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Magnetohydrodynamic (MHD) instabilities can significantly decrease energy and particle con-

finement of fusion plasmas. Consequently, the understanding of MHD stability is crucial for the

design and operation of future fusion devices. While there are analytical descriptions of MHD

stability for simple plasma configurations or in certain limits, the MHD stability analysis of real-

istic, more complex plasma configurations requires numerical solutions of the MHD equations.

The numerical solution for a single plasma configuration yields the growth rate and structure

of instabilities. Studying MHD stability of multiple plasmas grants information on trends with

different plasma parameters (e.g. plasma current). For ideal modes, additional information on

the physics driving these instabilities can be obtained using the energy functional as derived by

Greene and Johnson [1], which separates the energetic contributions into pressure drive, current

drive and stabilizing terms. However, for some plasmas and types of instability finite resistivity

must be taken into account. In order to analyze the energetic composition of modes in resistive

plasmas, we extend the energy functional by Greene and Johnson to the regime of finite resis-

tivity. The resulting resistive energy functional grants additional insight for numerical solutions

but is not in the form of a solvable eigenvalue problem. We have implemented the resistive en-

ergy functional in the linear stability code CASTOR3D and validated it for a simple test case

using three different coordinate systems.

Starting from the set of linearized MHD equations as implemented in the CASTOR3D code

[2, 3], the plasma energy is obtained by multiplication of the linearized momentum equation

with 1
2
~ξ ∗ and integration over the plasma volume, where we introduce the plasma displacement

~ξ by ∂t
~ξ =~v1 and the perturbed velocity ~v1. Integrating by parts, applying vector algebra and

using the linearized resistive MHD equations analogously to Bernstein et al. and Greene and

Johnson [1, 4], the energy functional for resistive plasma perturbations reads (see [5]):

2δW = 2δWV +2δWS +2δWV̂ =−
∫

ρ0λ
2|~ξ |2dV (1)

where we separate surface δWS, vacuum δWV̂ and plasma volume δWV contributions

2δWS =
∮
|~n ·~ξ |2 ~n ·

[[
~∇(p0 +

~B2
0

2µ0
)
]]

dS , 2δWV̂ =
∫ |~̂B1|2

µ0
dV̂ (2)

and

48th EPS Conference on Plasma Physics P5b.105



2δWV =
∫ |~B1,⊥|2

µ0
dV︸ ︷︷ ︸

WSHA

+
∫ ~B2

0
µ0

∣∣∣~∇ ·~ξ⊥+2(~ξ⊥ ·~κ)+
1
~B2

0

~B0 ·~BR

∣∣∣2dV︸ ︷︷ ︸
WCPA

+Γ

∫
p0|~∇ ·~ξ |2dV︸ ︷︷ ︸
WSND

+
1

µ2
0 λ ∗

∫
η |~∇×~B1|2dV︸ ︷︷ ︸

WRCD

−
∫ j0,‖
|~B0|

(~ξ ∗⊥×~B0) ·~B1,⊥dV︸ ︷︷ ︸
WCUR

−
∫

2(~ξ⊥ ·~∇p0)(~ξ
∗
⊥ ·~κ)dV︸ ︷︷ ︸

WDP0

−
∫ 1

~B2
0
(~ξ ∗‖ ×~∇p0) · (~B0×~BR)dV︸ ︷︷ ︸

WRD,‖

−
∫ 1

~B2
0
(~ξ⊥ ·~∇p0)(~B0 ·~B∗R)dV︸ ︷︷ ︸

WRD,⊥

(3)

with density ρ , pressure p, current density ~j, magnetic field ~B, resistivity η , adiabatic coefficient

Γ, surface normal vector of the plasma volume ~n, the linear growth rate or eigenvalue λ ∈ C,

field-line-curvature vector ~κ = (~b ·~∇)~b with~b = ~B0/|~B0| and ohmic field ~BR = λ−1~∇× (η~j1).

The parallel current density is given by j0,‖ = (~j0 · ~B0)/|~B0|. Equilibrium and perturbed quan-

tities are distinguished by indices 0 and 1, respectively. Hats denote vacuum quantities, ‖ and

⊥ denote parallel and perpendicular components w.r.t. ~B0 and [[. . . ]] denotes the jump of the

enclosed quantities across the plasma boundary.

The different forms of energy which determine the growth of a mode are related to per-

pendicular magnetic perturbations WSHA, parallel magneto-compressional perturbations WCPA,

adiabatic plasma compression WSND, resistive current diffusion WRCD, parallel current-density

drive WCUR, field-line-curvature dependent pressure-gradient drive WDP0 and resistive correc-

tions to the pressure gradient drive WRD,‖ and WRD,⊥. The first four terms (WSHA, WCPA, WSND,

WRCD) as well as the vacuum contribution δWV̂ are always stabilizing. The resistive correc-

tions WRD,‖ and WRD,⊥ account for the effect of resistive diffusion on the work done by the

induced magnetic perturbation which is generated by parallel and perpendicular compression

of the plasma, respectively. The surface contribution δWS is zero if there are no equilibrium sur-

face currents. In summary, three new resistive terms (WRCD, WRD,‖, WRD,⊥) as well as a resistive

correction to the energy of parallel magneto-compressional perturbations WCPA must be consid-

ered for resistive plasma perturbations (highlighted terms in equation (Eq. 3)). The vacuum and

surface contributions are not affected by finite values of resistivity.

We implemented the resistive energy functional in the CASTOR3D code in general 3D

curvilinear coordinates. The energy functional is validated by comparison of potential and
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kinetic energy of an n = 8 Edge Localized Mode in a simple low-β axisymmetric test equi-

librium across three different coordinate systems: NEMEC coordinates (NEM), 2D straight

field line coordinates (SFL) and Boozer coordinates (BZR). The pressure and safety factor pro-

files of the test equilibrium are shown in figure (Fig. 1a). The test resistivity profile η(r) =
ηb
221 · (1+ 10r+ 10r2 + 100r8 + 100r10), shown in figure (Fig. 1b), is defined to be large at the

plasma edge and small in the center, where r is the square-root of the normalized toroidal flux

and ηb is the resistivity at the plasma boundary.

a) b)

Figure 1: a) Pressure (solid) and safety factor (dashed) profiles of the test equilibrium. b) Shape of the

test resistivity profile.

a) b)

Figure 2: a) Fourier spectrum (BZR) of the perturbed toroidal velocity. b) Normalized energy densities

corresponding to Wkin =
∫

ρ0λ 2|~ξ |2dV, WSHA and WRCD for the validation case (BZR).

The Fourier spectrum of the toroidal velocity perturbation (BZR) is shown in figure (Fig. 2a)

for the test mode. As a result of the validation (see [5]), the sum of the potential energy terms

of the perturbation matches the kinetic energy within bounds of −0.06% (NEM), 0.91% (SFL)

and 0.37% (BZR) for the test case with ηb = 2.21 ·106 Ωm, validating that all potential energy
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terms have been considered and the functional was implemented correctly in the general 3D for-

mulation of CASTOR3D. The accurate calculation of the energy terms requires well-converged

eigenfunctions and equilibria as well as a radial resolution which is sufficient to resolve the

resonant flux surfaces, as can be seen in figure (Fig. 2b). A sufficiently large number of poloidal

and toroidal mode numbers must be provided for the Fourier representation of the mode in or-

der to ensure convergence of the eigenfunction. Well-converged equilibria correspond to small

errors in the force balance and are necessary for validity of the linear equations.

In order to compare the energy compositions of different perturbations and to measure the

impact of the resistive corrections, we define proportions of the potential energy terms:

χRCD =WRCD/(WRCD +WSHA +WCPA +WSND) (4)

χRD = (WRD,⊥+WRD,‖)/(WRD,⊥+WRD,‖+WDP0) (5)

χDP/CUR = (WRD,⊥+WRD,‖+WDP0)/(WRD,⊥+WRD,‖+WDP0 +WCUR) (6)

Figure 3: Proportions of potential energy terms

for the test mode over a range of resistivity values.

Gray area: Realistic values of resistivity.

which are shown for the test perturbation over

a range of resistivity values in figure (Fig. 3).

One can see that resistive corrections are even

important at realistic values of resistivity and

for ideal instabilities, i.e. finite growth rate for

η → 0. For larger values of resistivity the test

mode becomes more pressure gradient driven

(χDP/CUR) and the energy absorbed by resistive

current diffusion dominates the stabilizing con-

tributions.

In conclusion, we have extended the energy

functional separating pressure drive, current-

density drive and stabilizing terms to the regime of finite resistivity, implemented the resistive

energy functional in the CASTOR3D code and validated it for a simple test case across three

different coordinate systems. A method to evaluate the energy composition as well as a scan of

the test case over a range of resistivity values was presented.
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