0000317471.58048.32 

van den Bos, R., de Ridder, D., 2006. Evolved to satisfy our immediate needs: Self-control and 

the rewarding properties of food. Appetite 47, 24–29. 

https://doi.org/10.1016/j.appet.2006.02.008 

Versace, F., Engelmann, J.M., Deweese, M.M., Robinson, J.D., Green, C.E., Lam, C.Y., 

Minnix, J.A., Karam-Hage, M.A., Wetter, D.W., Schembre, S.M., Cinciripini, P.M., 

2017. Beyond Cue Reactivity: Non-Drug-Related Motivationally Relevant Stimuli Are 

Necessary to Understand Reactivity to Drug-Related Cues. Nicotine Tob. Res. 19, 663–

669. https://doi.org/10.1093/ntr/ntx002 



106 
 

Versace, F., Frank, D.W., Stevens, E.M., Deweese, M.M., Guindani, M., Schembre, S.M., 

2018. The reality of “food porn”: Larger brain responses to food‐related cues than to 

erotic images predict cue‐induced eating. Psychophysiology e13309. 

https://doi.org/10.1111/psyp.13309 

Versace, F., Kypriotakis, G., 2022. Neuroaffective profiles are associated with e-cigarette use 

(preprint). Neuroscience. https://doi.org/10.1101/2022.02.04.479183 

Versace, F., Minnix, J.A., Robinson, J.D., Lam, C.Y., Brown, V.L., Cinciripini, P.M., 2011. 

Brain reactivity to emotional, neutral and cigarette-related stimuli in smokers: ERPs, 

emotions and cigarettes. Addict. Biol. 16, 296–307. https://doi.org/10.1111/j.1369-

1600.2010.00273.x 

Versace, Kypriotakis, G., Basen-Engquist, K., Schembre, S.M., 2016. Heterogeneity in brain 

reactivity to pleasant and food cues: evidence of sign-tracking in humans. Soc. Cogn. 

Affect. Neurosci. 11, 604–611. https://doi.org/10.1093/scan/nsv143 

Versace, Lam, C.Y., Engelmann, J.M., Robinson, J.D., Minnix, J.A., Brown, V.L., Cinciripini, 

P.M., 2012. Beyond cue reactivity: blunted brain responses to pleasant stimuli predict 

long-term smoking abstinence: ERPs predict smoking cessation. Addict. Biol. 17, 991–

1000. https://doi.org/10.1111/j.1369-1600.2011.00372.x 

Volkow, N.D., Wise, R.A., Baler, R., 2017. The dopamine motive system: implications for 

drug and food addiction. Nat. Rev. Neurosci. 18, 741–752. 

https://doi.org/10.1038/nrn.2017.130 

Wang, L., Chang, W., Krebs, R.M., Boehler, C.N., Theeuwes, J., Zhou, X., 2018. Neural 

Dynamics of Reward-Induced Response Activation and Inhibition 16. 



107 
 

Warlow, S.M., Berridge, K.C., 2021. Incentive motivation: ‘wanting’ roles of central amygdala 

circuitry. Behav. Brain Res. 411, 113376. https://doi.org/10.1016/j.bbr.2021.113376 

Watson, D., Clark, L.A., Tellegen, A., 1988. Development and Validation of Brief Measures 

of Positive and Negative Affect: The PANAS Scales 8. 

Webber, H.E., de Dios, C., Wardle, M.C., Suchting, R., Green, C.E., Schmitz, J.M., Lane, S.D., 

Versace, F., 2021. Electrophysiological responses to emotional and cocaine cues reveal 

individual neuroaffective profiles in cocaine users. Exp. Clin. Psychopharmacol. 

https://doi.org/10.1037/pha0000450 

Weinberg, A., Hajcak, G., 2010. Beyond good and evil: The time-course of neural activity 

elicited by specific picture content. Emotion 10, 767–782. 

https://doi.org/10.1037/a0020242 

Weygandt, M., Spranger, J., Leupelt, V., Maurer, L., Bobbert, T., Mai, K., Haynes, J.-D., 2019. 

Interactions between neural decision-making circuits predict long-term dietary 

treatment success in obesity. NeuroImage 184, 520–534. 

https://doi.org/10.1016/j.neuroimage.2018.09.058 

Wing, R.R., Tate, D.F., Gorin, A.A., Raynor, H.A., Fava, J.L., 2006. A Self-Regulation 

Program for Maintenance of Weight Loss. N. Engl. J. Med. 355, 1563–1571. 

https://doi.org/10.1056/NEJMoa061883 

Zilverstand, A., 2018. Neuroimaging Impaired Response Inhibition and Salience Attribution 

in Human Drug Addiction: A Systematic Review 18. 

  



108 
 

VITA 

Kyla David Gibney completed her B.A. in Neuroscience at Oberlin College in 2013, where 

she conducted her undergraduate research under the mentorship of Dr. Leslie Kwakye. She 

then went on to work in the Human Imaging Core at Vanderbilt University Institute of Imaging 

Science, followed by working in the Neurology department at the University of Tennessee 

Health Science Center. In 2017 Dr. Gibney enrolled in the MD Anderson Cancer Center 

UTHealth Graduate School of Biomedical Sciences, where she enrolled in the Neuroscience 

graduate program under the mentorship of Dr. Francesco Versace. In 2018 Kyla was selected 

for the Drug Abuse Research Training (DART) Fellowship program, where she trained under 

the mentorship of Dr. Lisa McTeague. 

 

Permanent address: 

1978 Elzey Avenue 

Memphis, TN 38104 

 


	Individual differences in LPP amplitude and theta power predict cue-induced eating during a cued food delivery task
	Recommended Citation

	GibneyKyla2022_DsrtnApvlPg.pdf
	GibneyKyla2022_DsrtnMasterDoc.pdf

