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The topological slice genus of satellite knots

PETER FELLER

ALLISON N MILLER

JUANITA PINZÓN-CAICEDO

We present evidence supporting the conjecture that, in the topological category, the
slice genus of a satellite knot P .K/ is bounded above by the sum of the slice genera
of K and P .U /. Our main result establishes this conjecture for a variant of the
topological slice genus, the Z–slice genus. Notably, the conjectured upper bound
does not involve the algebraic winding number of the pattern P. This stands in stark
contrast with the smooth category, where, for example, there are many genus 1 knots
whose .n; 1/–cables have arbitrarily large smooth 4–genera. As an application, we
show that the .n; 1/–cable of any knot of 3–genus 1 (eg the figure-eight or trefoil
knot) has topological slice genus at most 1, regardless of the value of n 2N. Further,
we show that the lower bounds on the slice genus coming from the Tristram–Levine
and Casson–Gordon signatures cannot be used to disprove the conjecture.

57M25, 57N70

1 Introduction

The satellite operation associates to a pattern knot P in a solid torus and a knot K

in S3, the satellite knot P .K/ in S3 obtained as the image of P under the identification
of the solid torus with a 0–framed neighborhood of K. See Figure 1 for an example
and Section 2 for precise definitions.

Figure 1: A pattern P DC4;1 (left), a knot K (center), and the satellite P .K/

(right). The box on the right contains three negative full twists correcting for
theC3 writhe in the diagram of K.
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It is natural to ask how the complexity of the knot P .K/ is determined by those of
its constituent pieces P and K. One of the best-studied measures of complexity of a
knot J is the Seifert or 3–genus g3.J /, an invariant defined as the minimal genus of
an embedded oriented surface in S3 with boundary J. Classical work of Schubert [28]
gives an exact formula for the Seifert genus of a satellite knot: for any nontrivial knot K,

g3.P .K//D g3.P /Cjwjg3.K/;

where w denotes the (algebraic) winding number of P in the solid torus, and g3.P / is
a version of the Seifert genus for patterns.

In the context of knot concordance and 4–manifold topology, instead of considering
spanning surfaces embedded in S3 one considers surfaces lying in 4–dimensional space.
The topological 4–genus of K, denoted by g

top
4
.K/, is thus the minimal genus of any

surface properly embedded in B4 with boundary K via a locally flat embedding. The
smooth 4–genus gsm

4
.K/ is analogously defined. These 4–dimensional genera exhibit

more complicated behavior than the Seifert genus and one cannot hope for an exact
formula à la Schubert. To illustrate this, pick a knot J and consider the connected sum
pattern PJ . This pattern has geometric winding number 1 and satisfies PJ .K/D J #K

for all knots K. Even in this simple case, in either category we see there is no formula
for g4.PJ .K// in terms of g4.PJ / and g4.K/. Despite the fact that g4.J /D g4.�J /,
the 4–genera of PJ .�J /D J #�J and PJ .J /D J #J are quite different: one always
has that g4.J #�J /D 0 and often that g4.J # J /D 2g4.J /. Nevertheless, Schubert’s
methods do extend to show that an inequality

(1) g4.P .K//� g4.P /Cjwjg4.K/

holds in both categories, where, as before, g4.P / is a version of the 4–genus for patterns
and is generally strictly larger than g4.P .U //.

Distinguishing between the smooth and topological 4–dimensional properties of knots is
an area of active research in low-dimensional topology, in part motivated by the fact that
the difference between smooth and topologically slice knots is related to the existence
of exotic differentiable structures on 4–manifolds. Adding to the body of work that
investigates the disparity between the smooth and topological categories in dimension 4,
we show that satellite operations seem to affect gsm

4
and g

top
4

very differently. In the
smooth category, the naive expectation that gsm

4
.P .K// is approximately jwjgsm

4
.K/

often holds. For example, if n is a nonnegative natural number and Cn;1.T2;3/ denotes
the .n; 1/ cable of the trefoil, it is known that

(2) gsm
4 .Cn;1.T2;3//D n:
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More generally, for any pattern P with winding number w, we have

(3) lim
n!1

gsm
4
.P .T2;2nC1//

gsm
4
.T2;2nC1/

D jwj:

We even see that gsm
4
.P .K// can be much larger than jwjgsm

4
.K/: for any w;m 2N

there exists a pattern QDQw;m of winding number w and infinitely many knots J

such that

(4) gsm
4 .Q.J //D gsm

4 .Q.U //Cjwjgsm
4 .J /Cm:

We expect that these observations are known to the experts, but for completeness we
prove them in Section 4.

In contrast to the smooth case, we present evidence for the counterintuitive idea that
the winding number of P essentially does not contribute to g

top
4
.P .K//. We do this by

working with the Z–slice genus, a version of g
top
4

inspired by the work of Freedman.
The definition (see Feller and Lewark [7]) is

gZ.K/ WDmin
˚
genus.F / j F ,! B4 is an oriented locally flat surface with

@F DK and �1.B
4
nF /Š Z

	
:

Without going too far afield, we note that Freedman’s work can be roughly described
as showing that the high-dimensional surgery-theoretic slogan that algebra governs
topology does apply to topology in dimension 4, under certain conditions [9]. The
constraint that �1.B

4 nF /Š Z in the definition of gZ.K/ guarantees that we are in
such a situation.

Note that definitionally g
top
4
� gZ and, since the complement of a Seifert surface with

interior properly pushed into the 4–ball has fundamental group Z, we also have gZ�g3

(see Gompf and Stipsicz [12, Proposition 6.2.1] or Feller and Lewark [7, Proof of
Theorem 1] for more details). The statement of [9, Theorem 1.13] can be rewritten in
terms of the Z–slice genus to say that gZ.K/D 0 if and only if �K .t/D 1.

Our main theorem then reads as follows:

Theorem 1.1 For any pattern P and knot K, gZ.P .K//� gZ.P .U //CgZ.K/.

The first step in establishing Theorem 1.1 is to reduce the topological problem to an
algebraic one by applying a result of Feller and Lewark [8], that gZ can be identified
with the algebraic genus galg, an invariant defined purely in terms of Seifert matrices [7].
We then use Schubert’s construction of Seifert surfaces for satellite knots to embark on
a careful analysis and manipulation of certain Seifert matrices for P .U /, K and P .K/,
proving the analogue of Theorem 1.1 for galg in Proposition 2.4.

Algebraic & Geometric Topology, Volume 22 (2022)
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Duncan McCoy has an alternative proof of Theorem 1.1 which relies on his recent
work [23] analyzing the behavior of galg under so-called “null homologous twisting
operations”. A third way to prove Theorem 1.1 is obtained by combining a result of
Livingston and Melvin [22] about the Blanchfield pairing and the recent characterization
of gZ in terms of the Blanchfield pairing given in [8, Theorem 1.1]. This is discussed
in more detail at the end of Section 2.

Although it is not present in the statement of Theorem 1.1, our proof implies that a
satellite knot P .K/ shares a Seifert matrix with the connected sum P .U / # Cw;1.K/,
where wDw.P / is, as usual, the winding number of P. In particular, when w.P /D 0

we obtain gZ.P .K// D gZ.P .U // and when w.P / D ˙1 we have gZ.P .K// D

gZ.P .U /#K/. This second fact is interesting given that it is an open problem whether
P .K/ and P .U / # K must be topologically concordant for w.P /DC1. However, we
think that Theorem 1.1 is most striking for jw.P /j> 1, where its consequences stand
in contrast with smooth results such as (2), (3) and (4). For example, the following
result is radically different from (2):

Example 1.2 (the .n; 1/–cable of the trefoil) For a knot K and n> 0, Theorem 1.1
implies

g
top
4
.Cn;1.K//� gZ.Cn;1.K//� gZ.Cn;1.U //CgZ.K/� g3.K/:

Additionally, a simple Tristram–Levine signature computation at an appropriate z 2 S1

shows that Cn;1.T2;3/ is never slice (see the proof of (2)) and hence that

g
top
4
.Cn;1.T2;3//D 1 for all n> 0:

In Section 4 we establish the following contrast with (3):

Corollary 1.3 Let P be a pattern of winding number w. Then

lim
n!1

g
top
4
.P .T2;2nC1//

g
top
4
.T2;2nC1/

D

�
1 if w ¤ 0;

0 if w D 0:

In Example 4.6, we consider the family of knots Kp D C2;2pC1.T2;p/ indexed by odd
positive integers p and offer a quantitative measure of the difference between their
topological and smooth 4–genera. Theorem 1.1, together with information on gsm

4
.Kp/

using that Kp is the closure of a positive braid, can be used to show that

lim sup
p!1

g
top
4
.Kp/

gsm
4
.Kp/

�
2

3
:
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The novelty here is not just the improvement of previous bounds, but also the fact
that we do so without relying on explicit example-based calculations, contrasting with
Rudolph [25] and Baader, Feller, Lewark and Liechti [1].

With all this in mind we make the following conjecture about the topological 4–genera
of satellite knots:

Conjecture 1.4 For any pattern P and knot K, g
top
4
.P .K//� g

top
4
.P .U //Cg

top
4
.K/:

As additional evidence, we show that the known lower bounds on the topological
4–genus are not capable of disproving Conjecture 1.4. In Section 3, we observe that
the satellite formula of Litherland [20] implies that the lower bound for g

top
4

given by
Tristram–Levine signatures cannot be used to establish that a pair P and K fails to
satisfy Conjecture 1.4. Moreover, we consider Gilmer’s lower bound for g

top
4

[11] in
terms of Casson–Gordon signature invariants [3; 4], and in Theorem 3.4 we show that
this bound cannot be used to disprove Conjecture 1.4.

Our main result also enables the precise computation of g
top
4

for certain families of
satellite knots.

Corollary 1.5 Let P be a pattern with �P.U /.t/D 1.

(1) For every knot K, g
top
4
.P .K//� g3.K/.

(2) If w.P /¤ 0 and K is a knot such that 2g3.K/D j�z.K/j for some z 2 S1 with
�K .z/¤ 0, then

g
top
4
.P .K//D g3.K/D g

top
4
.K/:

Note the hypothesis on the winding number of P in (2) is necessary: if P has wind-
ing number 0 and �P.U /.t/ D 1, then P .K/ has Alexander polynomial 1 and so
g

top
4
.P .K//D 0 for any knot K.

Proof Since �P.U /.t/D 1, we have that gZ.P .U //D 0, and therefore

g
top
4
.P .K//� gZ.P .K//� gZ.P .U //CgZ.K/D gZ.K/� g3.K/;

establishing our first claim. The stated assumption on �z.K/ implies that g
top
4
.K/D

gZ.K/ D g3.K/. Now let � 2 S1 be a prime-power root of unity such that no root
of �K .t/ lies between �n and z, where nD jwj is the absolute value of the winding
number of P. This, together with Litherland’s formula for the Tristram–Levine signature
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of a satellite knot [20], shows that

j��.P .K//j D j��.P .U //C ��n.K/j D j0C ��n.K/j D j�z.K/j:

This combines with Taylor’s result [29] that 2g
top
4
.P .K// � j��.P .K//j to show, as

desired, that
2g

top
4
.P .K//� j�z.K/j D 2g

top
4
.K/D 2g3.K/:
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2 Definitions and main result for the algebraic genus

In this section we establish an inequality relating the Z–genera of P .U /, K and P .K/.
We do so by establishing an inequality between their algebraic genera, defined below.
Since gZ and galg are the same for knots, this will translate back to an inequality
for gZ when P is a one-component pattern, as in the case of interest. The advantage of
working with galg is that one can work with algebraic manipulations of Seifert matrices,
which we will see can be taken to have a particular form for satellites.

We start by recalling the relevant definitions and properties.

Definition 2.1 For a link L� S3 with r components, one defines its algebraic genus
as

galg.L/Dmin
˚

1
2
.m�2n�rC1/ j there exists a Seifert surface F for L with an

m�m Seifert matrix of the form
�

B
�

�

�

�
, where B

is a 2n�2n matrix satisfying det.tB�BT /D tn
	
:

A Seifert surface F for L is said to realize the algebraic genus galg.L/ if it has a Seifert
matrix as above such that 1

2
.m� 2n� r C 1/D galg.L/.

The definition is chosen so that a knot K has galg.K/D 0 if and only if it has Alexander
polynomial 1. Indeed, 2n�2n matrices B with det.tB�BT /D tn for some n 2Z are
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The topological slice genus of satellite knots 715

Figure 2: A Seifert surface for a pattern P (left) and a Seifert surface for
a knot K (center) combine to give a Seifert surface for P .K/ (right). The
highlighted curve on the left represents the curve l from Definition 2.2.

exactly the matrices that occur as Seifert matrices of knots with Alexander polynomial 1.
We call such a B an Alexander trivial matrix or, if it is a diagonal subblock of a larger
matrix, an Alexander trivial submatrix. A key feature of the algebraic genus is that
gZ.L/�galg.L/ for all links L, so galg provides an upper bound on gZ and thus g

top
4

—
see [7] — obtained entirely from Seifert matrices. Furthermore, gZ.K/D galg.K/ for
all knots K [8, Corollary 1.5], which is what we use to translate statements about galg

to ones about gZ.

Before formally defining the satellite operation, we establish some notation: given a
submanifold Y of X, we let N.Y / denote a small open tubular neighborhood of Y.

Definition 2.2 Let P t �� S3 be a link of r C 1� 2 components with � an unknot
such that P is contained in the interior of the solid torus V D S3 nN.�/. Let l be a
simple closed curve in @V such that l is isotopic in S3 to a meridian of �. Let K � S3

be a knot and let h W V !N.K/� S3 be an orientation-preserving homeomorphism
taking l to a 0–framed longitude of K and a 0–framed longitude of � to a meridian
of K. The image of P under h, denoted by P .K/, is the satellite link with pattern P

and companion K. The (algebraic) winding number of P is defined as w D lk.P; �/.

The reader may be used to requiring P to be a connected pattern, ie restricting to r D 1.
In this section, we consider general patterns with r � 1, where P .K/ is a link rather
than a knot. However, in all other sections we only consider:

Remark 2.3 Without loss of generality, it is enough to consider patterns with non-
negative winding number. Indeed, if P is a pattern with negative winding number
then w D lk.P; �/ < 0, and so lk.P rev; �/ D �w > 0 and P rev has positive winding
number. Furthermore, since P rev.K/D P .K/rev, any notion of genus agrees on P .K/

and P rev.K/.

Algebraic & Geometric Topology, Volume 22 (2022)
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Main result about the algebraic genus of satellites

Our main theorem about the algebraic genus of satellites is the following:

Proposition 2.4 For a satellite link P .K/ with pattern P and companion K,

galg.P .K//� galg.P .U //Cminfjwj; 1ggalg.K/:

In fact , for jwj D 1 and w D 0, we have that P .K/ is S-equivalent to P .U / # K

and P .U /, respectively.

Before we provide the proof of Proposition 2.4, we derive Theorem 1.1 from it.

Proof of Theorem 1.1 Let P be a one-component pattern and K be a knot. Then
gZ D galg for P .K/, P .U / and K, since they are all knots [8, Corollary 1.5]. Using
these equalities, Theorem 1.1 follows immediately from Proposition 2.4.

Our proof of Proposition 2.4 uses a construction of a Seifert surface for P .K/ similar
to the one in [18, Chapter 6, Theorem 6.15], and illustrated below, with some additional
attention paid to realizing galg.

Lemma 2.5 Let P t � be a pattern with winding number w � 0, and let l denote a
chosen 0–framed longitude in the boundary of V D S3 nN.�/. There exists a Seifert
surface G � S3 nN.�/ for the link P twl such that G [wl wD2 is a Seifert surface
for P .U / that realizes galg.P .U //. Here wl and wD2 denote w parallel copies of l

and D2, respectively.

Proof The link P .U / is obtained by regarding the pattern P as a link in S3, forget-
ting about the effect of the unknotted component �. Let F be a Seifert surface for
P .U / whose Seifert form realizes galg.P .U //. Using general position, assume that �
intersects F transversely k times, so that the intersection of N.�/ and the surface F

consists of a collection of k disjoint disks. Denote by p and n the number of disks that
intersect � positively and negatively, respectively, and note that w D p� n. To prove
the lemma, it is enough to modify F so that k Dw, or equivalently that nD 0, without
losing the property that the Seifert form of F realizes galg.P .U //. In the following
paragraph we will prove that this modification can be achieved by stabilizations. Once
we establish this the proof will be finished, since, by [7, Lemma 11], the property of
realizing the algebraic genus is preserved by stabilization.
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Figure 3: The unknotted component � and some disks in F \N.�/ (left) and
the annulus obtained after stabilizing (right).

Assume that n> 0, so that, since w � 0, it must be that p > 0. Choose a disk D�i � F

intersecting � negatively and a disk DCi � F intersecting � positively that are adjacent
on � (ie they are connected by an arc on � that is disjoint from all the other disks).

Let a be an arc in � joining DCi to D�i such that a is disjoint from all the other disks.
Stabilize F using a tube surrounding the arc a to find a new Seifert surface that has two
fewer intersections with �. Iterate this procedure of choosing two disks and stabilizing
until a total of n stabilizations have happened. Call the result of these stabilizations F 0

and notice that F 0 intersects � only with positive sign, and so, if k 0 denotes the number
of disks in the intersection F 0\N.�/, then k 0 D w, as sought. For a local picture of
this procedure, see Figure 3. Finally, as noted above, Lemma 11 of [7] shows that
stabilization of a Seifert surface preserves the property of realizing galg and so F 0 also
realizes galg.P .U //. We then let G D F 0\V.

With the previous lemma in place, we are now ready to prove Proposition 2.4.

Proof of Proposition 2.4 Fix a knot K and a pattern P with r � 1 components and
algebraic winding number w. Without loss of generality, assume w � 0. Let G be a
Seifert surface for P twl as in Lemma 2.5, and let V1 be a Seifert matrix for P .U /

corresponding to a choice of a basis for the first homology of G [wD2. Similarly,
let S be a Seifert surface for K that realizes galg.K/ and let V2 be a Seifert matrix
corresponding to a choice of a basis for the first homology of S. Assume that we have
picked our bases for the first homology of G [wD2 and S so that

V1 D

�
A1 �

� �

�
and V2 D

264 A2 B C

BT

D
C T

375 ;
Algebraic & Geometric Topology, Volume 22 (2022)
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where the matrices V1 and V2 are of size .2m1Cr�1/�.2m1Cr�1/ and 2m2�2m2,
respectively, for some nonnegative integers m1 and m2, and for i D 1; 2 the matrix Ai

is an Alexander trivial matrix of size 2.mi � gi/� 2.mi � gi/ for g1 D galg.P .U //

and g2 D galg.K/. We note that B and C are 2.m2�g2/�g2 matrices, and we may
further choose our basis for H1.S/ so that

D D

�
D11 D12

D21 D22

�
is a 2g2 � 2g2 matrix such that

D�DT
D

�
0 Ig2

�Ig2
0

�
:

Let G.K/ denote h.G/ for h WV !N.K/ as in Definition 2.2, in other words the image
of G when we tie V into the knot K. Let zF be the Seifert surface of P .K/ given as

zF DG.K/[wF;

where wF denotes jwj many parallel copies of F with boundaries equal to the bound-
aries of G.K/ and zF D G.K/ [wF gets the orientation induced by G.K/. Then,
pushing forward the basis of H1.G [wD;Z/ via h� and taking parallel copies of the
basis of H1.F;Z/ chosen earlier, we obtain a basis for H1. zF IZ/ and the following
Seifert matrix for P .K/:

V D

"
V1 0

0 jwjV2

#
; where jwjV2 WD

26664
V2 V2 � � � V2

V T
2

V2 � � � V2
:::

:::
: : :

:::

V T
2

V T
2
� � � V2

37775 :
Compare also with the construction in [18, Chapter 6], where this calculation is given
for a particular, similarly constructed Seifert surface for P .K/. Note that if jwj is 1

or 0, then V is a Seifert matrix for P .U / # K or P .U /, respectively. This establishes
the “in fact” part of Proposition 2.4.

Next, observe that a 2m � 2m Alexander trivial submatrix M0 of a matrix M and
a 2n� 2n Alexander trivial submatrix N0 of a matrix N automatically combine to
give a 2.mC n/� 2.mC n/ Alexander trivial submatrix M0˚N0 of M ˚N. Since
V DV1˚jwjV2, it therefore suffices to show that there exists a submatrix X� of jwjV2

that is Alexander trivial and of size 2.jwjm2�g2/� 2.jwjm2�g2/. To simplify the
matrix manipulation, notice that a simple matrix congruence transforms jwjV2 into the
following matrix:

Algebraic & Geometric Topology, Volume 22 (2022)
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X D

2666664
V2 0 � � � 0

�.V2�V T
2
/ V2�V T

2
� � � 0

0 �.V2�V T
2
/ � � � 0

:::
:::

: : :
:::

0 0 � � � V2�V T
2

3777775

D

26666666666666666666666666664

A2 B C

BT D11 D12 � � �

C T D21 D22

AT
2
�A2 0 0 A2�AT

2
0 0

0 0 �Ig 0 0 Ig � � �

0 Ig 0 0 �Ig 0

: : :

A2�AT
2 0 0

� � � 0 0 Ig

0 �Ig 0

AT
2 �A2 0 0 A2�AT

2 0 0

� � � 0 0 �Ig 0 0 Ig

0 Ig 0 0 �Ig 0

37777777777777777777777777775

:

That is, jwjV2 is congruent to a jwj� jwj block matrix X with .i; j / block entry given
by the 2m2 � 2m2 matrix V2 if i D j D 1, by V2 �V T

2
if i D j > 1, by V T

2
�V2 if

i D j C1, and by 0 otherwise. Then, replacing X by QXQt , where Q is a permutation
matrix, we obtain

X 0 D

2666666666666666666666666666664

Y

B C

0 0
:::

::: � � �

0 0

BT 0 � � � 0 D11 D12

C T 0 � � � 0 D21 D22 � � �

0 �Ig 0 Ig

Ig 0 �Ig 0 � � �

: : :

0 Ig

� � � �Ig 0

0 �Ig 0 Ig

� � � Ig 0 �Ig 0

3777777777777777777777777777775

;
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where

Y D

2666664
A2 0 : : : 0

�.A2�AT
2
/ A2�AT

2
: : : 0

0 �.A2�AT
2
/ : : : 0

:::
:::

: : :
:::

0 0 : : : A2�AT
2

3777775 ;

ie Y is a jwj � jwj block matrix with .i; j / block entry equal to A2 if i D j D 1,
A2�AT

2
if i D j > 1, AT

2
�A2 if i D j C 1, and 0 otherwise.

We will show that X�, the matrix obtained from X 0 by deleting the first block row and
column after Y and the last block row and column, is Alexander trivial.

Indeed, note that the matrix X�� t.X�/
T is given by2666666666666666666666666666664

Y � tY T

.1� t/C

0
::: � � �

0

.1� t/C T 0 � � � 0 D22� tDT
22

tIg � � �

�Ig 0 ‰

�‰ 0 � � �

: : :

0 ‰ 0 �tIg 0

� � � �‰ 0 tIg 0 0

0 �Ig 0 ‰ 0

� � � Ig 0 �‰ 0 tIg

0 0 0 �Ig 0

3777777777777777777777777777775

;

where, for layout, we have used the notation ‰ D .1C t/Ig.

Thus, the only nonzero entry in its final block row is �Ig in the penultimate block
column, and similarly the only nonzero entry in its final block column is tIg in the
penultimate block row.

We can therefore delete the final two rows and columns of X� � t.X�/
T without

changing its determinant. Thus, det.X�� t.X�/
T / is given by the following matrix:
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det

2666666666666666666666666664

Y�tY T

.1�t/C

0
::: � � �

0

.1�t/C T 0 � � � 0 D22�tDT
22

tIg � � �

�Ig 0 .1Ct/Ig

�.1Ct/Ig 0 � � �

: : :

0 .1Ct/Ig 0

� � � �.1Ct/Ig 0 tIg

� � � 0 �Ig 0

3777777777777777777777777775
and repeating this procedure one observes that

det.X�� t.X�/
T /D det

266666666664
Y � tY T

.1� t/C 0

0
:::

:::

0

.1� t/C T 0 � � � 0 D22� tDT
22

tIg

0 � � � �Ig 0

377777777775
D det.Y � tY T /:

By reversing the row and column moves we performed on jwjV2 at the beginning of
this argument, we see that Y is congruent to jwjA2, and hence

det.X�� t.X�/
T /D det.Y � tY T /D det

�
jwjA2� t.jwjA2/

T
�
:

To see that jwjA2 is Alexander trivial, notice that if J is a knot with Seifert form A2,
then jwjA2 is a Seifert form for Cjwj;1.J /. A formula of Litherland [20] states that,
for all patterns P and knots K,

(5) �P.K /.t/D�P.U /.t/�K .t
jwj/:

and this formula implies that

det
�
jwjA2� t.jwjA2/

T
�
D�Cjwj;1.J /.t/D�J .t

jwj/D 1:

The following example demonstrates that the inequality from Proposition 2.4 can be
sharp and, moreover, can sometimes be attained in a nice geometric way.
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Figure 4: A Seifert surface for M.41/ with separating curve  isotopic to D.41/.

Example 2.6 (the Mazur pattern) The Mazur satellite of the figure-eight knot, M.41/,
has a genus 2 Seifert surface F illustrated in Figure 2 that comes from two genus 1
surfaces realizing the algebraic genera of M.U / and of 41, respectively. The proof of
Proposition 2.4 implies that there is some curve  which bounds a genus 1 subsurface
of F and, when considered as a knot in S3, has � .t/D 1. In fact, as illustrated in
Figure 4, we can pick  to be isotopic to the positive Whitehead double D.41/.

The Blanchfield pairing perspective We end this section with an alternative proof of
Theorem 1.1.

Recall that for a knot K � S3 the Alexander module AK is the first integer homology
of the infinite cyclic cover of the knot complement viewed as a ZŒt˙1�–module via the
deck group action. The Blanchfield pairing Bl.K/ of K is a nonsingular, hermitian,
sesquilinear form

Bl.K/ WAK �AK 7!Q.t/=ZŒt˙1�

that is linear in the first variable and antilinear in the second variable with respect to
the involution induced by t 7! t�1. The Blanchfield form Bl.K/ can be expressed in
terms of a Seifert matrix for K. Moreover, two Seifert matrices are S-equivalent if and
only if they determine isomorphic Blanchfield forms. Here, isomorphic means that,
for two knots K and K0, there exists a ZŒt˙1�–module isomorphism � W AK ! AK 0

such that Bl.K0/.�.x/; �.y// D Bl.K/.x;y/ for all x;y 2 AK . See [2; 14; 15; 10]
for more details.

In [22, Theorem 2], Livingston and Melvin show that

Bl.P .K//.t/Š Bl.P .U //.t/˚Bl.K/.tw/;
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generalizing a result of Litherland [20], where this was established for QŒt˙1� coeffi-
cients.

This enables another proof of Theorem 1.1. Namely, the recent characterization
of gZ D galg in terms of the Blanchfield pairing from [8, Theorem 1.1] implies
that the inequality gZ.P .K// � gZ.P .U //C gZ.K/ follows from Bl.P .K//.t/ Š
Bl.P .U //.t/˚ Bl.K/.tw/. We do not provide details of this here as we have an
elementary matrix–based proof, which (at least when stated for the algebraic genus),
works more generally for satellites of multiple components.

3 Lower bounds on g
top
4

and satellite operations

In this section, we discuss lower bounds for the topological 4–genera of knots, namely
Tristram–Levine signatures and Casson–Gordon signatures, and explain why these
invariants cannot be used to disprove Conjecture 1.4. While this is immediate from
classical formulas in the case of Tristram–Levine signatures, we consider it a priori
somewhat surprising that Casson–Gordon signatures fail to disprove Conjecture 1.4.
All patterns P in this section are connected, ie they are knots in a solid torus V.

The Tristram–Levine signatures �z are classical knot invariants [30; 17], which have
a simple behavior with respect to satellite operations. Namely, for a pattern P with
winding number w one has

(6) �z.P .K//D �z.P .U //C �zw .K/ for all knots K and z 2 S1; see [19].

Furthermore, a classical result [29; 21] establishes that signatures give a lower bound
for g

top
4

:

(7) j�z.K/j � 2g
top
4
.K/ for all knots K and regular z 2 S1.

Here, z 2 S1 is said to be regular if it does not arise as the root of an Alexander
polynomial of a knot. For example, all prime-power-order roots of unity are regular.

As a consequence, one has that

max
regular z2S1

j�z.P .K//j � max
regular z2S1

j�z.P .U //jC max
regular z2S1

j�z.K/j

� 2g
top
4
.P .U //C 2g

top
4
.K/;

which shows the lower bound for g
top
4
.P .K// given by the Levine–Tristram signatures

of P .K/ cannot be used to establish that a pair P and K fails to satisfy the inequality
of Conjecture 1.4.
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The next family of slice genus bounds come from Casson–Gordon signatures by
work of Gilmer. Our main result of this section, Theorem 3.4, can be informally
paraphrased as “one cannot use Casson–Gordon signatures to prove g

top
4
.P .K// >

g
top
4
.P .U //Cg

top
4
.K/”.

Casson–Gordon à la Gilmer

We will be working with torsion abelian groups G equipped with linking forms
� W G � G ! Q=Z. In particular, when we write G Š G1 ˚ G2 we are implicitly
decomposing the pair .G; �/Š .G1; �1/˚ .G2; �2/. Our main examples of such pairs
.G; �/ will be G DH1.†n.K//, the first homology of the nth cyclic branched cover
of a knot K for n a prime power and �D �K

n the so-called torsion linking form.

Definition 3.1 Given a subgroup G � H1.†n.K//, we call H � G an invariant
metabolizer of G if

� H is a metabolizer for �njG , ie jH j2 D jGj and �njH�H D 0;1

� H is preserved by the Zn–action induced by the covering transformation of
†n.K/.

To a knot K, a prime power n and a prime-power-order character � WH1.†n.K//!Zq ,
Casson and Gordon associate a collection of rational numbers f�r�.K; �/g

q
rD1

, called
Casson–Gordon signatures [3; 4]. These signatures were employed to give the first
examples of nonslice yet algebraically slice knots. Work of Gilmer extended the
sliceness obstruction of [3; 4] to give lower bounds on g

top
4

[11], stated here in the
reformulation and mild strengthening of [24]. From now on, for n2N we fix a primitive
nth root of unity denoted by zn.

Theorem 3.2 [24; 11] Let K be a knot and suppose that g
top
4
.K/ � g. Then , for

any prime power n, there is a decomposition of H1.†n.K//DA1˚A2 such that the
following properties hold :

(I) A1 has an even presentation of rank 2.n� 1/g with signature
Pn

iD1 �K .z
i
n/.

1We warn the reader that the traditional definition of a metabolizer M of G, ie a subgroup satisfying
M DM? WD fg 2G W �n.g;m/D 0 for all m 2M g, coincides with this definition only when �njG�G is
nonsingular.
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(II) A2 has an invariant metabolizer B such that , given any prime-power-order
character � which vanishes on A1˚B, we haveˇ̌̌̌

�1�.K; �/C

nX
iD1

�K .z
i
n/

ˇ̌̌̌
� 2ng:

(III) A1˚B is also covering transformation–invariant.

An equivalent formulation of Theorem 3.2 states that, for � an order q character
as above, we have j�r�.K; �/C

Pn
iD1 �K .z

i
n/j � 2ng for any r D 1; : : : q, since

�r�.K; �/D �1�.K; r
0�/ for some r 0 and �jH D 0 implies that r 0�jH D 0 as well.

Given a knot K and some g � 0, we say that .K; n;g/ satisfies the Gilmer 4–genus
bounds if the conclusions of Theorem 3.2 hold. If .K; n;g/ satisfies the Gilmer bound
for all prime powers n, we say that .K;g/ satisfies the Gilmer bound.

Casson–Gordon signatures of a satellite knot

We will need the following general formula for the Casson–Gordon signatures of a
satellite knot. Recall that, given a map � WH1.†n.K//!Zq , we denote by �r�.K; �/

the r th Casson–Gordon signature of .K; �/. In the exceptional case when nD 1 and so
†1.K/D S3 and � must be trivial, we somewhat abusively let �r�.K; �/ denote the
Tristram–Levine signature �K .z

r
q/.

Theorem 3.3 [20] Let P be a pattern described by an unknotted curve � in the
complement of P .U /, ie the solid torus V is S3 XN.�/. Suppose P has winding
number m, let n 2N and define d D gcd.m; n/. Then there is a canonical isomorphism

˛ WH1

�
†n.P .K//

�
!H1

�
†n.P .U //

�
˚

dM
iD1

H1.†n=d .K//:

Moreover , letting t
P.K /
n , t

P.U /
n and tK

n=d
refer to the maps induced on H1

�
†n.P .K//

�
,

H1

�
†n.P .U //

�
and H1.†n=d .K// by the appropriate covering transformations and

writing ˛ D .˛0; ˛1; : : : ; ˛d /, we have that , for any x 2H1

�
†n.P .K//

�
,

˛.tP.K /
n �x/D .tP.U /

n �˛0.x/; t
K
n=d �˛d .x/; ˛1.x/; : : : ; ˛d�1.x//:

Furthermore , for n and q prime powers , let

�D .�0; �1; : : : ; �d / WH1

�
†n.P .U //

�
˚

dM
iD1

H1.†n=d .K//! Zq
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be a tuple of characters and denote by �1; : : : �d the homology classes of the d lifts
of � to †n.P .U //. Then the Casson–Gordon signature �1�.P .K/; � ı˛/ is given by

�1�.P .K/; � ı˛/D �1�.P .U /; �0/C

dX
iD1

��0.�i /�.K; �i/:

Theorem 3.4 Let P be a pattern , K be any knot , g � g
top
4
.P .U //Cg

top
4
.K/ and n

be a prime power. Then there is a decomposition of H1.†n.K//DA1˚A2 such that
the following properties hold :

(I) A1 has an even presentation of rank 2.n� 1/g with signature
Pn

iD1 �K .z
i
n/.

(II) A2 has an invariant metabolizer B such that , given any prime-power-order
character � which vanishes on A1˚B, we haveˇ̌̌̌

�1�.K; �/C

nX
iD1

�K .z
i
n/

ˇ̌̌̌
� 2ng:

(III) A1˚B is also covering transformation–invariant.

The proof of Theorem 3.4 is obtained using Litherland’s formula for Casson–Gordon
signatures and Gilmer’s bounds for P .U / and K.

Proof Let gK D g
top
4
.K/, gP D g

top
4
.P .U //, and let n be an arbitrary prime power.

We show that .P .K/; n;g/ satisfies the Gilmer bounds for g � gP CgK .

By Theorem 3.2, there is a decomposition of H1

�
†n.P .U //

�
D AP

1
˚AP

2
with the

following properties:

(PI) AP
1

has an even rank 2.n� 1/gP presentation of signature
Pn

iD1 �P.U /.z
i
n/.

(PII) AP
2

has an invariant metabolizer BP such that, if � WH1

�
†n.P .U //

�
! Zq is

a character of prime-power order vanishing on AP
1
˚BP, thenˇ̌̌̌

�1�.P .U /; �/C

nX
iD1

�P.U /.z
i
n/

ˇ̌̌̌
� 2ngP :

(PIII) AP
1
˚BP is also covering transformation–invariant.

Write the algebraic winding number of P as mD pam0, where pa D gcd.m; n/. So
nD pb for b � a� 0. Note that when aD b, ie nD pa divides m, we have that � lifts
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to n distinct curves in †n.P .U //, and when a< b we have that � lifts to strictly fewer
than n curves in †n.P .U //.

Case 1 (aD b, so nD pa divides m) Decompose

H1

�
†n.P .K//

�
ŠH1

�
†n.P .U //

�
˚ 0

using ˛ from Theorem 3.3 and take A1D˛
�1.AP

1
/, A2D˛

�1.AP
2
/ and BD˛�1.BP /.

To check (I), we observe that

(8)
nX

iD1

�P.K /.z
i
n/

(6)
D

nX
iD1

.�P.U /.z
i
n/C �K .z

im
n //D

nX
iD1

.�P.U /.z
i
n/C �K .z

inm0

n //

D

nX
iD1

�P.U /.z
i
n/:

Thus, A1 has an even presentation of rank 2.n�1/gK with signature
Pn

iD1 �P.K /.z
i
n/

by (PI). Noting that the trivial group 0 certainly has an even presentation of rank
2.n� 1/.g�gK / and signature 0, we have that A1 has an even presentation of rank
2.n� 1/gK C 2.n� 1/.g�gK / with signature

Pn
iD1 �P.K /.z

i
n/C 0. This concludes

the proof of (I).

To check (II), we let � WH1

�
†n.P .U //

�
!Zq be of prime-power order with �jA1˚BD0

and bound
.�/D

ˇ̌̌̌
�1�.P .K/; � ı˛/C

nX
iD1

�P.K /.z
i
n/

ˇ̌̌̌
as follows:

.�/D

ˇ̌̌̌
�1�.P .K/; � ı˛/C

nX
iD1

.�P.U /.z
i
n//

ˇ̌̌̌
(by (8))

D

ˇ̌̌̌
�1�.P .U /; �/C

nX
iD1

�K .z
�.�i /
q /C

nX
iD1

.�P.U /.z
i
n//

ˇ̌̌̌
(by Theorem 3.3)

�

ˇ̌̌̌
�1�.P .U /; �/C

nX
iD1

.�P.U /.z
i
n//

ˇ̌̌̌
C

ˇ̌̌̌ nX
iD1

�K .z
�.�i /
q /

ˇ̌̌̌
� 2ngP C 2ngK (by (PII) and (7))

� 2ng:

Finally, the invariance of B and A1˚B under t
P.K /
n is immediate from (PIII) and

the fact that in this case we have ˛ D ˛0 and so ˛.tP.K /
n � x/ D t

P.U /
n � ˛.x/ for all

x 2H1

�
†n.P .K//

�
.
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Case 2 (b > a) By Theorem 3.2, there is a decomposition of H1.†pb�a.K// D

AK
1
˚AK

2
with the following properties:

(KI) AK
1

has an even rank 2.pb�a� 1/gK presentation of signature

s D

pb�aX
iD1

�K .z
i
pb�a/:

(KII) AK
2

has an invariant metabolizer BK such that, if � WH1.†pb�a.K//! Zq is
a character of prime-power order q vanishing on A1˚B, then

j�1�.K; �/C sj � 2.pb�a/gK :

(KIII) A1˚B is also covering transformation–invariant.

Decompose H1

�
†n.P .K//

�
ŠH1

�
†n.P .U //

�
˚
Lpa

iD1
H1.†pb�a.K// using ˛ from

Theorem 3.3 and take

A1 D ˛
�1

�
AP

1 ˚

paM
iD1

AK
1

�
and A2 D ˛

�1

�
AP

2 ˚

paM
iD1

AK
2

�
:

By taking the direct sum of our assumed presentations for AP
1

and AK
1

from (PI)
and (KI), respectively, we have that A1 ŠAP

1
˚
Lpa

iD1
AK

1
has an even presentation

of rank

2.pb
� 1/gP Cpa2.pb�a

� 1/gK D 2.pb
� 1/gP C 2.pb

�pa/gK

� 2.pb
� 1/g D 2.n� 1/g

and signature
Pn

iD1 �P.U /.z
i
n/Cpas. However, since paD gcd.pb;pam0/, we know

that .p;m0/ D 1 and so fzm0j
pb�a W j D 1; : : : ;pb�ag D fzi

pb�a W i D 1; : : : ;pb�ag. It
follows that

pas D pa

pb�aX
iD1

�K .z
i
pb�a/D pa

pb�aX
jD1

�K .z
m0j

pb�a/D

pbX
jD1

�K .z
m0j

pb�a/

D

pbX
jD1

�K .z
pam0j

pb /D

nX
iD1

�K .z
mi
n /

and thus

(9)
nX

iD1

�P.U /.z
i
n/Cpas D

nX
iD1

.�P.U /.z
i
n/C �K .z

mi
n //D

nX
iD1

�P.K /.z
i
n/:
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This concludes the proof of (I) since the even presentation of A1 of rank 2.pb�1/gPC

2.pb �pa/gK and signature
Pn

iD1 �P.K /.z
i
n/ just described can be increased if nec-

essary to have rank 2.n�1/gD 2.pb �1/g by connect-sum with an even presentation
of the trivial group with signature 0 and appropriate rank.

Now, note that BP ˚
Lpa

iD1
BK is an metabolizer for AP

1
˚
Lpa

iD1
AK

2
and set

B D ˛�1

�
BP
˚

paM
iD1

BK

�
:

Since BP and BK are invariant under t
P.U /
n and tK

n=d
, respectively, by (KII) and (PII),

we have that BP ˚
Lpa

iD1
BK is invariant under

.x0;x1; : : : ;xd / 7! .tP.U /
n �x0; t

K
n=pa �xpa ;x1; : : : ;xpa�1/:

Therefore, B is invariant under t
P.K /
n . Since AP

1
˚ BP is invariant under t

P.U /
n

by (PIII), each AK
1
˚BK is invariant under tK

n=pa by (KIII) and

˛.A1˚B/D ˛.A1/˚˛.B/D

�
AP

1 ˚

paM
iD1

AK
1

�
˚

�
BP
˚

paM
iD1

BK

�

D .AP
1 ˚BP /˚

paM
iD1

.AK
1 ˚BK /;

we can similarly observe that A1˚B is invariant under the action of t
P.K /
n , thereby

establishing (III).

To check (II), let

�D .�0; �1; : : : ; �pa/ WH1

�
†n.P .U //

�
˚

paM
iD1

H1.†pb�a.K//! Zq

be a character of prime-power order and suppose that � vanishes on

˛.A1˚B/D .AP
1 ˚BP /˚

paM
iD1

.AK
1 ˚BK /:

In particular, �0 vanishes on AP
1
˚BP and �i vanishes on the i th copy of AK

1
˚BK.

We are now interested in bounding

.�/ WD

ˇ̌̌̌
�1�.P .K/; � ı˛/C

pbX
iD1

�P.K /.z
i
pb /

ˇ̌̌̌
:
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By Theorem 3.3 and (9), we have that

.�/D

ˇ̌̌̌
�1�.P .U /; �0/C

paX
iD1

��0.�i /�.K; �i/C

nX
iD1

�P.U /.z
i
n/Cpas

ˇ̌̌̌

�

ˇ̌̌̌
�1�.P .U /; �0/C

nX
iD1

�P.U /.z
i
n/

ˇ̌̌̌
C

ˇ̌̌̌ paX
iD1

.��0.�i /�.K; �i/Cs/

ˇ̌̌̌

�

ˇ̌̌̌
�1�.P .U /; �0/C

nX
iD1

�P.U /.z
i
n/

ˇ̌̌̌
C

paX
iD1

ˇ̌̌̌
��0.�i /�.K; �i/Cs

ˇ̌̌̌

�2ngPC

paX
iD1

2pb�agK (by (KII) and (PII))

D2ngPC2ngK �2ng:

Besides Tristram–Levine signatures and Gilmer’s Casson–Gordon obstruction, the only
known obstruction to being a knot with small g

top
4

comes from recent work of Cha,
Miller and Powell [5]. This work uses certain L.2/ �–invariants to show that certain
families of knots with vanishing Tristram–Levine signature functions and vanishing
Casson–Gordon sliceness obstructions still have members with arbitrarily large g

top
4

.
Moreover, their constructions are all of the form J D #n

iD1 P .Ki/ for P a winding
number 0 satellite with P .U / slice. However, these techniques only show g

top
4
.J /� g

for g orders of magnitude smaller than
Pn

iD1 g
top
4
.Ki/, and hence seem ill-suited to

trying to disprove Conjecture 1.4.

4 New computations and contrast with the smooth setting

We will use the following result of Hom [13] on how the Heegaard Floer invariant �
behaves under cabling:

Theorem 4.1 [13] Let K be a knot with gsm
4
.K/D �.K/ > 0; then , for any w > 0

we have
gsm

4 .Cw;1.K//D �.Cw;1.K//D w�.K/D wgsm
4 .K/

and ".Cw;1.K//D ".K/DC1.

Proposition 4.2 For P a winding number w pattern ,

lim
n!1

gsm
4
.P .T2;2nC1//

gsm
4
.T2;2nC1/

D jwj:
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Proof Let P be a winding number w pattern. Since P and Cw;1 are homologous in V,
there exists a surface F in V � I with boundary P � f1g t�Cw;1 � f0g. One can use
an argument analogous to the one that shows that patterns have a well-defined action
on concordance — see Cochran and Harvey [6] — to show that, for any knot K,

jgsm
4 .P .K//�gsm

4 .Cw;1.K//j � gsm
4 .P .K/ #�Cw;1.K//� g.F /:

Therefore, since limn!1 gsm
4
.T2;2nC1/D1, we have, as desired, that

lim
n!1

gsm
4
.P .T2;2nC1//

gsm
4
.T2;2nC1/

D lim
n!1

gsm
4
.Cw;1.T2;2nC1//

gsm
4
.T2;2nC1/

D lim
n!1

wn

n
D w:

Remark 4.3 This argument shows that, for any collection fKng of quasipositive knots
(or knots with �.Kn/D gsm

4
.Kn/¤ 0 and ".Kn/DC1) with limn!1 g4.Kn/D1,

we have
lim

n!1

gsm
4
.P .Kn//

gsm
4
.Kn/

D jwj:

The following result, together with Proposition 2.4 in the winding number 0 case,
immediately implies Corollary 1.3, since limn!1 g

top
4
.T2;2nC1/D1.

Proposition 4.4 Let P be a winding number w > 0 pattern. Then

�g
top
4
.P .U //� g

top
4
.P .T2;2nC1//�g

top
4
.T2;2nC1/� gZ.P .U //:

Proof Let Kn D T2;2nC1. We first observe that, for tn 2
�

2n�1
2nC1

�; 2nC3
2nC1

�
�
, we have

2nD j�ei tn .Kn/j � 2g
top
4
.Kn/� 2gZ.Kn/� 2g3.Kn/D 2n;

and hence we have equality throughout.

Now let P be a pattern of winding number w > 0 and observe by Theorem 1.1 that

g
top
4
.P .Kn//� gZ.P .Kn//� gZ.P .U //CgZ.Kn/D gZ.P .U //Cg

top
4
.Kn/:

We now need to obtain our lower bound on g
top
4
.P .Kn//. Let sn 2

� .2n�1/�
.2nC1/w

; .2nC3/�
.2nC1/w

�
be such that eisn is not a root of �P.U /.t/. It follows that eisn is not a root of
�P.Kn/.t/D�P.U /.t/ ��Kn

.tw/ and so

2g
top
4
.P .Kn//� j�eisn .P .Kn//j D j�eisn .P .U //C �eiwsn .Kn/j

� 2g
top
4
.Kn/� j�eisn .P .U //j

� 2g
top
4
.Kn/� 2g

top
4
.P .U //:
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Proposition 4.5 For any w;m 2N, there exists a winding number w pattern P such
that , for any quasipositive knot K,

gsm
4 .P .K//D gsm

4 .P .U //Cjwjgsm
4 .K/Cm:

Proof Let Pm;w DQm ıCw;1, where Q denotes the Mazur pattern, ı denotes pattern
composition and Qm denotes the m–fold composition of Q, which is a winding
number 1 pattern. Note that Pm;w is a winding number w pattern. Let K be a
quasipositive knot. By Levine [16], if J is any knot with ".J /DC1, then �.Q.J //D
�.J /C 1 and ".Q.J //DC1. Applying this to J D Cw;1.K/ and using Theorem 4.1
gives us that

gsm
4 .Pm;w.K//� �.Pm;w.K//D �

�
Qm.Cw;1.K//

�
D �.Cw;1.K//Cm

D wgsm
4 .K/Cm:

Since a single crossing change transforms Q to a core of the solid torus, we have that
gsm

4
.Q.J //� gsm

4
.J /C1 for any knot J. It is also easy to check that gsm

4
.Cw;1.J //�

wgsm
4
.J / for any knot J, and so

gsm
4 .Pm;w.K//D gsm

4

�
Qm.Cw;1.K//

�
� gsm

4 .Cw;1.K//Cm� wgsm
4 .K/Cm;

and we have the desired equality.

Example 4.6 Let p and q be odd positive integers. We consider C2;q.T2;p/, the .2; q/–
cable of the .2;p/–torus knot. From another point of view, C2;q.T2;p/ is the knot
obtained as the closure of the 4–braid .a2a1a3a1/

pa1
q�2p. Such a knot is strongly

quasipositive2 and as such has g3 D � D gsm
4

. Concretely,

gsm
4 .C2;q.T2;p//D g3.C2;q.T2;p//D

1
2
.q� 1/C 2g3.T2;p/D

1
2
.q� 1/Cp� 1:

In contrast, as an application of Theorem 1.1 we have that

(10) g
top
4
.C2;q.T2;p//� gZ.C2;q.T2;p//� gZ.C2;q.U //CgZ.T2;p/

D
1
2
.q� 1/C 1

2
.p� 1/;

where the equality follows from 1
2
j�.T2;p/j D g

top
4
.T2;p/D gZ.T2;p/D g3.T2;p/D

1
2
.p�1/ for p > 1 odd. This a priori seems unexpected for all values of q. We discuss

some special cases.

2For q � 0, all .2; q/–cables of a nontrivial strongly quasipositive K are strongly quasipositive since
each is the boundary of a quasipositive Seifert surface. Indeed, a Seifert surface is given as a q–fold
positive Hopf plumbing on the 0–framed annulus with core K. This Seifert surface is quasipositive since
positive Hopf plumbing preserves quasipositivity (see [27]) and the 0–framed annulus with core K is a
quasipositive Seifert surface (see [26, Lemma 1 and its proof]).
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Upper and lower bounds coincide on g
top
4

For q D 1, (10) is of course subsumed
by (1), and the inequalities are equalities. Similarly, the upper and lower bounds agree
for p D 1, though this is less interesting since C2;q.T2;1/D T2;q . In fact, the lower
bound for g

top
4
.C2;q.T2;p// coming from Tristram–Levine signatures equals the upper

bound of (10) when qD 1; 3 and any p, when qD 5 and pD 3; 5; 7; 9, when qD 7 and
p D 3, and for any q when p D 1. Indeed, for p; q � 3, a Tristram–Levine signature
calculation3 yields

(11) g
top
4
.C2;q.T2;p//�

q�1

2
C

p�1

2
�min

nj
q

4
�

q

2p

k
;
j

p

2
�

2p

q

ko
;

and one easily checks
�q

4
�

q
2p

˘
D 0 if and only if

�p
2
�

2p
q

˘
D 0 if and only if

1
2
< 1

p
C

2
q

.

Positive braid knots For qD2pC1, C2;2pC1.T2;p/ is the blackboardC1–framed ca-
ble of T2;p and as such the closure of a positive 4–braid. (Indeed, .a2a1a3a1/

pa1
q�2p

is evidently a positive 4–braid for q � 2p.) We find

(12) pC 1� g
top
4
.C2;2pC1.T2;p//� pC

p�1

2
D

3p�1

2

< gsm
4 .C2;2pC1.T2;p//D 2p� 1;

where the first inequality comes from (11) with qD2pC1. This constitutes a significant
difference between g

top
4

and gsm
4

for an infinite family of knots given as closures of a
positive 4–braid: for large p the situation is

1

2
� lim sup

p!1

g
top
4

g3

.C2;2pC1.T2;p//
(12)
�

3

4
< 1D

gsm
4

g3

:

We iterate the construction described above as follows. For any positive braid ˇ of
length c with closure a knot K, one may consider the cable C2;2cC1.K/. This is the
blackboard C1–framed cable of the standard diagram of K coming from ˇ and hence
is the closure of a positive braid of double the braid index of ˇ and length 4cC 1. We
consider the result of iterating this process n times, starting with K D T2;p for p � 3

odd, and defining the knot

Kn;p D C2;2cn�1C1

�
C2;2cn�1C1.� � �C2;2c0C1.T2;p/ � � � /

�
;

3Setting z D e2�it with t D 1
4
C

1
2p
� " and t D

q�2
2q
C " for " sufficiently small, we have, by (6),

1
2
j�z.C2;q.T2;p//j D

� q
4
C

q
2p
C

1
2

˘
C

p�1
2
D

q�1
2
C

p�1
2
�
� q

4
�

q
2p

˘
and 1

2
j�z.C2;q.T2;p//j D

q�1
2
C
�2p

q C
1
2

˘
D

p�1
2
C

q�1
2
�
�p

2
�

2p
q

˘
, respectively.
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where c0 WD p and for k � 1 we define

ck D 4ck�1C 1D 4.4ck�2C 1/C 1D � � � D 4kpC 1
3
.4k
� 1/:

Since Kn;p is a positive knot, by applying Schubert’s theorem for the 3–genus of a
satellite knot we obtain

gsm
4 .Kn;p/D g3.Kn;p/D

n�1X
kD0

ck2n�1�k
C
�

1
2
.p� 1/

�
2n
D 22n�1

�
pC 1

3

�
� 2n
C

1
3
:

Iteratively applying Proposition 2.4, we find

g
top
4
.Kn;p/�gZ.Kn;p/�

n�1X
0

ckC
1
2
.p�1/D 22n�1

�
2
3
pC 2

9

�
�

1
9
.3nC1/C 1

6
.p�3/:

Thus, we have

lim sup
n!1

g
top
4
.Kn;p/

g3.Kn;p/
�

2

3
< 1D

gsm
4
.Kn;p/

g3.Kn;p/
:

Algebraic knots and torus knots For qD 4pC1, C2;4pC1.T2;p/ is an algebraic knot,
which is smooth cobordism distance 1 from the torus knot T4;2pC1. Consequently,

g
top
4
.T4;2pC1/� g

top
4
.C2;4pC1.T2;p//C 1

(10)
�

1
2
.5p� 1/C 1

< 3p D gsm
4 .T4;2pC1/D g3.T4;2pC1/

for p > 1. This gives

lim
p!1

g
top
4
.T4;2pC1/

g3.T4;2pC1/
�

5

6
:

A priori, this is not particularly interesting since better upper bounds for g
top
4

of torus
knots with braid index 4 were obtained in [1, Lemma 22(ii)]. However, we find it
noteworthy for two reasons. Firstly, in contrast to the somewhat example-based nature
of the upper bounds from [1], it is pleasant that no explicit Seifert matrix consideration
for a specific knot is needed once Theorem 1.1 is available. Secondly, by considering
iterated cables of torus knots, one can find bounds on the topological 4–genera of torus
knots of larger braid index that significantly improve the main results of [1]. However,
this does not yield better results than those obtained by McCoy [23], whose upper
bounds on g

top
4
.Tp;q/ for large p and q improve any previous work; we refer the reader

to his text for said bounds.

Algebraic & Geometric Topology, Volume 22 (2022)



The topological slice genus of satellite knots 735

J
�

J

Figure 5: The pattern PJ , which depends on the choice of an auxiliary knot J

and has algebraic winding number equal to 0.

As the final element to this article, we exhibit examples where the bounds on g
top
4
.P .K//

coming from Theorem 1.1 are far from sharp. For instance, if P is a pattern with
geometric winding number 1 and such that g

top
4
.P .U //D n, then

0D g
top
4
.P .U / #�P .U //D g

top
4

�
P .�P .U //

�
< g

top
4
.P .U //Cg

top
4
.�P .U //D 2n:

There are also many examples of pairs .P;K/ where the topological 4–genus of P .K/

cannot be determined by combining the upper bounds coming from Theorem 1.1 with
the known lower bounds. We give a particularly interesting family that may relate to
Conjecture 1.4.

Example 4.7 Let PJ be the pattern shown in Figure 5, described as a knot in the
complement of the unknot �. Since PJ .U / has H1

�
†2.PJ .U //

�
Š .Z3/

4, we have
that

2D 1
2
.4/� gZ.PJ .U //� g3.PJ .U //D 2;

where for the first inequality we used that half the minimal number of generators for
the first homology of the double branched cover of a knot is a lower bound for gZ; see
[7, Proposition 12(ii); 8, Corollary 1.5]. So the best algebraic bound we can obtain
is g

top
4
.PJ .K// � 2, which also follows immediately from considering the genus 2

Seifert surface for PJ .U / in the complement of �. Conjecture 1.4 suggests that, in
fact,

g
top
4
.PJ .K//�minf2;gtop

4
.K/g:

While for many choices of J (eg J D #n
T2;3 for large n) one can use Casson–

Gordon signatures to prove that PJ .T2;3/ is not slice, Theorem 3.4 shows that it is
not possible to use Casson–Gordon signatures to establish that g

top
4
.PJ .T2;3// > 1D

g
top
4
.PJ .U //Cg

top
4
.T2;3/.
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Given the gap between the known lower and upper bounds on g
top
4

in the case of
PJ .T2;3/, we propose the following as a stimulus for future work:

Problem 4.8 For some nonslice knot J, determine g
top
4
.PJ .T2;3// 2 f1; 2g.
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